

1 Somatic cell-derived BMPs induce male germ cell meiosis initiation during embryonic
2 stage via regulating *Dazl* expression

3

4 Lianjun Zhang^{1,2,5}, Yaqiong Li^{1,2,5}, Yuqiong Hu^{3,4,5}, Limei Lin^{1,2}, Jingjing Zhou^{1,2}, Min
5 Chen^{1,2,6}, Yan Qin^{1,2}, Yang Zhou^{1,2}, Min Chen^{1,6}, Xiuhong Cui¹, Fuchou Tang^{3,4*}, and
6 Fei Gao^{1,2*}

7

8 *1State Key Laboratory of Stem cell and Reproductive Biology, Institute of Zoology,*
9 *Chinese Academy of Sciences, Beijing, 100101, China*

10 *2University of Chinese Academy of Sciences, Beijing, 100049, China*

11 *3Beijing Advanced Innovation Center for Genomics, Biomedical Institute for Pioneering*
12 *Investigation via Convergence, College of Life Sciences, Peking University, Beijing,*
13 *100871, China*

14 *4Ministry of Education Key Laboratory of Cell Proliferation and Differentiation,*
15 *Biomedical Pioneering Innovation Center, Beijing, 100871, China*

16 *5These authors contributed equally*

17 *6Same name for different person*

18 **Correspondence: gaof@ioz.ac.cn or tangfuchou@pku.edu.cn*

19

20 **Author contributions**

21 L. J. Z., Y. Q. L., and F. G. designed the research; L. J. Z., Y. Q. L., and Y. Q. H.
22 performed most of experiments; L. J. Z., Y. Q. L., and Y. Q. H. conducted the

23 sequencing and analyzed the data; L. M. L., J. J. Z, M. C.₁, M. C.₂, and X. H. C.
24 contributed to prepare the reagents and collect tissues; F. C. T. helped to analyze the
25 sequencing data; L. J. Z., Y. Q. L, and F. G. wrote the manuscript with help from all
26 authors.

27

28 **Abstract**

29 Germ cell fate is believed to be determined by the signaling from sexually differentiated
30 somatic cell. However, the molecular mechanism remains elusive. In this study,
31 ectopic initiation of meiosis in male germ cells was observed during embryonic stage
32 by over-activating CTNNB1 in Sertoli cells. Somatic cell transcriptome and single germ
33 cell RNA-seq analysis indicated that TGF- β signaling was activated after CTNNB1
34 over-activation. *In vitro* and *in vivo* experiments confirmed somatic cell-derived BMPs
35 played crucial roles in germ cell meiosis initiation. Further studies revealed that *Dazl*
36 was significantly increased in germ cells of CTNNB1 over-activated testes and induced
37 by BMP signaling. DNMT3a and DNA methylation was also reduced in germ cells of
38 CTNNB1 over-activated testes and increased by BMP signaling inhibitor treatment.
39 Taken together, this study demonstrates that germ cell fate could be reprogrammed
40 after sex determination. BMP signaling pathway is involved in germ cell meiosis
41 initiation via up-regulating *Dazl* expression.

42

43 **Introduction**

44 Generation of haploid gametes via meiosis is a unique property of germ cells and

45 essential for sexual reproduction (McLaren, 1984, 2001). Whether primordial germ
46 cells (PGCs) develop as oogonia or pro-spermatogonia depending on the
47 differentiation of somatic cells during sex determination (Adams and McLaren, 2002;
48 McLaren, 1991). Briefly, *Sry* is transiently expressed in male somatic cells between
49 E10.5 and E12.5, which directs Sertoli cells differentiation (Albrecht and Eicher, 2001).
50 Germ cells in male gonads are arrested in G0/G1 stage after several divisions during
51 embryonic stage and re-enter cell cycle to initiate meiosis after birth (Western et al.,
52 2008). On the other hand, R-spondin1 (RSPO1)/CTNNB1 pathway promotes the
53 differentiation of granulosa cells in female gonads (Chassot et al., 2008; Tomizuka et
54 al., 2008) and female germ cells enter meiosis directly following granulosa cells
55 differentiation, and then arrested at the diplotene stage of prophase I (Borum, 1961).

56 Up to now, RA (retinoic acid) is considered as the most important extrinsic factor
57 which stimulates germ cells to enter meiosis by inducing the expression of STRA8
58 (Stimulated by Retinoic Acid 8) and REC8 (REC8 meiotic recombination protein) in
59 germ cells (Bowles et al., 2006; Koubova et al., 2014; Koubova et al., 2006). STRA8
60 is required for pre-meiotic DNA replication (Baltus et al., 2006) and REC8 is essential
61 for sister chromatid's separation (Xu et al., 2005). As an intrinsic factor, DAZL (deleted
62 in azoospermia-like) is strictly expressed in germ cells and required for the "license"
63 of germ cell meiosis initiation (Lin et al., 2008; Lin and Page, 2005). The expression of
64 *Stra8* and *Rec8* are markedly reduced in germ cells of *Dazl*-deficient mice, suggesting
65 that *Dazl*-deficient germ cells don't respond to RA induction and initiate meiosis (Lin
66 and Page, 2005).

67 It's believed that germ cells enter meiosis spontaneously during embryonic stage
68 unless are specifically prevented by meiosis-inhibiting factors. CYP26B1 (Cyp26
69 family of cytochrome P450 oxidase 1) is first identified as a meiosis inhibitor which is
70 abundantly expressed in Sertoli cells during embryonic stage and catalyzes the
71 oxidization of RA to inactive forms (MacLean et al., 2001). Inactivation of CYP26B1
72 leads to the ectopic initiation of meiosis in male germ cells during embryonic stage
73 (Bowles et al., 2006; MacLean et al., 2007). Another meiosis-inhibiting substance is
74 FGF9 (fibroblast growth factor 9) also produced by Sertoli cells, which acts
75 antagonistically with RA to determine male germ cell fate (Bowles et al., 2010). Male-
76 to-female sex reversal is observed in *Fgf9*-null mice, and could be rescued by *Wnt4*
77 (*wingless-type MMTV integration site family, member 4*) deletion (Jameson et al.,
78 2012a). FGF9 also acts directly on germ cells by upregulating RNA binding protein
79 NANOS2 (nanos C2HC-type zinc finger 2) (Bowles et al., 2010). *Nanos2* is male
80 meiotic gatekeeper specifically expressed in germ cells and plays pivotal roles in germ
81 cell sexual differentiation (Saga, 2010; Suzuki and Saga, 2008). Inactivation of *Nanos2*
82 results in meiotic initiation in male germ cells and upregulation of oocyte differentiation
83 associated genes (Suzuki et al., 2010; Suzuki et al., 2012). Inversely, female germ
84 cells fail to enter meiosis and start expressing male-specific genes after NANOS2
85 over-expression (Suzuki and Saga, 2008).

86 Several studies have demonstrated that TGF- β signaling is also involved in
87 regulating meiosis and germ cell development (Spiller et al., 2017; Wu et al., 2013).
88 Nodal/activin pathway is activated in both male germ cells and somatic cells which

89 induces *Nanos2* expression. Disruption of Nodal/Activin signaling leads to male germ
90 cells meiosis and increased expression of female-specific genes in somatic cells
91 (Souquet et al., 2012; Spiller et al., 2013; Tassinari et al., 2015). Moreover, deletion of
92 *Smad4* in germ cells results in female germ cells meiosis defect (Wu et al., 2016).
93 Moreover, recent study demonstrates that BMPs (bone morphogenetic proteins) direct
94 the female fate determination of PGCs/PGC-like cells *in vitro* induction (Miyauchi et al.,
95 2017).

96 Our previous study demonstrates that over-activation of *CTNNB1* in Sertoli cells
97 results in Sertoli to granulosa-like cells transformation (Li et al., 2017). Interestingly, in
98 this study, we find the ectopic initiation of meiosis in male germ cells of *CTNNB1*
99 overactivated mice during embryonic stage. Further studies demonstrate that somatic
100 cell derived BMPs plays essential roles in germ cell meiosis initiation. Moreover, BMP
101 signaling pathway involves in orchestrating the germ cell meiosis most likely via up-
102 regulating *Dazl* expression and it is probably mediated by repressing DNA methylation.

103

104 **Results**

105 *Ectopic expression of meiotic genes in germ cells of *Ctnnb1*^{+/flox(ex3)} AMH-Cre mice*
106 *during embryonic stage*

107 Our previous studies have demonstrated that over-activation of *Ctnnb1* by
108 deletion of exon 3 results in testicular cord disruption and Sertoli to granulosa-like cells
109 transformation (Chang et al., 2008; Li et al., 2017). To track the differentiation of germ
110 cells in *Ctnnb1*^{+/flox(ex3)} AMH-Cre mice (hereafter referred as COA mice unless

111 otherwise specified), the expression of germ cell specific and meiosis-associated
112 genes was analyzed by immunofluorescence and quantitative RT-PCR. Interestingly,
113 several meiotic markers were expression in the germ cells of COA testes. No STRA8
114 was observed in germ cells of control testes from E13.5 to E17.5 (Fig. S1Aa-e, white
115 arrows). By contrast, it was detected in a large number of germ cells in COA testes
116 from E13.5 to E16.5 (Fig. S1Af-i, white arrowheads), which is a period associated
117 character in germ cells of control ovaries during embryonic stage (Fig. S1Ak-m, white
118 arrows). γ H2AX, a marker of DNA double-strand breaks (DSBs), was also detected in
119 germ cells of COA testes (Fig. S1Bg-j, white arrowheads) from E14.5 to E17.5 which
120 was similar to the germ cells in control ovaries (Fig. S1Bk-o, white arrows). As
121 expected, no γ H2AX was detected in control testes (Fig. S1Ba-e, white arrows).
122 Hematoxylin and eosin (H&E) staining also showed that the chromatin was highly
123 compacted in germ cells of COA mice (Fig. S2D-F, white arrowheads) but not in control
124 male germ cells (Fig. S2A-C, white arrows), and the similar chromatin morphology was
125 observed in control female germ cells (Fig. S2G-I, white arrowheads).

126 Importantly, synaptonemal complex protein SYCP3, a typical marker of meiosis
127 was also abundantly expressed in the germ cells of COA testes. As shown in Figure
128 1 A, thread-like SYCP3 signal was detected in germ cells of COA testes at E16.5 and
129 E17.5 (Fig. 1Ai, j, white arrowheads), which was restrictedly expressed in the germ
130 cells of control ovaries during embryonic stage (Fig. 1Ak-o, white arrowheads), but not
131 in the germ cells of control testes (Fig. 1Aa-e, white arrows). To further determine the
132 meiotic stages of germ cells in COA testes, chromosome spreads of meiocytes were

133 prepared and stained with SYCP3 antibody. As shown in Figure 1B, germ cells at
134 leptotene, zygotene, pachytene, and diplotene stage of meiosis I were observed in
135 COA testes which was normally detected in germ cells of control ovaries during
136 embryonic stage (Fig. 1Ba). The numbers of germ cells at pachytene and diplotene
137 stages in COA testes was less than that in control ovaries (Fig. 1Bb, c). The mRNA
138 level of meiotic genes including *Stra8*, *Dmc1*, *Rec8*, *Sycp3* and *Sycp1* at E16.5 was
139 also analyzed by quantitative RT-PCR and was significantly increased in COA testes
140 compared to that of control testes, including the intrinsic factor *Dazl* (Fig. 1Cb). Male
141 germ cell specific gene (*Dnmt3l*) and pluripotency genes (*Oct4* and *Sox2*) were
142 decreased in COA testes, whereas female germ cell specific gene *Foxo3* and fetal
143 oogenesis-specific gene *Sohlh2* was increased in COA testes (Fig. 1Ca). Collectively,
144 all these results indicated that germ cells in COA testes ectopically initiated meiosis
145 during embryonic stage.

146 *Somatic cell-derived secreted factors played essential roles in inducing germ cell*
147 *meiosis initiation*

148 It has been reported that male germ cells are prevented to enter meiosis by Sertoli
149 cell-expressed CYP26B1 during embryonic stage (Bowles et al., 2006; Koubova et al.,
150 2006; MacLean et al., 2001). To test whether the ectopic meiosis initiation in germ
151 cells of COA testes is due to the testicular cord disruption, the expression of meiotic
152 genes in germ cells of *DTA^{+/flox} AMH-Cre* and *Wt1^{+/flox} AMH-Cre* mice were examined
153 by immunostaining. In *DTA^{+/flox} AMH-Cre* mice, Sertoli cells were ablated by Diphtheria
154 toxin upon Cre activation (Brockschnieder et al., 2004; Reboucet et al., 2018). The

155 testicular cords were disrupted in *Wt1^{+/flx} AMH-Cre* mice due to the Sertoli to Leydig-
156 like cell transformation (Chang et al., 2008; Zhang et al., 2015a). However, no STRA8
157 and γH2AX were detected in the germ cells of these two mouse models at E16.5 (Fig.
158 S3D, E, G, H), only very weak SYCP3 was observed (Fig. S3F, I). These results
159 indicated that the disruption of testicular cords does not cause ectopic meiosis
160 initiation in male germ cells during embryonic stage.

161 Given the fact that Sertoli cells were transformed into granulosa-like cells in COA
162 testes, the abnormal meiosis initiation of germ cells is probably induced by the factors
163 derived from granulosa-like cells. To test this hypothesis, germ cells (GCs) and
164 somatic cells (SCs) from E13.5 control ovaries and testes were re-aggregated and
165 cultured *in vitro*. The differentiation of germ cells was examined after 3 days culture
166 (Fig. S4A). As shown in Figure S4B, germ cells with thread-like SYCP3 were observed
167 in (GCs♀+SCs♀) aggregated tissue (Fig. S4Ba). Interestingly, thread-like SYCP3 was
168 also noted in male germ cells (GFP+) aggregated with female somatic cells (Fig.
169 S4Bb). By contrast, only very weak or dot-like SYCP3 was detected in male germ cells
170 aggregated with male somatic cells (Fig. S4Bc). These results suggested that the
171 factors derived from female somatic cells were essential for germ cell meiosis and the
172 ectopic meiosis initiation in the gem cells of COA testes was most likely triggered by
173 the factors derived from the transformed granulosa-like cells.

