

1 GOT1 Inhibition Primes Pancreatic Cancer for Ferroptosis through the 2 Autophagic Release of Labile Iron

3
4 Daniel M. Kremer^{1,2}, Barbara S. Nelson³, Lin Lin¹, Emily L. Yarosz⁴, Christopher J.
5 Halbrook¹, Samuel A. Kerk³, Peter Sajjakulnukit³, Amy Myers¹, Galloway Thurston¹,
6 Sean W. Hou¹, Eileen S. Carpenter⁵, Anthony C. Andren¹, Zeribe C. Nwosu¹, Nicholas
7 Cusmano¹, Stephanie Wisner¹, Johanna Ramos¹, Tina Gao¹, Stephen A. Sastra^{6,7},
8 Carmine F. Palermo^{6,7}, Michael A. Badgley^{6,7,8}, Li Zhang¹, John M. Asara^{9,10}, Marina
9 Pasca di Magliano^{11,12,13}, Yatrik M. Shah^{1,5,11}, Howard C. Crawford^{1,11}, Kenneth P.
10 Olive^{6,7}, Costas A. Lyssiotis^{1,5,11‡}

11
12 1 Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI 48109, USA

13 2 Graduate Program in Chemical Biology, University of Michigan, Ann Arbor, MI 48109, USA

14 3 Graduate Program in Cancer Biology, University of Michigan, Ann Arbor, MI 48109, USA

15 4 Immunology Graduate Program, University of Michigan, Ann Arbor, MI 48109, USA

16 5 Department of Internal Medicine, Division of Gastroenterology and Hepatology, University of Michigan, Ann Arbor,
17 MI 48109, USA

18 6 Division of Digestive and Liver Diseases, Department of Medicine, Columbia University Medical Center, New York,
19 NY 10032, USA

20 7 Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, NY 10032, USA

21 8 Department of Pathology, Columbia University Medical Center, New York, NY 10032, USA

22 9 Division of Signal Transduction and Mass Spectrometry Core, Beth Israel Deaconess Medical Center, Boston, MA,
23 USA 02115

24 10 Department of Medicine, Harvard Medical School, Boston, MA, USA 02115

25 11 Rogel Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA

26 12 Department of Surgery, University of Michigan, Ann Arbor, MI 48109, USA

27 13 Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, Michigan 48109, USA.

28 ‡ Correspondence: clyssiot@med.umich.edu

30 Highlights

- 31 • PDA exhibit varying dependence on GOT1 for *in vitro* and *in vivo* growth.
- 32 • Exogenous cystine, glutathione synthesis, and lipid antioxidant fidelity are
33 essential under GOT1 suppression.
- 34 • GOT1 inhibition sensitizes pancreatic cancer cell lines to ferroptosis.
- 35 • GOT1 inhibition represses anabolic metabolism and promotes the release of iron
36 through autophagy.

37 Summary

38 Pancreatic ductal adenocarcinoma (PDA) is one of the deadliest solid malignancies,
39 with a 5-year survival rate at ten percent. PDA have unique metabolic adaptations in
40 response to cell-intrinsic and environmental stressors, and identifying new strategies to
41 target these adaptions is an area of active research. We previously described a
42 dependency on a cytosolic aspartate aminotransaminase (GOT1)-dependent pathway
43 for NADPH generation. Here, we sought to identify metabolic dependencies induced by
44 GOT1 inhibition that could be exploited to selectively kill PDA. Using pharmacological
45 methods, we identified cysteine, glutathione, and lipid antioxidant function as metabolic
46 vulnerabilities following GOT1 withdrawal. Targeting any of these pathways was
47 synthetic lethal in GOT1 knockdown cells and triggered ferroptosis, an oxidative, non-
48 apoptotic, iron-dependent form of cell death. Mechanistically, GOT1 inhibition promoted
49 the activation of autophagy in response to metabolic stress. This enhanced the
50 availability of labile iron through ferritinophagy, the autolysosome-mediated degradation
51

52 of ferritin. In sum, our study identifies a novel biochemical connection between GOT1,
53 iron regulation, and ferroptosis, and suggests the rewired malate-aspartate shuttle plays
54 a role in protecting PDA from severe oxidative challenge.

55
56 **Keywords:** Pancreatic ductal adenocarcinoma, GOT1, cysteine, glutathione, GPX4,
57 NADPH, redox, reactive oxygen species, ferroptosis, labile iron, autophagy,
58 ferritinophagy, metabolic dependencies

59
60 **Introduction**

61 Pancreatic ductal adenocarcinoma (PDA) is a notoriously lethal disease. This stems
62 from late-stage diagnosis and the lack of effective therapies¹. A defining feature of PDA
63 is the extensive fibroinflammatory reaction that not only regulates cancer initiation,
64 progression, and maintenance, but also promotes its therapeutic resilience^{2,3,4}. Vascular
65 collapse, impaired perfusion, and hypoxia accompany this desmoplastic reaction to
66 produce a nutrient-deprived and harsh tumor microenvironment^{3,5}. PDA cells reprogram
67 their nutrient acquisition and metabolism to support survival and growth under these
68 conditions^{6,7}.

69
70 Our previous work demonstrated that PDA rewire the malate-aspartate shuttle to
71 generate reduced nicotinamide adenine dinucleotide phosphate (NADPH), a major
72 currency for biosynthesis and redox balance (**Figure 1A**)⁸. The malate-aspartate shuttle
73 canonically functions to transfer reducing equivalents in the form of NADH from the
74 cytosol into the mitochondria to facilitate oxidative phosphorylation (OxPHOS). In PDA,
75 we found the mitochondrial aspartate aminotransaminase (GOT2) is the primary
76 anaplerotic source for alpha-ketoglutarate (α KG) and generates aspartate. Aspartate is
77 then transferred to the cytosol and transaminated to produce oxaloacetate (OAA) by the
78 cytosolic aspartate aminotransaminase (GOT1). OAA is reduced to malate by cytosolic
79 Malate Dehydrogenase (MDH1) and is then oxidized by Malic Enzyme 1 (ME1) to
80 generate NADPH, which is utilized to support redox balance and proliferation in PDA⁸.
81 Furthermore, we demonstrated that this non-canonical pathway was orchestrated by
82 mutant KRAS, the signature oncogenic driver of PDA. Specifically, mutant Kras led to
83 the transcriptional upregulation of GOT1 and the concurrent repression of GLUD1,
84 which drives an alternative metabolic pathway. Indeed, a higher expression of GOT1 to
85 GLUD1 is associated with worse patient outcome⁹. Thus, in an effort to target this
86 rewired metabolic pathway, we have placed our focus on GOT1. And, notably, we and
87 others recently identified drug scaffolds that may serve as leads in the development of a
88 clinical grade GOT1 inhibitor^{10,11,12,13}.

89
90 Herein, we present a detailed analysis of GOT1 dependence across a large panel of
91 PDA cell lines and specimens. We demonstrate that GOT1 sensitivity varies among the
92 cultures in this panel, is dispensable in non-transformed human lines, and that GOT1
93 inhibition stunted growth in tumor xenograft models. In GOT1 dependent contexts,
94 GOT1 inhibition blocked progression through the cell cycle, leading to cytostasis. Thus,
95 we then sought to characterize metabolic dependencies following GOT1 withdrawal that
96 could be exploited to selectively kill PDA^{14,15}. Examination of a targeted library of
97 metabolic inhibitors in GOT1 knockdown cells led to the discovery that that exogenous

98 cystine was essential for viability following chronic GOT1 suppression. Cystine is used
99 for reduced glutathione (GSH) biosynthesis, which mediates protection against lipid
100 oxidation. GOT1 knockdown in combination with inhibitors of glutathione synthesis or
101 lipid antioxidant machinery led to cell death. We characterized this as ferroptosis: an
102 oxidative, non-apoptotic, and iron-dependent form of cell death. We then determined
103 that GOT1 withdrawal promoted a catabolic cell state that resulted in decreased
104 OxPHOS and the activation of autophagy and ferritinophagy¹⁶. Ferritinophagy primed
105 GOT1 knockdown cells for ferroptosis by increasing labile iron pools. Together with the
106 modulation of NADPH and GSH levels, our study demonstrates that GOT1 inhibition
107 promotes ferroptosis sensitivity by promoting labile iron and illustrates how the rewired
108 malate-aspartate shuttle participates in the maintenance of both antioxidant and
109 energetic balance.

110

111 Results


112 GOT1 dependent PDAs require GOT1 for cell cycle progression and proliferation

113 To examine GOT1 dependence in a large panel of PDA cell lines and primary
114 specimens with temporal control, we developed doxycycline (dox)-inducible short
115 hairpin (sh)RNA reagents (iDox-sh) that target the coding and 3'UTR regions of GOT1
116 (sh1 and sh3), or scramble (shNT). shRNA activity was examined phenotypically by
117 assessing colony formation and protein levels following dox treatment (**Figures 1B,C**
118 and **S1A,B**). We also measured aspartate levels as a biochemical readout for GOT1
119 inhibition (**Figure S1C**). We then used these iDox-shRNA constructs to assess GOT1
120 sensitivity across a large panel of PDA lines and primary specimens (indicated with the
121 UM# designation)¹⁷ (**Figure 1D and S1D**). GOT1 knockdown significantly impaired
122 colony formation in 12 of 18 cell lines in the panel (**Figures 1D and S1A,B**).
123 Indeed, in PL45, Capan-1, and Pa-Tu-8902 colony formation was severely diminished
124 following GOT1 knockdown with both hairpins, and this was independent of dox-effects
125 (**Figure S1D**). Further, the response to GOT1 knockdown did not correlate with
126 common mutations associated with PDA (**Figure S1E**) or expression of malate-
127 aspartate shuttle enzymes (**Figure S1F**). To test the specificity of GOT1 against PDA,
128 we extended our cell panel to non-transformed human lines. We found human
129 pancreatic stellate cells (hPSC), human lung fibroblasts (IMR-90), and human non-
130 transformed pancreatic exocrine cells (hPNE) were minimally affected upon GOT1
131 knockdown, in agreement with previous results, suggesting that this pathway may be
132 dispensable in non-transformed cells (**Figures 1E and S1G**)^{8,12}. Together, these data
133 demonstrate many PDA cell lines require GOT1 for growth while non-transformed cell
134 lines do not, highlighting a potential therapeutic window.

