

1 **Spatial organization of the kelp microbiome at micron scales**

2 S. Tabita Ramirez-Puebla^{a*}, Brooke L. Weigel^b, Loretha Jack^{a*}, Cathleen Schlundt^{a*}, Catherine
3 A. Pfister^c, Jessica L. Mark Welch^{a#}

4 ^aJosephine Bay Paul Center for Comparative Molecular Biology and Evolution, Marine
5 Biological Laboratory, Woods Hole, MA, USA

6 ^bCommittee on Evolutionary Biology, University of Chicago, Chicago, IL, USA

7 ^cDepartment of Ecology and Evolution, University of Chicago, Chicago, IL, USA

8 Running Head:

9 Imaging the kelp microbiome

10 #Address correspondence to Jessica L. Mark Welch, jmarkwelch@mbl.edu

11 *Present address: S. Tabita Ramirez-Puebla, The Forsyth Institute, 245 First Street, Cambridge,
12 MA 02142, USA. Loretha Jack, University of Wisconsin, Milwaukee, WI, USA. Cathleen
13 Schlundt, GEOMAR Helmholtz Center for Ocean Research Kiel, Duesternbrooker Weg 20,
14 24105 Kiel, Germany.

15 Abstract

16 Macroalgae are colonized by complex and diverse microbial communities that are distinct from
17 those on inert substrates, suggesting intimate symbioses that likely play key roles in both
18 macroalgal and bacterial biology. Canopy-forming kelp fix teragrams of carbon per year in
19 coastal kelp forest ecosystems, yet little is known about the structure and development of their
20 associated microbial communities. We characterized the spatial organization of bacterial
21 communities on blades of the canopy-forming kelp *Nereocystis luetkeana* using fluorescence *in*
22 *situ* hybridization and spectral imaging with a probe set combining phylum, class and genus-
23 level probes to target >90% of the microbial community. We show that kelp blades host a dense
24 microbial biofilm, generally less than 20 μm thick, in which disparate microbial taxa live in close
25 contact with one another. The biofilm is spatially differentiated, with tightly clustered cells of the
26 dominant symbiont *Granulosicoccus* *sp.* (Gammaproteobacteria) close to the kelp surface and
27 filamentous *Bacteroidetes* and Alphaproteobacteria relatively more abundant near the biofilm-
28 seawater interface. Further, a community rich in *Bacteroidetes* colonized the interior of kelp
29 tissues. Microbial community structure and cell density increased along the length of the kelp
30 blade, from sparse microbial colonization of newly produced tissues at the meristematic base of
31 the blade to an abundant microbial biofilm on older tissues at the blade tip. Finally, kelp from a
32 declining population hosted fewer microbial cells compared to kelp from a stable population,
33 indicating that biofilms are characteristic of health and that biofilm loss may be related to the
34 condition of the host.

35 **Importance**

36 The microbial community coating the surfaces of macroalgae may play a key but underexplored
37 role both in the biology of the macroalgal host and in the biogeochemistry of the coastal ocean.
38 We show that photosynthetic blades of the canopy-forming kelp *Nereocystis luetkeana* host a
39 complex microbial biofilm that is both dense and spatially differentiated. Microbes of different
40 taxa are in intimate cell-to-cell contact with one another; microbial cells invade the interior of
41 kelp cells as well as cover their external surfaces; and a subset of the surface microbiota projects
42 into the water column. These results highlight the potential for metabolic interactions between
43 key members of the kelp microbiome as well as between microbes and their host. The dense
44 layer of microbes coating the surface of the kelp blade is well-positioned to mediate interactions
45 between the host and surrounding organisms and to modulate the chemistry of the surrounding
46 water column.

47 Introduction

48 Macroalgae are foundational members of their local ecosystems, where they provide
49 animal habitat and nursery areas (Lamy et al. 2020), contribute to primary productivity (Wilmers
50 et al. 2012), and modify surrounding seawater chemistry (Pfister et al. 2019). The surfaces of
51 macroalgae are associated with microbial communities that may play a key but underexplored
52 role in macroalgal biology. The surface of macroalgae is frequently colonized by a microbial
53 community that is spatially well-positioned to act as a mediator of algal metabolic exchange with
54 the environment. As dominant members of temperate coastal oceans, brown algae known as kelp
55 host microbial communities distinct from those in surrounding seawater (Michelou et al. 2013,
56 Chen & Parfrey 2018, Weigel and Pfister 2019) and from rocky substrates (Lemay et al. 2018),
57 indicating that kelp may possess mechanisms for selecting or recruiting a unique subset of water
58 column microbes, while preventing fouling or biofilm establishment of many others. Further,
59 kelp metagenomes contain a high abundance of microbial motility genes (Minich et al. 2018) and
60 kelp tissue only several days old becomes colonized by bacteria (Weigel and Pfister 2019).
61 Microbial community changes have been linked to algal host health (Marzinelli et al. 2015) and
62 environmental stressors (Minich et al. 2018). While the functions of macroalgal microbiomes are
63 still being elucidated, surface-associated microbes can metabolize algal polysaccharides (Martin
64 et al. 2015, Lin et al. 2018) and in seagrasses, functionally important metabolite exchanges
65 between host and microbes have been demonstrated (Tarquinio et al. 2018). Despite the potential
66 for macroalgal-associated microbial communities to affect nutrient exchange, biofouling, disease
67 and even host development (Egan et al. 2013), we know little about the composition and
68 development of macroalgal microbial communities.

69 Imaging of microbial community organization reveals the micrometer-scale localization
70 of taxa relative to one another and relative to host tissue and other landmarks such as the surface
71 of the biofilm. In a complex microbial community characterized by cross-feeding and metabolic
72 interactions among diverse partners, localization provides clues about the micro-habitats and
73 metabolic partners that foster the growth of particular microbes. Localization is key because
74 microbes interact primarily with other microbes within a distance of a few microns or tens of
75 microns, particularly in environments characterized by fluid flow (Kolenbrander et al. 2010,
76 Cordero and Datta 2016, Dal Co et al. 2019). Thus, visualizing the spatial structure of a

77 microbial biofilm contributes greatly to our understanding of host-microbe and microbe-microbe
78 interactions.

79 We investigated the micron-scale spatial organization of microbial communities living on
80 photosynthetic blades of bull kelp, *Nereocystis luetkeana*. Bull kelp are a highly productive
81 component of the northeast Pacific Ocean, creating vast underwater forests from southern
82 California to Alaska. This annual kelp displays extraordinarily high growth rates, with
83 photosynthetic kelp blades growing outwards from the kelp thallus at rates of 0.5 – 2 cm per day
84 (Weigel and Pfister 2019) and reaching heights greater than 40 m. This rapid growth permitted
85 us to ask how microbial community spatial structure and diversity changes from newly produced
86 tissue at the base of the blade to months-old tissue at the blade tip. We used Combinatorial
87 Labeling and Spectral Imaging – Fluorescence *in situ* Hybridization (CLASI-FISH; Valm et al.
88 2011, 2012) to investigate microbial community spatial structure on *N. luetkeana* blades during
89 its rapid summer growth. In addition, we compared the microbial biofilm structure from a
90 healthy *N. luetkeana* population to a geographically distinct population that has been in decline
91 in recent years (Pfister et al. 2017, Berry et al. 2020). We demonstrate that the composition of
92 the kelp microbiome displays repeatable spatial structure (i.e. microbiota changes over micron-
93 scale distances from the blade surface), that colonization density correlates with the age of the
94 blade, and that bacterial diversity and density are related to the state of health of the kelp.

95 **Results**

96 **Development of probe set and sample preparation methodology for CLASI-FISH on kelp**

97 To investigate the community structure of the kelp microbiota over time and in kelp
98 populations at different locations in Washington State, we collected kelp blade tissue samples (n
99 = 6 individuals) from two sites reported in Weigel and Pfister (2019): Squaxin Island, in
100 Southern Puget Sound, and Tatoosh Island, on the outer coast of the Olympic Peninsula. In this
101 study, we carried out CLASI-FISH and imaging on a total of 15 samples: 3 from a declining
102 population at Squaxin Island (Berry et al. 2020) and 12 from a persistent population at Tatoosh
103 Island (Table S1). Squaxin Island kelp were sampled once on 21 June 2017, while on Tatoosh
104 Island we collected a time series consisting of 5 collection days from June to August 2017 (Table
105 S1), spanning the peak in annual biomass. The 12 imaged samples from Tatoosh Island include 4
106 pairs (n = 8 samples) from both the base (near the meristematic tissue) and the tip (older tissue)
107 of the same kelp frond over the time series, and an additional 4 samples from the tip of different
108 kelp blades in June and July (Table S1). Samples were processed for 16S rRNA gene sequencing
109 as previously reported (Weigel and Pfister 2019); additional samples, taken in parallel, were
110 collected and preserved in 95% ethanol for CLASI-FISH.

111 Characterizing the microbiome of *N. luetkeana* with 16S rRNA gene sequencing revealed
112 a community that was diverse but composed of the same major taxa at all sampled time points
113 and both locations (Fig. 1, Weigel and Pfister, 2019). The most abundant genus-level taxon was
114 *Granulosicoccus* (Gammaproteobacteria), which accounted for close to half of the sequences
115 overall in samples from Tatoosh Island (Fig. 1); other major taxa included Alphaproteobacteria,
116 Bacteroidetes, and Verrucomicrobia. In samples from the declining Squaxin Island kelp
117 population, Alphaproteobacteria were dominant, comprising > 75% of the microbial community
118 (Fig. 1).

119 In contrast to sequencing, which provides information on community structure at
120 centimeter scales, imaging permits micrometer-scale analysis of microbial spatial organization.
121 To investigate the spatial organization of the kelp microbiota we developed a probe set for
122 CLASI-FISH (Combinatorial Labeling and Spectral Imaging- Fluorescence *in situ*
123 Hybridization) to enable simultaneous identification and imaging of the major bacterial groups.
124 For comprehensive coverage of bacteria, we used the probes Eub338-I, II, and III (Amann et al.

125 1990, Daims et al. 1999) using one fluorophore for probe Eub338-I and a different fluorophore
126 to label both Eub338-II and Eub338-III, to differentiate the Verrucomicrobia and Planctomycetes
127 from the rest of the Bacteria. For greater taxonomic resolution within the bacteria identified by
128 Eub338-I, the probe set contained probes specific for the major groups comprising the *N.*
129 *luetkeana* microbiota: Bacteroidetes, Alphaproteobacteria, and Gammaproteobacteria. For added
130 taxonomic resolution within Gammaproteobacteria we designed two new probes targeting the
131 most abundant genus, *Granulosicoccus*. Thus, the probe set targeted nested levels of taxonomic
132 identification, with cells identified by combinations of one, two, or three fluorophores (Table 1).
133 We tested probe specificity by applying the set of 7 probes to 5 pure cultures. Each probe
134 hybridized with its target taxa and only faint hybridization was observed with nontarget taxa
135 (Fig. S1 and S2).

136 For sample preparation we employed two strategies: whole-mount preparation and
137 embedding and sectioning. Whole-mount preparations enable imaging of a large surface area of
138 kelp blade but have the disadvantage that layers of the kelp tissue tend to separate over the
139 course of the hybridization and washing steps. We found that coating the tissue with a layer of
140 agarose at the beginning of the experiment helped the sample to remain intact during subsequent
141 manipulations (see Methods). An alternative preparation procedure, in which the sample was
142 embedded in methacrylate resin followed by sectioning and application of probes to the sections
143 mounted on a slide, preserved spatial organization by immobilizing the sample in resin and
144 permitted imaging of thin cross-sections through the kelp blade.