174 *TGF-β signaling pathway was activated both in Sertoli cells and germ cells of*
175 *Ctnnb1^{+/flx(ex3)} AMH-Cre testes*

176 To explore the underlying mechanism which leads to the ectopic initiation of

177 meiosis in COA germ cells, RNA-sequencing assay was performed with isolated
178 Sertoli cells from control and COA mice at E13.5 and E14.5. We first profiled the
179 upregulated and downregulated genes in COA Sertoli cells compared to control Sertoli
180 cells at E13.5 and E14.5 (Fig. 2A). Of note, 846 genes were significantly changed in
181 COA Sertoli cells with 374 genes were up-regulated and 472 genes were down-
182 regulated ($\log_2 \text{FC} > 1$) compared to control Sertoli cells (Fig. 2B and C). Results of
183 KEGG analysis revealed that the most differentially expressed genes were enriched
184 in TGF- β and WNT signaling pathway (Fig. 2D). Further analysis showed that the
185 ligands in BMP signaling pathway (e.g. *Bmp2*, *Bmp4*, *Bmp5*) were significantly
186 upregulated in Sertoli cells of COA mice (Fig. 2E). The ligands in WNT signaling
187 pathway (e.g. *Wnt10b*, *Wnt11*, *Wnt2*, *Wnt4*, *Wnt5b*, *Wnt7b*, *Wnt9a*) was also
188 upregulated in Sertoli cells of COA mice (Fig. 2F).

189 To identify the differentially expressed genes in germ cells responding to the
190 signals from somatic cells, single-cell RNA sequencing assay was performed with
191 isolated germ cells from control female, control male and COA male mice at E14.5 and
192 E15.5. Results of principal component analyses (PCA) showed that the gene profile
193 of germ cells from COA mice was separated from control male and control female
194 germ cells both at E14.5 and E15.5 (Fig. 3A). The results of clustered heatmap
195 analysis of 800 differentially expressed genes based on PCA was shown in Figure 3B.
196 Then we further filtrated 467 genes which were differentially expressed at least 2-fold
197 change in both COA and control female germ cells compared to control male germ
198 cells at E14.5 and E15.5 (Fig. 3C). KEGG pathway analysis of these genes showed

199 that metabolic pathways were most significantly changed. As expected, TGF- β
200 signaling pathway was also enriched along with cell cycle and oocyte meiosis pathway
201 (Fig. 3D). Relative expression of meiotic genes (such as *Dazl*, *Stra8*, *Spo11*, *Rec8*,
202 *Dmc1* and *Sycp3*) was shown in Figure 3E to confirm the meiotic state of isolated germ
203 cells. Both *Stra8* and *Rec8* were dramatically upregulated in COA germ cells
204 compared to control male and female germ cells at E15.5 and *Dmc1* and *Sycp3* was
205 increased in COA germ cells compared to male germ cells at E15.5. Interestingly, *Dazl*
206 expression was up-regulated in germ cells of COA mice compared to control male
207 germ cells which was comparable to that in control female germ cells at E15.5 (Fig.
208 3E). The represented up-regulated downstream genes of TGF- β signaling pathway
209 (*Bmpr1a*, *Ep300*, *E2f4*, *E2f5*, *Smurf2*, *Rbx1*, and *Tfdp1*) in COA mice were shown in
210 Figure 3F.

211 *BMP signaling pathway and RA synergistically induced germ cell meiosis initiation*

212 To further test whether BMP and WNT signaling pathways are involved in meiosis
213 initiation of COA mice, testes from E13.5 embryos were cultured *in vitro* and treated
214 with RA, BMP signaling inhibitor LDN-193189, and WNT signaling inhibitor XAV-939.
215 After 3 days culture, SYCP3 was examined by immunostaining. As shown in Fig. 4A,
216 scattered SYCP3 foci were observed in the germ cells of control testes with RA
217 treatment (Fig. 4Aa, g). Thread-like SYCP3 signal were detected in the germ cells of
218 COA testes with RA treatment (Fig. 4Ac, i), whereas only scattered SYCP3 foci were
219 noted in the germ cells without RA treatment (Fig. 4Ab, h). Interestingly, the expression
220 of SYCP3 in the germ cells of RA treated COA testes was significantly reduced with

221 dot-like SYCP3 signal after LDN-193189 and XAV-939 treatment (Fig. 4Ad-f, j-l). The
222 mRNA level of meiotic genes was also significantly decreased in COA testes after
223 LDN-193189 and XAV-939 treatment (Fig. 4B). These results suggested that RA is
224 essential for meiosis initiation but not sufficient. To further address whether BMP and
225 WNT signaling are also involved in control female germ cells meiosis initiation, the
226 genital ridges from E11.5 control female embryos were cultured *in vitro* and treated
227 with XAV-939 and LDN-193189. As shown in Fig 4C, thread-like SYCP3 signal were
228 detected in germ cells of control ovaries with DMSO treatment (Fig. 4Ca, d), whereas
229 only scattered foci of SYCP3 signal were detected after LDN-193189 treatment (Fig.
230 4Cb, e), and the signal of SYCP3 was decreased with XAV treatment (Fig. 4Cc, f).
231 Consistently, the mRNA level of other meiotic genes was also significantly decreased
232 after LDN-193189 treatment (Fig 4D). These results suggested that both BMP and
233 WNT signaling are involved in the meiosis initiation of germ cells in COA testes, and
234 BMP signaling plays more important roles in this process.

235 The function of BMPs in germ cell meiosis was further examined using *in vitro*
236 cultured E13.5 control and *DTA^{+/fl} AMH-Cre* testes and treated with RA, BMPs, and
237 smad4/smad5 pathway activator Kartogenin (KGN). As shown in Figure 4E, germ cells
238 with thread-like SYCP3 were detected in testes with RA+KGN treatment (Fig. 4Eb, d),
239 whereas only scattered SYCP3 foci were observed in germ cells of RA only treated
240 testes (Fig. 4Ea, c). Results of quantitative RT-PCR also showed that the mRNA level
241 of meiotic genes was significantly increased in germ cells with RA+KGN treatment (Fig.
242 4F). For *DTA^{+/fl} AMH-Cre* testes, dot-like SYCP3 was noted in the germ cells with

243 RA only treatment (Fig. 4Ga, e), whereas some germ cells with thread-like SYCP3
244 signal were observed after RA+BMP2 or RA+BMP4 treatment (Fig. 4Gb, f and c, g),
245 and RA+Kartogenin (Fig. 4Gd, h) treatment. Moreover, the mRNA level of meiotic
246 genes was also significantly increased after BMP2 and BMP4 treatment (Fig. 4H).

247 To further confirm the function of BMP signaling pathway in germ cell meiosis,
248 pregnant female mice were intraperitoneally injected with LDN-193189 every 12 hours
249 from E13.5 to E16.5 and the expression of SYCP3 was examined by immunostaining
250 at E16.5 (Fig. 5A). As shown, no SYCP3 signal was detected in the germ cells of
251 control testes with (Fig. 5Bk, l) or without (Fig. 5Bi, j) LDN-193189 injection. Thread-
252 like SYCP3 signal were observed in the germ cells of control ovaries (Fig. 5Ba, b) and
253 COA testes (Fig. 5Be, f) without LDN-193189 injection. However, only scattered foci
254 of SYCP3 was detected in the germ cells of control ovaries (Fig. 5Bc, d) and COA
255 testes (Fig. 5Bg, h) with LDN-193189 injection. These results suggested that BMP
256 signaling pathway is essential for germ cell meiosis initiation and the ectopic initiation
257 of meiosis in germ cells of COA testes is most likely induced by the BMPs derived
258 from transformed Sertoli cells.

259 *The expression of Dazl was induced by BMP signaling pathway*

260 *Dazl* is the intrinsic factor which is indispensable for RA response and meiosis
261 initiation (Lin et al., 2008). In this study, we found that the expression of *Dazl* was
262 significantly increased with RA+KAR treatment but not with RA treatment in E13.5
263 cultured testes (Fig. S5A). The expression of *Dazl* at E13.5 in *DTA_{+/flox} AMH-Cre* testes
264 was also induced by BMP2 and BMP4 treatment (Fig. S5B). By contrast, the

265 expression of *Dazl* in control ovaries was significantly decreased with LDN treatment,
266 but not with XAV treatment (Fig. S5C). Moreover, the mRNA level of *Dazl* in RA treated
267 COA testes was significantly higher than that in RA treated control testes, which was
268 significantly decreased after LDN and XAV treatment (Fig. S5D). All together, these
269 results indicated that the expression of *Dazl* was induced by BMP signaling pathway
270 and BMPs involved in germ cell meiosis most likely via inducing *Dazl* expression.

271 *DNA methylation and DNMT3a was repressed by BMP signaling pathway in germ cells*
272 *of COA testes.*

273 DNA methylation in germ cells is globally erased at ~ E9.5 in both male and female
274 embryos in mouse model (Hill et al., 2018). It is re-established in male germ cells at
275 around E15.5, but much later in female germ cells (Smallwood and Kelsey, 2012). The
276 results of gene ontology analysis of single germ cell RNA-sequencing data at E15.5
277 revealed that DNA methylation was enriched (Fig. S6A) and the expression of DNA
278 methyltransferase *Dnmt3a* and *Dnmt3l* was decreased in germ cells of COA mice
279 compared to control at E15.5 (Fig. S6Ba, c). Immunostaining results showed that 5mC
280 was significantly decreased in germ cells of COA testes at E15.5 compared to control
281 male germ cells, which was comparable to that of female germ cells (Fig. S6Ca-c).
282 The expression of DNMT3a and DNMT3L was significantly decreased in germ cells of
283 COA testes (Fig. S6Ce, n), whereas only DNMT3a was consistent with RNA-sequence
284 result and comparable to control female germ cells.

285 To test whether DNA methylation is regulated by RA and BMP signaling, 5mC level
286 and the expression of DNMT3a were examined by immunostaining in control and COA

287 testes. As shown, both 5mC and DNMT3a were detected in germ cells of control testes
288 (Fig. 6A and B a, g, m) and not repressed by RA treatment (Fig. 6A and Bb, h, n).
289 However, 5mC and DNMT3a were not detected in germ cells of RA treated COA testes
290 (Fig. 6A and B c, i, o), whereas it was significantly increased after LDN and XAV+LDN
291 treatment (Fig. A and B d, j, p, f, l, r). Additionally, the level of 5mC and DNMT3a was
292 not increased in COA germ cells with RA+XAV treatment (Fig. 6A and Be, k, q). These
293 results indicated that DNA methylation in germ cells of COA testes is repressed by
294 BMP signaling, and which is probably via down-regulating *Dnmt3a* expression.

295

296 **Discussion**

297 It has been demonstrated that the sexual fate commitment of germ cells is
298 dependent on the differentiation of gonad somatic cells during sex determination. In
299 female gonads, germ cells enter meiosis right after sex determination (McLaren, 1984),
300 whereas the male germ cells are arrested in G0/G1stage and enter meiosis after birth
301 (Western et al., 2008). Mesonephros derived RA is the most important extrinsic factor
302 for meiosis initiation, germ cells won't start meiosis in the absence of RA (Bowles et
303 al., 2006; Koubova et al., 2006). It is widely believed that meiotic arrest of male germ
304 cells during embryonic stage is mainly due to the expression of RA oxidizing enzyme
305 CYP26B1 in Sertoli cells (Li et al., 2009). Interestingly, in this study, we found that
306 disruption of testicular cords or depletion of Sertoli cells in testes did not lead to
307 meiosis initiation of male germ cells during embryonic stages, suggesting that only RA

308 is not sufficient to initiate meiosis. There must be some other factors cooperate with
309 RA to regulate the meiosis initiation of germ cells.

310 The abnormal meiosis of male germ cells during embryonic stage is observed in
311 several mouse models with male-to-female sex reversal. In *Sry* knockout males, germ
312 cells are transformed into female germ cells with normal fertility (Kashimada and
313 Koopman, 2010). In *Cyp26b1* and *Nanos2* knockout male mice, the transcription of
314 *Stra8* and *Sycp3* is significantly increased in germ cells, yet the synaptonemal complex
315 is not formed in *Nanos2* knockout mouse (MacLean et al., 2007; Suzuki and Saga,
316 2008), which is a typical marker of meiosis initiation. On the other hand, the defect of
317 female germ cell meiosis was reported after inactivation of *Smad4* (Wu et al., 2016). A
318 recent *in vitro* study also demonstrates that BMPs and RA act synergistically to specify
319 female germ cell fate of *in vitro* differentiated PGC like cells under a defined condition
320 (Miyauchi et al., 2017). All these studies suggest that the germ cell fate could be
321 converted during sex determination. However, whether the fate of germ cells could be
322 reprogrammed after sex determination remains an opening question.

323 In the present study, we found that the expression of meiosis associated genes
324 was significantly increased in male germ cells by over-activation of *CTNNB1* in Sertoli
325 cells after sex determination. Moreover, synaptonemal complex was well organized
326 and the germ cells at pachytene and diplotene stage were observed, indicating the
327 male germ cells ectopically initiate meiosis after sex determination. Since Sertoli cells
328 are transformed into granulosa-like cells in this mouse model, we also tested whether
329 the male germ cells are transdifferentiated into female germ cell fate. The expression

330 of several female germ cell marker gene was upregulated. However, the male germ
331 cells were not clustered with control female germ cells by PCA analysis, indicating that
332 the germ cells are not transdifferentiated into female cell fate. Previous study
333 demonstrates that high levels of *Bmp2* and *Bmp5* in pre-granulosa cells is most likely
334 instructive in specifying the female germ cell fate (Jameson et al., 2012b; Miyauchi et
335 al., 2017). In this study, we found that both BMP2 and BMP4 are involved in inducing
336 germ cell meiosis, and BMP4 shows more effects in this process.