135

136 To determine the relevance of GOT1 *in vivo*, we examined the effect of GOT1 inhibition
137 on established PDA tumors. PDA cells were implanted subcutaneously into the flanks or
138 orthotopically into the pancreas of immunocompromised mice and allowed to establish
139 for 7 days prior to GOT1 inhibition. GOT1 sensitive cell lines exhibited profound growth
140 inhibition upon induction of GOT1 knockdown with dox (**Figures 1F,G**), results that
141 were consistent with previous studies that employed constitutive shGOT1⁸. Parallel
142 studies with shNT tumors indicated that the effect was independent of dox exposure

Figure 1

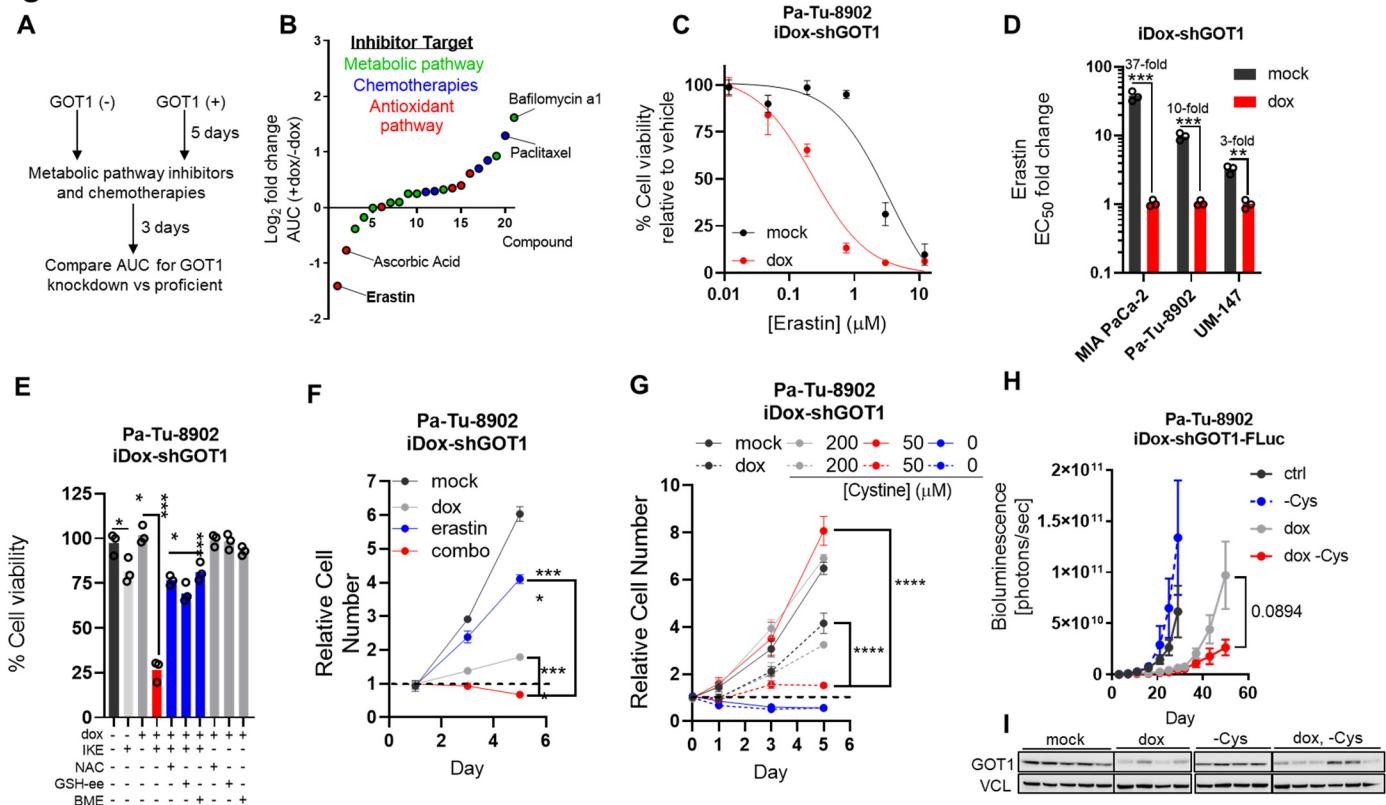
Figure 1. GOT1 dependence is a feature of some PDA cell lines, matched by G1 cell cycle arrest and inhibition of proliferation. **A)** Model of the rewired malate-aspartate shuttle in PDA. **B-C)** Representative colony formation assay (**B**) and immunoblot analysis (**C**) of Pa-Tu-8902 cells stably expressing iDox-shRNA constructs following 10 days GOT1 knockdown. shRNAs target the coding region of GOT1 (sh1), or the 3'UTR region of GOT1 (sh3). Parental (parent) and scramble (shNT) conditions are also displayed (n=3). Vinculin (VCL) was used as a loading control. **D)** Relative colony number across a panel of PDA cell lines in response to GOT1 knockdown by sh1 (black/blue) or sh 3 (grey/red). Assays were run 10-15 days (n=3), n.s. denotes non-significant. **E)** Relative cell number of immortalized, non-transformed, cell lines after 1, 3, or 5 days, normalized to day 1 (n=3). **F)** Growth of subcutaneous xenograft tumors from 3 PDA cell lines stably expressing iDox-shGOT1 or shNT. Dox or mock conditions were administered 7 days following implantation. Treatment with dox (red) or vehicle (black) (BxPC-3 n= 8, MIA PaCa-2 n=6, Pa-Tu-8902 n=6 per arm). **G)** Orthotopic xenograft tumor growth from Pa-Tu-8902 iDox-shGOT1 stable cell lines co-expressing firefly luciferase (FLuc) n=5 and n=6 mice were used for vehicle and dox cohorts respectively. **H-I)** Immunoblots for GOT1 (**H**) and relative aspartate levels (**I**) measured by liquid-chromatography tandem mass spectrometry, normalized to -dox (n=5). **J)** Histology of BxPC-3 iDox-shGOT1 subcutaneous xenograft tumors from vehicle- or dox-treated mice. H&E, Hematoxylin and Eosin, CC3, cleaved caspase 3. Scale bars represent 50 μ m. **K)** Cell cycle distribution of Pa-Tu-8902 iDox-GOT1 sh1 upon 1,3, or 5 days of dox treatment. Significance values are in relation to iDox-shGOT1 mock (n=3). **L)** Proliferation kinetics following GOT1 knockdown. Cells were untreated (black), dox was added to untreated cells (blue), pre-treated with dox and chronically exposed to dox (grey), or released from dox pretreated cells (red). Relative cell number at day 5 normalized to day 1 is displayed, (n=3). Error bars represent mean \pm SD. Two-tailed unpaired T-test or 1-way ANOVA: Non-significant P > 0.05 (n.s. or # as noted), P \leq 0.05 (*), \leq 0.01 (**), \leq 0.001 (**), \leq 0.0001 (****). See also **Figure S1**.

144 (**Figure S1H**). GOT1 knockdown was demonstrated by immunoblot analysis on
145 homogenized tumor tissue (**Figures 1H and S1I**) and biochemically via the induction of
146 aspartate (**Figure 1I**). Contrasting our *in vitro* studies in which GOT1 was knocked down
147 for five days (**Figure S1C**), the changes in aspartate abundance described in this
148 experiment reflect the whole tumor metabolome after thirty days of dox treatment. While
149 immunostaining for GOT1 indicate potent knockdown in the PDA cell compartment
150 (**Figures 1J**), it is unknown how long-term suppression of GOT1 would influence non-
151 cell autonomous metabolism in this xenograft study. Tumor growth suppression was
152 confirmed at the molecular level by a decrease in Ki-67, a marker for proliferation.
153 GOT1 knockdown tumors exhibited minimal staining for cleaved caspase 3 (CC3), a
154 marker for apoptosis. Thus, these proliferative defects were independent of apoptosis,
155 indicating GOT1 inhibits tumor proliferation, rather than, inducing cell death (**Figure 1J**).
156

157 To test the hypothesis that GOT1 inhibition is cytostatic, we examined the effect of
158 GOT1 knockdown on cell cycle progression. Knockdown led to a higher distribution of
159 cells in G1 phase versus the S and G2 phases, indicating that the majority of cells are in
160 G1 cell cycle arrest following GOT1 inhibition (**Figures 1K and S1J**). Moreover, the
161 effect of GOT1 knockdown was reversible, as cells regained proliferative capacity upon
162 removal of genetic inhibition (**Figures 1L and S1K**). Overall, PDA display a spectrum of
163 sensitivity to GOT1 where GOT1 inhibition is cytostatic.
164

165 **Limiting exogenous cystine potentiates GOT1 inhibition and elicits a cytotoxic
166 effect**

167 Because GOT1 inhibition is cytostatic, we sought to identify metabolic dependencies
168 induced by knockdown that could be targeted to selectively kill PDA^{14,15}. Our previous


169 work indicated that inhibiting glutamine metabolism enhances sensitivity to reactive
170 oxygen species (ROS)^{8,9,18}. Thus, we assessed the sensitivity of PDA cells to a panel of
171 chemotherapeutic agents and inhibitors of antioxidant pathways after five days of GOT1
172 knockdown and three days of drug treatment (**Figures 2A,B**).

173 GOT1 inhibition was protective when combined with some inhibitors demonstrated by
174 increased area under the curve values (AUC), a measure of drug sensitivity (**Figures**
175 **2B and S2A**). Three of the five top desensitizing agents were chemotherapies, in
176 agreement with previous observations¹⁸. Since these chemotherapies work through
177 disrupting DNA replication of rapidly dividing cells, we speculate that the decreased
178 sensitivity may occur due to the GOT1 growth-suppressive phenotype (**Figures 1J,K**).
179 By contrast, GOT1 knockdown sensitized PDA cells to erastin (**Figure 2B**), and the
180 effect was stronger after 24 hours of treatment (**Figure 2C**). Erastin is an inhibitor of
181 xCT^{19,20}, a component of the system x_c^- cystine/glutamate antiporter which transports
182 cystine into cells in exchange for glutamate. Cystine, the oxidized dimer of cysteine, is
183 reduced to cysteine upon entering the cell where it can contribute to the synthesis of
184 GSH and proteins, among numerous other biochemical fates.

185
186 We then tested the combination of GOT1 knockdown and erastin in a small panel of
187 additional PDA lines (**Figure 2D**) and observed that GOT1 inhibition increased
188 sensitivity to Erastin by greater than 10-fold in some cases (**Figure 2C and S2B**). GOT1
189 knockdown also sensitized PDA to imidazole ketone erastin (IKE), an erastin analog
190 with increased potency²¹ (**Figure S2D**). Furthermore, treating cells with a nano-molar
191 dose of erastin or IKE combined with GOT1 knockdown was cytotoxic, while single
192 treatment arms were cytostatic (**Figures 2E and S2E**), and these erastin doses were
193 sufficient to reduce GSH levels after 6 hours (**Figure S2F**). Because erastin and IKE
194 disrupt the import of cystine into the cell, we sought to inhibit cytotoxicity by co-treating
195 with exogenous cysteine sources or GSH. Indeed, supplementation with N-acetyl
196 cysteine (NAC), β -mercaptoethanol (BME), or cell permeable GSH ethyl-ester (GSH-
197 EE) prevented cell death (**Figures 2F and S2G**), consistent with the concept that
198 cystine import through system x_c^- is essential to maintain GSH levels²².

199
200 Previous studies have found cystine levels to be limiting in the PDA microenvironment.
201 Cysteine was shown to be the second most depleted amino acid in pancreatic tumors
202 relative to adjacent healthy pancreatic tissue²³ and the levels of cystine in PDA tumor
203 interstitial fluid ($\sim 50\mu M$) which is 2-fold lower than in plasma taken from the same
204 tumor-bearing mice²⁴. Based on these observations, we sought to test the effect of
205 GOT1 knockdown under physiological concentrations of cystine. Culturing cells in
206 tumor-relevant cystine concentrations was growth inhibitory, while cystine deprivation
207 was cytotoxic (**Figures 2G and S2H**). Moreover, cell viability decreased in a dose-
208 dependent manner after, and the response was potentiated by GOT1 knockdown at
209 lower cystine concentrations (**Figure S2I**), in agreement with our pharmacological
210 studies. These results suggest PDA require exogenous cystine for growth and cell
211 viability following GOT1 inhibition.

Figure 2

Figure 2. Limiting exogenous cystine causes a cytotoxic response to GOT1 inhibition. **A)** Screening strategy to identify metabolic dependencies induced by GOT1 knockdown. Pa-Tu-8902 iDox-shGOT1 cells were treated with vehicle or dox for 5 days followed by addition of the compounds for 72 h.

B) Log₂ fold change in area under the curve (AUC) from cell viability dose response curves for each compound in the library. AUC from GOT1 knockdown conditions (dox) are relative to (mock) conditions. Sensitivity ranking (Rank) spans 1-21, signifying the most sensitive (1) to least sensitive (21) compounds in response to knockdown (n=3).

C) Dose-response curves for Pa-Tu-8902 iDox-shGOT1 cells following 5 days of GOT1 knockdown and erastin for 24 hours (n=3).

D) EC₅₀ values relative to +dox for 3 iDox-shGOT1 PDA cell lines following 24 hours of erastin treatment (n=3).