145 Imaging of such cross-sections of kelp embedded in methacrylate enabled us to visualize
146 the overall relationship of the microbiota to the underlying kelp tissue (Fig. 2A). The kelp tissue
147 itself is visible in a transmitted-light image as a series of large irregularly shaped chambers
148 (sieve tubes), with a row of oblong photosynthetic cells along both the upper and the lower
149 surface of the blade (Fig. 2A). The microbes are located primarily in a dense layer several
150 micrometers thick on the exterior of both the upper and lower surface. Imaging at a
151 magnification sufficient to visualize individual bacterial cells shows each taxon as single cells or
152 small clumps, often immediately adjacent to cells of different taxonomic identification (Fig. 2A,
153 insets i-iii). In addition to the surface layer, some bacteria are present in the interior of the blade;
154 a subset of the community consisting largely of Bacteroidetes rods can be seen within the kelp
155 tissue immediately beneath the surface layer (Fig. 2Ai), and a small cluster of mixed composition

156 is visible near the center of the image (Fig. 2Aii). Thus, a variety of modes of interaction
157 between microbiota and host can be visualized in cross-sectional view.

158 By contrast, placing a whole-mount of a kelp blade flat on a microscope slide permitted
159 imaging of a vertical series (or z-stack) of images from the surface of the kelp blade through the
160 biofilm (Fig. 2B). This whole-mount imaging reveals the relationship of microbial cells to one
161 another and the changing composition of the community as a function of distance from the kelp
162 blade. Moving up from the plane in which the kelp photosynthetic cells are visible (Fig. 2B),
163 serial optical sections show first a largely fluorescence-free region a few micrometers thick and
164 then dense colonization by a mixed microbial community. At approximately 3 to 6 μm from the
165 surface of the blade, clusters of *Granulosicoccus* cells are prominent and diatoms are visible
166 (Fig. 2B). In the region approximately 8 to 12 μm from the blade surface, filaments are a more
167 prominent part of the community. Non-filamentous cells of Alphaproteobacteria, Bacteroidetes
168 and Verrucomicrobia or Planctomycetes are present throughout the biofilm. The whole-mount
169 images, like the cross-sections, show that cells of diverse taxa are directly adjacent to one
170 another in the kelp surface biofilm.

171 In perfectly flat whole-mount images one sees either the algal surface or the microbiota
172 but not both unless the microbiota has invaded into the tissue. In many whole-mount images,
173 however, the algal surface and the overlying microbiota can be seen simultaneously because the
174 sample is tilted relative to the plane of imaging, such that the confocal microscope image is an
175 optical section through the sample at an oblique angle and a single plane of focus captures both
176 the kelp blade and the microbial community. In the example in Fig. 2C, kelp cells are visible as
177 large ($\sim 5 \mu\text{m} \times 10 \mu\text{m}$) oblongs at the right; Bacteroidetes spp. are intercalated between the kelp
178 cells. In the center of the image a scattering of taxonomically mixed bacteria are located on or
179 between the kelp cells, while at the left-hand side of the image the full microbial community is
180 visible. As most whole-mount preparations are not entirely flat, many images represent to one
181 degree or another an oblique-angle view of the material.

182 **Bacteria on kelp blades form mixed epiphytic communities whose abundance is dependent
183 on the age of the underlying tissue**

184 Due to the high growth rate of the kelp thallus, producing multiple centimeters of new
185 tissue in a single day (Weigel and Pfister 2019), it is possible to study how spatial structure and

186 diversity of the microbial community differ between newly produced tissue vs. tissue that is
187 weeks to months old. Although the microbial community on older tissue contains more
188 microdiversity, the composition and relative abundances of major taxa are broadly consistent
189 across young and old tissues (Fig. 1, Weigel and Pfister 2019). However, imaging showed a
190 higher density of colonization at the tip of the blade, which is months old, compared to the base,
191 where newly produced tissue is only days old (Fig. 3). At the tip (Fig. 3 A-C) cells form a
192 confluent biofilm, whereas at the base only scattered cells are visible (Fig. 3 D-F). This pattern is
193 observed in samples collected throughout the summer (Fig 3).

194 Typical images of the tip community (Fig. 4) show that bacteria at the tip of blades are
195 mixed at micron scales. *Granulosicoccus*, the most abundant genus in the 16S rRNA gene
196 sequencing, formed patches or clusters up to 15 μm in diameter in some samples (Fig. 4A); close
197 inspection reveals cells of other taxa nestled within the clusters (Fig. 4A). Alphaproteobacteria,
198 Bacteroidetes rods, Verrucomicrobia and Planctomycetes did not form large clusters but instead
199 are intermixed in the biofilm. In whole-mount preparations, Bacteroidetes filaments lie on top of
200 the other bacteria (Fig. 4A, B), suggesting that they are located in a different level of the biofilm
201 and become flattened onto the sample during the FISH and mounting procedure. This
202 observation is reinforced by cross-section images, which show a biofilm typically 3 to 5 μm
203 thick, with filaments projecting approximately 10 μm from the biofilm (Fig. 4C).

204 In addition to a dense bacterial biofilm, colonies of diatoms were observed, mainly in
205 samples collected in June and July 2017 (Fig. 4A; Fig. 5). In a cross-sectional image, it was
206 apparent that diatoms were embedded within the biofilm and a layer of bacteria is observed
207 between the diatoms and the kelp tissue (Fig. 5C, D), suggesting that the diatoms colonized the
208 host after the bacteria. No specific association between diatoms and particular bacterial taxa was
209 observed.

210 **Endophytic bacteria and direct interactions with the blade surface**

211 Endophytic bacteria have been reported in macroalgae (Hollants et al. 2011) but have not
212 previously been imaged with probes that could distinguish multiple taxa. In addition to the
213 superficial biofilm, we detected bacteria inside kelp tissue by imaging cross-sections (Fig. 6).
214 Bacteroidetes rods and, less abundantly, other members of the community were observed
215 colonizing intercellular spaces of the outermost layer of kelp cells in samples from July (Fig. 2A,

216 2C, Fig. 6). These endophytic Bacteroidetes were located adjacent to kelp cells that may be
217 especially metabolically active given their strong autofluorescence. Microbes occasionally
218 colonized the surface layer of cells directly (Fig. 6B), but in contrast to the Bacteroidetes-rich
219 invasion into highly autofluorescent regions, no obvious preference for any underlying
220 morphology of the kelp was detected. We also observed the microbial community forming small
221 clusters on the interior of the frond (Fig. 2Aii) or forming a strand running through the kelp inner
222 tissue (Fig. 6C, D).

223 **Unipolar labeling of adherent Alphaproteobacteria with wheat germ agglutinin**

224 Wheat germ agglutinin (WGA) is a lectin that binds to N-acetylglucosamine and N-
225 acetylmuramic acid residues that can be present both in bacterial cell walls and in host mucus
226 secretions. We stained samples with fluorophore-labeled WGA and observed staining in spots on
227 the kelp tissue itself, in cells hybridizing with the *Granulosicoccus* probe, and most intriguingly,
228 on cells hybridizing with the *Alphaproteobacteria* probe that reacted asymmetrically with the
229 WGA, showing fluorescence at only one end of the cell (Fig. 7). This pattern was observed
230 across multiple kelp collected in different months and sites (Fig. 7A, B) including the declining
231 population of kelp from Squaxin Island (Fig. 8D, E). In cross-section images the
232 exopolysaccharides were present at the end of the cell that was in contact with the kelp surface
233 (Fig. 7C) suggesting a potential role of the WGA-stained structure in adhesion of the microbe to
234 the kelp.

235 **Bacterial density differences between samples from healthy compared to declining kelp**

236 In addition to the samples collected on the outer Pacific Ocean site of Tatoosh Island, we
237 imaged the microbial biofilm of kelp collected at Squaxin Island, located in Southern Puget
238 Sound. Although the same major taxa are present on *N. luetkeana* from both collection sites,
239 their relative abundances differed: Alphaproteobacteria accounted for the bulk (~75%) of the
240 microbial community in 16S rRNA gene sequences from Squaxin samples (Fig. 1). Imaging
241 revealed dramatically lower density of microbes in Squaxin samples (Fig. 8) compared to the tip
242 of Tatoosh blades and similar densities to the Tatoosh base samples. Interestingly, kelp blades at
243 Squaxin Island were sampled during the same week as the late June Tatoosh kelp (Table S1,
244 June 21 vs. June 25), yet the Tatoosh kelp (Fig. 4A) have a much greater density of bacterial

245 cells than the Squaxin Island kelp. While it is difficult to infer an exact comparison, given that
246 the Squaxin kelp blades were sampled from the middle of the blade while the Tatoosh kelp
247 communities were sampled at the base and tip of the blade, the estimated age of sampled tissue
248 from Squaxin kelp was approximately 2 months, similar to that of the tissue collected from the
249 tip of the kelp blade on Tatoosh Island (Table S1). Thus, samples collected at the base of the
250 Tatoosh blades that were less than 1 week old had similar microbial densities to these 2-month-
251 old biofilms on kelp from Squaxin Island.

252 **Micron-scale spatial arrangement**

253 Using image analysis with *daime* (Daims et al. 2006), we counted a mean of 4025
254 *Granulosicoccus* cells and 2445 Verrucomicrobia-Planctomycetes cells per image on 8
255 *Nereocystis* individuals (Table 2). Overall densities of *Granulosicoccus* averaged 89,056 cells
256 per mm² and as high as 269,049; the Verrucomicrobia-Planctomycetes probe identified an
257 average of 54,100 cells per mm², with a maximum of 94,530. These numbers are likely
258 underestimates of the total colonization of the kelp surface, as they represent only the cells
259 visible in a single focal plane. Cell size was comparable with the Verrucomicrobia-
260 Planctomycetes measuring 0.42 and *Granulosicoccus* measuring 0.47 μm in diameter across all 8
261 individuals (Table 2).

262 Linear dipole analysis can be used to calculate the spatial correlation between two taxa,
263 or between a taxon and itself, over a range of distances. We carried out linear dipole analysis in
264 *daime* to analyze within-taxon and between taxon associations for the genus *Granulosicoccus*
265 and the Verrucomicrobia-Planctomycetes (hereafter referred to as simply Verrucomicrobia) for
266 each of 8 kelp individuals. Results indicated that both *Granulosicoccus* and Verrucomicrobia
267 cells were positively autocorrelated spatially at distances less than 10 μm (Table 2, Fig. S3).
268 When we quantified spatial covariance for both taxa, their co-occurrence was observed at
269 distances less than 5 μm and peaked at 1.61 μm (Table 2, Fig. S3).

270 While these correlations may reflect a tendency of these specific cell types to localize
271 close to one another, they could also result from overall patchiness in colonization of the frond,
272 or from imaging or preparation artifacts (e.g. from compression of the samples between slide and
273 coverslip, or conversely from the sample being not entirely flat in the plane of focus).

274 **Discussion**

275 **Comparison of the *Nereocystis* microbiota to other microbiomes**

276 CLASI-FISH reveals the microbiota of *Nereocystis* to be dense and complex. The
277 bacterial community growing on or within macroalgal fronds has been visualized by other
278 investigators using FISH with one or a few taxa (Tujula et al. 2006, 2010; Bengtsson and Ovreas
279 2010), showing a biofilm composed of cocci and filaments and highlighting the distribution of
280 individual taxa. The benefit of CLASI-FISH is the ability to identify the major groups
281 simultaneously and assess their relative distribution and potential for direct spatial interaction.
282 The probe set we employed provides rather coarse resolution, with most of the targeted taxa
283 visualized at the phylum or class level; nonetheless we visualized micron-scale interaction
284 among these diverse taxa and our results lay out a framework that can be furthered by future
285 experiments using more complex and specific probe sets.