337 *Dazl* is an important intrinsic factor which is essential for germ cell meiosis
338 initiation, and germ cells will not start meiosis in the absence of *Dazl* (Gill et al., 2011).
339 *Dazl* is expressed in both male and female PGCs and essential for female germ cell
340 meiosis “license” (Lin et al., 2008). Previous studies find that *Nanos2* represses male
341 germ cell meiosis by directly binding to 3'UTR of *Dazl* and causes the degradation of
342 *Dazl* mRNA (Fukuda et al., 2018; Kato et al., 2016). In this study, we found that *Dazl*
343 expression was significantly increased in the germ cells of COA mice and was reduced
344 with BMP signaling inhibitor treatment. *In vitro* tissue culture experiments also
345 confirmed that the expression of *Dazl* was induced by BMP signaling pathway, but RA
346 couldn't upregulate *Dazl* expression.

347 During germ cell development, the epigenetic modification undergoes global
348 reconstruction (Hill et al., 2018) and previous study reported that *Dazl* is required for
349 genome remethylating (Gill et al., 2011). However, the detailed regulation associated
350 with germ cell meiosis is unclear. In this study, we found that DNA methylation was
351 significantly decreased in the germ cells of COA testes and increased after BMP

352 signaling inhibitor treatment. Moreover, the expression of DNA methyltransferase
353 *Dnmt3a* was also decreased significantly in germ cells of COA testes and induced by
354 BMP signaling pathway inhibitor. These results suggest that the DNA methylation of
355 male germ cells during embryonic stage is most likely mediated by *Dnmt3a* and
356 probably repressed by BMP signaling in female germ cells. However, we could not
357 exclude other possibility which also regulated by BMP signaling pathway and need
358 further investigation.

359 In summary, our study suggests that germ cell fate could be reprogrammed after
360 sex determination when Sertoli cells were transformed into granulosa-like cells using
361 *Ctnnb1* over-activated mouse. And BMP signaling pathway plays important roles in
362 germ cell meiosis initiation. Moreover, our study demonstrates that BMPs are involved
363 in inducing germ cell meiosis most likely by up-regulating *Dazl* expression and which
364 is probably mediated by repressing DNA methylation. The results of this study provide
365 more clues for better understanding the mechanism of germ cell meiosis initiation.

366

367 **Materials and Methods**

368 *Mice*

369 All animal work was performed according to the regulations of the Institutional
370 Animal Care and Use committee of the Institute of Zoology, Chinese Academy of
371 Sciences. All mice were maintained in a C57BL/6;129/SvEv mixed background.
372 *Ctnnb1*^{+/fl}_{ox(ex3)} *ROSA*_{mT/mG} *AMH-Cre* mice were obtained by crossing *Ctnnb1*
373 *fl*_{ox(ex3)/fl}_{ox(ex3)} (Harada et al., 1999); *ROSA*_{mT/mG} (Muzumdar et al., 2007) female mice

374 with *AMH-Cre* transgenic males (Lecureuil et al., 2002). *DTA^{+/flox} AMH-Cre* mice were
375 obtained by crossing *DTA^{+/flox}* (Brockschnieder et al., 2004) females with *AMH-Cre*
376 transgenic males. DNA isolated from adult tail tips and fetal tissues, and genotyping
377 was performed by PCR as previously described (Gao et al., 2006; Harada et al., 1999).

378 For administering LDN-193189 into pregnant mice, LDN-193189 (S2618,
379 Selleckchem) was dissolved in DMSO and then diluted in water and 2.5 mg/kg body
380 weight was injected intra-peritoneally every 12 hr from E13.5 to E16.5.

381 *Tissue collection and histological analysis*

382 The gonads were dissected at different developmental stages immediately after
383 euthanasia, fixed in 4% paraformaldehyde for up to 24 hrs, stored in 70% ethanol at
384 4°C, and embedded with paraffin. Five-micrometer-thick sections were cut and
385 mounted on glass slides. After deparaffinization, the sections were processed for
386 Hematoxylin and Eosin (H&E) staining and immunofluorescent (IF) analysis. H&E
387 stained sections were examined with a Nikon Microscope, and the images were
388 captured with a Nikon DS-Ri1 CCD camera.

389 *Immunofluorescence analysis*

390 After rehydration and antigen retrieval, 5 µm sections were incubated with 5%
391 donkey serum in 0.3% triton X-100 for 1 hr. Then, the sections were immunolabeled
392 with the primary antibodies for 1.5 hrs at room temperature. Antibodies were diluted
393 as following: CTNNB1 (1:400, Abcam, ab6302), DDX4 (1:200, Abcam, ab5096), DAZL
394 (1:200, Millipore, AB5535), STRA8 (1:200, Abcam, ab49405), SYCP3 (1:200, Abcam,
395 ab15093), γH2AX (1:400, Millipore, 05-636) and GFP (1:100, Santa, sc-9996). After

396 three times wash in PBS, the equivalent fluorescence labeled secondary antibodies
397 (1:200, Jackson ImmunoResearch) were used for detection. DAPI was used to label
398 the nuclei. After staining, the sections were analyzed with a confocal laser scanning
399 microscope (Carl Zeiss Inc., Thornwood, NY).

400 *Chromosome spreads of germ cells*

401 The meiotic prophase I stages were evaluated by chromosome spreading of germ
402 cells from control ovaries and *Ctnnb1^{+/flx(ex3)} AMH-Cre* testes at E17.5. Briefly, tissues
403 were disaggregated into single cell with 0.25% trypsin plus 0.2 g/L EDTA (Hyclone,
404 SH3004202). After neutralization with 10% fetal bovine serum (FBS; Gibco, 10099-
405 141), cells were treated in 1% trisodium citrate (Sigma, S1804) hypotonic solution for
406 20 mins at room temperature, then fixed in 1% paraformaldehyde (PFA, Beyotime,
407 P0099). After spread onto poly-L-lysine (Sigma, P4707) precoated slides, and dried at
408 37°C, slides were blocked with ADB (3% BSA, 1% normal goat serum, and 0.005%
409 Triton-100 in tris buffered saline, TBS) for 30 mins at room temperature and incubated
410 overnight with 1: 400 diluted rabbit anti-SYCP3 antibody (1:200, Abcam, ab15093) at
411 37°C. After rinsing 3 times in TBS, incubated with 1: 400 diluted R-Phycoerythrin-
412 conjugated goat anti-rabbit secondary antibody (Sigma, P9537) for 1.5 hrs at 37°C in
413 dark. The meiotic prophase stages were determined under the Olympus BX51
414 fluorescence microscope with Cell Sens Ver.1.5 software by observing the
415 characteristic patterns of SYCP3 immunostaining of the chromosomes.

416 *Nucleic acid isolation and quantitative reverse transcription-PCR*

417 Total RNA was extracted using a Qiagen RNeasy kit (Qiagen, 74104) in

418 accordance with the manufacturer's instructions. Two micrograms of total RNA were
419 used to synthesize first-strand cDNA. To quantify gene expression, a real-time SYBR
420 Green assay was performed with isolated RNA. *Gapdh* was used as endogenous
421 control. The relative level of candidate gene expression was calculated using the
422 formula $2^{-\Delta\Delta CT}$ as described in the SYBR Green user manual. The primers used for
423 RT-PCR are listed in Table S1.

424 *Sertoli cell and single germ cell isolation*

425 Control and CTNNB1 over-activated Sertoli cells from *ROSA_{mT/mG} AMH-Cre* and
426 *Ctnnb1_{+/flx(ex3)} ROSA_{mT/mG} AMH-Cre* mice at E13.5 and E14.5 were isolated using flow
427 cytometry based on GFP fluorescence as described previously (Li et al., 2017). The
428 sorted cells were stored at -80°C for RNA extraction. Germ cells from control and
429 *Ctnnb1_{+/flx(ex3)} AMH-Cre* mice at E14.5 and E15.5 were isolated as following. The
430 dissected ovaries were washed with PBS for 3 times and digested with 0.05% trypsin-
431 EDTA. After neutralization with 10% FBS, resuspended pellets to single cells and
432 incubated with Anti-SSEA-1 (CD15) Microbeads (Miltenyi Biotec, 130-094-530). After
433 collected the positive cells, single cell was picked out for RNA extraction by pipette
434 under a dissecting microscope. After enzymatic dissociation, the solution was
435 transferred into prepared lysis buffer with an 8-nt barcode.

436 *RNA-seq library construction and sequencing*

437 Total RNA was extracted from isolated Sertoli cells of E13.5 and E14.5 embryos
438 using Qiagen RNeasy kit in accordance to the manufacturer's instructions. NEB Next
439 Ultra RNA Library Prep Kit was used for RNA library construction. The RNA library

440 was sequenced by Illumina Hiseq 2500 and aligned RNA-seq reads to *Mus musculus*
441 UCSC mm9 references with the Tophat software (<http://tophat.ccb.umd.edu/>), and
442 the FPKM of each gene was calculated using Cufflinks (<http://cufflinks.ccb.umd.edu>).
443 The detailed procedure was performed as previously described (Yu et al., 2016).

444 *Single-cell cDNA amplification and library construction*

445 Single-cell cDNA amplification was carried out using the STRT protocol as
446 described previously (Dong et al., 2018; Fan et al., 2018). Libraries were prepared
447 using KAPA Hyper Prep Kits (KK8505). The NEB U-shaped adapter was used for
448 ligation. After 8–10 cycles amplification with primers, the libraries were sequenced with
449 Illumina Hiseq2500 platform to generate 150-bp paired-end reads. To identify DEGs
450 between control and *CTNNB1* over-activated Sertoli cells, the number of unambiguous
451 clean tags in each library was normalized to the TPM to obtain the normalized gene
452 expression level. DEGs was identified as a false discovery rate (FDR) <0.001 and a
453 threshold absolute log 2-fold change for the sequence counts across the libraries.
454 Gene ontology and KEGG analysis was performed using DAVID Bioinformatics
455 Resources 6.8.

456 *Gonads and re-aggregated tissues in vitro culture*

457 The genital ridges were cultured on agarose blocks as described previously
458 (Coscioni et al., 2001; Zhang et al., 2015b). The agarose block was made with 2%
459 agarose and pre-balanced with culture medium up to 12 hrs. The fetal ovaries and
460 testes from E11.5 and E13.5 embryos were dissected and placed on the pre-balanced
461 agarose blocks. The gonads were cultured at 37°C in a saturated humidity incubator

462 infused with 5% CO₂ in air. For *in vitro* treatment, LDN-193189 (S2618, Selleckchem),
463 XAV-939 (S1180, Selleckchem) and Kartogenin (S7658, Selleckchem) was dissolved
464 in DMSO and used with a respective concentration of 10 µM.

465 The genital ridges from female and male embryos were separated from
466 mesonephro and dissociated with 0.05% trypsin-EDTA at 37°C for 10 mins. After
467 neutralization with 10% FBS, wash twice with DMEM supplemented with 10% FBS.
468 Large clumps of cells were removed using a 70 µm cell strainer (Corning, 352340).
469 Gonadal cells suspension was incubated with Anti-SSEA-1 (CD15) Microbeads
470 (Miltenyi Biotec, 130-094-530). After washing, cell suspension with PBS
471 supplemented with 0.5% BSA and 2 mM EDTA was applied to an MS column (Miltenyi
472 Biotec, 130-042-201). After negative cells flow through the column, magnetically
473 labeled cells were collected as the SSEA1-positive germ cells. The cells in the flow-
474 through were used as gonadal somatic cells. Re-aggregated germ cells and somatic
475 cells with the ratio of 1:10 and cultured on pre-balanced 2% agarose blocks at 37°C
476 in a saturated humidity incubator infused with 5% CO₂ in air.

477 *Statistical analysis*

478 Experiments were repeated at least three times independently. Three to five
479 genital ridges at each culture condition were used for immunostaining. The quantitative
480 results are presented as the mean ± SD. The data were evaluated for significant
481 differences using Student's t-test and one-way ANOVA. P-values < 0.05 were
482 considered to be significant.

483

484 **Acknowledgements**

485 This work was supported by National key R&D program of China (2018YFA0107702);
486 The National Science Fund for Distinguished Young Scholars (81525011); Strategic
487 Priority Research Program of the Chinese Academy of Sciences (XDB19000000); and
488 The National Natural Science Foundation of China (31601193, and 31671496).

489

490 **Competing interests**

491 The authors declare no competing interests.

492 **Reference**

493 Adams, I.R., and McLaren, A. (2002). Sexually dimorphic development of mouse
494 primordial germ cells: switching from oogenesis to spermatogenesis. *Development*
495 129, 1155-1164.

496 Albrecht, K.H., and Eicher, E.M. (2001). Evidence that Sry is expressed in pre-Sertoli
497 cells and Sertoli and granulosa cells have a common precursor. *Dev Biol* 240, 92-107.

498 Baltus, A.E., Menke, D.B., Hu, Y.C., Goodheart, M.L., Carpenter, A.E., de Rooij, D.G.,
499 and Page, D.C. (2006). In germ cells of mouse embryonic ovaries, the decision to
500 enter meiosis precedes premeiotic DNA replication. *Nat Genet* 38, 1430-1434.

501 Borum, K. (1961). Oogenesis in the mouse. A study of the meiotic prophase. *Exp Cell
502 Res* 24, 495-507.

503 Bowles, J., Feng, C.W., Spiller, C., Davidson, T.L., Jackson, A., and Koopman, P.
504 (2010). FGF9 suppresses meiosis and promotes male germ cell fate in mice. *Dev Cell*
505 19, 440-449.