E) Relative Pa-Tu-8902 iDox-shGOT1 cell numbers following 5 days of GOT1 knockdown with the indicated media conditions for 24 hours. 750nM of Erastin was administered on day 1 and conditions are normalized to day 1 (n=3).

F) Cell viability of Pa-Tu-8902 iDox-shGOT1 after 5 days of GOT1 knockdown then 24 hours of 750nM IKE combined with the indicated conditions. 250μM of N-acetyl-cysteine (NAC), 250μM GSH-ethyl ester (GSH-EE), and 50μM of beta-mercaptoethanol (BME) were used (n=3).

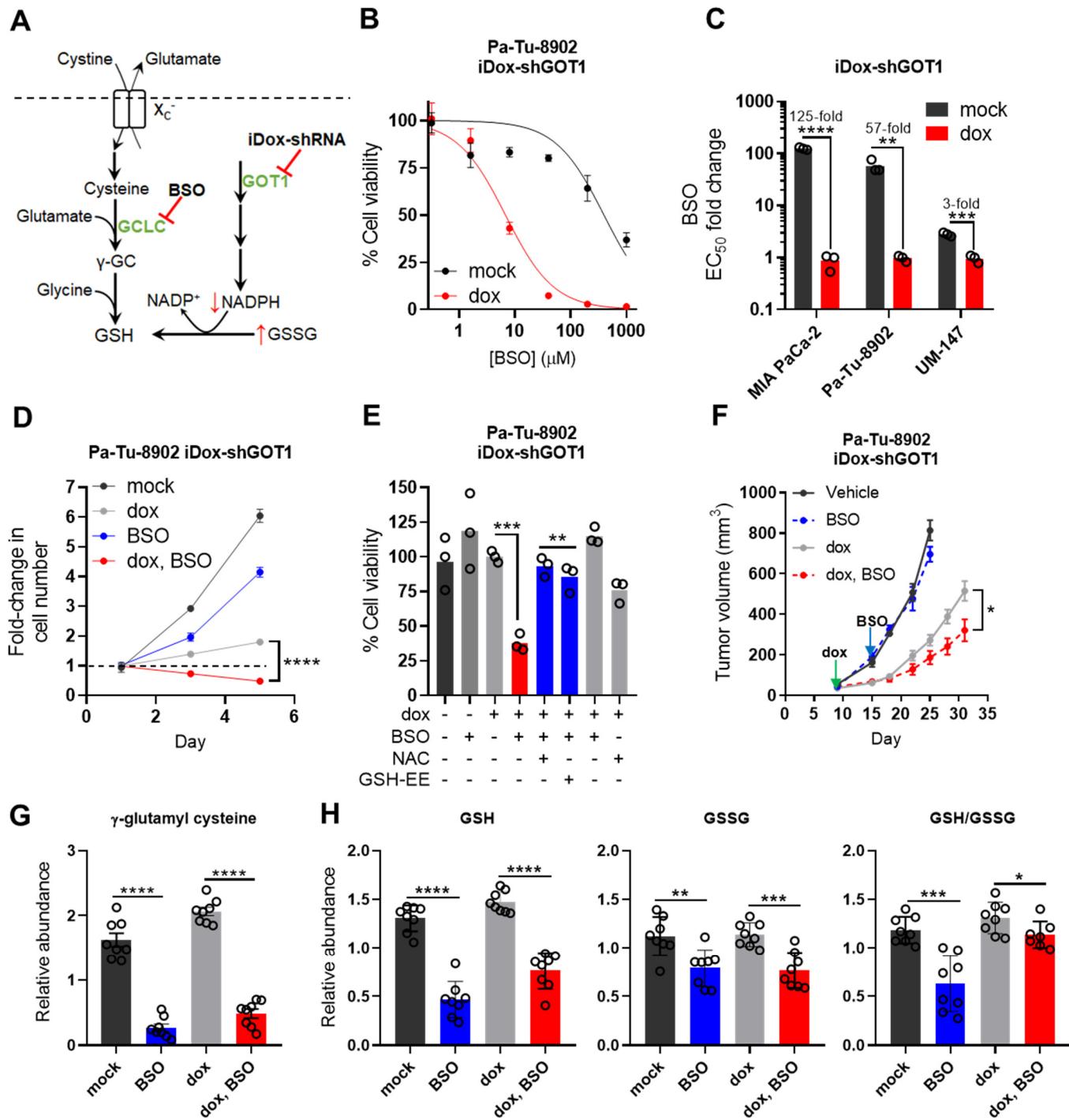
G) Relative Pa-Tu-8902 iDox-shGOT1 cell numbers following 5 days of GOT1 knockdown and the indicated media conditions (n=3). 200μM of cystine is a supraphysiological concentration, while 50μM is tumor relevant.

H-I) Orthotopic xenograft tumor growth from Pa-Tu-8902 iDox-shGOT1 stable cell lines co-expressing firefly luciferase (FLuc) treated with vehicle (black, n=6), dox containing food (red, n=6), cysteine-free diet (grey, n=5), or dox containing, cysteine-free food (blue, n=6). GOT1 immunoblot (I) was taken from endpoint tumors. Error bars represent mean ± SD in (B-G) or mean ± SEM in (H). Two-tailed unpaired T-test or 1-way ANOVA: Non-significant P > 0.05 (n.s. or # as noted), P ≤ 0.05 (*), ≤ 0.01 (**), ≤ 0.001 (***), ≤ 0.0001 (****). See also **Figure S2**.

213 To test this concept *in vivo*, we engrafted Pa-Tu-8902 iDox-shGOT1 cells engineered to
214 express firefly luciferase (FLuc) into the pancreas, as in **Figure 1G**. Tumors were

215 allowed to establish for 7 days, and treatment arms were initiated by providing dox-
216 containing food formulated with or without the non-essential amino acid cysteine. While
217 tumors in the animals fed a cysteine-free diet grew at comparable rates to tumors in
218 animals fed a control diet, dox treated tumors grew substantially slower (**Figures 2H,I**
219 **and S2J**). Mice fed with a cysteine-free diet had lower cysteine in tumors compared to
220 the control diet (**Figure S2K**), indicating dietary inputs can influence tumor metabolism.
221 By contrast, cysteine was not significantly altered in tumors comparing dox-single and
222 double treatment arms (**Figure S2J**). The difference in tumor growth or tumor burden
223 for animals on the cysteine-free diet were markedly smaller at end point, though this did
224 not reach statistical significance (**Figures 2H,I**).
225

226 Overall, these data indicate that PDA cultures require exogenous cystine following
227 GOT1 inhibition. We also demonstrate that this mechanism is operative *in vivo*, through
228 PDA tumors may acquire cysteine through alternative mechanisms when challenged by
229 chronic cysteine deprivation.
230


231 **Inhibiting GSH biosynthesis potentiates the growth inhibitory effects of GOT1 232 knockdown**

233 Our data indicate that PDA are heavily reliant on exogenous cystine following GOT1
234 inhibition. Previous work from our group has demonstrated that one of the downstream
235 effects of GOT1 is reducing oxidized glutathione (GSSG)^{8,18}. Thus, we hypothesized
236 that cysteine acquisition was upregulated for GSH biosynthesis to compensate for the
237 loss of NADPH-mediated GSH salvage through the GOT1 pathway (**Figure 3A**). To test
238 this hypothesis, we inhibited *de novo* GSH biosynthesis in combination with GOT1
239 knockdown. The rate-limiting step in GSH synthesis is catalyzed by glutamate-cysteine
240 ligase (GCL), which forms gamma glutamyl-cysteine through the condensation of
241 glutamate and cysteine²⁵.
242

243 GCL is a holoenzyme which consists of a catalytic subunit (GCLC) and a modifier
244 subunit (GCLM), and the GCLC subunit is targeted by the inhibitor buthionine
245 sulfoximine (BSO), resulting in decreased GSH production²⁶ (**Figure 3A**). We observed
246 that GOT1 knockdown enhanced sensitivity to BSO after 24 hours of drug treatment,
247 contrasting an absent single agent response (**Figure S3A**). Exposure to BSO for 72
248 hours further augmented the sensitizing effect (**Figures 3B and S3B,C**). In some cases,
249 the change in EC₅₀ was nearly 100-fold (**Figures 3C and S3D**), indicating potent
250 sensitization.
251

252 Recent studies have suggested that a majority of cancer cell lines survive upon 72
253 hours of BSO treatment despite potent inhibition of GSH levels at this time point.
254 Moreover, these studies have demonstrated that chronic BSO treatment, up to 9 days,
255 is required to induce cell death or stasis²⁷. In our models, 6 hours of BSO treatment was
256 sufficient to diminish GSH levels (**Figure S3E**), in line with previous kinetic data²⁷. By
257 contrast, co-treatment of GOT1 knockdown with BSO was cytotoxic at 72 hours, while
258 BSO alone was cytostatic (**Figures 3D and S3F**). 120 hours of treatment potentiated
259 cell death in the GOT1 knockdown condition, whereas cells regained proliferative

Figure 3

260 capacity under the BSO single treatment condition (**Figure 3D and S3F**). Cell death
 261 could be prevented by supplementing exogenous GSH-EE or NAC (**Figures 3E and**
 262 **S3G**), suggesting that cell death is due to perturbing GSH levels and redox balance.
 263

Figure 3. Inhibiting GSH biosynthesis produces a cytotoxic response upon GOT1 knockdown. A) Schematic integrating the GSH biosynthesis and GOT1 pathways. **B)** Percent cell viability dose-response curves upon 72 hours of BSO treatment following 5 days of GOT1 knockdown (n=3). **C)** EC₅₀ values relative to +dox for 3 iDox-shGOT1 PDA cell lines following 72 hours of BSO treatment (n=3). **D)** Fold change Pa-Tu-8902 iDox-shGOT1 cell numbers following 5 days of GOT1 knockdown and treatment with the indicated conditions. 40 μ M of BSO was administered on day 1. Cell numbers are normalized to day 1 for each condition (n=3). **E)** Percent cell viability following 72 hours of 40uM BSO or co-treatment with 0.5mM N-acetyl cysteine (NAC) or 0.5mM GSH-Ethyl Ester (GSH-EE) following 5 days of GOT1 knockdown (n=3). **F)** Subcutaneous xenograft growth of Pa-Tu-8902 iDox-shGOT1 cells treated with vehicle (black), 20 mg/kg BSO via drinking water (grey), doxycycline administered in the food (red), or the combination (blue). **G)** Relative abundance of gamma-glutamyl cysteine (γ GC) from tumors in (F) (n=8). **H)** Relative abundances of GSH, GSSG, and the GSH/GSSG ratio from tumors in (F) (n=8). Error bars represent mean \pm SD. Two-tailed unpaired T-test or 1-way ANOVA: Non-significant $P > 0.05$ (n.s. or # as noted), $P \leq 0.05$ (*), ≤ 0.01 (**), ≤ 0.001 (***), ≤ 0.0001 (****). See also **Figure S3**.