286 The microbiota visualized here is notable for its high density but moderate thickness. In
287 the most densely colonized samples, our images show a confluent biofilm several cells thick.
288 With a typical microbial diameter of 0.5 μm , this confluent biofilm corresponds to a density of
289 $10^8\text{-}10^9$ cells/cm², comparable to the density of $10^7\text{-}10^8$ cells/cm² measured for the brown alga
290 *Fucus vesiculosus* (Stratil et al. 2013). Other marine organisms have a lower surface colonization
291 density; for example, the density of microbes in coral mucus is estimated at only $10^5\text{-}10^6$ per cm³
292 (Garren and Azam 2010; Glasl et al. 2016), on the same order of magnitude as the density in
293 surrounding seawater. Compared to the communities that grow on the human tongue and teeth,
294 the kelp microbiota has similar complexity, but its thickness, in the range of 10 microns, is
295 limited compared to the potentially hundreds of microns in thickness achieved by the microbiota
296 of the human mouth (Zijng et al. 2010, Mark Welch et al. 2016, Wilbert et al. 2019 in press).

297 **Functional implications of the kelp microbiota**

298 The functional importance of the dense microbial layer that we have revealed through
299 CLASI-FISH is relatively unknown, but the position of the microbial layer at the interface
300 between the host tissue and the surrounding water column suggests the possibility for important
301 consequences for biofouling, access of the host organism to light and nutrients, and metabolic
302 exchange. Mucus production by kelps may play a critical role in providing structure for surface-

303 associated microbes. Potential benefits of these microbes to the host may include generation of
304 antibacterial compounds that protect the host against fouling and pathogens (Rao et al. 2007;
305 Egan et al. 2013, Michelou et al. 2013, Tebben et al. 2014, Lee et al. 2016) or competitors
306 (Barott and Rohwer 2012). In turn, microbes likely benefit from a predictable source of dissolved
307 organic matter and a persistent substrate for colonization. Possible functional interactions
308 between macroalgae and their epibionts, both detrimental and potentially beneficial, have been
309 the subject of several recent reviews (Wahl et al. 2012; Ramanan et al. 2016; Singh and Reddy
310 2016; Florez et al. 2017).

311 The limited thickness of the microbial biofilm that we imaged raises the question of
312 whether this biofilm is thin enough so as to permit unattenuated light penetration to the kelp
313 itself and raises the question of what mechanisms may exist by which the thickness of the
314 biofilm may be limited. Is there a dynamic process of biofilm loss via host shedding of the
315 mucous coating to which the biofilm may adhere, followed by re-growth of the biofilm?
316 Alternatively, is biofilm thickness limited by the intrinsic rate of growth of the microbes or their
317 accretion from the water column, or by grazing of the biofilm by micro- or macro-invertebrates?
318 Interestingly, the *Granulosicoccus* sp. genome contains 30 flagella genes (Kang et al. 2018),
319 leading to the possibility that this bacterium is motile, which would provide a mechanism for its
320 early colonization of the kelp tissue from the seawater as well as its high abundances on the kelp
321 surface.

322 Imaging reveals close association, at micrometer scales, of different microbial taxa with
323 one another and with the host, a spatial organization that creates the conditions necessary for
324 metabolic exchange among microbes (Seth and Taga 2014) and between host and microbiota.
325 While recent studies have described microbial communities in association with kelp through
326 genomics (Michelou et al. 2013, Lemay et al. 2018, Qiu et al. 2019), the metabolic role of the
327 microbes relative to the host has yet to be clarified. Nutrient exchanges between host and
328 microbes are functionally significant in phytoplankton (e.g. Amin et al. 2015). *Nereocystis* at
329 Tatoosh Island release ~20% of fixed carbon into the surrounding seawater as dissolved organic
330 carbon (DOC) (Weigel and Pfister, in review), a quantity consistent with DOC release estimates
331 for other kelp species (Abdullah & Frederiksen 2004, Reed et al. 2015). By living on the kelp
332 surface, biofilm microbes are presented with a consistent and labile metabolic resource, in
333 addition to the structural kelp polymers that kelp microbes can degrade (Bengtsson et al. 2011).

334 The release of carbohydrate exudates likely favors heterotrophic microbial metabolisms, and the
335 *Granulosicoccus* sp. sequence variant in this study shares 97% sequence identity to
336 *Granulosicoccus antarcticus* (Lee et al. 2007), which is a heterotrophic microbe that contains
337 urease and both nitrate and nitrite reductase genes (Kang et al. 2018). As a heterotroph,
338 *Granulosicoccus* sp. likely takes advantage of the abundant DOC, while nitrogen transformation
339 genes suggest a potential for nitrogen metabolisms that may impact the host kelp. Likewise,
340 studies of microbial nutrient transformation in near-shore waters of Tatoosh Island showed that
341 these microbial nitrogen metabolisms were strongest in association with the surfaces of a red
342 alga, *Prionitis sternbergii*, rather than in seawater or associated with inert substrates (Pfister and
343 Altabet 2019). This finding suggests that epibiont communities on algae are enriched for
344 microbes carrying out ammonium oxidation and nitrate reduction, both of which might serve to
345 retain and recycle dissolved inorganic nitrogen (DIN) near the surface of the alga.

346 **Low density of microbiota and high fraction of Alphaproteobacteria on declining
347 population of kelp**

348 Shifts in microbial composition between healthy and stressed macroalgae have been
349 reported (Marzinelli et al. 2015), but the low density of bacteria on the kelp from Squaxin Island
350 was unexpected, as we had initially assumed that a population in decline would be more likely to
351 be overrun with microbes than nearly devoid of them. The majority of the bacterial epibionts at
352 Squaxin were shown by both sequencing and imaging to be Alphaproteobacteria, most likely
353 represented by the single highly-abundant ASV in the sequencing data identified as a member of
354 the Hyphomonadaceae. Alphaproteobacteria from the family Rhizobiales produce unipolar
355 adhesins which are essential for cell-cell adhesion, biofilm formation and effective root
356 colonization (Fritts et al. 2017; Williams et al. 2008). The exopolysaccharide N-
357 acetylglucosamine, synthesized by bacterial cells, plays an important role in biofilm formation in
358 *Staphylococcus aureus* (Izano et al. 2008, Lin et al. 2015) and *Escherichia coli* (Wang et al.
359 2004). Interestingly, the consistent presence of N-acetylglucosamine or N-acetylmuramic acid
360 residues at one end of *Alphaproteobacteria* cells suggests that it may be involved in cell
361 adhesion to the kelp mucous layer. The high relative abundance of Alphaproteobacteria in
362 Squaxin samples, in which the observed bacteria density is low, might be related to a similar

363 attachment strategy that would allow them to attach to the kelp surface more permanently or
364 more readily than other members of the microbiota.

365 **Materials and Methods**

366 **Sample collection and 16S rRNA gene sequencing**

367 Photosynthetic blade tissues of *Nereocystis luetkeana* were sampled at five time points
368 spaced roughly 2 weeks apart (11 June – 22 August 2017) on Tatoosh Island, Washington in the
369 United States (48°23'37.0"N 124°44'06.5"W). At each time point, two tissue samples (2 x 1 cm²)
370 were collected from a single blade – one at the basal meristem, roughly 2 cm from where the
371 blade connects to the stipe, to capture recently produced tissue (~24 to 48 hours old) and another
372 near the apical end of the blade tip to sample older tissue (weeks to months old). Samples were
373 collected from different kelp individuals at each date, and $n = 2$ or 3 samples from each date
374 were selected for imaging. Total blade length and linear blade growth rates were measured to
375 approximate the age of tissues sampled (Weigel and Pfister 2019). Kelp blade tissues samples
376 were also collected from Squaxin Island, in the Southern Puget Sound (47°10'38.7"N
377 122°54'42.2"W) on 21 June 2017. At this site, kelp tissue samples were collected from the
378 middle of the kelp blade, and $n = 3$ samples were selected for imaging. Kelp blade tissues for
379 CLASI-FISH and 16S rRNA sequencing were collected together from adjacent locations on the
380 kelp blade. Samples collected for CLASI-FISH were preserved in 95% ethanol and stored at -
381 20°C, while samples for 16S rRNA had no preservatives and were temporarily frozen at -20°C
382 until they were shipped to -80°C. Details of DNA extraction, 16S rRNA gene sequencing, and
383 sequence analysis are contained in Weigel and Pfister (2019).

384 **Probe design for *Granulosicoccus* and Probe set validation**

385 Probes for genus *Granulosicoccus* were designed based on sequencing results. An
386 alignment of all *Granulosicoccus* V4 fragment sequences and most abundant ASVs from all the
387 other taxa was performed using Geneious 11.1.3. Alignment was reviewed manually to look for
388 candidate regions for probe design. We selected sequence regions which match all the
389 *Granulosicoccus* sequences and did not match any of the other taxa. Probe hybridization
390 efficiency was evaluated using mathFISH (Yilmaz et al., 2011). Two probes were designed:

391 Gran670 (5'-CACCGCTACACCCGGAATTCCGC-3') and Gran737 (5'-
392 TCAGCGTCAGTATTGTTCCAGA-3').

393 To validate the probes for specificity, we applied the set of 7 probes simultaneously to
394 pure cultures and hybridized and imaged under the same conditions as kelp samples (Fig. S1).
395 Probes used in this study are listed in Table 1.

396 **Bacterial strains and growth conditions**

397 *Granulosicoccus coccooides* DSM 25245 and *G. antarcticus* DSM 24912 were cultured in
398 Bacto Marine Broth media (DIFCO 2216) (pH 7.5 and 7 for *G. coccooides* and *G. antarcticus*,
399 respectively). Cultures were incubated with agitation (180 rpm) at 25°C. Two- and 7-days
400 cultures were fixed with 2% PFA on ice for 90 min, washed and transferred to 50% ethanol.
401 Fixed cells were stored at -20°C until use.

402 **Embedding and sectioning for imaging**

403 For methacrylate embedding, kelp samples stored in 95% ethanol at -20°C were placed in
404 100% ethanol for 30 min followed by acetone for 1 hour, infiltrated with Technovit 8100 glycol
405 methacrylate (EMSdiasium.com) infiltration solution 3 h replacing for fresh solution every hour
406 and followed by a final infiltration overnight at 4°C. Samples were then transferred to Technovit
407 8100 embedding solution and solidified for 12 h at 4 °C. Blocks were sectioned to 5 µm
408 thickness using a Leica microtome (RM2145) and applied to Ultrastick slides (Thermo
409 Scientific). Sections were stored at room temperature until CLASI-FISH was performed.

410 **Combinatorial labeling and spectral imaging fluorescence *in situ* hybridization (CLASI- 411 FISH)**

412 CLASI-FISH microscopy was carried out on a subset of samples analyzed previously by
413 16S rRNA sequencing and reported in Weigel and Pfister (2019).

414 We used two methods to visualize the spatial structure of the kelp microbiota: whole-
415 mount-agarose preparations and methacrylate sections. When possible, we used pieces of the
416 same kelp sample for both methods. For the whole-mount-agarose method one piece of kelp was
417 placed on a slide and 50 µl of 1% low-melting-point agarose was dropped on it and the sample

418 allowed to cool on ice for 10 min before the CLASI-FISH procedure. Methacrylate sections were
419 subject to CLASI-FISH directly on slides.

420 Hybridization solution [900 mM NaCl, 20 mM Tris, pH 7.5, 0.01% SDS, 20% (vol/vol)
421 formamide, each probe at a final concentration of 2 μ M] was applied to kelp pieces and
422 incubated at 46 °C for 2 h in a chamber humidified with 20% (vol/vol) formamide. Whole-
423 mount-agarose preparations were maintained in horizontal position and were washed with 100 μ l
424 of pre-warmed wash buffer (215 mM NaCl, 20 mM Tris, pH 7.5, 5mM EDTA) five times at RT
425 followed by three washes with 500 μ l of wash buffer at 48°C for 5 min each. The hybridization
426 conditions were the same for methacrylate sections, but washing was carried out by incubating
427 the slides in 50 ml of washing buffer for 15 minutes at 48°C. Samples were then incubated with
428 wheat germ agglutinin (20 μ g ml⁻¹) conjugated with Alexa Fluor 680 at room temperature for 30
429 min in the dark. Agarose-coated samples were washed with 100 μ l of sterile cold water three
430 times. Excess agarose was cut off with a disinfected razor. Methacrylate sections were washed
431 by dipping the slide into 50 ml of ice-cold water to remove excess salt. Samples were mounted in
432 ProLong Gold antifade reagent (Invitrogen) with a #1.5 coverslip and cured overnight in the dark
433 at room temperature before imaging.