506 Bowles, J., Knight, D., Smith, C., Wilhelm, D., Richman, J., Mamiya, S., Yashiro, K.,
507 Chawengsaksophak, K., Wilson, M.J., Rossant, J., *et al.* (2006). Retinoid signaling
508 determines germ cell fate in mice. *Science* 312, 596-600.

509 Brockschnieder, D., Lappe-Siefke, C., Goebbels, S., Boesl, M.R., Nave, K.A., and
510 Riethmacher, D. (2004). Cell depletion due to diphtheria toxin fragment A after Cre-
511 mediated recombination. *Mol Cell Biol* 24, 7636-7642.

512 Chang, H., Gao, F., Guillou, F., Taketo, M.M., Huff, V., and Behringer, R.R. (2008). Wt1
513 negatively regulates beta-catenin signaling during testis development. *Development*
514 135, 1875-1885.

515 Chassot, A.A., Ranc, F., Gregoire, E.P., Roopers-Gajadien, H.L., Taketo, M.M.,
516 Camerino, G., de Rooij, D.G., Schedl, A., and Chaboissier, M.C. (2008). Activation of
517 beta-catenin signaling by Rspo1 controls differentiation of the mammalian ovary. *Hum
518 Mol Genet* 17, 1264-1277.

519 Coscioni, A.C., Reichenbach, H.D., Schwartz, J., LaFalci, V.S., Rodrigues, J.L., and
520 Brandelli, A. (2001). Sperm function and production of bovine embryos in vitro after

521 swim-up with different calcium and caffeine concentration. *Animal reproduction*
522 *science* **67**, 59-67.

523 Dong, J., Hu, Y., Fan, X., Wu, X., Mao, Y., Hu, B., Guo, H., Wen, L., and Tang, F. (2018).
524 Single-cell RNA-seq analysis unveils a prevalent epithelial/mesenchymal hybrid state
525 during mouse organogenesis. *Genome biology* **19**, 31.

526 Fan, X., Dong, J., Zhong, S., Wei, Y., Wu, Q., Yan, L., Yong, J., Sun, L., Wang, X.,
527 Zhao, Y., *et al.* (2018). Spatial transcriptomic survey of human embryonic cerebral
528 cortex by single-cell RNA-seq analysis. *Cell research* **28**, 730-745.

529 Fukuda, K., Masuda, A., Naka, T., Suzuki, A., Kato, Y., and Saga, Y. (2018).
530 Requirement of the 3'-UTR-dependent suppression of DAZL in oocytes for pre-
531 implantation mouse development. *PLoS Genet* **14**, e1007436.

532 Gao, F., Maiti, S., Alam, N., Zhang, Z., Deng, J.M., Behringer, R.R., Lecureuil, C.,
533 Guillou, F., and Huff, V. (2006). The Wilms tumor gene, Wt1, is required for Sox9
534 expression and maintenance of tubular architecture in the developing testis. *Proc Natl
535 Acad Sci U S A* **103**, 11987-11992.

536 Gill, M.E., Hu, Y.C., Lin, Y., and Page, D.C. (2011). Licensing of gametogenesis,
537 dependent on RNA binding protein DAZL, as a gateway to sexual differentiation of
538 fetal germ cells. *Proc Natl Acad Sci U S A* **108**, 7443-7448.

539 Harada, N., Tamai, Y., Ishikawa, T., Sauer, B., Takaku, K., Oshima, M., and Taketo,
540 M.M. (1999). Intestinal polyposis in mice with a dominant stable mutation of the beta-
541 catenin gene. *EMBO J* **18**, 5931-5942.

542 Hill, P.W.S., Leitch, H.G., Requena, C.E., Sun, Z., Amouroux, R., Roman-Trufero, M.,
543 Borkowska, M., Terragni, J., Vaisvila, R., Linnett, S., *et al.* (2018). Epigenetic
544 reprogramming enables the transition from primordial germ cell to gonocyte. *Nature*
545 **555**, 392-396.

546 Jameson, S.A., Lin, Y.T., and Capel, B. (2012a). Testis development requires the
547 repression of Wnt4 by Fgf signaling. *Dev Biol* **370**, 24-32.

548 Jameson, S.A., Natarajan, A., Cool, J., DeFalco, T., Maatouk, D.M., Mork, L., Munger,
549 S.C., and Capel, B. (2012b). Temporal transcriptional profiling of somatic and germ
550 cells reveals biased lineage priming of sexual fate in the fetal mouse gonad. *PLoS
551 Genet* **8**, e1002575.

552 Kashimada, K., and Koopman, P. (2010). Sry: the master switch in mammalian sex
553 determination. *Development* **137**, 3921-3930.

554 Kato, Y., Katsuki, T., Kokubo, H., Masuda, A., and Saga, Y. (2016). Dazl is a target
555 RNA suppressed by mammalian NANOS2 in sexually differentiating male germ cells.
556 *Nat Commun* **7**, 11272.

557 Koubova, J., Hu, Y.C., Bhattacharyya, T., Soh, Y.Q., Gill, M.E., Goodheart, M.L.,
558 Hogarth, C.A., Griswold, M.D., and Page, D.C. (2014). Retinoic acid activates two
559 pathways required for meiosis in mice. *PLoS Genet* **10**, e1004541.

560 Koubova, J., Menke, D.B., Zhou, Q., Capel, B., Griswold, M.D., and Page, D.C. (2006).
561 Retinoic acid regulates sex-specific timing of meiotic initiation in mice. *Proc Natl Acad
562 Sci U S A* **103**, 2474-2479.

563 Lecureuil, C., Fontaine, I., Crepieux, P., and Guillou, F. (2002). Sertoli and granulosa
564 cell-specific Cre recombinase activity in transgenic mice. *Genesis* **33**, 114-118.

565 Li, H., MacLean, G., Cameron, D., Clagett-Dame, M., and Petkovich, M. (2009).
566 Cyp26b1 expression in murine Sertoli cells is required to maintain male germ cells in
567 an undifferentiated state during embryogenesis. *PLoS One* 4, e7501.

568 Li, Y., Zhang, L., Hu, Y., Chen, M., Han, F., Qin, Y., Chen, M., Cui, X., Duo, S., Tang,
569 F., *et al.* (2017). beta-Catenin directs the transformation of testis Sertoli cells to ovarian
570 granulosa-like cells by inducing Foxl2 expression. *J Biol Chem* 292, 17577-17586.

571 Lin, Y., Gill, M.E., Koubova, J., and Page, D.C. (2008). Germ cell-intrinsic and -extrinsic
572 factors govern meiotic initiation in mouse embryos. *Science* 322, 1685-1687.

573 Lin, Y., and Page, D.C. (2005). Dazl deficiency leads to embryonic arrest of germ cell
574 development in XY C57BL/6 mice. *Dev Biol* 288, 309-316.

575 MacLean, G., Abu-Abed, S., Dolle, P., Tahayato, A., Chambon, P., and Petkovich, M.
576 (2001). Cloning of a novel retinoic-acid metabolizing cytochrome P450, Cyp26B1, and
577 comparative expression analysis with Cyp26A1 during early murine development.
578 *Mech Dev* 107, 195-201.

579 MacLean, G., Li, H., Metzger, D., Chambon, P., and Petkovich, M. (2007). Apoptotic
580 extinction of germ cells in testes of Cyp26b1 knockout mice. *Endocrinology* 148, 4560-
581 4567.

582 McLaren, A. (1984). Meiosis and differentiation of mouse germ cells. *Symp Soc Exp
583 Biol* 38, 7-23.

584 McLaren, A. (1991). Development of the mammalian gonad: the fate of the supporting
585 cell lineage. *Bioessays* 13, 151-156.

586 McLaren, A. (2001). Mammalian germ cells: birth, sex, and immortality. *Cell Struct
587 Funct* 26, 119-122.

588 Miyauchi, H., Ohta, H., Nagaoka, S., Nakaki, F., Sasaki, K., Hayashi, K., Yabuta, Y.,
589 Nakamura, T., Yamamoto, T., and Saitou, M. (2017). Bone morphogenetic protein and
590 retinoic acid synergistically specify female germ-cell fate in mice. *EMBO J* 36, 3100-
591 3119.

592 Muzumdar, M.D., Tasic, B., Miyamichi, K., Li, L., and Luo, L. (2007). A global double-
593 fluorescent Cre reporter mouse. *Genesis* 45, 593-605.

594 Reboucet, D., Darbey, A., Curley, M., O'Shaughnessy, P., and Smith, L.B. (2018).
595 Testicular Cell Selective Ablation Using Diphtheria Toxin Receptor Transgenic Mice.
596 *Methods Mol Biol* 1748, 203-228.

597 Saga, Y. (2010). Function of Nanos2 in the male germ cell lineage in mice. *Cell Mol
598 Life Sci* 67, 3815-3822.

599 Smallwood, S.A., and Kelsey, G. (2012). De novo DNA methylation: a germ cell
600 perspective. *Trends in genetics : TIG* 28, 33-42.

601 Souquet, B., Tourpin, S., Messiaen, S., Moison, D., Habert, R., and Livera, G. (2012).
602 Nodal signaling regulates the entry into meiosis in fetal germ cells. *Endocrinology* 153,
603 2466-2473.

604 Spiller, C., Burnet, G., and Bowles, J. (2017). Regulation of fetal male germ cell
605 development by members of the TGFbeta superfamily. *Stem Cell Res* 24, 174-180.

606 Spiller, C.M., Bowles, J., and Koopman, P. (2013). Nodal/Cripto signalling in fetal male
607 germ cell development: implications for testicular germ cell tumors. *Int J Dev Biol* 57,
608 211-219.

609 Suzuki, A., Igarashi, K., Aisaki, K., Kanno, J., and Saga, Y. (2010). NANOS2 interacts
610 with the CCR4-NOT deadenylation complex and leads to suppression of specific
611 RNAs. *Proc Natl Acad Sci U S A* **107**, 3594-3599.

612 Suzuki, A., Saba, R., Miyoshi, K., Morita, Y., and Saga, Y. (2012). Interaction between
613 NANOS2 and the CCR4-NOT deadenylation complex is essential for male germ cell
614 development in mouse. *PLoS One* **7**, e33558.

615 Suzuki, A., and Saga, Y. (2008). Nanos2 suppresses meiosis and promotes male germ
616 cell differentiation. *Genes Dev* **22**, 430-435.

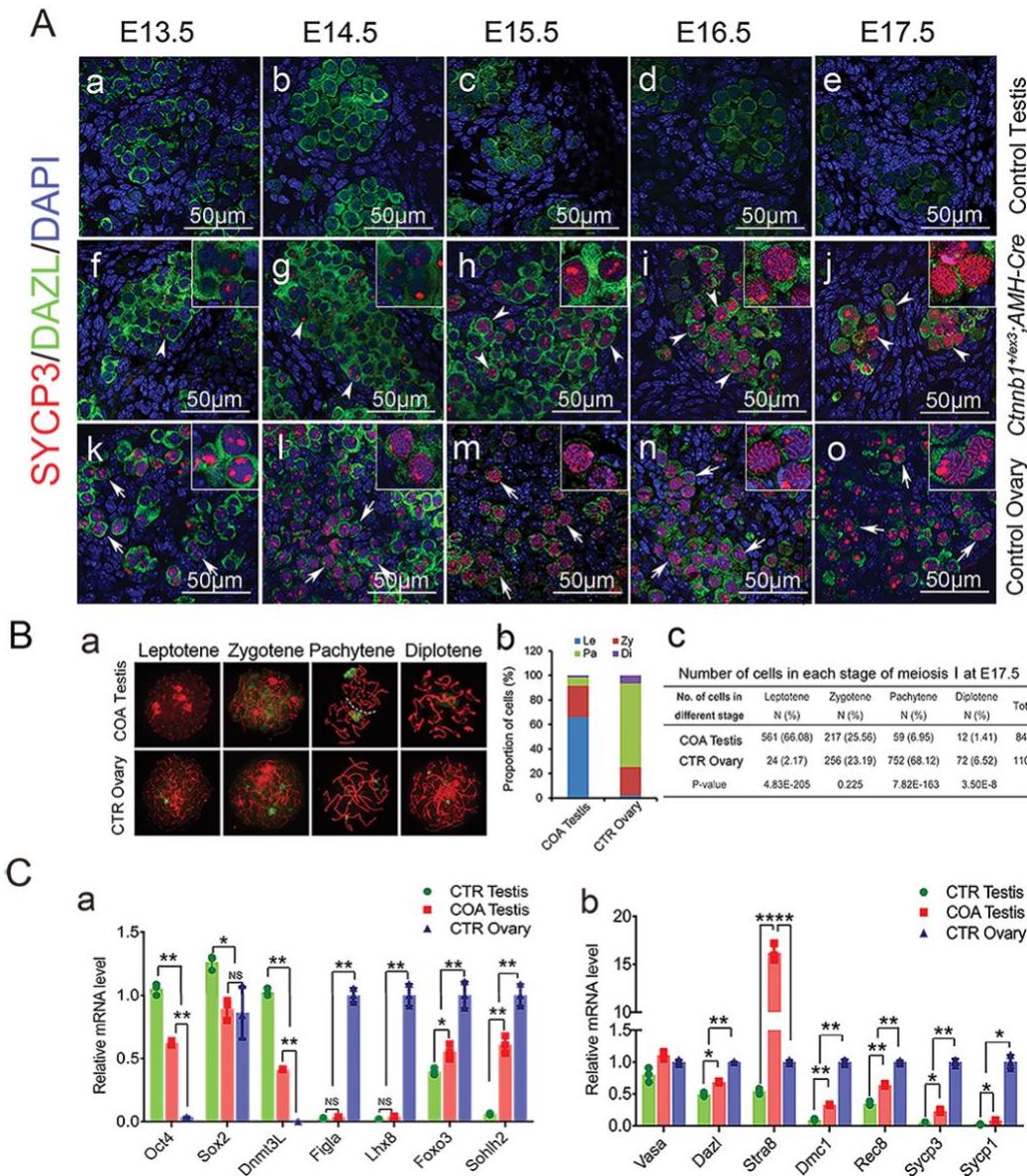
617 Tassinari, V., Campolo, F., Cesarini, V., Todaro, F., Dolci, S., and Rossi, P. (2015). Fgf9
618 inhibition of meiotic differentiation in spermatogonia is mediated by Erk-dependent
619 activation of Nodal-Smad2/3 signaling and is antagonized by Kit Ligand. *Cell Death
620 Dis* **6**, e1688.