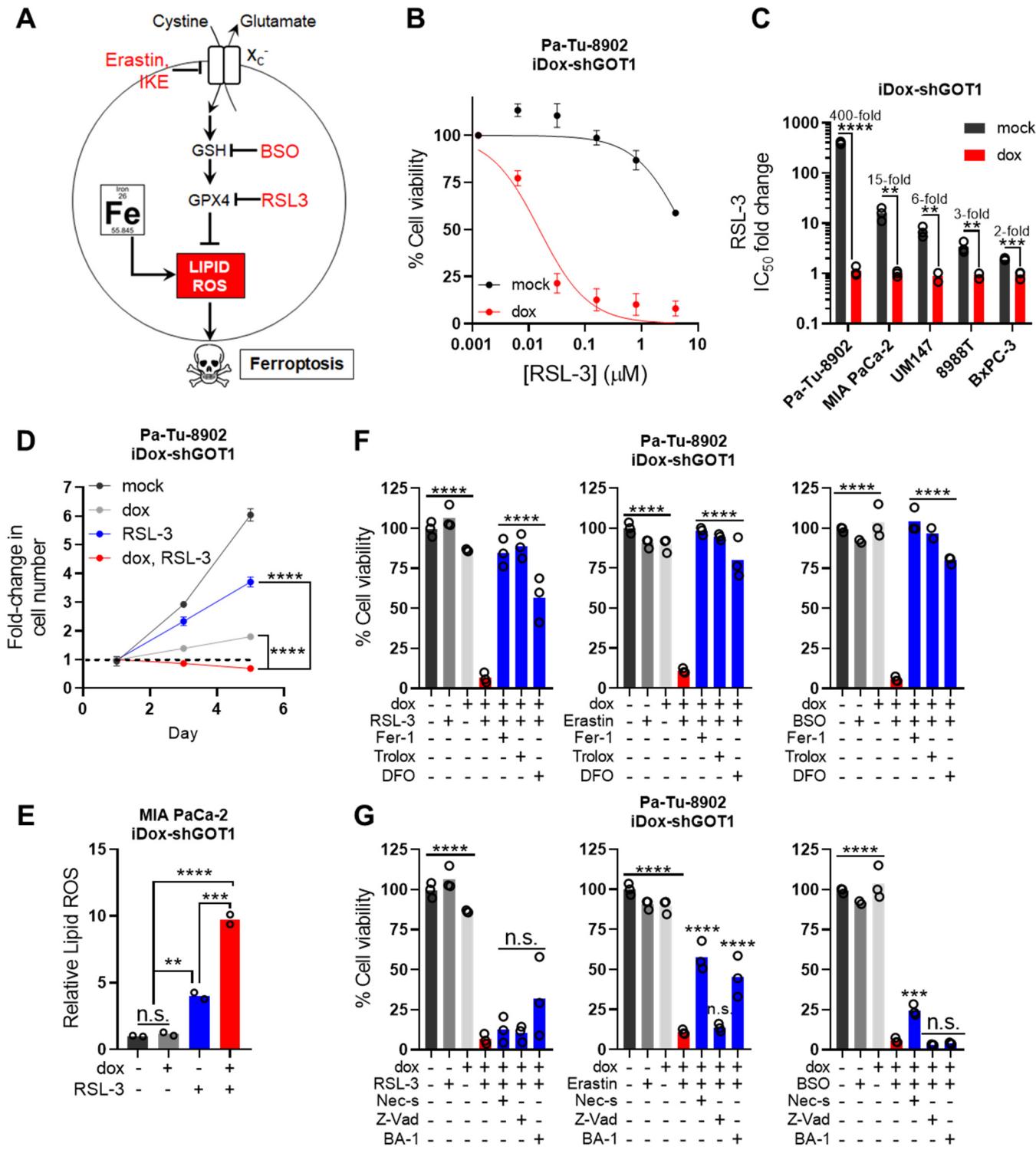
264 Targeting GSH production with BSO is tolerated in patients, and BSO has been used in
265 combination with chemotherapy in multiple phase 1 clinical trials, (NCT00005835 and
266 NCT00002730)^{28,29}. Thus, we sought to determine whether this combination shows
267 efficacy *in vivo*. We examined the effect of GOT1 and BSO in established xenograft
268 tumors. Mice were engrafted with Pa-Tu-8902 iDox-shGOT1 cells and given dox via
269 chow after 7 days. BSO was administered via drinking water on day 14. While no tumor
270 regressions were observed, the combination of GOT1 and BSO significantly slowed
271 tumor progression compared with single treatment arms (**Figure 3F**) and led to
272 complete stasis in one instance (**Figure S3H**). Knockdown was confirmed immunoblot
273 analysis (**Figure S3I**) and by LC-MS measurements of aspartate (**Figure S3J**) and on
274 whole-tumor samples.

275
276 We then measured glutathione species in tumor metabolite fractions to demonstrate the
277 pharmacodynamics of BSO. We found BSO to significantly reduce levels of gamma
278 glutamyl-cysteine, a product of GCL, which is directly inhibited by BSO²⁵ (**Figure 3G**).
279 Concomitantly, we observed a significant reduction in GSH, GSSG, and the GSH/GSSG
280 ratio upon BSO treatment (**Figure 3H**), demonstrating BSO has on-target activity in
281 established tumors, and the tumors are under redox stress. Together, our data reveal
282 that PDA require glutathione synthesis under GOT1 deficient conditions.

283
284 **GOT1 suppression sensitizes PDA to ferroptosis**
285 Previous work has demonstrated that some cell types are sensitive to erastin and BSO
286 as single agents, and that these drugs can kill cells by depleting GSH. The proximal
287 effects of GSH depletion are mediated through loss of GPX4 activity, which utilizes GSH
288 as a co-factor to detoxify lipid peroxides (**Figure 4A**). This can lead to the lethal
289 accumulation of lipid peroxides, and ferroptosis³⁰. Ferroptosis is a form of oxidative,
290 non-apoptotic, iron-dependent, cell death that is triggered by excessive lipid peroxide
291 levels (**Figure 4A**)^{20,31}. While GOT1 inhibition does not induce ferroptosis, our data
292 suggest it may predispose PDA cells to ferroptosis.

293
294 To investigate whether GOT1 can sensitize PDA to ferroptosis, we first examined the
295 combinatorial effect of GOT1 knockdown together with RSL-3, a covalent inhibitor of

296 GPX4 and direct inducer of ferroptosis³⁰. RSL-3 in combination with GOT1 knockdown
297 was substantially more potent than as a single agent (**Figure 4B**), and this effect was
298 evident across a panel of PDA lines (**Figures 4C and S4A,B**) and independent of dox
299 effects (**Figure S4C**). Pa-Tu-8902 is among the most resistant PDA cell lines to single
300 agent GPX4 inhibitors while Mia PaCa-2 was among the most sensitive (**Figures**
301 **S4A,B**), in agreement with previous reports suggesting response to GPX4 inhibitors can
302 be predicted by epithelial and mesenchymal markers³². Low concentrations of RSL-3
303 are cytostatic. When combined with GOT1 inhibition, we observed a cytotoxic response
304 (**Figures 4D and S4D**), suggesting GOT1 inhibition may impose GPX4 dependence in
305 a manner distinct from cell-state and in parallel with GPX4 function.

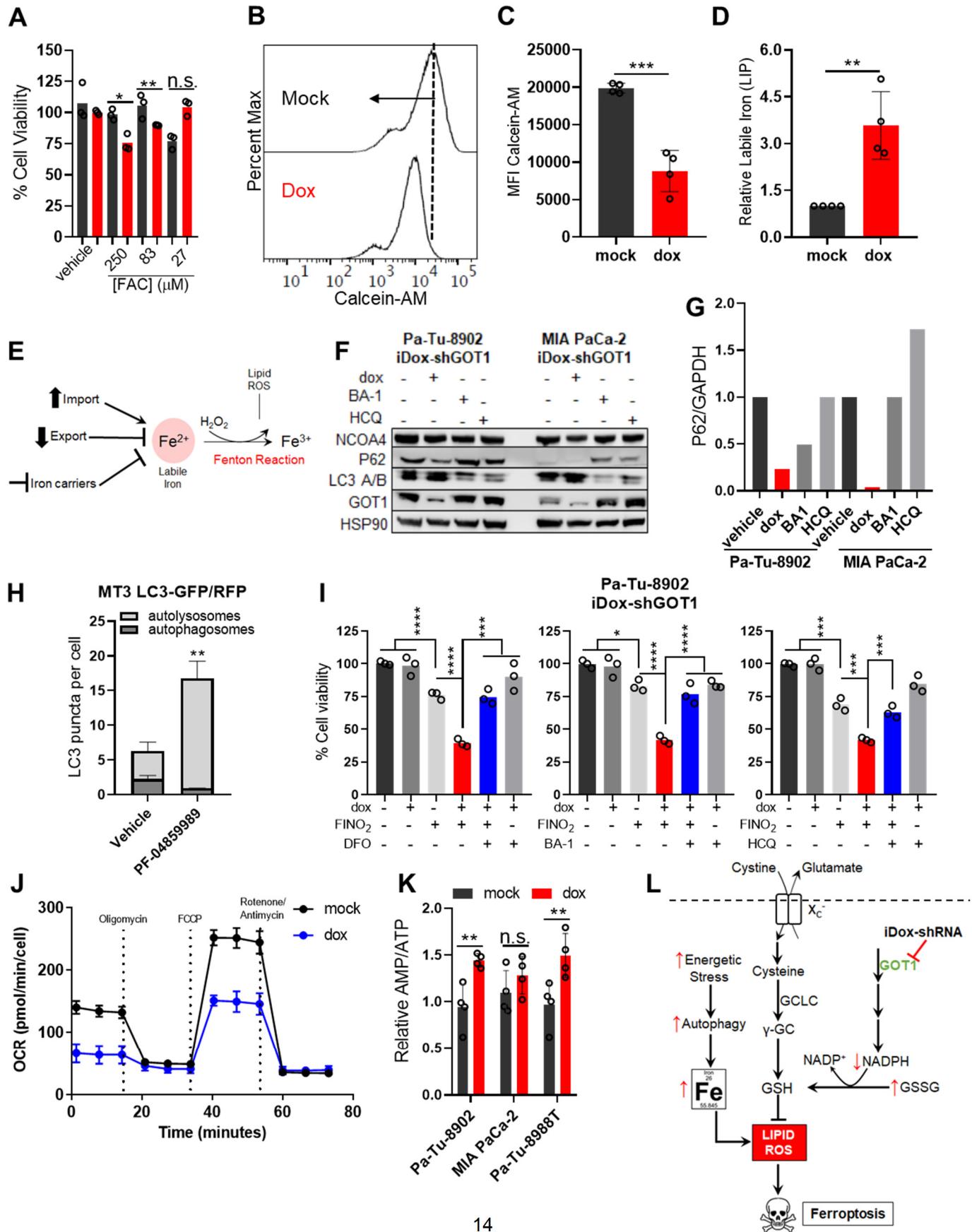

306
307 We then measured the lipid peroxide levels with the C11-BODIPY lipid peroxidation
308 sensor to investigate how inhibition of GPX4 and GOT1 affected lipid peroxidation.
309 While the effect of GOT1 inhibition on lipid ROS induction was modest GOT1 inhibition
310 combined with RSL-3 or erastin substantially upregulated lipid ROS (**Figures 4E and**
311 **S4E**) and the effect could be reversed through co-treatment with the lipophilic
312 antioxidant ferrostatin-1 (Fer-1) (**Figure S4F**). Next, we examined whether cell death
313 could be prevented by co-treatment with agents that relieve lipid peroxidation or chelate
314 iron^{20,31,33}.

315
316 Co-treatments with Fer-1 and Trolox, prevented cell death induced by GOT1
317 knockdown combined with erastin, BSO or RSL-3 (**Figures 4F and S4H,I**), while
318 treatment with the iron chelator deferoxamine (DFO), provided substantial protection
319 (**Figure 4F**). To rule out the possibility that GOT1 was sensitizing PDA to alternative
320 mechanisms of cell death, namely apoptotic, necrotic, or autophagic cell death, we co-
321 treated GOT1 knockdown with well-characterized inhibitors of these cell death
322 pathways. Indeed, the addition of a pan-caspase inhibitor (Z-VAD-FMK), RIPK-1
323 inhibitor (Necrostatin-1), or lysosomal acidification inhibitor (Bafilomycin A1) offered
324 limited protection from cell death compared with lipophilic antioxidants or iron chelation
325 (**Figures 4G and S4H,I**), suggesting ferroptosis is the predominant mechanism of cell
326 death. Next, we explored triggering ferroptosis by (–)–FINO₂ which causes iron
327 oxidation and indirectly inhibits GPX4 activity³⁴. Indeed, GOT1 suppression sensitized
328 PDA to (–)–FINO₂ in an additive manner (**Figure S4J**). Overall, our data demonstrate
329 GOT1 inhibition primes PDA for ferroptosis.