434 **Image acquisition and linear unmixing**

435 Spectral images were acquired using a Carl Zeiss LSM 780 confocal microscope with a
436 Plan-Apochromat 40X, 1.4 N.A. oil immersion objective. Images were captured using
437 simultaneous excitation with 405, 488, 561, and 633 nm laser lines. Linear unmixing was
438 performed using ZEN Black software (Carl Zeiss) using reference spectra acquired from cultured
439 cells hybridized with Eub338-I probe labeled with one of the 6 fluorophores in the probe set and
440 imaged as above. Unmixed images were assembled and false-colored using FIJI software
441 (Schindelin *et al.*, 2012).

442 **Spatial Analysis of CLASI-FISH images**

443 We used the software *daime* (Daims *et al.* 2006) to analyze the spatial structure and the
444 size of the cells identified with CLASI-FISH on 8 separate *Nereocystis* individuals (n = 2 to 13
445 images each) collected between 11 Jun to 22 Aug 2017. We imported images that were 212.55
446 μ m on a side for each probe separately as TIFF files, enhanced the contrast manually, and used

447 automatic 2D segmentation with the RATS-L thresholding algorithm to select and count cells.
448 Very small objects were interpreted to be noise and were manually removed using the object
449 editor. We quantified spatial distribution using ‘scan whole reference space’ to a distance of 50
450 μm and recorded the correlation at every 0.15 μm using the 2D linear dipole algorithm.

451 **Acknowledgements**

452 Funding was provided by NSF award 1650141 (to JMW) and the NOAA-COCA program
453 through NA16OAR431055 (to CAP). BLW was supported by a National Geographic Society
454 Early Career Grant, a Phycological Society of America Grants-in-Aid of Research, a Department
455 of Education GAANN fellowship, and a travel award from the Committee on Evolutionary
456 Biology at the University of Chicago. LJ was supported in part by NSF REU award 1659604,
457 “Biological Discovery in Woods Hole at the Marine Biological Laboratory.” We thank the
458 Makah Tribal Nation for access to Tatoosh Island, and H. Berry, T. Mumford and the
459 Washington DNR for boat logistics at Squaxin Island. T. Bowyer, K. Miranda, A.M. Wootton,
460 J.B. Wootton, and J.T. Wootton all helped in the field. We thank Tracy Mincer, Linda Amaral-
461 Zettler and Erik Zettler for providing microbial cultures for probe testing.
462 The funders had no role in study design, data collection and interpretation, or the decision to
463 submit the work for publication.

464 **References**

- 465 1. Abdullah, M. I., & Fredriksen, S. (2004). Production, respiration and exudation of dissolved
466 organic matter by the kelp *Laminaria hyperborea* along the west coast of Norway. *Journal of*
467 *the Marine Biological Association of the UK*, 84(5), 887–894. doi:
468 10.1017/S002531540401015Xh
- 469 2. Amann, R. I., Binder, B. J., Olson, R. J., Chisholm, S. W., Devereux, R., & Stahl, D. A.
470 (1990). Combination of 16S rRNA-targeted oligonucleotide probes with flow cytometry for
471 analyzing mixed microbial populations. *Applied and environmental microbiology*, 56(6),
472 1919–1925.
- 473 3. Amin, S. A., Hmelo, L. R., van Tol, H. M., Durham, B. P., Carlson, L. T., Heal, K. R.,
474 Morales, R. L., Berthiaume, C. T., Parker, M. S., Djunaedi, B., Ingalls, A. E., Parsek, M. R.,

475 Moran, M. A., & Armbrust, E. V. (2015). Interaction and signalling between a cosmopolitan
476 phytoplankton and associated bacteria. *Nature*, 522(7554), 98–101. doi:10.1038/nature14488

477 4. Barott, K. L., & Rohwer, F. L. (2012). Unseen players shape benthic competition on coral
478 reefs. *Trends in microbiology*, 20(12), 621–628. doi:10.1016/j.tim.2012.08.004

479 5. Bengtsson, M. M., & Øvreås, L. (2010). Planctomycetes dominate biofilms on surfaces of the
480 kelp *Laminaria hyperborea*. *BMC microbiology*, 10, 261. doi:10.1186/1471-2180-10-261

481 6. Bengtsson, M. M., Sjøtun, K., Storesund, J. E., Øvreas, L. (2011). Utilization of kelp-derived
482 carbon sources by kelp surface-associated bacteria. *Aquatic Microbial Ecology* 62(2), 191–
483 199. 10.3354/ame01477

484 7. Berry, H. D., Mumford, T. F., Christiaen, B., Dowty, P., Calloway, M., Ferrier, L.,
485 Grossman, E. E., VanArendonk, N. R., (2020). Long-term changes in kelp forests in an inner
486 basin of the Salish Sea. doi: 10.1101/2020.02.13.947309

487 8. Chen, M., Parfrey, L. (2018) Incubation with macroalgae induces large shifts in water
488 column microbiota, but minor changes to the epibionts of co-occurring macroalgae. *Mol Ecol*,
489 27(8), 1966–1979. doi: 10.1111/mec.14548

490 9. Cordero O.X., Datta M.S. (2016). Microbial interactions and community assembly at
491 microscales. *Curr Opin Microbiol.* 31:227–234. doi:10.1016/j.mib.2016.03.015

492 10. Daims, H., Brühl, A., Amann, R., Schleifer, K. H., & Wagner, M. (1999). The domain-
493 specific probe EUB338 is insufficient for the detection of all Bacteria: development and
494 evaluation of a more comprehensive probe set. *Systematic and applied microbiology*, 22(3),
495 434–444. doi:10.1016/S0723-2020(99)80053-8

496 11. Daims, H., Lücker, S., & Wagner, M. (2006). daime, a novel image analysis program for
497 microbial ecology and biofilm research. *Environmental microbiology*, 8(2), 200–213.
498 doi:10.1111/j.1462-2920.2005.00880.x

499 12. Dal Co A, Ackermann M, van Vliet S. Metabolic activity affects the response of single cells
500 to a nutrient switch in structured populations. *J R Soc Interface*. 2019;16(156):20190182.
501 doi:10.1098/rsif.2019.0182

502 13. Egan, S., Harder, T., Burke, C., Steinberg, P., Kjelleberg, S., & Thomas, T. (2013). The
503 seaweed holobiont: understanding seaweed–bacteria interactions. *FEMS Microbiology
504 Reviews*, 37(3), 462–476. doi: 10.1111/1574-6976.12011

505 14. Egan, S., Harder, T., Burke, C., Steinberg, P., Kjelleberg, S., & Thomas, T. (2013). The
506 seaweed holobiont: understanding seaweed-bacteria interactions. *FEMS microbiology*
507 *reviews*, 37(3), 462–476. doi:10.1111/1574-6976.12011

508 15. Florez, J. Z., Camus, C., Hengst, M. B., & Buschmann, A. H. (2017). A Functional
509 Perspective Analysis of Macroalgae and Epiphytic Bacterial Community
510 Interaction. *Frontiers in microbiology*, 8, 2561. doi:10.3389/fmicb.2017.02561

511 16. Fritts, R. K., LaSarre, B., Stoner, A. M., Posto, A. L., & McKinlay, J. B. (2017). A
512 Rhizobiales-Specific Unipolar Polysaccharide Adhesin Contributes to Rhodopseudomonas
513 palustris Biofilm Formation across Diverse Photoheterotrophic Conditions. *Applied and*
514 *environmental microbiology*, 83(4), e03035-16. doi:10.1128/AEM.03035-16

515 17. Garren, M., & Azam, F. (2010). New method for counting bacteria associated with coral
516 mucus. *Applied and environmental microbiology*, 76(18), 6128–6133.
517 doi:10.1128/AEM.01100-10

518 18. Glasl, B., Herndl, G. J., & Fraude, P. R. (2016). The microbiome of coral surface mucus has a
519 key role in mediating holobiont health and survival upon disturbance. *The ISME journal*, 10(9), 2280–2292. <https://doi.org/10.1038/ismej.2016.9>

521 19. Hollants, J., Leroux, O., Leliaert, F., Decleyre, H., De Clerck, O., & Willems, A. (2011).
522 Who Is in There? Exploration of Endophytic Bacteria within the Siphonous Green Seaweed
523 *Bryopsis* (Bryopsidales, Chlorophyta). *PLoS ONE*, 6(10), e26458. doi:
524 10.1371/journal.pone.0026458

525 20. Izano, E. A., Amarante, M. A., Kher, W. B., & Kaplan, J. B. (2008). Differential roles of
526 poly-N-acetylglucosamine surface polysaccharide and extracellular DNA in *Staphylococcus*
527 *aureus* and *Staphylococcus epidermidis* biofilms. *Applied and environmental*
528 *microbiology*, 74(2), 470–476. doi:10.1128/AEM.02073-07

529 21. Kang, I., Lim, Y., & Cho, J. C. (2018). Complete genome sequence of *Granulosicoccus*
530 *antarcticus* type strain IMCC3135^T, a marine gammaproteobacterium with a putative
531 dimethylsulfoniopropionate demethylase gene. *Marine genomics*, 37, 176–181.
532 doi:10.1016/j.margen.2017.11.005

533 22. Kolenbrander, P. E., Palmer, R. J., Periasamy, S., & Jakubovics, N. S. (2010). Oral
534 multispecies biofilm development and the key role of cell–cell distance. *Nature Reviews*
535 *Microbiology*, 8(7), 471–480. doi: 10.1038/nrmicro2381

536 23. Lamy T., Koenigs, C., Holbrook, S.J., Miller, R.J., Stier, A.C., Reed, D.C. (2020) Foundation
537 species promote community stability by increasing diversity in a giant kelp forest. *Ecology*.
538 2020;e02987. doi:10.1002/ecy.2987

539 24. Lee, K., Lee, H. K., Choi, T. H., Kim, K. M., & Cho, J. C. (2007). Granulosicoccaceae fam.
540 nov., to include *Granulosicoccus antarcticus* gen. nov., sp. nov., a non-phototrophic,
541 obligately aerobic chemoheterotroph in the order Chromatiales, isolated from Antarctic
542 seawater. *Journal of microbiology and biotechnology*, 17(9), 1483–1490.

543 25. Lee, S. T. M., Davy, S. K., Tang, S.-L., & Kench, P. S. (2016). Mucus sugar content shapes
544 the bacterial community structure in thermally stressed *Acropora muricata*. *Frontiers in*
545 *Microbiology*, 7. doi: 10.3389/fmicb.2016.00371

546 26. Lemay, M. A., Martone, P. T., Keeling, P. J., Burt, J. M., Krumhansl, K. A., Sanders, R. D.,
547 & Wegener Parfrey, L. (2018). Sympatric kelp species share a large portion of their surface
548 bacterial communities: Kelp-associated bacterial diversity. *Environmental Microbiology*,
549 20(2), 658–670. doi: 10.1111/1462-2920.13993

550 27. Lin, J. D., Lemay, M. A., & Parfrey, L. W. (2018). Diverse bacteria utilize alginate within
551 the microbiome of the Giant Kelp *Macrocystis pyrifera*. *Frontiers in Microbiology*, 9. doi:
552 10.3389/fmicb.2018.01914

553 28. Lin, M. H., Shu, J. C., Lin, L. P., Chong, K. Y., Cheng, Y. W., Du, J. F., & Liu, S. T. (2015).
554 Elucidating the crucial role of poly N-acetylglucosamine from *Staphylococcus aureus* in
555 cellular adhesion and pathogenesis. *PloS one*, 10(4), e0124216.
556 <https://doi.org/10.1371/journal.pone.0124216>

557 29. Manz W, Amann R, Ludwig W, Wagner M, Schleifer KH. 1992. Phylogenetic
558 oligodeoxynucleotide probes for the major subclasses of Proteobacteria: problems and
559 solutions. *Systematic and Applied Microbiology* 15:593–600. doi:10.1016/S0723-
560 2020(11)80121-9.