621 Tomizuka, K., Horikoshi, K., Kitada, R., Sugawara, Y., Iba, Y., Kojima, A., Yoshitome,
622 A., Yamawaki, K., Amagai, M., Inoue, A., *et al.* (2008). R-spondin1 plays an essential
623 role in ovarian development through positively regulating Wnt-4 signaling. *Hum Mol
624 Genet* **17**, 1278-1291.

625 Western, P.S., Miles, D.C., van den Bergen, J.A., Burton, M., and Sinclair, A.H. (2008).
626 Dynamic regulation of mitotic arrest in fetal male germ cells. *Stem Cells* **26**, 339-347.

627 Wu, Q., Fukuda, K., Kato, Y., Zhou, Z., Deng, C.X., and Saga, Y. (2016). Sexual Fate
628 Change of XX Germ Cells Caused by the Deletion of SMAD4 and STRA8 Independent
629 of Somatic Sex Reprogramming. *PLoS Biol* **14**, e1002553.

630 Wu, Q., Kanata, K., Saba, R., Deng, C.X., Hamada, H., and Saga, Y. (2013).
631 Nodal/activin signaling promotes male germ cell fate and suppresses female
632 programming in somatic cells. *Development* **140**, 291-300.

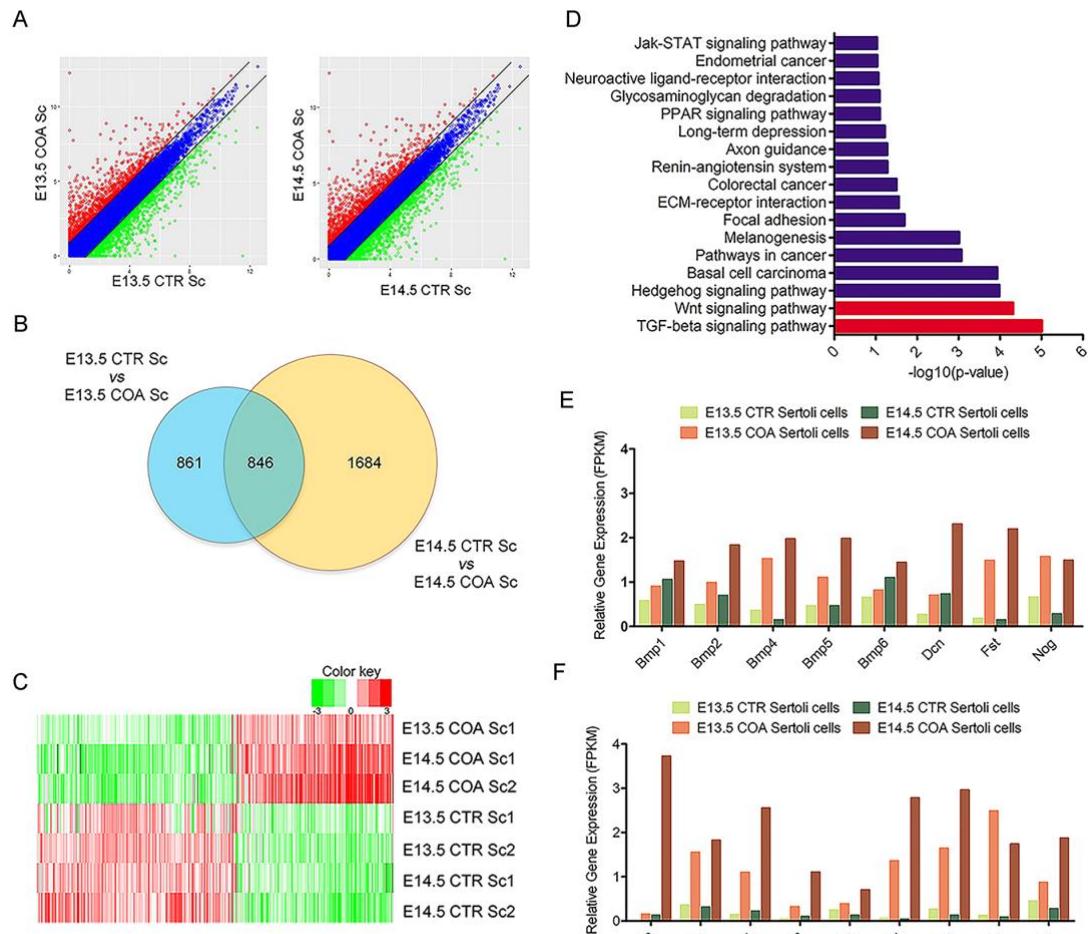

633 Xu, H., Beasley, M.D., Warren, W.D., van der Horst, G.T., and McKay, M.J. (2005).
634 Absence of mouse REC8 cohesin promotes synapsis of sister chromatids in meiosis.
635 *Dev Cell* **8**, 949-961.

636 Yu, C., Ji, S.Y., Dang, Y.J., Sha, Q.Q., Yuan, Y.F., Zhou, J.J., Yan, L.Y., Qiao, J., Tang,
637 F., and Fan, H.Y. (2016). Oocyte-expressed yes-associated protein is a key activator
638 of the early zygotic genome in mouse. *Cell Res* **26**, 275-287.

639 Zhang, L., Chen, M., Wen, Q., Li, Y., Wang, Y., Wang, Y., Qin, Y., Cui, X., Yang, L.,
640 Huff, V., *et al.* (2015a). Reprogramming of Sertoli cells to fetal-like Leydig cells by Wt1
641 ablation. *Proc Natl Acad Sci U S A* **112**, 4003-4008.

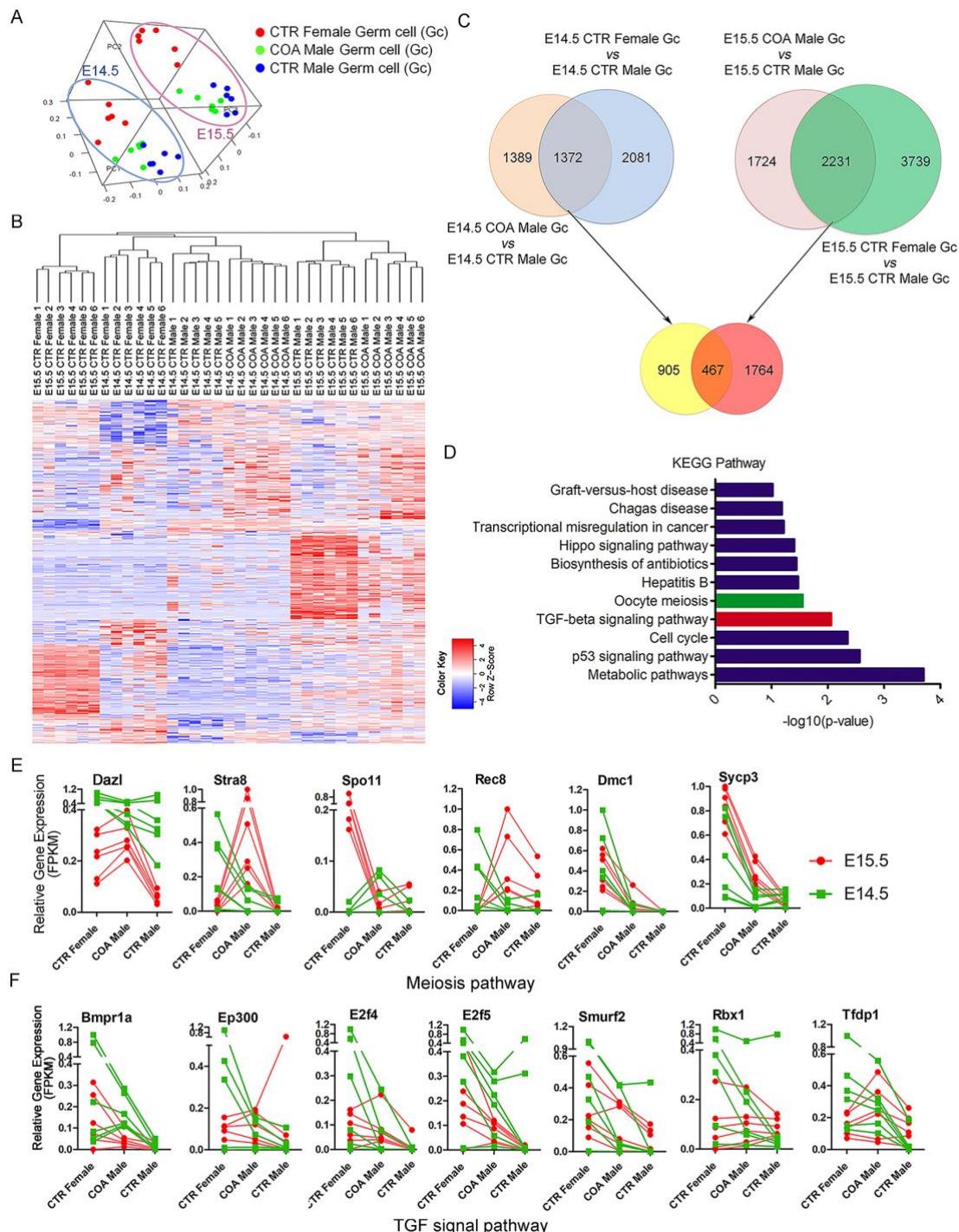
642 Zhang, L.J., Chen, B., Feng, X.L., Ma, H.G., Sun, L.L., Feng, Y.M., Liang, G.J., Cheng,
643 S.F., Li, L., and Shen, W. (2015b). Exposure to Brefeldin A promotes initiation of
644 meiosis in murine female germ cells. *Reproduction, fertility, and development* **27**, 294-
645 303.

646 **Figure legends**


647

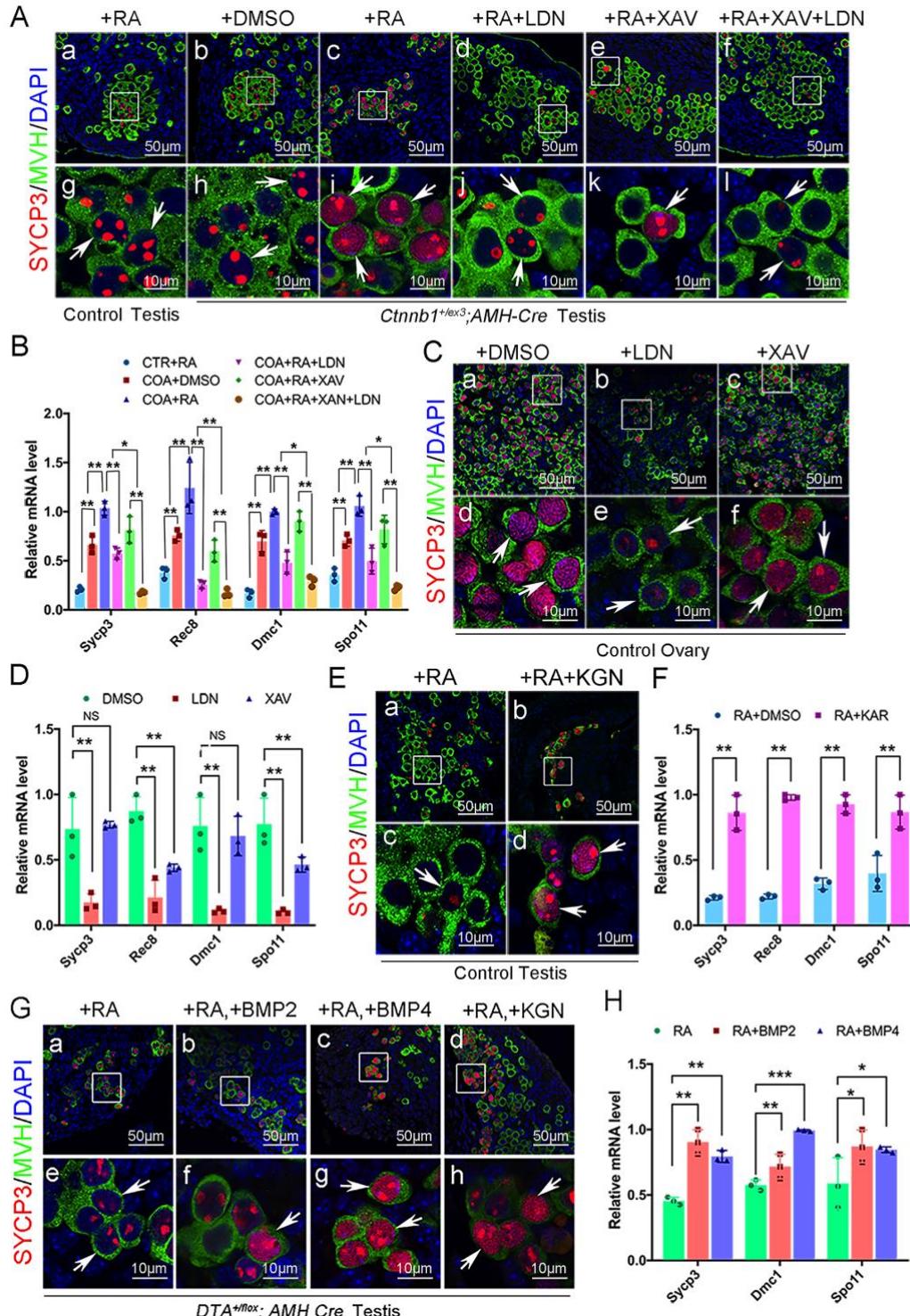
648 **Figure 1. Abnormal initiation of meiosis in germ cells of *Ctnnb1^{+/flx(ex3)} AMH-Cre***