330
331 **GOT1 inhibition primes PDA for ferroptosis by promoting labile iron release in**
332 **response to metabolic stress**

333 Ferroptosis is driven by oxidation of polyunsaturated fatty acids in the cell membrane, a
334 process that is catalyzed by iron. Thus, ferroptosis is coupled to the cell's metabolic
335 state³¹. For example, cells can be primed for ferroptosis by enriching polyunsaturated
336 acid composition in cell the membrane in a HIF-2 α dependent manner, by depleting
337 essential co-factors for GPX4³⁰ or ferroptosis suppressor protein 1 (FSP1)-
338 mediated^{35,36} lipid antioxidant activity, or by increasing intracellular free iron levels³⁷.
339 Because our data indicated that GOT1 inhibition sensitizes PDA to ferroptosis in a
340 manner that is independent of epithelial or mesenchymal cell state, we sought to

Figure 4


Figure 4. GOT1 suppression sensitizes PDA to ferroptosis. **A)** Schematic of the GPX4 arm of ferroptosis. **B)** Cell viability dose-response curves upon 24 hours of RSL-3 treatment following 5 days of GOT1 knockdown (n=3). Viability is normalized to a 0.1% DMSO vehicle control. **C)** EC₅₀ values relative to +dox for 5 iDox-shGOT1 PDA cell lines following 24 hours of RSL-3 treatment (n=3). **D)** Fold change Pa-Tu-8902 iDox-shGOT1 cell numbers following 5 days of GOT1 knockdown and 24 hours treatment with the indicated conditions. 32nM of RSL-3 was administered on day 1. Cell numbers are normalized to day 1 for each condition (n=3). -/+ dox conditions (grey and light grey) contained a 0.1% DMSO vehicle control. **E)** Fold change in viable MIA PaCa-2 iDox-shGOT1 cells positive for C-11 BODIPY, a dye sensitive to lipid ROS, following 5 days of GOT1 knockdown. Cells were treated with the indicated conditions for 6 hours prior to measurements: vehicle (0.1% DMSO) -/+ dox (black and grey), 1µM RSL-3. Data are normalized to the -dox and vehicle-treated condition (n=2). **F)** Cell viability of Pa-Tu-8902 iDox-shGOT1 cultured in vehicle (0.1% DMSO) -/+ dox (black and light grey), drug (32nM RSL-3, 750nM Erastin, 40µM BSO) -/+ doxycycline (grey and red), or drug and dox (blue) in the presence of lipophilic antioxidants 1µM Fer-1 and 100µM Trolox, or an iron chelator 10µM DFO (deferoxamine). Viability was assessed after 24 hours of treatment for RSL-3 and Erastin conditions and 72 hours for BSO treatment conditions. GOT1 was knocked down for 5 days prior to treatment. Data are normalized to the -dox and vehicle treated control (n=3). Error bars represent mean ± SD. Two-tailed unpaired T-test or 1-way ANOVA: Non-significant P > 0.05 (n.s. or # as noted), p ≤ 0.05 (*), ≤ 0.01 (**), ≤ 0.001 (***), ≤0.0001 (****). See also **Figure S4**.

342 identify metabolic features that would promote ferroptosis sensitivity in addition to
343 modulating NADPH and GSH levels (**Figure S5A**).

344
345 First, we examined the possibility that GOT1 could be altering phospholipid
346 composition. HIF-2α stabilization has been recently shown to promote a ferroptosis
347 primed cell-state by selectively enriching for polyunsaturated acids in clear-cell
348 carcinomas³⁸. This vulnerability was mediated by hypoxia-inducible lipid droplet-
349 associated protein (HILPDA). In our PDA models, both HIF-2α levels and HILPDA
350 expression were unchanged in response to GOT1 knockdown (**Figures S5B-D**).
351 Next, we examined the possibility that GOT1 inhibition was priming cells to ferroptosis
352 by increasing intracellular iron levels. First, we tested whether GOT1 inhibition would
353 sensitize PDA to perturbations in intracellular iron. We began by testing whether GOT1
354 knockdown rendered PDA susceptible to increased iron loads using ferric ammonium
355 citrate (FAC) (**Figures 5A and S5E**). This is consistent with the idea that GOT1
356 inhibition promotes an oxidized state by depleting both NADPH and GSH while
357 increasing intracellular ROS^{8,18}. This oxidized metabolic state primes cells for iron-
358 mediated lipid peroxidation.

359
360 We then used Calcein-AM dye, a fluorescein-derived probe that is quenched when
361 bound to ferrous iron (Fe²⁺)³⁹, to directly assess how GOT1 knockdown was impacting
362 cellular iron levels. Calcein-AM staining of GOT1 proficient cells defined basal
363 fluorescence. Interestingly, GOT1 knockdown cells shifted fluorescence distribution to
364

Figure 5

Figure 5. GOT1 inhibition promotes autophagic labile iron release. **A**) Cell viability dose-response curves upon 72 hours of FAC treatment following 5 days of GOT1 knockdown (n=3). Viability is normalized to a 0.1% DMSO vehicle control. **B-D**) Calcein-AM histogram (**B**), mean fluorescence intensity (MFI) (**C**), and relative labile iron (**D**) in Pa-Tu-8902 iDox-shGOT1 cells after 5 days of GOT1 knockdown (n=4). **E**) Mechanisms regulating intracellular iron levels and the Fenton Reaction. **F**) Immunoblot analysis of autophagy markers NCOA4, LC-3 A/B, and P62 in Pa-Tu-8902 and MIA PaCa-2 iDox-shGOT1 cells following 5 days of knockdown. **G**) Quantification of P62 from (F) normalized to the GAPDH loading control. **H**) Quantification of autophagic flux in MT3 cells treated with vehicle or PF-04859989 (n=3) frames. **I**) Cell viability of Pa-Tu-8902 iDox-shGOT1 after 24 hour treatments with 10 μ M (–)–FINO2 as a single agent, or combined with dox, or dox plus 10 μ M deferoxamine (DFO), 8nM baflomycin A1 (BA-1), or 1.5 μ M Hydroxychloroquine (HCQ) (n=3). **J**) Mitostress assay measuring OCR in Mia PaCa-2 iDox-shGOT1 cells (n=3). **K**) AMP/ATP ratio measured by liquid-chromatography tandem mass spectrometry, normalized to - dox (n=4). **L**) GOT1 inhibition promotes the release of labile iron through autophagy in response to metabolic stress and sensitizes PDA to ferroptosis. Error bars represent mean \pm SD. Two-tailed unpaired T-test or 1-way ANOVA: Non-significant P > 0.05 (n.s. or # as noted), P \leq 0.05 (*), \leq 0.01 (**), \leq 0.001 (***), \leq 0.0001 (****). See also Figure S5.

366 lower intensity, indicating labile iron pools were increased following GOT1 knockdown
367 (**Figures 5B-D and S5F,G**). Iron levels can be altered by downregulating iron efflux,
368 upregulating iron uptake, or promoting the degradation of intracellular iron carriers—
369 ferritin or heme (**Figure 5E**). While previous studies suggest 2017), GOT1 knockdown
370 did not upregulate expression of iron transport proteins (*SLC40A1* and *TFRC*) (**Figures**
371 **S5H,I**). Moreover, expression of heme oxygenase 1 (*HMOX1*), which releases labile
372 iron through the degradation of heme was unaltered in Pa-Tu-8902. It was however
373 modestly upregulated in Mia PaCa-2 (**Figure S5I**), suggesting this mechanism may
374 contribute to increasing intracellular iron pools in some PDA specimens.
375

376 Autophagy is a catabolic process that protects cells from metabolic stress induced by
377 nutrient deprivation⁴⁰. Moreover, autophagy is heavily utilized by pancreatic
378 cancers^{6,7,41,42}. Indeed, GOT1 knockdown upregulated autophagic flux, indicated by the
379 increase in LC3-B (**Figure 5F**), consistent with previous work in osteosarcoma cells⁴³.
380 Moreover, GOT1 inhibition led to decreased p62, which is selectively degraded during
381 autophagy (**Figure 5F,G**), and promoted the enrichment of autolysosomes (**Figures 5H**
382 and **S5J**). Because GOT1 inhibition did not upregulate the expression of iron importers
383 or exporters to regulate intracellular iron (**Figures S5H,I**), we wondered if cells may be
384 liberating ferritin-bound iron. transferrin import is required for ferroptosis⁴⁴ and
385 upregulation of transferrin through the iron starvation response can promote
386 ferroptosis³⁷.
387

388 The majority of stored iron is bound by ferritin and can be released via NCOA4-
389 dependent autophagy, in a process termed ferritinophagy¹⁶. NCOA4 is autophagosome
390 cargo receptor that binds to the ferritin heavy chain sequestering ferritin for degradation
391 by the autolysosome to release labile iron¹⁶. Upregulated autophagic flux (**Figure 5F-H**)
392 was matched by NCOA4 expression (**Figure 5F**), suggesting the changes in labile iron
393 pools may occur through ferritinophagy. Ferritinophagy can indirectly promote
394 ferroptosis by releasing free iron required for lipid peroxidation. Moreover, knockdown of
395 NCOA4 inhibits ferroptosis in HT-1080 fibrosarcoma and in Panc-1, a PDA cell line,
396 potentially by reducing labile iron pools^{45,46}. Importantly, supplementing iron chelators

397 (DFO) or inhibitors of lysosomal acidification, [bafilomycin A1 (BA-1) or
398 Hydroxychloroquine (HCQ)] prevented the additive effect of GOT1 inhibition and (–)–
399 FINO₂ (**Figure 5G**). Because (–)–FINO₂ oxidizes iron and since GOT1 inhibition
400 liberates iron, these data support the model that GOT1 promotes labile iron through
401 ferritinophagy.

402
403 Autophagy is regulated by cellular energetic and nutrient status. Accordingly, we
404 hypothesized that GOT1 inhibition may induce autophagy in response to metabolic
405 stress. First, using bioenergetic profiling with the Seahorse instrument, we found that
406 GOT1 knockdown lowered basal, maximal, and spare respiratory capacities (**Figure**
407 **5J**), indicating decreased mitochondrial fitness. Further, using LC/MS we found that
408 PDA were experiencing energetic stress, marked by an upregulated AMP/ATP ratio
409 (**Figures 5K and S5K**). Iron uptake is regulated to support adaption to high oxygen
410 conditions³⁷ and to support OxPHOS by supplying metabolically active iron for iron-
411 sulfur cluster and heme biogenesis⁴⁷. Thus, PDA cells may liberate iron as support
412 mitochondrial metabolism following GOT1 loss; however, this results at the cost of
413 rendering PDA susceptible to oxidative assault. Overall, our data suggest that GOT1
414 primes ferroptosis by promoting the autophagic release of iron in response to metabolic
415 stress (**Figure 5L**).
416

417 Discussion

418 In this study we report that the non-canonical malate-aspartate shuttle function is a key
419 contributor to the metabolic fidelity of PDA cells by maintaining NADPH pools and
420 mitochondrial anaplerosis. Inhibition of GOT1 suppresses the growth of numerous PDA
421 cell lines, primary culture models, and xenograft tumors, while rendering cells
422 susceptible to ferroptosis. Ferroptosis could be triggered by inhibition cystine import,
423 glutathione synthesis, or GPX4 in synergy with GOT1 (**Figures 2-4**), which we ascribe
424 to the promotion of intracellular iron levels through the degradation of ferritin along with
425 the suppression of NADPH.
426

427 The dependency on exogenous cystine in GOT1 knockdown cells was identified using a
428 synthetic lethal chemical screening strategy (**Figures 2A-C and S2A-B**). We then
429 demonstrated that exogenous cystine through system xC[–] enables *de novo* GSH
430 biosynthesis, which is required to compensate for decreased GSH availability. When
431 GOT1 is inhibited, NADPH availability is decreased and GSH cannot be sufficiently
432 regenerated by reducing GSSG. This metabolic rewiring could be exploited by dietary
433 means, which has a major influence on the nutrient composition within pancreatic
434 tumors²⁴. This result adds to a growing body of literature indicating how the metabolic
435 environment can influence sensitivity to therapy^{48,49}.
436

437 The inhibition of *de novo* GSH biosynthesis with BSO also potentiated tumor inhibition
438 by GOT1. BSO has been used in clinical trials and is tolerated in patients^{28,29}. Previous
439 efforts with BSO have indicated that many tumor types employ compensatory
440 mechanisms to tolerate glutathione inhibition^{27,50}. Indeed, we too have observed that
441 inhibition of *de novo* glutathione biosynthesis is not sufficient to induce ferroptosis in
442 PDA. This points to GOT1 inhibition as a logical combination therapy to enhance

443 therapeutic efficacy of BSO. To this end, we and others engaged in drug discovery
444 campaigns to develop small inhibitors of GOT1^{10,11,12,13}. Among these, we found that the
445 KATII inhibitor PF-04859989 also has potent GOT1 inhibitory activity¹³, and we apply
446 that herein as a tool compound. Future studies are yet required to improve the drug like
447 properties of this molecule for *in vivo* studies.