561 30. Mark Welch, J. L., Rossetti, B. J., Rieken, C. W., Dewhirst, F. E., & Borisy, G. G. (2016).
562 Biogeography of a human oral microbiome at the micron scale. *Proceedings of the National*
563 *Academy of Sciences of the United States of America*, 113(6), E791–E800.
564 doi:10.1073/pnas.1522149113

565 31. Martin, M., Barbeyron, T., Martin, R., Portetelle, D., Michel, G., & Vandenbol, M. (2015).
566 The Cultivable Surface Microbiota of the Brown Alga *Ascophyllum nodosum* is Enriched in

567 Macroalgal-Polysaccharide-Degrading Bacteria. *Frontiers in Microbiology*, 6. doi:
568 10.3389/fmicb.2015.01487

569 32. Marzinelli, E. M., Campbell, A. H., Zozaya Valdes, E., Vergés, A., Nielsen, S., Wernberg,
570 T., de Bettignies, T., Bennett, S., Caporaso, J. G., Thomas, T., & Steinberg, P. D. (2015).
571 Continental-scale variation in seaweed host-associated bacterial communities is a function of
572 host condition, not geography. *Environmental microbiology*, 17(10), 4078–4088.
573 doi:10.1111/1462-2920.12972

574 33. Michelou, V. K., Caporaso, J. G., Knight, R., & Palumbi, S. R. (2013). The Ecology of
575 microbial communities associated with *Macrocystis pyrifera*. *PLoS ONE*, 8(6), e67480. doi:
576 10.1371/journal.pone.0067480

577 34. Minich, J. J., Morris, M. M., Brown, M., Doane, M., Edwards, M. S., Michael, T. P., &
578 Dinsdale, E. A. (2018). Elevated temperature drives kelp microbiome dysbiosis, while
579 elevated carbon dioxide induces water microbiome disruption. *PLOS ONE*, 13(2), e0192772.
580 doi: 10.1371/journal.pone.0192772

581 35. Neef, A. (1997). Anwendung der in situ-Einzelzell- Identifizierung von Bakterien zur
582 Populations analyse in komplexen mikrobiellen Biozönosen. University of Munich, Munich,
583 Germany.

584 36. Pfister, C. A., & Altabet, M. A. (2019). Enhanced microbial nitrogen transformations in
585 association with macrobiota from the rocky intertidal. *Biogeosciences*, 16(2), 193–206. doi:
586 10.5194/bg-16-193-2019

587 37. Pfister, C. A., Berry, H. D., & Mumford, T. (2017). The dynamics of Kelp Forests in the
588 Northeast Pacific Ocean and the relationship with environmental drivers. *Journal of Ecology*.
589 doi: 10.1111/1365-2745.12908

590 38. Pfister, C.A., Altabet, M.A., Weigel, B.L. (2019). Kelp beds and their local effects on
591 seawater chemistry, productivity, and microbial communities. *Ecology*,100(10):e02798.
592 doi:10.1002/ecy.2798

593 39. Qiu, Z., Coleman, M. A., Provost, E., Campbell, A. H., Kelaher, B. P., Dalton, S. J., Thomas,
594 T., Steinberg, P. D., & Marzinelli, E. M. (2019). Future climate change is predicted to affect
595 the microbiome and condition of habitat-forming kelp. *Proceedings. Biological
596 sciences*, 286(1896), 20181887. doi:10.1098/rspb.2018.1887

597 40. Ramanan, R., Kim, B. H., Cho, D. H., Oh, H. M., & Kim, H. S. (2016). Algae-bacteria
598 interactions: Evolution, ecology and emerging applications. *Biotechnology advances*, 34(1),
599 14–29. doi:10.1016/j.biotechadv.2015.12.003

600 41. Rao, D., Webb, J. S., Holmström, C., Case, R., Low, A., Steinberg, P., & Kjelleberg, S.
601 (2007). Low densities of epiphytic bacteria from the marine alga *Ulva australis* inhibit
602 settlement of fouling organisms. *Applied and environmental microbiology*, 73(24), 7844–
603 7852. doi:10.1128/AEM.01543-07

604 42. Reed, D. C., Carlson, C. A., Halewood, E. R., Nelson, J. C., Harrer, S. L., Rassweiler, A., &
605 Miller, R. J. (2015). Patterns and controls of reef-scale production of dissolved organic
606 carbon by giant kelp *Macrocystis pyrifera*: DOC production by giant kelp. *Limnology and*
607 *Oceanography*, 60(6), 1996–2008. doi: 10.1002/lno.10154

608 43. Schindelin, J., Arganda-Carreras, I., Frise, E., Kaynig, V., Longair, M., Pietzsch, T.,
609 Preibisch, S., Rueden, C., Saalfeld, S., Schmid, B., Tinevez, J. Y., White, D. J., Hartenstein,
610 V., Eliceiri, K., Tomancak, P., & Cardona, A. (2012). Fiji: an open-source platform for
611 biological-image analysis. *Nature methods*, 9(7), 676–682. doi:10.1038/nmeth.2019

612 44. Schlundt, C., Mark Welch, J. L., Knochel, A. M., Zettler, E. R., & Amaral-Zettler, L. A.
613 (2019). Spatial structure in the "Plastisphere": Molecular resources for imaging microscopic
614 communities on plastic marine debris. *Molecular ecology resources*, 10.1111/1755-
615 0998.13119. <https://doi.org/10.1111/1755-0998.13119>

616 45. Seth, E. C., & Taga, M. E. (2014). Nutrient cross-feeding in the microbial world. *Frontiers in*
617 *microbiology*, 5, 350. doi:10.3389/fmicb.2014.00350

618 46. Singh, R. P., & Reddy, C. R. (2016). Unraveling the Functions of the Macroalgal
619 Microbiome. *Frontiers in microbiology*, 6, 1488. doi:10.3389/fmicb.2015.01488

620 47. Stratil, S. B., Neulinger, S. C., Knecht, H., Friedrichs, A. K., & Wahl, M. (2013).
621 Temperature-driven shifts in the epibiotic bacterial community composition of the brown
622 macroalga *Fucus vesiculosus*. *MicrobiologyOpen*, 2(2), 338–349. doi:10.1002/mbo3.79

623 48. Tarquinio, F., Bourgoure, J., Koenders, A., Laverock, B., Säwström, C., & Hyndes, G. A.
624 (2018). Microorganisms facilitate uptake of dissolved organic nitrogen by seagrass leaves.
625 *The ISME Journal*. doi: 10.1038/s41396-018-0218-6

626 49. Tebben, J., Motti, C., Tapiolas, D., Thomas-Hall, P., & Harder, T. (2014). A coralline algal-
627 associated bacterium, *pseudoalteromonas* strain J010, yields five new korormicins and a
628 bromopyrrole. *Marine drugs*, 12(5), 2802–2815. doi: 10.3390/MD12052802

629 50. Tujula, N. A., Crocetti, G. R., Burke, C., Thomas, T., Holmström, C., & Kjelleberg, S.
630 (2010). Variability and abundance of the epiphytic bacterial community associated with a
631 green marine Ulvacean alga. *The ISME journal*, 4(2), 301–311. doi:10.1038/ismej.2009.107

632 51. Tujula, N. A., Holmström, C., Mussmann, M., Amann, R., Kjelleberg, S., & Crocetti, G. R.
633 (2006). A CARD-FISH protocol for the identification and enumeration of epiphytic bacteria
634 on marine algae. *Journal of microbiological methods*, 65(3), 604–607.
635 doi:10.1016/j.mimet.2005.09.006

636 52. Valm, A. M., Mark Welch, J. L., & Borisy, G. G. (2012). CLASI-FISH: principles of
637 combinatorial labeling and spectral imaging. *Systematic and applied microbiology*, 35(8),
638 496–502. doi: 10.1016/j.syapm.2012.03.004

639 53. Valm, A. M., Mark Welch, J. L., Rieken, C. W., Hasegawa, Y., Sogin, M. L., Oldenbourg,
640 R., Dewhirst, F. E., & Borisy, G. G. (2011). Systems-level analysis of microbial community
641 organization through combinatorial labeling and spectral imaging. *Proceedings of the
642 National Academy of Sciences of the United States of America*, 108(10), 4152–4157. doi:
643 10.1073/pnas.1101134108

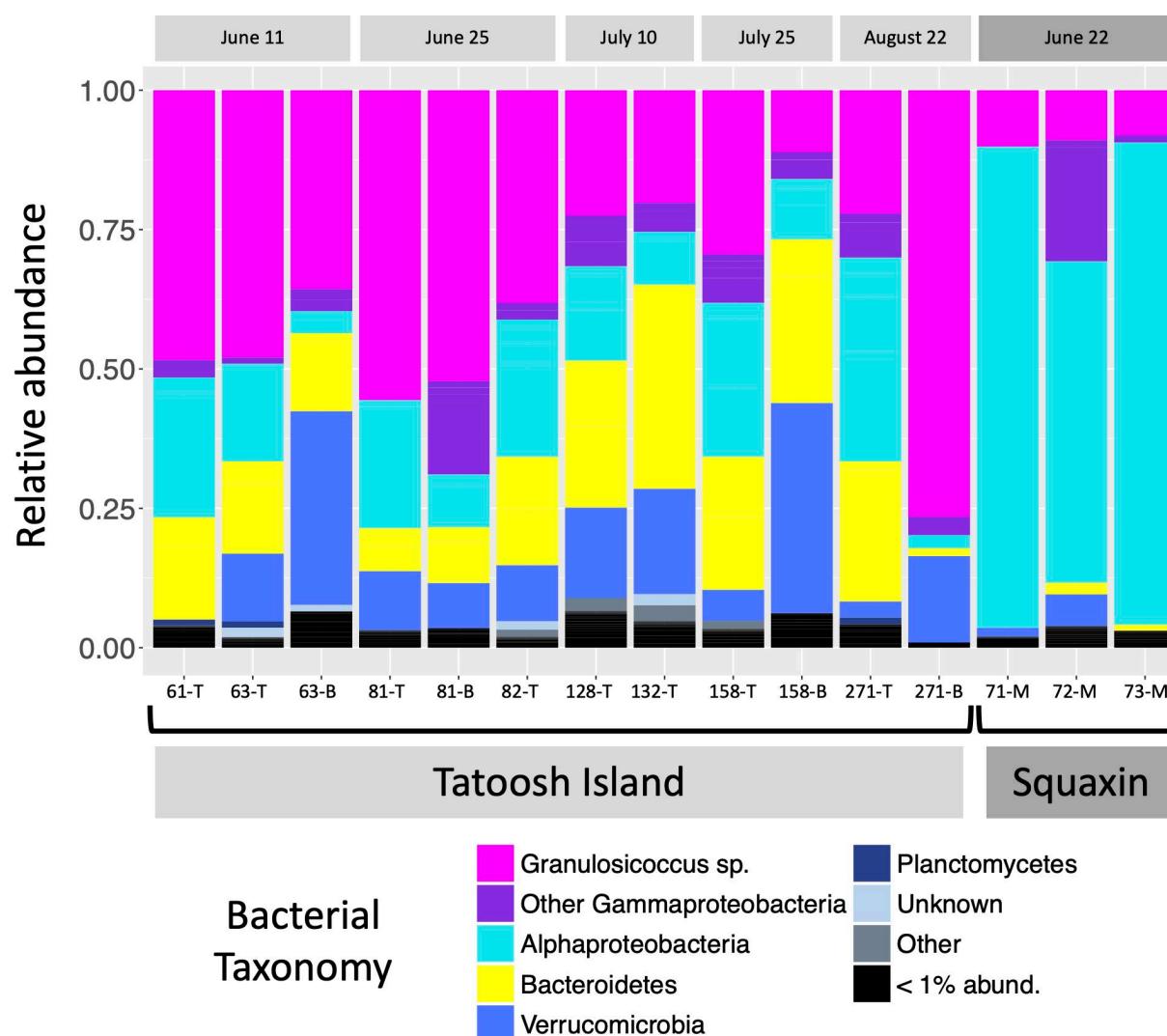
644 54. Wahl, M., Goecke, F., Labes, A., Dobretsov, S., & Weinberger, F. (2012). The second skin:
645 ecological role of epibiotic biofilms on marine organisms. *Frontiers in microbiology*, 3, 292.
646 doi:10.3389/fmicb.2012.00292