649 **mice during embryonic stage. A. SYCP3 protein was detected in the germ cells of**
 650 ***Ctnnb1^{+/flx(ex3)} AMH-Cre* testes during embryonic stage. No SYCP3 signal was**
 651 **detected in DAZL-positive germ cells (green, white arrows) of control testes from**
 652 **E13.5 to E17.5 (Aa-Ae). In *Ctnnb1^{+/flx(ex3)} AMH-Cre* testes, the foci of SYCP3 protein**
 653 **(red) was noted in a small portion of germ cells at E13.5 (Af, white arrowheads) and**
 654 **E14.5 (Ag, white arrowheads), and thread-like SYCP3 signal was detected at E15.5**


655 and E17.5 (Ah-Aj, white arrowheads). In control ovaries, the foci of SYCP3 protein
656 were noted in germ cells at E13.5 (Ak, white arrows). Thread-like SYCP3 signal was
657 detected in germ cells from E14.5 to E17.5 (Al-Ao, white arrows). **B.** Chromosome
658 spreads of germ cells in control ovaries and *Ctnnb1^{+/fl}(ex3)* *AMH-Cre* testes.
659 Representative images of synaptonemal complex at Leptotene, Zygote, Pachytene,
660 and Diplotene stages of meiosis (Ba). Percentage (Bb) and number (Bc) of meiotic
661 germ cells at different stages of meiosis prophase I. Le, Leptotene; Zy, Zygote; Pa,
662 Pachytene; Di, Diplotene. **C.** The mRNA level at E16.5 gonads was examined by
663 quantitative RT-PCR. Pluripotency genes *Oct4*, *Sox2* and male germ cell marker
664 *Dnmt3L* was decreased in *Ctnnb1^{+/fl}(ex3)* *AMH-Cre* testes; whereas the expression of
665 embryonic female markers *Foxo3* and *Sohlh2* was increased in *Ctnnb1^{+/fl}(ex3)* *AMH-*
666 *Cre* testes compared to control testes (Ca). Meiotic genes (*Dazl*, *Stra8*, *Dmc1*, *Rec8*,
667 *Scp3*, *Scp1*) were significantly increased in *Ctnnb1^{+/fl}(ex3)* *AMH-Cre* testes compared
668 to control testes (Cb). CTR, control; COA, *Ctnnb1^{+/fl}(ex3)* *AMH-Cre*. Data are

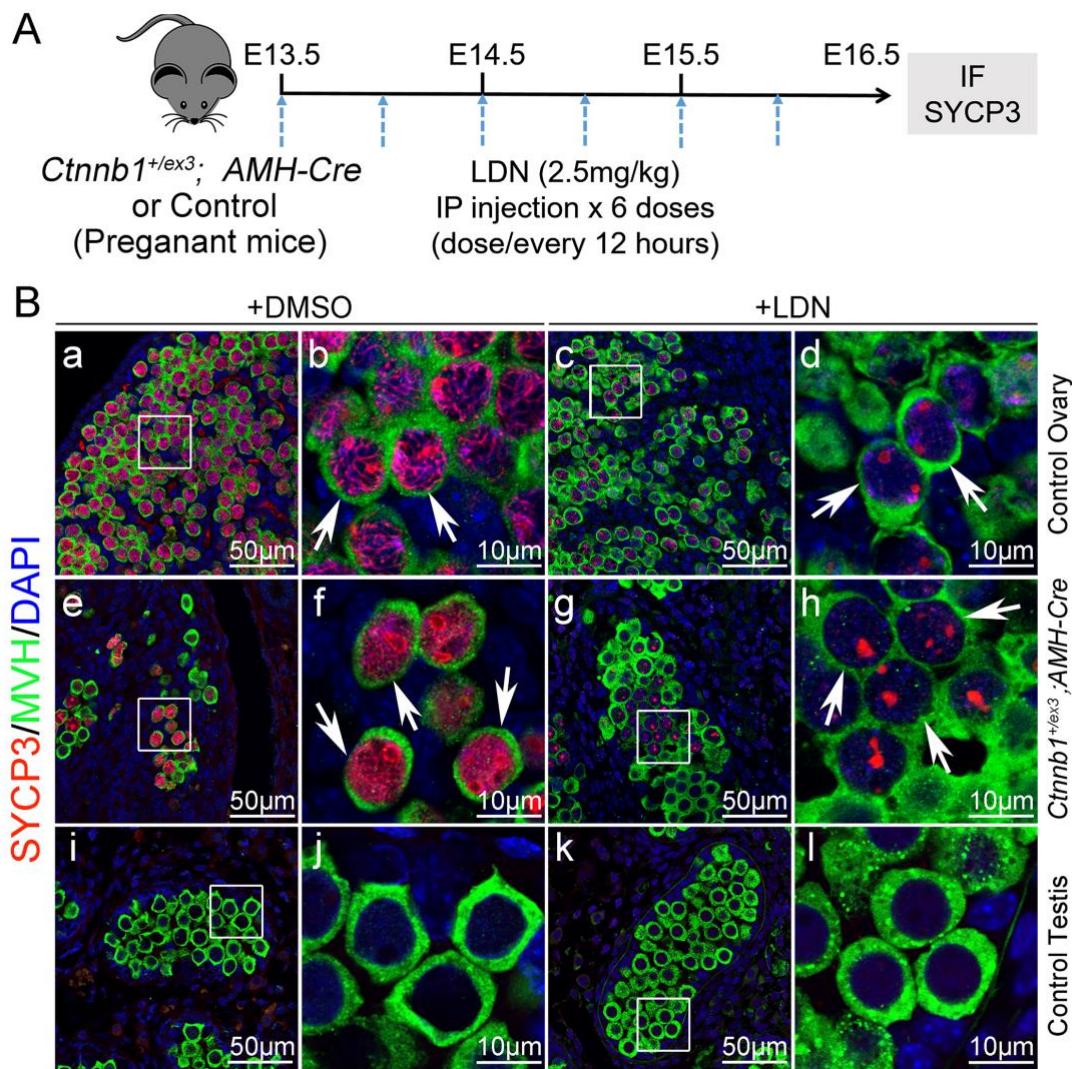
669 presented as the mean \pm SD. Two-way ANOVA analysis was used to test significance
670 ($^*P < 0.05$; $^{**}P < 0.01$). See also Figure S1, S2.

671
672 **Figure 2. Differentially expressed genes in Sertoli cells of *Ctnnb1*^{+/flox(ex3)} AMH-
673 Cre testes. A.** Scatter-plot analysis of differentially expressed genes (DEGs) between
674 COA Sertoli cells (Sc) and CTR Sertoli cells at E13.5 (left) and E14.5 (right). Red dots
675 represented up-regulated genes and green dots represented downregulated genes in
676 COA Sertoli cells versus CTR Sertoli cells. **B.** Venn diagram of numbers of DEGs
677 between COA and CTR Sertoli cells at E13.5 and E14.5. Total 846 genes ($\log_2 \text{FC} > 1$)
678 were differentially expressed at both E13.5 and E14.5. **C.** Heat maps of all the 846
679 DEGs in control and COA Sertoli cells. **D.** KEGG analysis of the DEGs. **E.** Relative

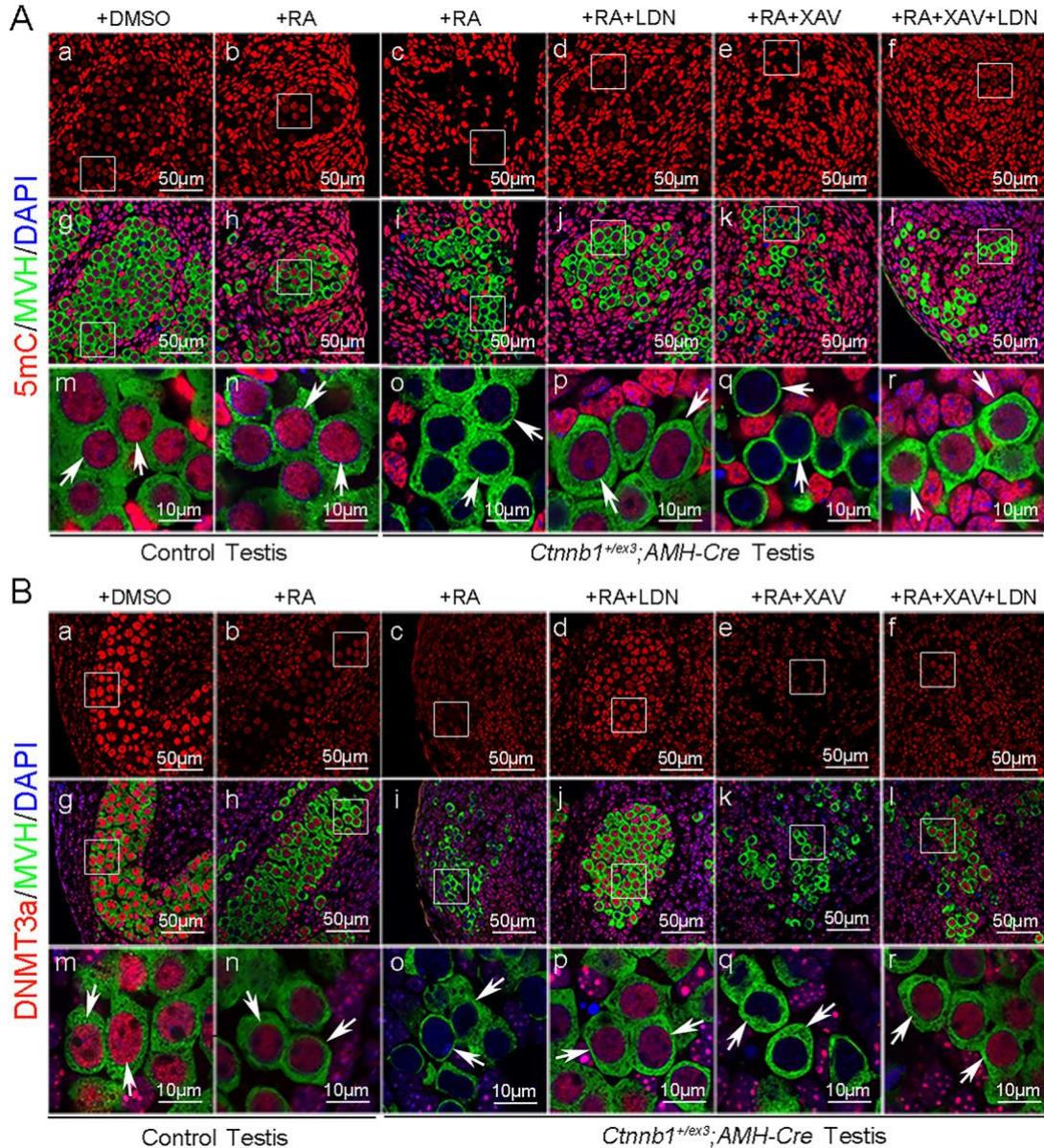

680 gene expression level of DEGs in TGF- β signaling pathway. **F**. Relative gene
 681 expression level of DEGs in WNT signaling pathway. CTR, control; COA,
 682 *Ctnnb1^{+/flx(ex3)} AMH-Cre*.

683

684 **Figure 3. Single-cell RNA sequencing analysis of germ cells from control**
685 **female, control male and COA male mice at E14.5 and E15.5. A.** Principal
686 component analyses (PCA) of germ cells from control female, control male and COA
687 male mice. **B.** Heat maps of 800 DEGs based on PCA analysis in germ cells of control
688 male, COA male and control female mice at E14.5 and E15.5. **C.** Venn diagram of
689 numbers of DEGs in germ cells from control male, COA male and control female mice
690 at E14.5 and E15.5. **D.** KEGG pathway analysis of 467 DEGs. **E.** The differential


691 expression of meiotic marker genes. **F**. The differential expression of genes in TGF- β
 692 signaling pathway. CTR, control; COA, *Ctnnb1*^{+/flox(ex3)} *AMH-Cre*.