448
449 Reduced glutathione is a co-factor for GPX4 that is used to maintain lipid antioxidant
450 function. It is also conceivable that the non-canonical malate-aspartate shuttle may
451 supply NADPH to FSP1, which reduces the co-factor CoQ10 to inhibit lipid peroxides in
452 parallel with GPX4^{35,36}. This could also account for how GOT1 inhibition sensitizes PDA
453 to ferroptosis (**Figures 3-5**). These results would be consistent with previous studies
454 demonstrating GOT1 inhibition can induce ROS^{8,12} and radiosensitize PDA both *in vitro*
455 and *in vivo*¹⁸. Future studies will be required to examine the role of FSP1 and potential
456 interactions with the GOT1 pathway in PDA.

457
458 In line with the name, ferrous iron is required for ferroptosis by contributing to the
459 oxidation of membrane PUFAs, either as free iron or as a co-factor for lipoxygenase
460 enzymes. Iron levels can be altered by upregulating iron import, downregulating iron
461 export, or degrading iron carriers. Our studies indicate that GOT1 knockdown promotes
462 the release of intracellular iron, and sensitized PDA to the deleterious effects of iron
463 oxidation and iron loading. GOT1 knockdown did not alter the expression of iron uptake
464 or efflux proteins. Rather, GOT1 knockdown leads to a catabolic state marked by
465 diminished mitochondrial activity and elevated AMP/ATP. To support metabolic
466 homeostasis, GOT1 knockdown cells activate autophagy, a process that enables cells
467 to degrade cellular components through the lysosome and recycle these to adapt to
468 nutrient stress. Concurrently, autophagy in these NCOA4 expressing PDA cells also
469 leads to the turnover of ferritin-bound iron via ferritinophagy¹⁶. This leads to higher
470 levels of free iron, and by extension, promotes susceptibility to ferroptosis. It is not
471 entirely clear why PDA cells would release free iron through ferritinophagy upon GOT1
472 knockdown. It has been proposed by that labile iron, which is metabolically active and
473 can be utilized by iron-containing enzymes, is released to support DNA synthesis,
474 epigenetic modification, and the biogenesis of iron-sulfur clusters to support
475 mitochondrial metabolism⁴⁷. Our data are consistent with a model whereby cells can
476 employ ferritinophagy to release iron for metabolic demands, but with the cost of
477 rendering cells susceptible to ferroptosis.

478
479 The role of GOT1 in ferroptosis has been the subject of previous study in several other
480 tumor types. Our data lie in contrast to some previous work, which have suggested that
481 GOT1 inhibition by genetic or pharmacological means in other tumor types protects
482 cells from ferroptosis by blocking mitochondrial metabolism^{20,45,51}. Recent studies
483 suggest the genotype³², nutrient environment⁵², tissue of origin^{30,38}, and cell-
484 autonomous metabolism³⁵⁻³⁷ are major drivers of ferroptosis sensitivity. The differences
485 emerging from these studies likely reflect the incomplete understanding of how these
486 various factors dictate sensitivity to ferroptosis. Thus, our study provides clarity
487 regarding the metabolic regulation of ferroptosis in PDA.

489
490
491
492
493
494
495
496
497
498
499
500
501
502

Significance

PDA is a notoriously deadly disease with a ten percent 5-year survival owing in largely to a lack of effective therapeutic options. PDA cells rewire metabolism to survive and proliferate with a nutrient-deprived and metabolically harsh environment. This study not only demonstrates that the GOT1 non-canonical malate-aspartate pathway is essential for maintaining biosynthetic and antioxidant fidelity in pancreatic cancer, it also illustrates that promoting a catabolic, oxidative cell state leads to the autophagy-dependent release of labile iron. This sensitizes pancreatic cancer to ferroptosis by pharmacological or dietary means. These applications represent alternative contexts for the repurposing clinical agents and could reveal novel therapeutic strategies that selectively exploit the unique metabolic demands of pancreatic tumors.

KEY RESOURCES TABLE

REAGENT or RESOURCE	SOURCE	IDENTIFIER
Antibodies		
Rabbit monoclonal anti-GOT1	Abcam	Cat#: ab171939
Anti-Ki67	CST	Cat#: 9027
Rabbit monoclonal 5A1E anti-Cleaved Caspase 3	CST	Cat#:9664
Anti-HSP90	CST	Cat#: 4877
Rabbit monoclonal E1E9V anti-Vinculin	CST	Cat#:13901
Anti-Rabbit IgG HRP	CST	Cat#: 7074
Anti-Rabbit GAPDH	CST	Cat#: 2118
Anti-Rabbit LC3A/B	CST	Cat#: 12741
Anti-Rabbit NCOA4 (ARA70)	Bethyl Laboratories	A302-272A
Anti-Rabbit HIF-2	Abcam	Cat#: ab131743
Bacterial and Virus Strains		
Lentiviral plasmid: Tet-pLKO-puro	A gift from Dmitri Wiederschain	Addgene, 21915
Tet-pLKO-shGOT1 coding region (shGOT1 #1)	Son et al. 2013	TRCN0000034784
Tet-pLKO-shGOT1 3'UTR (shGOT1 #3)	Nelson et al. 2019	N/A
Tet-pLKO-sh non-targeting (shNT)	Nelson et al. 2019	N/A
pFUGW-firefly luciferase (FL)	Smith et al. 2004	Addgene, 14883
Chemicals, Peptides, and Recombinant Proteins		
Doxycycline Hyclate	Sigma Aldrich	Cat#:D9891
RIPA buffer	Sigma Aldrich	Cat#:R0278
L-Ascorbic acid	Sigma-Aldrich	Cat#: A5960; CAS: 50-81-7
2-AAPA hydrate	Sigma-Aldrich	Cat#: A4111
6-Aminonicotinamide (6-AN)	Cayman Chemical	Cat#: 10009315; CAS: 329-89-5
FX-11	Sigma-Aldrich	Cat#: 427218; CAS: 213971-34-7
Paclitaxel	Cayman Chemical	Cat#: 10461; CAS: 33069-62-4
Gemcitabine	Cayman Chemical	Cat#: 11690, CAS: 95058-81-4
Cisplatin	Cayman Chemical	Cat#: 13119, CAS: 15663-27-1

Lovastatin	Cayman Chemical	Cat#: 10010338, CAS: 75330-75-5
Veliparib (ABT-888)	Cayman Chemical	Cat#: 11505, CAS: 912445-05-7
Phenformin (hydrochloride)	Cayman Chemical	Cat#: 14997, CAS: 834-28-6
Simvastatin	Cayman Chemical	Cat#: 10010344, CAS: 79902-63-9
TOFA	Cayman Chemical	Cat# 10005263, CAS: 54857-86-2
FK-866	Cayman Chemical	Cat#: 13287, CAS: 658084-64-1
5-FU	Cayman Chemical	Cat#: 14416, CAS: 51-21-8
2-deoxy-D-Glucose	Cayman Chemical	Cat#: 14325, CAS: 154-17-6
Auranofin	Cayman Chemical	Cat#: 15316, CAS: 34031-32-8
Methotrexate	Cayman Chemical	Cat#: 13960, CAS: 59-05-2
Koningic Acid	Cayman Chemical	Cat#: 14079, CAS: 57710-57-3
Erastin	Cayman Chemical	Cat#: 17754, CAS: 571203-78-6
Oligomycin A	Cayman Chemical	Cat#: 11342, CAS: 579-13-5
Bafilomycin A1	Cayman Chemical	Cat#: 11038, CAS: 88899-55-2
Deoxynyboquinone (DNQ)	A gift from David A. Boothman	PubChem CID: 295934
Imidazole ketone erastin (IKE)	MedChemExpress	Cat#: Y-114481 , CAS: 1801530-11-9
N-Acetyl-L-cysteine (NAC)	Sigma-Aldrich	Cat#: A8199; CAS: 616-91-1
Glutathione ethyl ester (GSH-EE)	Cayman Chemical	Cat#: 14953, CAS: 92614-59-0
2-Mercaptoethanol (BME)	Sigma-Aldrich	Cat#: M6250, CAS: 60-24-2
L-Cystine	Sigma-Aldrich	Cat#: C8755, CAS: 56-89-3
L-Buthionine-(S,R)-Sulfoximine (BSO)	Cayman Chemical	Cat#: 14484, CAS: 83730-53-4
(1S,3R)-RSL3	Cayman Chemical	Cat#: 19288, CAS: 1219810-16-8
Ferrostatin-1	Cayman Chemical	Cat#: 17729, CAS: 347174-05-4
Trolox	Cayman Chemical	Cat#: 10011659, CAS: 53188-07-1
Deferoxamine (mesylate) (DFO)	Cayman Chemical	Cat#: 14595, CAS: 138-14-7
PF-04859989 hydrochloride	Cayman Chemical	Cat#: PZ0250, CAS: 177943-33-8
Necrostatin-1	Cayman Chemical	Cat#: 11658, CAS: 4311-88-0

Z-VAD(OMe)-FMK	Cayman Chemical	Cat#: 14463, CAS: 187389-52-2
FG-4592	Cayman Chemical	Cat#: 15294, CAS: 808118-40-3
FINO2	Cayman Chemical	Cat#: 25096, CAS: 869298-31-7
Ferric ammonium citrate	Sigma-Aldrich	Cat#: F5879, CAS: 1185-57-5
BODIPY™ 581/591 C11 (Lipid Peroxidation Sensor)	Invitrogen	Cat#: D3861
Calcein, AM	Invitrogen	Cat#: C3099
Critical Commercial Assays		
Cell Proliferation Reagent WST-1	Sigma	Cat#: 11644807001
Cell Titer Glo 2.0	Promega	Cat#:G9241
Cyquant	ThermoFisher	Cat#:C7026
Beetle Luciferin	Promega	Cat#:E1605
MycoAlert	Lonza	Cat#:LT07-318
GSH-Glo	Promega	Cat#:V6911
iScript cDNA synthesis kit	BioRad	Cat#:1708890
Experimental Models: Cell Lines		
Human: PL45 control	This paper	N/A
Human: PL45 shNT	This paper	N/A
Human: PL45 iDox-shGOT1 #1	This paper	N/A
Human: PL45 iDox-shGOT1 #3	This paper	N/A
Human: Capan-1 control	This paper	N/A
Human: Capan-1 shNT	This paper	N/A
Human: Capan-1 iDox-shGOT1 #1	This paper	N/A
Human: Capan-1 iDox-shGOT1 #3	This paper	N/A
Human: Pa-Tu-8902 control	This paper	N/A
Human: Pa-Tu-8902 shNT	This paper	N/A
Human: Pa-Tu-8902 iDox-shGOT1 #1	This paper	N/A
Human: Pa-Tu-8902 iDox-shGOT1 #3	This paper	N/A
Human: Pa-Tu-8902 iDox-shGOT1 #1, pFUGW-Firefly Luciferase	This paper	N/A
Human: BxPC-3 control	This paper	N/A
Human: BxPC-3 shNT	This paper	N/A
Human: BxPC-3 iDox-shGOT1 #1	This paper	N/A
Human: BxPC-3 iDox-shGOT1 #3	This paper	N/A
Human: Pa-Tu-8988T control	This paper	N/A
Human: Pa-Tu-8988T shNT	This paper	N/A
Human: Pa-Tu-8988T iDox-shGOT1 #1	This paper	N/A
Human: Pa-Tu-8988T iDox-shGOT1 #3	This paper	N/A
Human: MIA PaCa-2 control	This paper	N/A
Human: MIA PaCa-2 shNT	This paper	N/A
Human: MIA PaCa-2 iDox-shGOT1 #1	This paper	N/A
Human: MIA PaCa-2 iDox-shGOT1 #3	This paper	N/A