647 55. Wang, X., Preston, J. F., 3rd, & Romeo, T. (2004). The pgaABCD locus of *Escherichia coli*
648 promotes the synthesis of a polysaccharide adhesin required for biofilm formation. *Journal of
649 bacteriology*, 186(9), 2724–2734. doi:10.1128/jb.186.9.2724-2734.2004

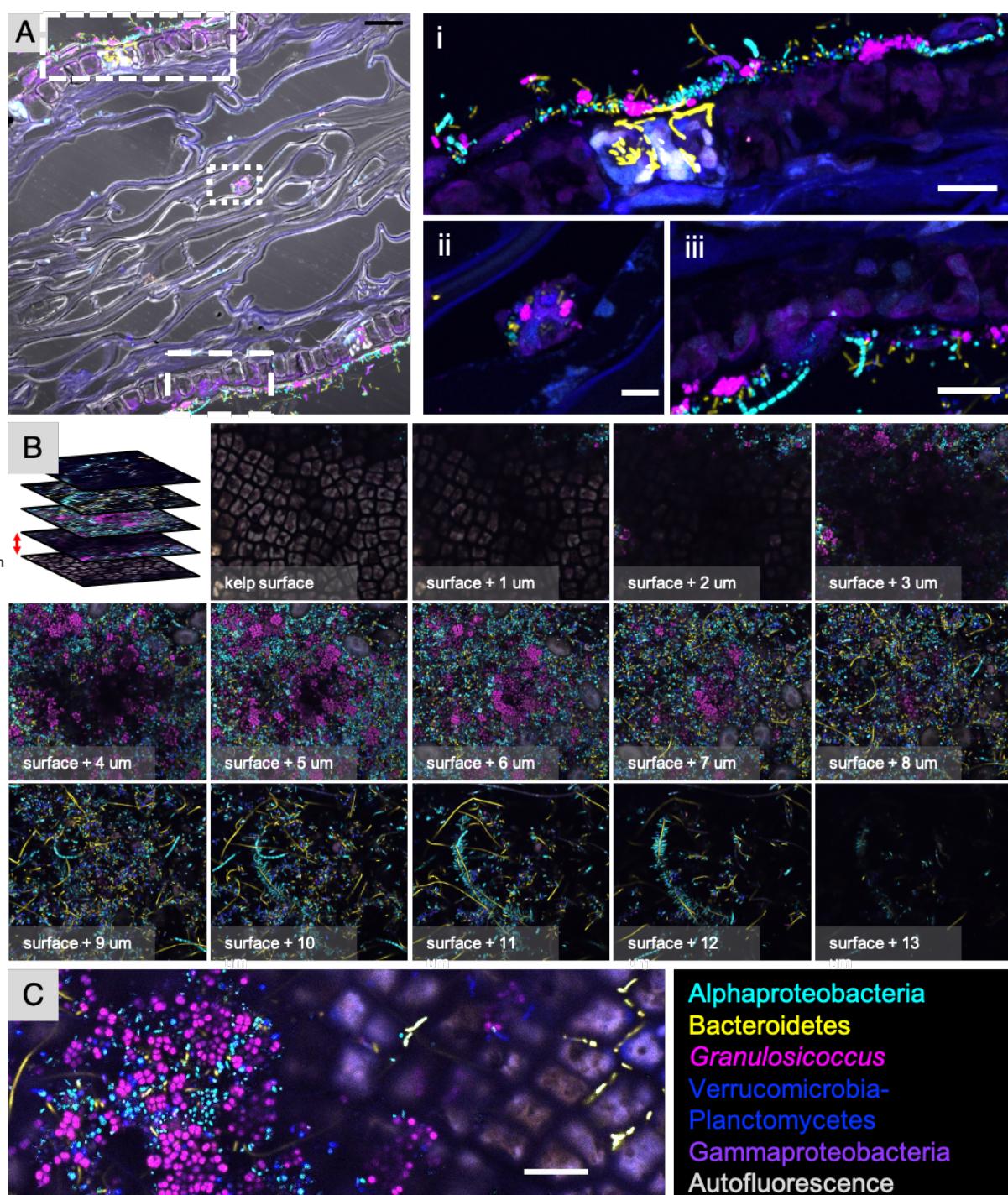
650 56. Weigel BL, Pfister CA. (2019). Successional Dynamics and Seascape-Level Patterns of
651 Microbial Communities on the Canopy-Forming Kelps *Nereocystis*
652 *luetkeana* and *Macrocystis pyrifera*. *Front Microbiol*. 10:346. doi:10.3389/fmicb.2019.00346

653 57. Wilbert, S.A., Mark Welch, J. L, Borisy, G. G. (2019). Spatial Ecology of the Human
654 Tongue Dorsum Microbiome. *Cell Host & Microbe*. doi: 10.2139/ssrn.3438369

655 58. Williams, A., Wilkinson, A., Krehenbrink, M., Russo, D. M., Zorreguieta, A., & Downie, J.
656 A. (2008). Glucomannan-mediated attachment of *Rhizobium leguminosarum* to pea root

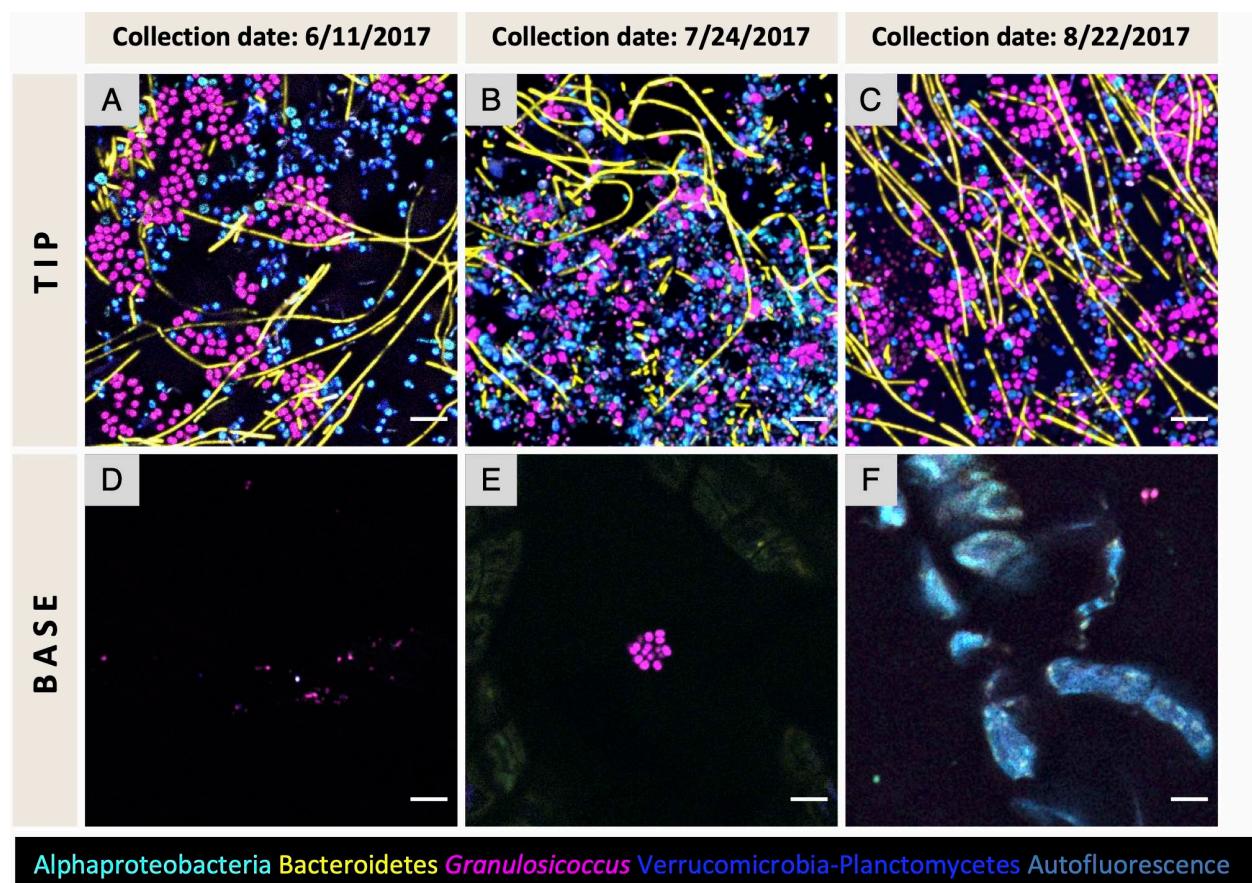

657 hairs is required for competitive nodule infection. *Journal of bacteriology*, 190(13), 4706–
658 4715. doi: 10.1128/JB.01694-07

659 59. Wilmers, C.C., Estes, J.A., Edwards, M., Laidre, K. L., Konar, B. (2012). Do trophic
660 cascades affect the storage and flux of atmospheric carbon? An analysis of sea otters and
661 kelp forests. *Front Ecol Environ.* 10(8), 409-415. doi:10.1890/110176