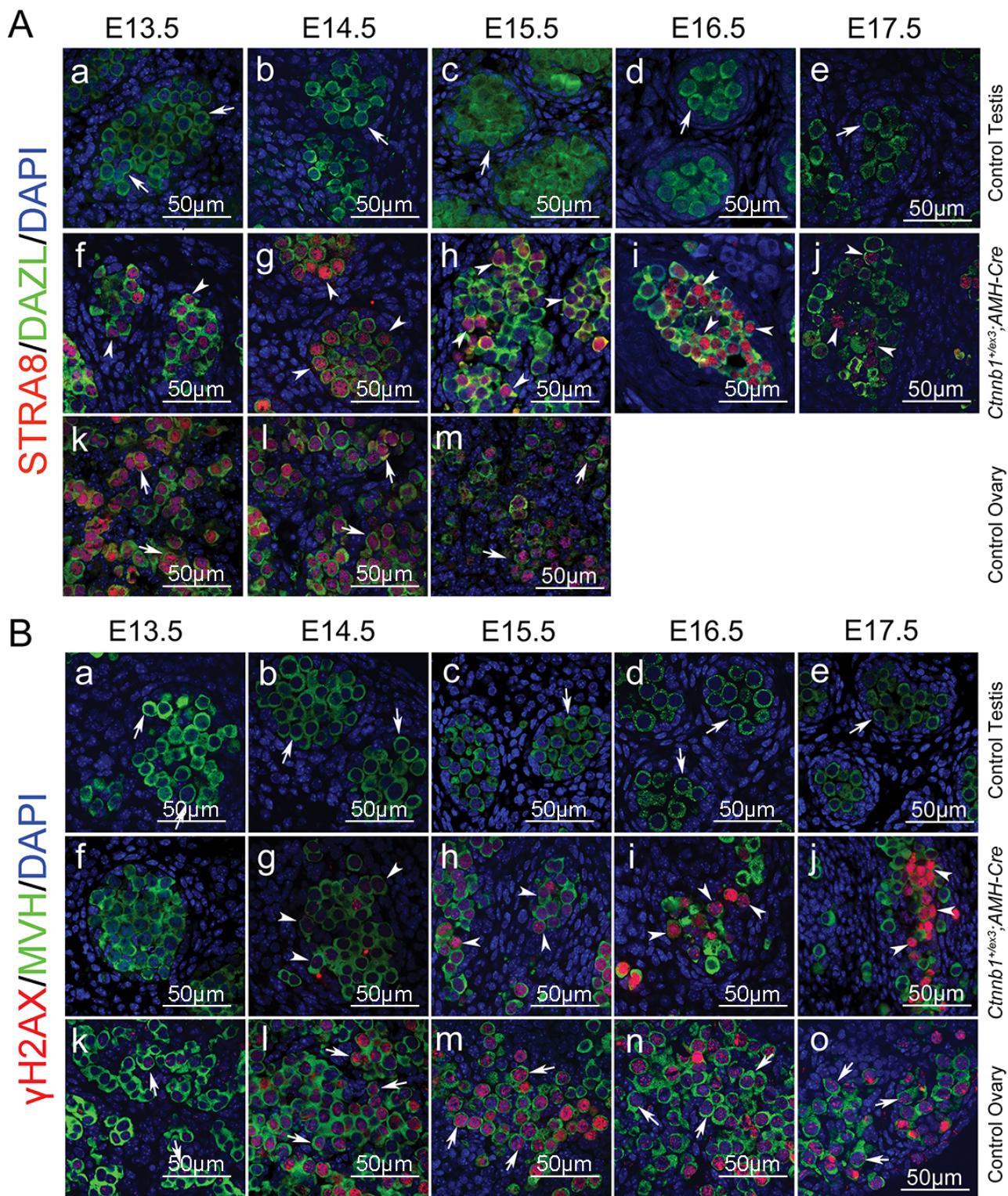
693
 694 **Figure 4. BMP signaling pathway was required for meiosis initiation of germ
 695 cells.** The gonads were cultured *in vitro* for 3 days. **A**. Meiosis of germ cells in COA


696 testes was inhibited by LDN-193189 and XAV-939 treatment. Scattered SYCP3 foci
697 were observed in the germ cells of control testes with RA treatment (Aa, Ag) and in
698 the germ cells of COA testes without RA treatment (Ab, Ah), whereas thread-like
699 SYCP3 signal was detected in the germ cells of COA testes with RA treatment (Ac,
700 Ai). Dot-like SYCP3 signal were observed in the germ cells of COA testes after LDN-
701 193189 and XAV-939 treatment (Ad, Aj). **B.** The relative mRNA level of meiosis-
702 related genes was examined by quantitative RT-PCR. **C.** The progress of meiosis in
703 normal ovaries was repressed by LDN-193189 treatment. Thread-like SYCP3 signal
704 were detected in germ cells of control ovaries with DMSO treatment (Ca, Cd), whereas
705 only scattered foci of SYCP3 signal were detected after LDN-193189 treatment (Cb,
706 Ce). The number of germ cells with thread-like SYCP3 signal was significantly
707 decreased with XAV treatment (Cc, Cf). **D.** The relative mRNA level of meiosis-related
708 genes in ovaries was examined by quantitative RT-PCR. **E.** Meiosis in CTR testes was
709 promoted by treatment with BMP signaling activator Kartogenin. Weak SYCP3 signal
710 was noted in germ cells of control testes with RA only treatment (Ea, Ec), and a small
711 portion of germ cells with thread-like SYCP3 signal was noted in control testes with
712 RA+Kartogenin (KGN) treatment (Eb, Ed). **F.** The mRNA level of meiosis-related
713 genes was significantly increased in RA+Kartogenin treated testes. **G.** Meiosis of germ
714 cells in *DTA^{+/flox} AMH-Cre* testes was induced by treatment of BMPs and activator
715 Kartogenin. Dot-like SYCP3 signal was noted in the germ cells of *DTA^{+/flox} AMH-Cre*
716 testes with RA only treatment (Ga, Ge). The germ cells with thread-like SYCP3 signal
717 were observed in in the germ cells of *DTA^{+/flox} AMH-Cre* testes with RA+BMP2 (Gb,

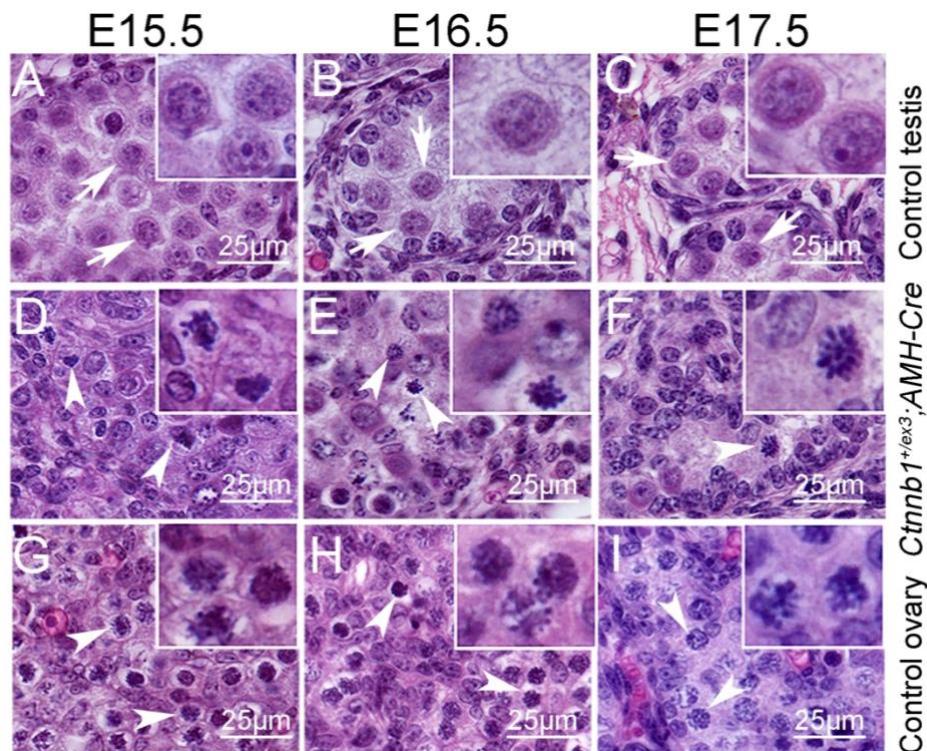
718 Gf), RA +BMP4 (Gc, Gg) and RA+Kartogenin (Gd, Gh) treatment. **H.** The mRNA level
719 of meiosis-related genes was examined by quantitative RT-PCR. CTR, control; COA,
720 *Ctnnb1^{+/flx(ex3)} AMH-Cre*. Data are presented as the mean \pm SD. Two-way ANOVA
721 and the student 's unpaired t-test analysis was used to test significance (*P< 0.05;
722 **P< 0.01; ns: no significance).

723
724 **Figure 5. The meiosis of germ cells in *Ctnnb1^{+/flx(ex3)} AMH-Cre* testes and control**
725 **ovaries was repressed by intraperitoneal injection of BMP signaling inhibitor**
726 **LDN-193189.** The expression of SYCP3 in germ cells of control ovaries, control testes,

727 and *Ctnnb1^{+/fl}(ex3) AMH-Cre* testes at E16.5 was examined by immunostaining. **A.**
728 The schematic diagram of intraperitoneal (IP) injection. **B.** LDN-193189 inhibited the
729 progress of meiosis both in *Ctnnb1^{+/fl}(ex3) AMH-Cre* testes and CTR ovaries. Thread-
730 like SYCP3 signal were observed in the germ cells of control ovaries (Ba, Bb) and
731 *Ctnnb1^{+/fl}(ex3) AMH-Cre* testes (Be, Bf) with DMSO injection. Only scattered foci of
732 SYCP3 signal were observed in the germ cells of control ovaries (Bc, Bd) and
733 *Ctnnb1^{+/fl}(ex3) AMH-Cre* testes (Bg, Bh) with LDN-193189 treatment for 3 days. No
734 SYCP3 signal was detected in the germ cells of control testes with (Bk, Bl) or without
735 (Bi, Bj) LDN-193189 injection. CTR, control; COA, *Ctnnb1^{+/fl}(ex3) AMH-Cre*.


736

737 **Figure 6. DNA methylation in germ cells of *Ctnnb1*^{+/flox(ex3)} AMH-Cre testes was**
738 **repressed by BMP signaling pathway.** Testes from control and *Ctnnb1*^{+/flox(ex3)} AMH-
739 *Cre* embryos at E13.5 were cultured *in vitro* and treated with RA, BMP signaling
740 inhibitor LDN-193189, and WNT signaling inhibitor XAV-939. The level of 5mC and
741 expression of DNMT3a were examined by immunostaining. **A.** High level of 5mC was
742 detected in the germ cells of both DMSO (Aa, Ag, Am) and RA (Ab, Ah, An) treated
743 control testis. No 5mC signal was detected in the germ cells of *Ctnnb1*^{+/flox(ex3)} AMH-


744 *Cre* testes treated with RA (Ac, Ai, Ao). The level of 5mC was significantly increased
745 in the germ cells of *Ctnnb1^{+/flox(ex3)} AMH-Cre* testes after LDN-193189 (Ad, Aj, Ap) and
746 LDN+XAV (Af, Al, Ar) treatment, whereas it was not changed with XAV-939 treatment
747 (Ae, Ak, Aq). **B.** High level of DNMT3a expression was detected in the germ cells of
748 both DMSO (Ba, Bg, Bm) and RA (Bb, Bh, Bn) treated control testis. No DNMT3a
749 signal was detected in the germ cells of *Ctnnb1^{+/flox(ex3)} AMH-Cre* testes treated with
750 RA (Bc, Bi, Bo). The expression of DNMT3a was significantly increased in the germ
751 cells of *Ctnnb1^{+/flox(ex3)} AMH-Cre* testes after LDN-193189 (Bd, Bj, Bp) and LDN+XAV
752 (Bf, Bl, Br) treatment, whereas it was not changed with XAV-939 treatment (Be, Bk,
753 Bq). CTR, control; COA, *Ctnnb1^{+/flox(ex3)} AMH-Cre*. See also Figure S6.

754

Supplemental information

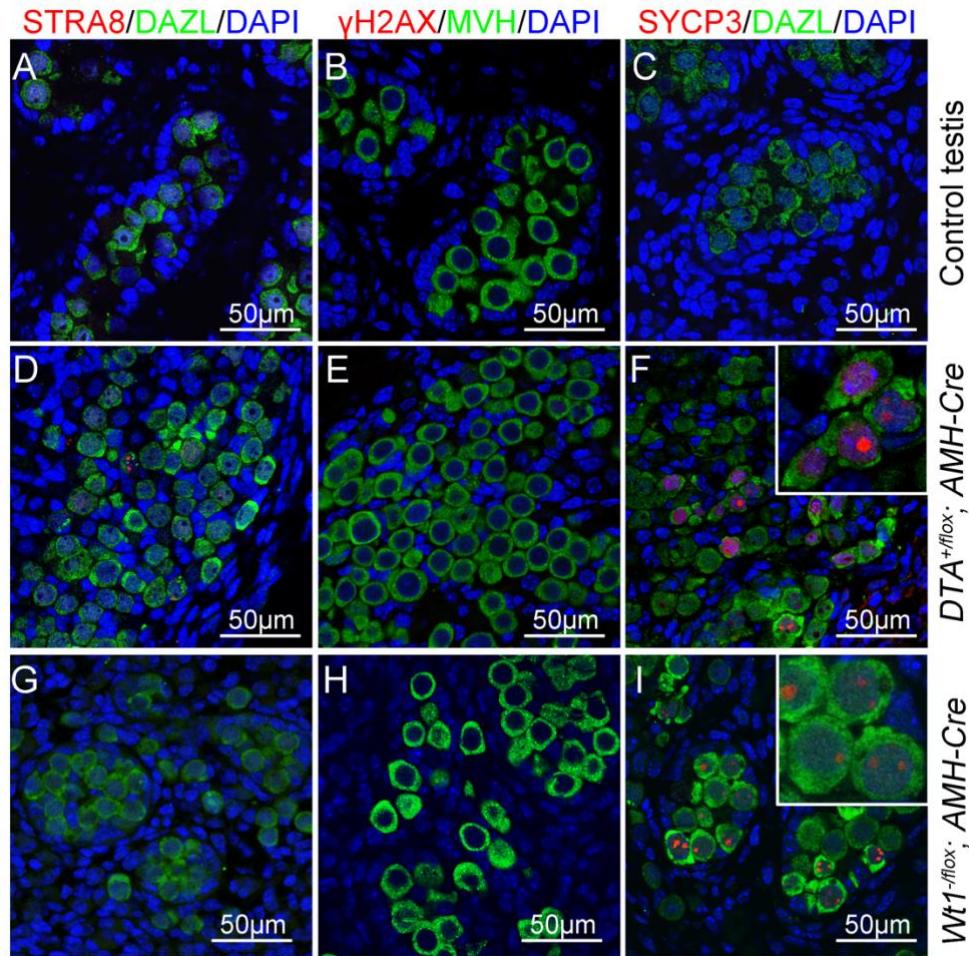


Figure S1. A. STRA8 and γH2AX were abnormally expressed in germ cells of *Ctnnb1^{+/flox(ex3)} AMH-Cre* testes during embryonic stage. **A.** No STRA8 signal was detected in the germ cells of control testes from E13.5 to E17.5 (Aa-Ae, white arrows). STRA8 was expressed in a large number of germ cells in *Ctnnb1^{+/flox(ex3)} AMH-Cre* testes from E13.5 to E16.5 (Af-Aj, white arrowheads). Most germ cells in control ovaries from E13.5 to E15.5 were STRA8-positive (Ak-Am, white arrows). **B.** No γH2AX signal was detected in MVH-positive germ cells of control testes from E13.5 to E17.5 (Ba-Be, white arrows). γH2AX-positive germ cells were noted in germ cells of *Ctnnb1^{+/flox(ex3)} AMH-Cre* testes from E14.5 to E17.5 (Bg-Bj, white arrowheads). Most of germ cells in control ovaries from E14.5 to E17.5 were γH2AX-positive (Bl-Bo, white arrows). Related to Figure 1.