Human: Panc10.05 control	This paper	N/A
Human: Panc10.05 shNT	This paper	N/A
Human: Panc10.05 iDox-shGOT1 #1	This paper	N/A
Human: Panc10.05 iDox-shGOT1 #3	This paper	N/A
Human: Panc03.27 control	This paper	N/A
Human: Panc03.27 shNT	This paper	N/A
Human: Panc03.27 iDox-shGOT1 #1	This paper	N/A
Human: Panc03.27 iDox-shGOT1 #3	This paper	N/A
Human: YAPC control	This paper	N/A
Human: YAPC shNT	This paper	N/A
Human: YAPC iDox-shGOT1 #1	This paper	N/A
Human: YAPC iDox-shGOT1 #3	This paper	N/A
Human: HupT3 control	This paper	N/A
Human: HupT3 shNT	This paper	N/A
Human: HupT3 iDox-shGOT1 #1	This paper	N/A
Human: HupT3 iDox-shGOT1 #3	This paper	N/A
Human: Panc-1 control	This paper	N/A
Human: Panc-1 shNT	This paper	N/A
Human: Panc-1 iDox-shGOT1 #1	This paper	N/A
Human: Panc-1 iDox-shGOT1 #3	This paper	N/A
Human: Capan-2 control	This paper	N/A
Human: Capan-2 shNT	This paper	N/A
Human: Capan-2 iDox-shGOT1 #1	This paper	N/A
Human: Capan-2 iDox-shGOT1 #3	This paper	N/A
Human: UM147 control	This paper	N/A
Human: UM147 shNT	This paper	N/A
Human: UM147 iDox-shGOT1 #1	This paper	N/A
Human: UM147 iDox-shGOT1 #3	This paper	N/A
Human: UM5 control	This paper	N/A
Human: UM5 shNT	This paper	N/A
Human: UM5 iDox-shGOT1 #1	This paper	N/A
Human: UM5 iDox-shGOT1 #3	This paper	N/A
Human: UM90 control	This paper	N/A
Human: UM90 shNT	This paper	N/A
Human: UM90 iDox-shGOT1 #1	This paper	N/A
Human: UM90 iDox-shGOT1 #3	This paper	N/A
Human: UM19 control	This paper	N/A
Human: UM19 shNT	This paper	N/A
Human: UM19 iDox-shGOT1 #1	This paper	N/A
Human: UM19 iDox-shGOT1 #3	This paper	N/A
Human: HPNE(V) iDox-shGOT1 #1	This paper	N/A

Human: HPNE(V) iDox-shGOT1 #3	This paper	N/A
Human: IMR-90 iDox-shGOT1 #1	This paper	N/A
Human: IMR-90 iDox-shGOT1 #3	This paper	N/A
Human: hPSC iDox-shGOT1 #1 γ	This paper	N/A
Human: hPSC iDox-shGOT1 #3	This paper	N/A
Murine: KPC-MT3 LC3-GFP-RFP	This paper	N/A
Oligonucleotides		
Human: GOT1 Fw_caactgggattgacccaact	This paper	N/A
Human: GOT1 Rev_ggaacagaaaaccgggtgcctt	This paper	N/A
Human: HMOX1 Fw_ggcagagggtgatagaagagg	This paper	N/A
Human: HMOX1 Rev_agctcctgcaactcctcaaa	This paper	N/A
Human: TFRC Fw_acctgtccagacaatctccag	This paper	N/A
Human: TFRC Rev_tgtttccagtcagagggaca	This paper	N/A
Human: SLC40A1 Fw_ccaaagggattggattgttg	This paper	N/A
Human: SLC40A1 Rev_ccttcgtattgtggcattca	This paper	N/A
Human: HILPDA Fw_aagcatgtgtgaaccttacc	This paper	N/A
Human: HILPDA Rev_tgtgtggctagttggcttct	This paper	N/A
pBABE-puro mCherry-EGFP-LC3B	Addgene	22418
Software and Algorithms		
Morpheus	Broad Institute	https://software.broadinstitute.org/morpheus/
ImageJ	ImageJ	https://imagej.nih.gov/ij/
Prism 7	GraphPad	https://www.graphpad.com/scientific-software/prism/
FlowJo v.10	FlowJo	https://www.flowjo.com/

503

504

Contact for Reagent and Resource Sharing

505

506

Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Costas A. Lyssiotis (clyssiot@med.umich.edu).

507

508

Cell Culture

509

510

511

512

513

514

515

516

517

518

519

520

PL45, Capan-1, BxPC-3, MIA PaCa-2, Panc10.05, Panc03.27, PANC-1, Capan-2, HPNE (V), IMR-90 were obtained from ATCC. Pa-Tu-8902, Pa-Tu-8988T, YAPC, and Hup T3 were obtained from DSMZ. Human pancreatic stellate cells (hPSC) were a generous gift from Rosa Hwang (Hwang et al., 2008). The UM PDA primary cell cultures (UM147, UM5, UM90, and UM19) were obtained from surgically-resected samples and established through murine xenograft (Li et al., 2007). KPC-MT3 murine PDA cell lines were a generous gift from Dr. David Tuveson. All commercial cell lines and UM PDA primary cultures were validated by STR profiling and tested negative for mycoplasma infection (Lonza, LT07-701). Cells were maintained under standard conditions at 37°C and 5% CO₂. Cells were grown either in regular DMEM (GIBCO, #11965) or RPMI (GIBCO, #11875), or in DMEM without cystine (GIBCO, #21013024) or RPMI (GIBCO, A1049101) supplemented with 10% FBS (Corning, 35-010-CV) unless otherwise indicated. Cultures involving inducible short-hairpin mediated knockdown were

521 supplemented with doxycycline-hydrate (Dox) at 1 μ M/mL (Sigma, D9891) for 5 days prior to
522 experiments.

523
524 KPC-MT3 LC3 tandem GFP-RFP cells were established through transfection with pBABE-puro
525 mCherry-EGFP-LC3B (Addgene plasmid #22418) followed by selection and single cell cloning.
526 For autophagic flux quantification, cells were seeded into 4 well chamber slides (Corning,
527 354104) and fixed in 4% paraformaldehyde (ThermoFisher, 28908) 24 hours following seeding.
528 Coverslips were mounted in DAPI containing mounting solution (Life Technologies P36931).
529 Cells were imaged using a Nikon A1 Confocal in FITC, RFP and DAPI channels. The ratio of
530 red:yellow puncta was determined by counting puncta using the particle analysis in imageJ.
531

532 **Lentiviral-mediated shRNA Transduction**

533 Parental PDA cell lines were transduced with lentivirus containing short hairpin RNA plasmids at
534 optimized viral titers. Stable cell lines were established post-puromycin selection.

535 **Clonogenic assays**

536 Cells were plated in a 6-well plate in biological triplicates at 300-600 cells per well in 2mL of
537 media. Dox-media were changed every 2 days. Assays were concluded after 10-15 days by
538 fixing in -20°C cold 100% methanol 10 min and staining with 0.5% crystal violet 20% methanol
539 solution for 15 min. Colonies were quantified using ImageJ or manually counted.
540

541 **Cell proliferation assays**

542 Cells were seeded in a 96-well plate at 1,000 cells per well in 0.1mL of media. Indicated
543 treatments were applied the subsequent day. Media was changed every 2 days. At the indicated
544 time points, media was aspirated and frozen. 100 μ L of CyQUANT (Invitrogen, C7026)
545 to each well for measurements. 10 μ L of WST-1 reagent directly to the culture media (Sigma,
546 #11644807001). Relative proliferation was determined by the fluorescence intensity at 530nm
547 for CyQuant or 450nm for WST-1 using a SpectraMax M3 plate reader.
548

549 **Cell viability assays**

550 Cells were plated in a 96- or 384-well plate format at 1,000 cells per well Cells were allowed to
551 seed overnight, then treated with compounds at indicated concentrations and for indicated
552 lengths of time. All viability assays utilized the Cell-Titer-Glo 2.0 reagent (Promega, G9243)
553 according to the manufacturer's instructions. Media was aspirated followed by the addition of
554 100 μ L of Cell-Titer-Glo 2.0 reagent to each experimental well. Plates were gently agitated for
555 10 minutes to promote adequate mixing. Luminescence was subsequently measured using a
556 SpectraMax M3 plate reader.
557

558 **Quantitative RT-PCR**

559 Total RNA was extracted using the RNeasy Mini Kit (Qiagen, 74104) and reverse
560 transcription was performed from 2 μ g of total RNA using the iScript cDNA synthesis kit
561 (BioRad, 1708890) according to the manufacturer's instructions. Quantitative RT-PCR was
562 performed with Power SYBR Green dye (Thermo, 4367659) using a QuantStudio 3 System
563 (Thermo). PCR reactions were performed in triplicate and the relative amount of cDNA was
564 calculated by the comparative C_T method using an *RPS21* as an endogenous control. RT-
565 PCR was performed in at least 3 biological replicates.
566

567 **Detection of Reactive Oxygen and Labile Iron by Flow cytometry**

568 Cells were plated in 6-well plates two days before incubation with indicated treatments. Cells
569 were then washed twice with 1x PBS, and stained for 20-30 (Invitrogen, C1430) minutes with
570 2 μ M C11-BODIPY (Invitrogen, D3861) or for 10 minutes with 0.2 μ M Calcein-AM (Invitrogen,
571

572 C1430) in phenol red-free DMEM. Cells were co-stained with Sytox-blue (Invitrogen, S34857) to
573 account for cell viability. Following staining, cells were washed twice with PBS, trypsinized
574 (0.25%, Life Technologies, 25200-056), and naturalized with pure FBS at a 1:1 volume. Cells
575 were then collected in 500uL PBS, and moved to round bottom 96-well plates, on ice, for
576 measurements. A minimum of 8000 cells were analyzed per condition. C11-BODIPY and
577 Calcein-AM signals were analyzed in the FITC channel, while Sytox-blue was analyzed in the
578 DAPI channel on a ZE5 Cell analyzer (Bio-Rad). Analysis of data was performed using FlowJo
579 v.10 software. See **Supplementary Figures 6 and 7** for representative gating. Relative labile
580 iron levels were calculated based on the ratio of Calcein-AM mean fluorescence intensity (MFI)
581 of control vs. dox-treated samples.