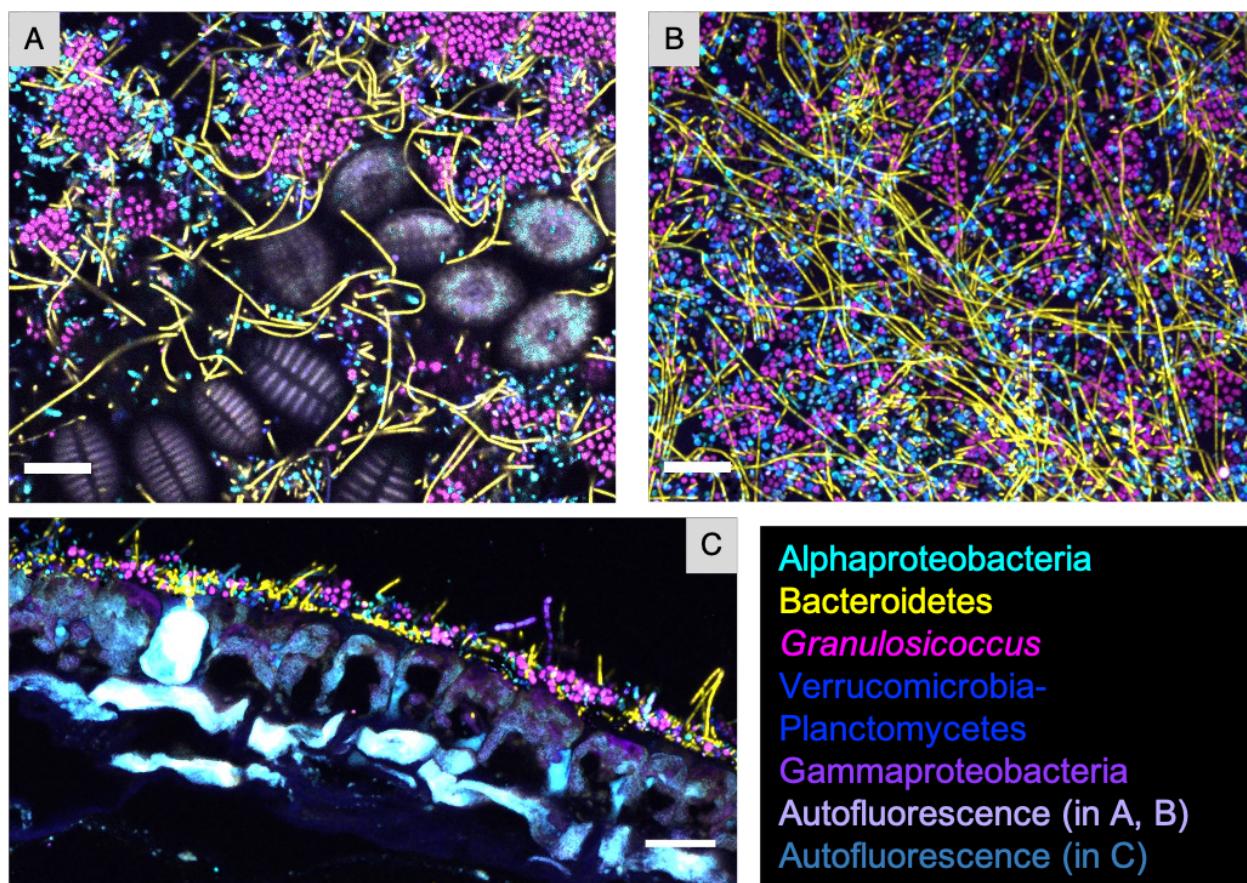

662 60. Yilmaz, L. S., Parnerkar, S., & Noguera, D. R. (2011). mathfish, a web tool that uses
663 thermodynamics-based mathematical models for in silico evaluation of oligonucleotide
664 probes for fluorescence in situ hybrid- ization. *Applied and Environmental Microbiology*,
665 77(3), 1118–1122. doi:/10.1128/AEM.01733-10

666 61. Zijnge, V., van Leeuwen, M. B., Degener, J. E., Abbas, F., Thurnheer, T., Gmür, R., &
667 Harmsen, H. J. (2010). Oral biofilm architecture on natural teeth. *PloS one*, 5(2), e9321.
668 doi:10.1371/journal.pone.0009321

669 **Figures**

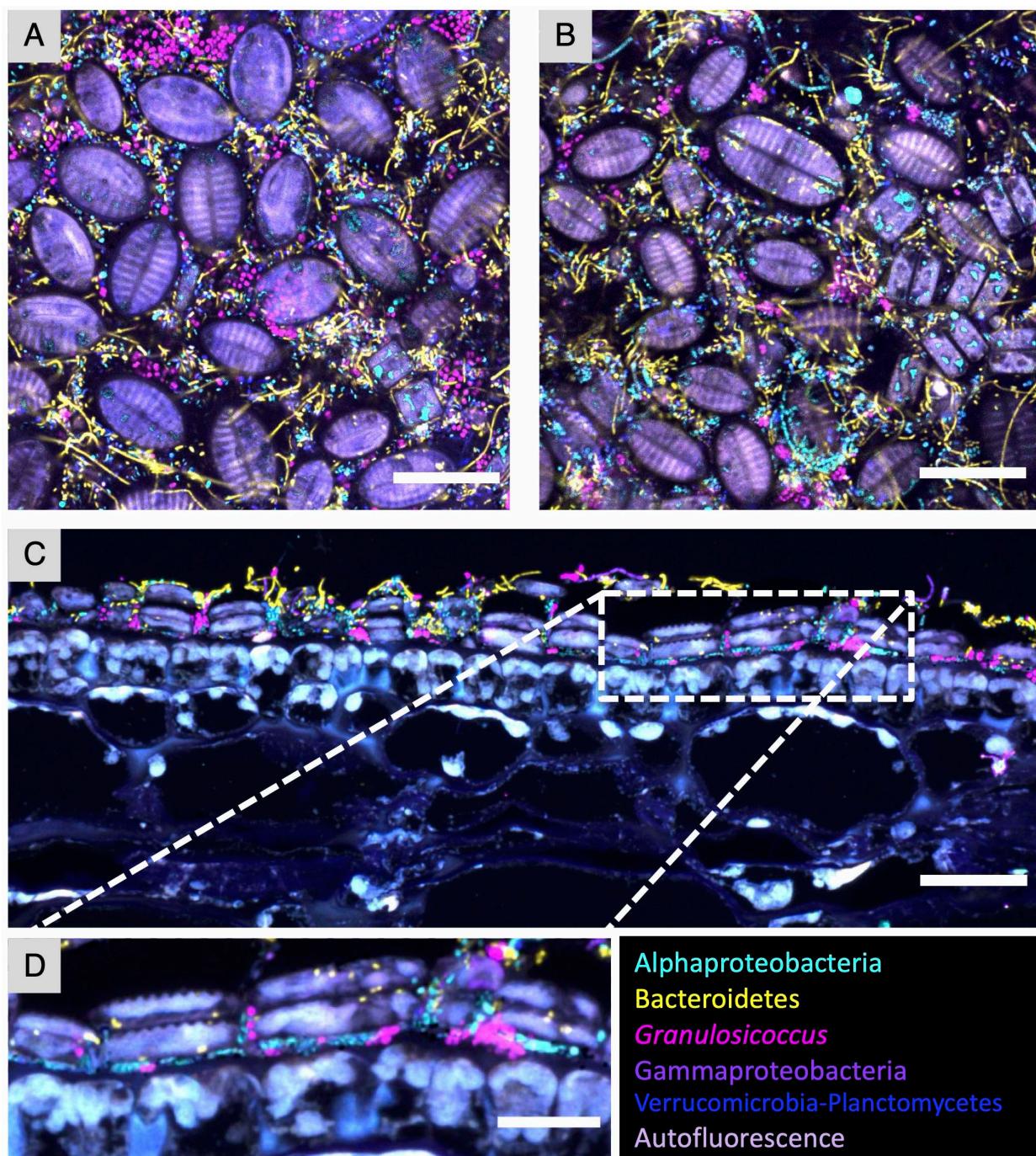


670 **Figure 1. Relative abundance of bacterial taxa on the kelp *N. luetkeana*, grouped to show**
671 **taxa detected by our CLASI-FISH probe set.** 16S rRNA gene sequencing showed that
672 bacterial composition is broadly consistent throughout the summer. The most abundant taxa were
673 Verrucomicrobia, Bacteroidetes, Alphaproteobacteria and Gammaproteobacteria. The
674 gammaproteobacterial genus *Granulosicoccus* was in high abundance in samples from Tatoosh
675 Island. In samples from a declining population at Squaxin Island *Granulosicoccus* spp. were still
676 present but Alphaproteobacteria were dominant.
677 Collection date is shown at top. Collection site is shown at bottom. Sample number and part of
678 the kelp blade sampled are indicated below each column. T= tip; B= base; M= middle.

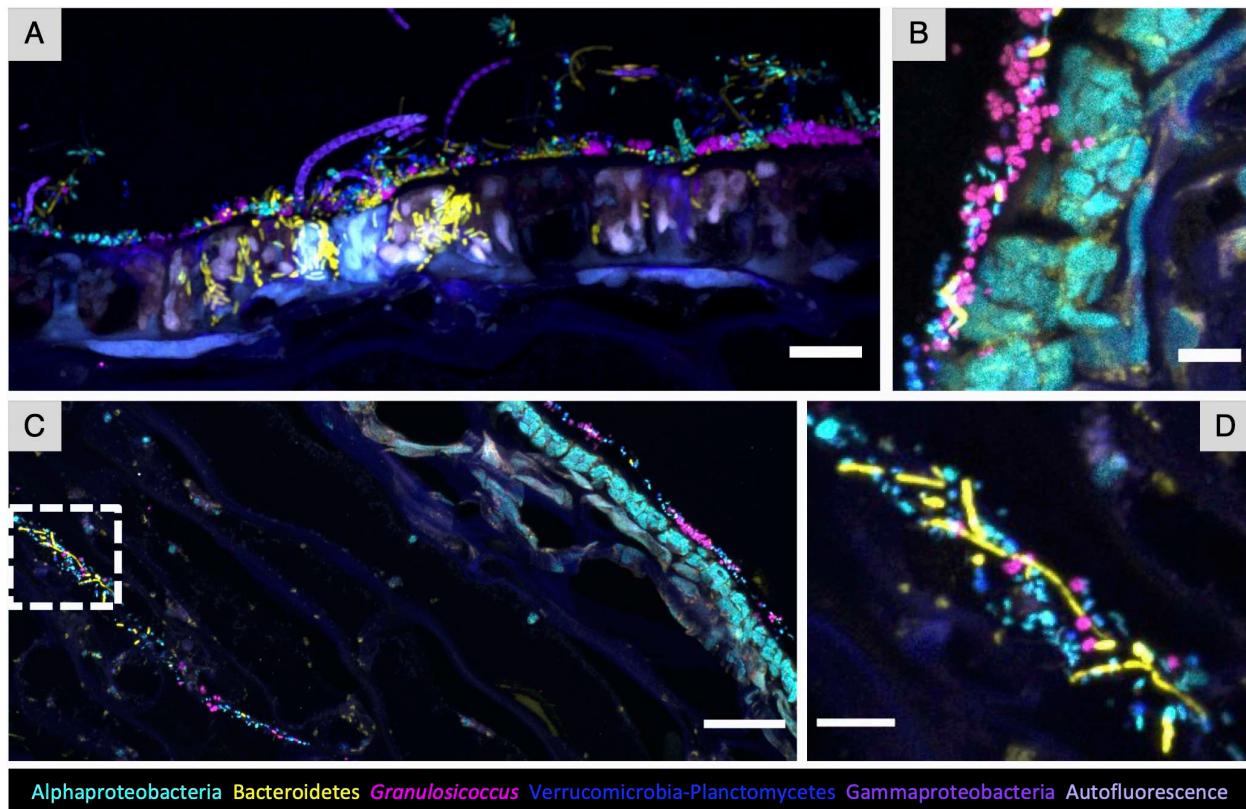


679 **Figure 2. Cross-section, whole-mount, and oblique optical section images give different**
680 **views of the biofilm on blades of *N. luetkeana*.** Kelp blades were subjected to FISH with a
681 probe set for the 5 major bacterial groups. (A) Cross-section image of a kelp blade embedded in
682 methacrylate. Merge of transmitted light and confocal images shows biofilm on both surfaces