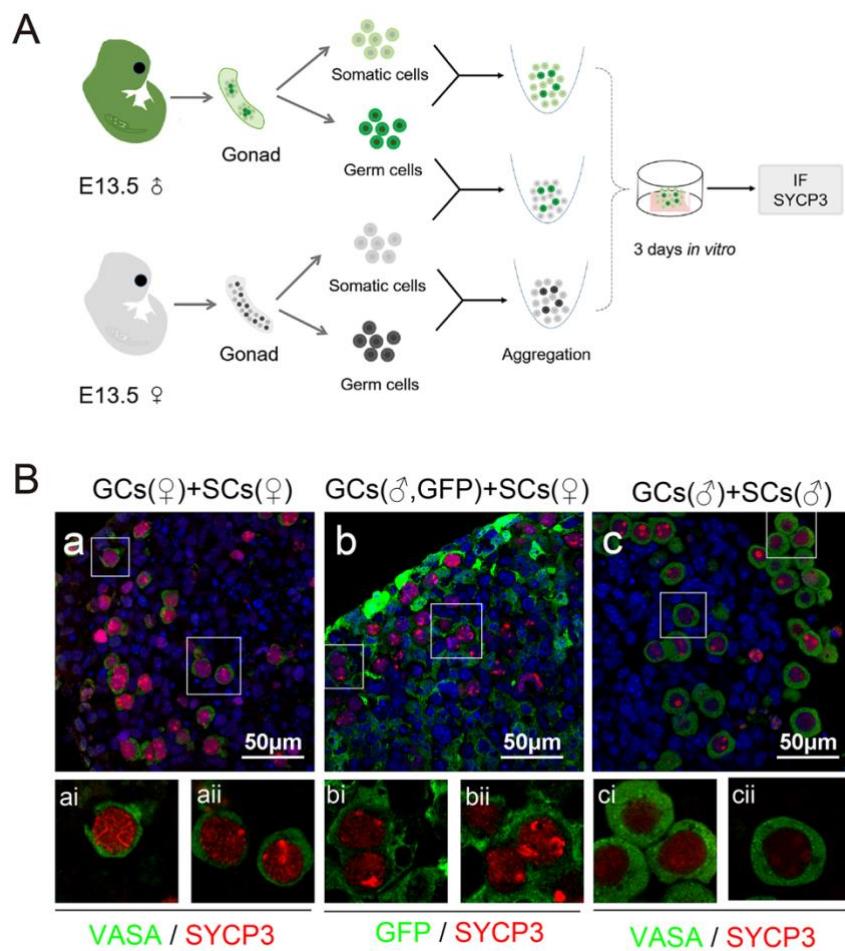


Figure S2. Chromatin condensation was observed in the germ cells of *Ctnnb1^{+/flox(ex3)} AMH-Cre* testes. No chromatin condensation was observed in germ cells of control testes from E15.5 to E17.5 (A-C, white arrows). The thread-like chromosome condensation was observed in germ cells of *Ctnnb1^{+/flox(ex3)} AMH-Cre* testes (A-F, white arrowheads), which was similar to

the morphology of chromatin in germ cells of control ovaries (G-I, white arrowheads). Related to Figure 2.

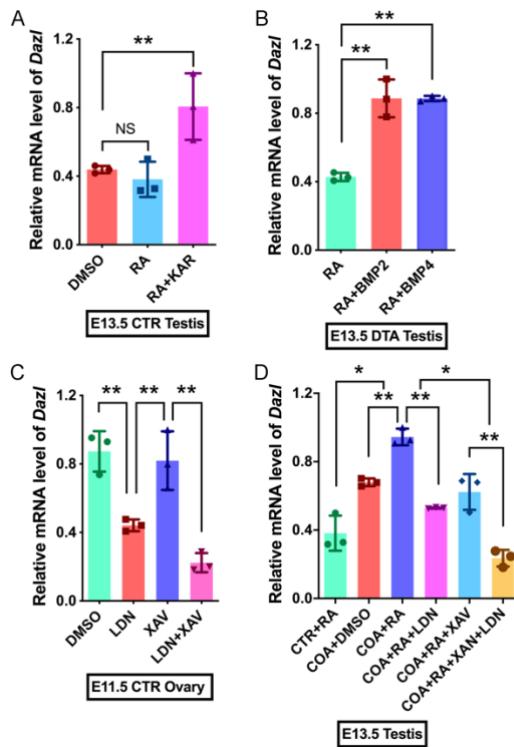


Figure S3. No meiotic germ cell was observed in testes of $DTA^{+/flox}$ $AMH-Cre$ and $Wt1^{-/flox}$ $AMH-Cre$ testes at E16.5. Germ cells in control testes were negative for STRA8 (A), γ H2AX (B) and SYCP3 (C) proteins. No STRA8 (D and G) and γ H2AX (E and H) signal were detected in germ cells of $DTA^{+/flox}$ $AMH-Cre$ and $Wt1^{-/flox}$ $AMH-Cre$ testes. Weak SYCP3 signal was detected in germ cells from $DTA^{+/flox}$ $AMH-Cre$ (F, inset) and $Wt1^{-/flox}$ $AMH-Cre$ testes (I, inset).

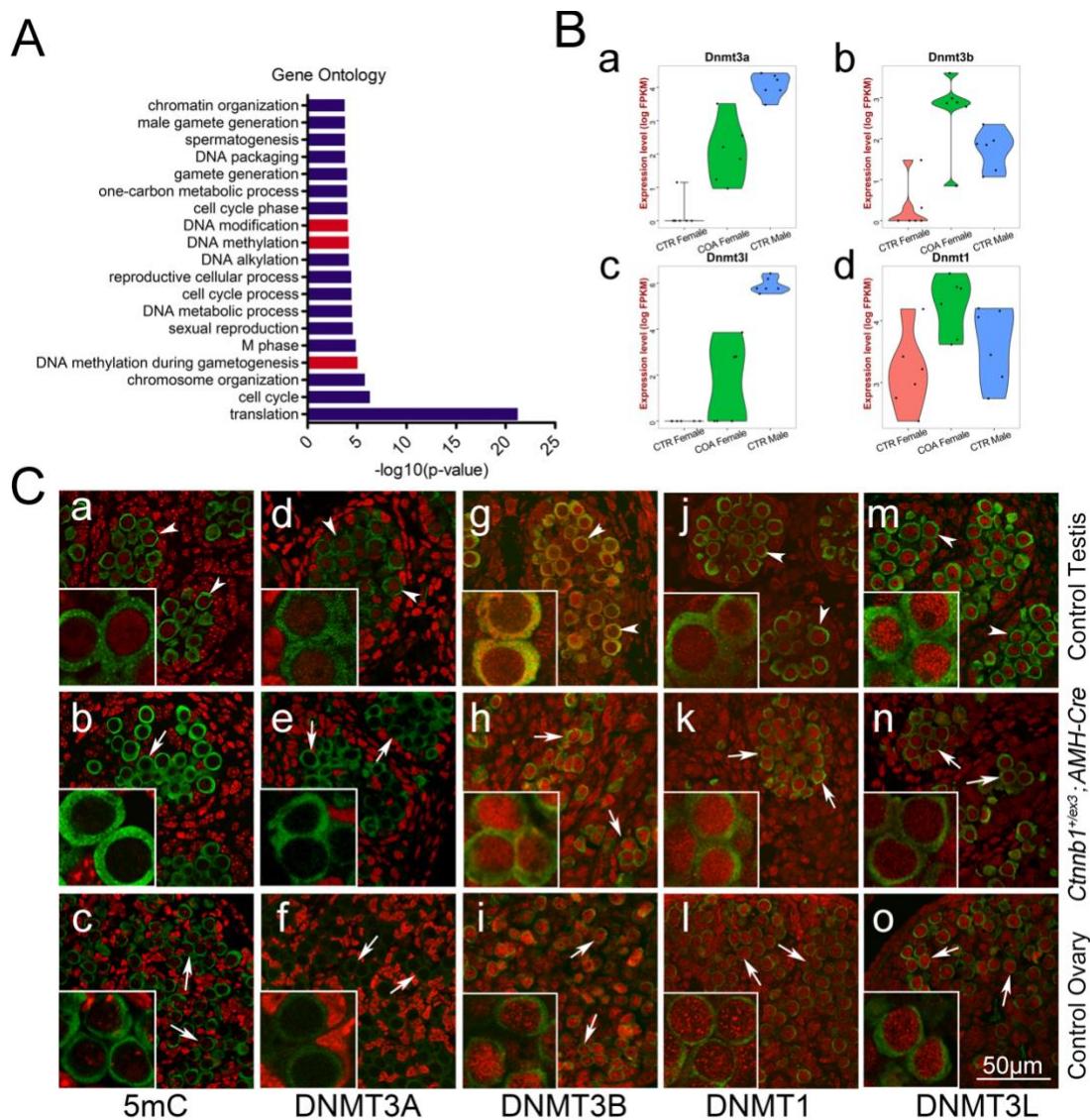


Figure S4. Meiosis in embryonic male germ cells was induced by female somatic cells.

A. The schematic diagram of re-aggregation and culture of germ cells (GCs) and somatic cells (SCs) from E13.5. **B.** Thread-like SYCP3 signal was observed in female germ cells aggregated with female somatic cells (Ba). Thread-like SYCP3 was noted in the male germ cells (GFP+, green) aggregated with female somatic cells (Bb). Very weak SYCP3 signal was detected in the aggregation of male germ cells with male somatic cells (Bc).

Figure S5. The mRNA level of *Dazl* was induced by BMP signaling. A. The expression of *Dazl* was significantly increased in KAR treated testis. **B.** The expression of *Dazl* was significantly increased in cultured *DTA_{+/flox} AMH-Cre* testis with BMP2 and BMP4 treatment. **C.** The expression of *Dazl* in control ovary was repressed by LDN-193189. **D.** The expression of *Dazl* in COA testis was inhibited by LDN-193189 and XAV-939 treatment. Data are presented as the mean \pm SD. The student's unpaired t-test and Two-way ANOVA was used to test significance (*P< 0.05; **P< 0.01; ns: no significance). CTR, control; COA, *Ctnnb1_{+/flox(ex3)} AMH-Cre*.

Figure S6. The status of DNA methylation was changed in germ cells of *Ctnnb1^{+/+};AMH-Cre* mice. A. Gene ontology analysis of DEGs at E15.5. B. Expression level of DNA methyltransferase (*Dnmt3a*, *Dnmt3b*, *Dnmt3l*, *Dnmt1*) at E15.5 in control male, COA male and control female germ cells. C. Immunostaining of 5mC and DNA methyltransferase. CTR, control; COA, *Ctnnb1^{+/+};AMH-Cre*. Related to Figure 6.

Table. S1. Primers for quantitative RT-PCR

Gene Symbol	Forward Primer 5' to 3'	Reverse Primer 5' to 3'
<i>Hprt</i>	TCCTCCTCAGACCGCTTT	CCTGGTTCATCATCGCTAATC
<i>Gapdh</i>	GTCATTGAGAGCAATGCCAG	GTGTTGCTACCCCCAATGTG
<i>Oct4</i>	AGAGGATCACCTGGGTAC	CGAAGCGACAGATGGTGGTC
<i>Sox2</i>	GC GGAGTGGAAACTTTGTCC	CGGGAAAGCGTGTACTTATCCTT
<i>Dnmt3l</i>	CTGTGGAACTCTCCAGGTGTAC	GTGCAGTAACTCTGGTGTCCATC
<i>Figla</i>	CAGTGGCAGACCCTCTGAC	TCTCGGGTACTGTGCTCTGAT
<i>Lhx8</i>	ATCCACTCGACTGACTGGTC	CTAATCCCATTACCGTTCTCCAC
<i>Foxo3</i>	GGGGAACCTGTCCATGCC	TCATTCTGAACGCGCATGAAG
<i>Sohlh2</i>	GAGCCGCTGACCTTGGAAAA	GAAAAACGCCCTCCGAGTTCA
<i>Vasa</i>	AGGGGATGAAAGAACTATGGTC	AGCAACAAGAACTGGGCACT
<i>Dazl</i>	TGACGTGGATGTGCAGAAGAT	AGGAGGATATGCCTAACATACT
<i>Stra8</i>	CTCCTCCTCCACTCTGTTGC	GCGGCAGAGACAATAGGAAG
<i>Dmc1</i>	CCCTCTGTGTGACAGCTAAC	GGTCAGCAATGTCCCGAAG
<i>Rec8</i>	TGATATGGAGGAGGCTGACC	GCAGCCTCTAAAGGTGTCG
<i>SyCP3</i>	GGGGCCGGACTGTATTTACT	AGGCTGATCAACCAAAGGTG
<i>SyCP1</i>	AAGTTGATTCTAAACAACTCCTCA	ACTCTTTAGTTGGTGTCTTCACTGT
<i>Spo11</i>	ATTCTGTCGGCCTCGGATG	TTGCATAAGTGTGCGCTGTATT

Table. S2. Somatic cells sequencing data and analysis related to Figure 2.**Table. S3. Single germ cell sequencing data and analysis related to Figure 3.**