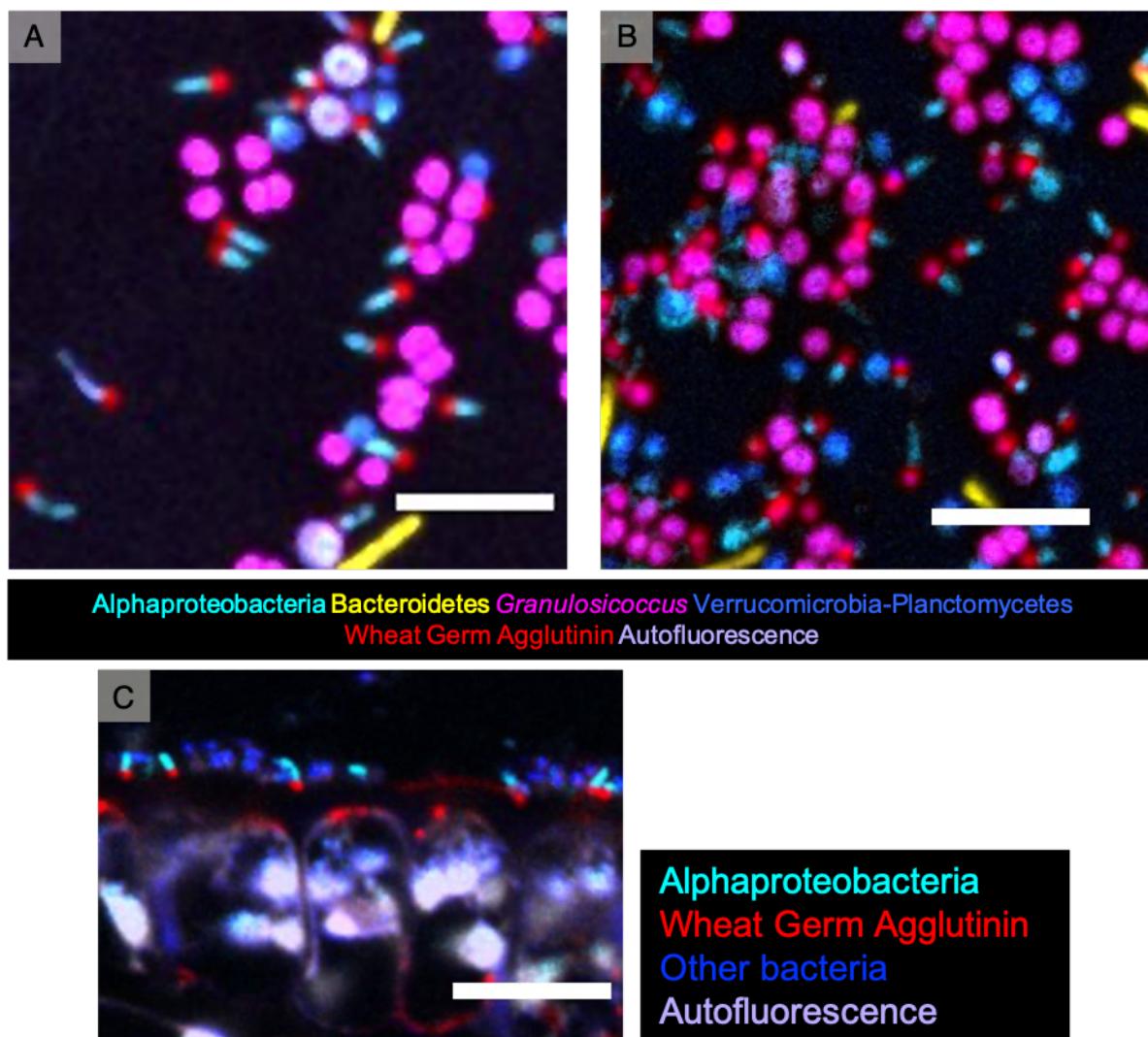
683 and some colonization in center. (i), (ii) and (iii) are enlarged images of the dashed rectangles in
684 panel (A). Bacteroidetes rods present within the autofluorescent region of kelp tissue in panel (i)
685 fluoresce more brightly than rods in the surface biofilm and therefore appear overexposed in the
686 image. (B) Whole-mount preparation imaged as a z-stack; planes 1 micrometer apart in the z
687 dimension are shown. (C) Oblique optical section showing biofilm at left and kelp surface at
688 right. Bacteroidetes rods are visible between kelp surface cells (right).
689 Scale bar = 20 μ m in (A); 5 μ m (i), (ii) and (iii); 10 μ m in (C).

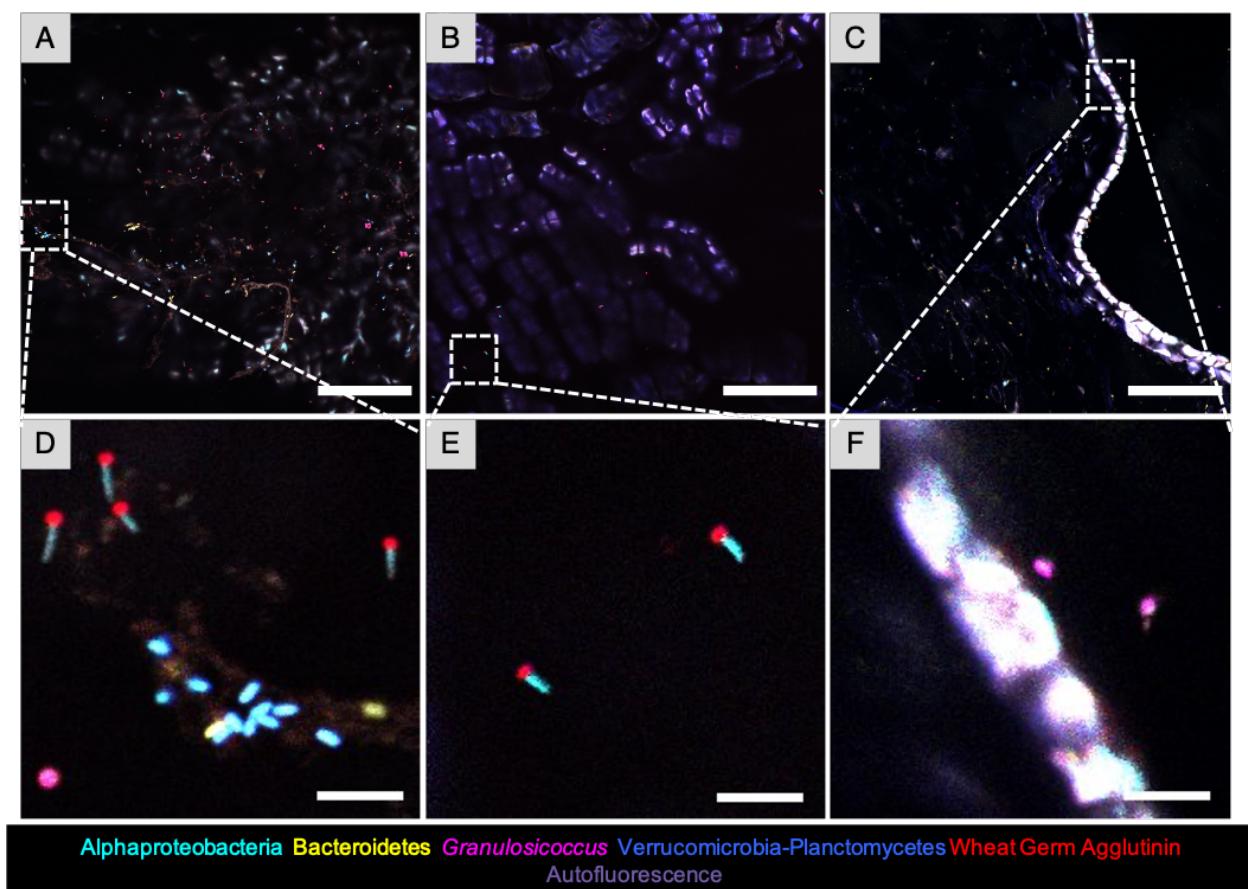


690 **Figure 3. Bacterial abundance of the surface biofilm in old and young tissue.** Whole-mount
691 images of tip and base tissues collected from the same kelp frond. Three individuals from
692 different collection dates are shown. Older tissue of the tip (A, B, C) is densely colonized
693 compared to young tissue of the base (D, E, F). The same pattern is observed throughout the
694 summer. Scale bar= 5 μ m (A-F).



695 **Figure 4. Spatial structure of the epiphytic microbial community at the tip of *N. luetkeana***
696 **blades.** Bacteria at the tip of kelp blades form a dense biofilm. (A) and (B) show whole-mount
697 images of samples collected in different dates; (C) is a cross-section showing thickness of the
698 surface biofilm. Microorganisms are intermixed, often directly adjacent to cells of disparate taxa
699 and always within 10 microns of other taxa. *Granulosicoccus* aggregate in clusters while other
700 taxa are more dispersed. Abundant Bacteroidetes filaments appear to be lying on the other taxa in
701 the whole mount and are visible in the cross-section, together with filaments of
702 Gammaproteobacteria, projecting into the water column. Diatoms surrounded by bacteria are
703 visible in (A).


704 Scale bar= 10 μm (A), (B) and (C).


705 **Figure 5. Diatoms are part of the microbial community of *N. luetkeana*.** Colonies of diatoms
706 were observed on kelp blades in samples from June and July. (A) and (B) Representative images
707 of whole-mount FISH showing diatoms surrounded by bacteria. (C) Cross-section showing
708 diatoms embedded within the bacterial biofilm. (D) Enlarged image of the dashed rectangle in
709 (C). No specific association between diatoms and particular taxa was observed.
710 Scale bar= 20 μ m (A-C); 10 μ m (D).

711 **Figure 6. Endophytic bacteria of *N. luetkeana*.** (A) Cross-section showing Bacteroidetes rods
712 colonizing intercellular spaces of brightly autofluorescent kelp surface cells. (B) A region in
713 which the biofilm is directly adjacent to the kelp tissue and some *Granulosicoccus* are observed
714 between kelp cells. (C) Bacteria were also detected colonizing deeper areas of the tissue, in this
715 instance around 120 μm from the surface. (D) enlarged image of the dashed rectangle in (C).
716 Scale bar= 10 μm (A); 5 μm (B) and (D); 20 μm (C).

717 **Figure 7. Unipolar labeling of adherent Alphaproteobacteria by wheat germ agglutinin.**
718 Wheat germ agglutinin was used to stain N-acetylglucosamine and N-acetylmuramic acid
719 residues. Staining was observed on Alphaproteobacteria rods at only one end showing apparent
720 polarity with respect to the cells. (A) and (B) Representative images of whole-mount FISH in
721 samples collected in different months. (C) Cross-section image showing Alphaproteobacteria
722 rods with the polar polysaccharide end attached to the kelp surface.
723 Scale bar=5 μ m (A) and (B); 10 μ m (C).

724 **Figure 8. Low microbial density on declining population of kelp in Squaxin Island.** (A) and
725 (B) whole mount FISH showing sparse bacteria on kelp surface. (C) Cross-section in which no
726 dense biofilm is observed on the surface, but a few bacteria were visible. Strong
727 autofluorescence of kelp cells is observed. (D), (E) and (F) are enlarged images of the dashed
728 squares in (A), (B), and (C), respectively.
729 Scale bar = 20 μ m (A-C); 5 μ m (D-F).

730 **Tables**

731 Table 1. Probes used in this study.

Probe	Target taxon	Probe sequence 5' – 3'	Fluorophore	Reference
Eub338-I	Bacteria	GCTGCCTCCCGTAGGAGT	Dy490, Atto532	Amann et al. 1990
Eub338-II	Planctomycetes	GCAGCCACCCGTAGGTGT	Dy415	Daims et al. 1999
Eub338-III	Verrucomicrobia	GCTGCCACCCGTAGGTGT	Dy415	Daims et al. 1999
Alf968	Alphaproteobacteria	GGTAAGGTTCTGCGCGTT	Dy490, Atto620	Neef A. 1997
Gam42a	Gammaproteobacteria	GCCTTCCCACATCGTT	Cy5	Manz et al. 1992
Bac1058	Bacteroidetes	TGAATGGCTGCTTCCAAGCCAACA	Rhodamine Red-X	Schlundt et al. 2019
Gran737	<i>Granulosicoccus</i> spp.	TCAGCGTCAGTATTGTTCCAGA	Texas Red-X	This study
Gran670	<i>Granulosicoccus</i> spp.	CACCGCTACACCCGGAATTCCGC	Texas Red-X	This study

732 Table 2. Cell size, abundance and spatial correlation using linear dipole analysis in *daime* across
733 8 individuals (n=2-13 replicates each) in images 212.55 μm on a side. Means (SD) are given.
734 Cell abundances were positively correlated within and among the two species, indicating
735 clumped distributions. The distribution of correlations with distance are shown in FigS3.

Probe	Cell size in μm	Cell Abundance	Distances of spatial autocorrelation	Distances of spatial cross correlation
<i>Granulosicoccus</i>	0.47 (0.23)	4025.3 (3416.7)	<9 μm	-
Verrucomicrobia	0.42 (0.16)	2445.3 (1142.2)	<7 μm	-
<i>Granulosicoccus</i> vs. Verrucomicrobia	-	-	-	<5 μm