582
583 **Xenograft Studies**
584 Animal experiments were conducted in accordance with the Office of Laboratory Animal Welfare
585 and approved by the Institutional Animal Care and Use Committees of the University of
586 Michigan. NOD scid gamma (NSG) mice (Jackson Laboratory, 005557), 6-8 or 8-10 weeks old
587 of both sexes, were maintained in the facilities of the Unit for Laboratory Animal Medicine
588 (ULAM) under specific pathogen-free conditions. Stable PDA cell lines containing a dox-
589 inducible shRNA against GOT1 were trypsinized and suspended at 1:1 ratio of DMEM (Gibco,
590 11965-092) cell suspension to Matrigel (Corning, 354234). 150-200 μ L were used per injection.
591 For subcutaneous xenograft studies, 0.5×10^6 cells were implanted into the lower flanks.
592 Doxycycline (dox) chow (BioServ, F3949) was fed to the +dox groups. Orthotopic tumors were
593 established by injecting 5×10^4 Pa-Tu-8902 iDox-shGOT1 #1 pFUGW-Firefly Luciferase into 8-10
594 week old NSG mice. Cysteine-free chow (LabDiet) was customized from Baker Amino Acid
595 (LabDiet, 5CC7) to remove cysteine and balance protein levels with increased valine and
596 aspartic acid. BSO was delivered in the drinking water at 20 mM. All treatments began on day 7
597 after implantation.

598
599 Subcutaneous tumor size was measured with digital calipers at the indicated endpoints. Tumor
600 volume (V) was calculated as $V = 1/2(\text{length} \times \text{width}^2)$. Bioluminescence (BLI) of orthotopic
601 tumors were measured via IVIS SpectrumCT (PerkinElmer) following an intraperitoneal injection
602 of 100 μ L beetle luciferin (40 mg/mL in PBS stock) (Promega, E1605). BLI was analyzed with
603 Living Image software (PerkinElmer). At endpoint, final tumor volume and mass were measured
604 prior to processing. Tissue was either fixed in zinc formalin fixative (Z-fix, Anatech LTD, #174)
605 for >24 hours for histological and/or histochemical analysis, or snap-frozen in liquid nitrogen
606 then stored at -80°C until metabolite or protein analysis.

607
608 **Western blot analysis**
609 Stable shNT and shGOT1 cells were cultured with or without dox media and protein lysates
610 were collected after five days using RIPA buffer (Sigma, R0278) containing protease inhibitor
611 cocktail (Sigma/Roche, 04 693 132 001). Samples were quantified with Pierce BCA Protein
612 Assay Kit (ThermoFisher, 23225). 10 to 40 μ g of protein per sample were resolved on NuPAGE
613 Bis-Tris Gels (Invitrogen, NP0336) and transferred to a Immobilon-FL PVDF membrane
614 (Millipore, IPVH00010). Membranes were blocked in 5% non-fat dry milk in distilled H₂O prior to
615 incubation with the primary antibody. The membranes were washed with TBS-Tween followed
616 by a 1h exposure to the appropriate horseradish peroxidase-conjugated secondary antibody.
617 The membranes were washed in de-ionized water for 15-30 minutes then visualized using a
618 Bio-Rad ChemiDox MP Imaging System (Bio-Rad, 17001402). The following antibodies were
619 used: anti-aspartate aminotransferase (anti-GOT1) at a 1:1,000 dilution (Abcam, ab171939),
620 1:1,000 dilution Anti-Rabbit LC3 A/B (CST, 12741), 1:1,000 dilution Anti-Rabbit NCOA4 (Bethyl
621 Laboratories, A302-272A), 1:1,000 dilution Anti-Rabbit Hif-2 (Abcam, ab131743), and loading
622 control vinculin at a 1:1,000 dilution (Cell Signaling, 13901), HSP-90 (Cell Signaling, 4877S),

623 Anti-Rabbit β -Actin (Cell Signaling, 4970L) or GAPDH (Cell Signaling, 2118). Anti-rabbit IgG,
624 HRP-linked (Cell Signaling Technology, 7074) secondary antibody was used at a 1:10,000
625 dilution.

626
627 **Histology**

628 Mice were sacrificed by CO₂ asphyxiation followed by tissue harvesting and fixation overnight at
629 room temperature with Z-fix solution (Z-fix, Anatech LTD, #174). Tissues were processed by
630 using a Leica ASP300S Tissue Processor, paraffin embedded, and cut into 5- μ m sections.
631 Immunohistochemistry was performed on Discovery Ultra XT autostainer (Ventana Medical
632 Systems Inc.) and counterstained with hematoxylin. IHC slides were scanned on a Panoramic
633 SCANslide scanner (Perkin Elmer), and then annotation regions encompassing greater than
634 1mm of tissue were processed using Halo software (Indica Labs). The following antibodies were
635 used for IHC: GOT1 (AbCam, ab171939), Ki-67 (Cell Signaling, 9027), Cleaved Caspase-3
636 (Cell Signaling, 9664).

637
638 **Metabolomics**

639 Targeted metabolomics: Cells were plated at 500,000 cells per well in 6-well plates or ~1.5
640 million cells per 10 cm dish. At the endpoint, cells were lysed with dry-ice cold 80% methanol
641 and extracts were then centrifuged at 10,000 g for 10 min at 4°C and the supernatant was
642 stored at -80°C until further analyses. Protein concentration was determined by processing a
643 parallel well/dish for each sample and used to normalize metabolite fractions across samples.
644 Based on protein concentrations, aliquots of the supernatants were transferred to a fresh micro
645 centrifuge tube and lyophilized using a SpeedVac concentrator. Dried metabolite pellets were
646 re-suspended in 45 μ L 50:50 methanol:water mixture for LC-MS analysis. Data was collected
647 using previously published parameters^{53,54}.

648
649 The QqQ data were pre-processed with Agilent MassHunter Workstation Quantitative Analysis
650 Software (B0700). Additional analyses were post-processed for further quality control in the
651 programming language R. Each sample was normalized by the total intensity of all metabolites
652 to scale for loading. Finally, each metabolite abundance level in each sample was divided by the
653 median of all abundance levels across all samples for proper comparisons, statistical analyses,
654 and visualizations among metabolites. The statistical significance test was done by a two-tailed
655 t-test with a significance threshold level of 0.05.

656
657 **Seahorse Mito Stress Test**

658 MiaPaCa-2 cells were seeded at 2x10⁴ cells/well in 80 μ l/well of normal growth media (DMEM
659 with 25 mM Glucose and 2 mM Glutamine) in an Agilent XF96 V3 PS Cell Culture Microplate
660 (#101085-004). To achieve an even distribution of cells within wells, plates were incubated on
661 the bench top at room temperature for 1 hour before incubating at 37°C, 5% CO₂ overnight. To
662 hydrate the XF96 FluxPak (#102416-100), 200 μ L/well of sterile water was added and the entire
663 cartridge was incubated at 37°C, no CO₂ overnight. The following day, one hour prior to running
664 the assay, 60 μ L/well of growth media was removed from the cell culture plate and cells were
665 washed twice with 200 μ L/well of assay medium (XF DMEM Base Medium, pH 7.4 (#103575-
666 100) containing 25 mM Glucose (#103577-100) and 2 mM Glutamine (#103579-100)). After
667 washing, 160 μ L/well of assay medium was added to the cell culture plate for a final volume of
668 180 μ L/well. Cells were then incubated at 37°C, no CO₂ until analysis. Also one hour prior to the
669 assay, water from the FluxPak hydration was exchanged for 200 μ L/well of XF Calibrant
670 (#100840-000) and the cartridge was returned to 37°C, no CO₂ until analysis.

671 Oligomycin (100 μ M), FCCP (100 μ M), and Rotenone/Antimycin (50 μ M) from the XF Cell Mito
672 Stress Test Kit (#103015-100) were re-constituted in assay medium to make the indicated stock
673 concentrations. 20 μ L of Oligomycin was loaded into Port A for each well of the FluxPak, 22 μ L

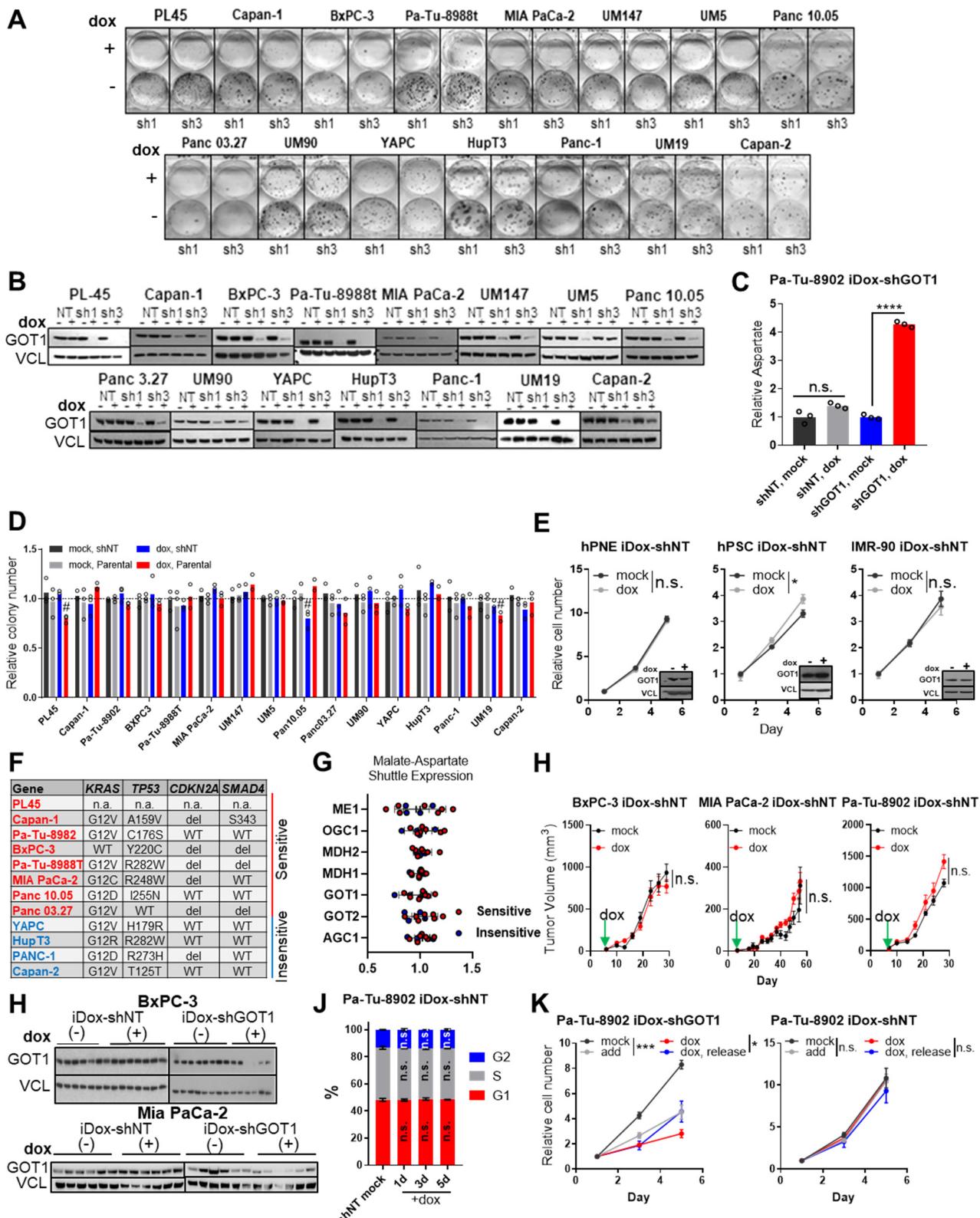
674 of FCCP into Port B, and 25 μ L of Rotenone/Antimycin into Port C. Port D was left empty. The
675 final FCCP concentration was optimized to achieve maximal respiration in each condition.
676 The Mito Stress Test was conducted on an XF96 Extracellular Flux Analyzer and OCR was
677 analyzed using Wave 2.6 software. Following the assay, OCR was normalized to cell number
678 with the CyQUANT NF Cell Proliferation Assay (C35006) from Thermo Fisher according to
679 manufacturer's instructions.
680

681 **Statistical analysis**

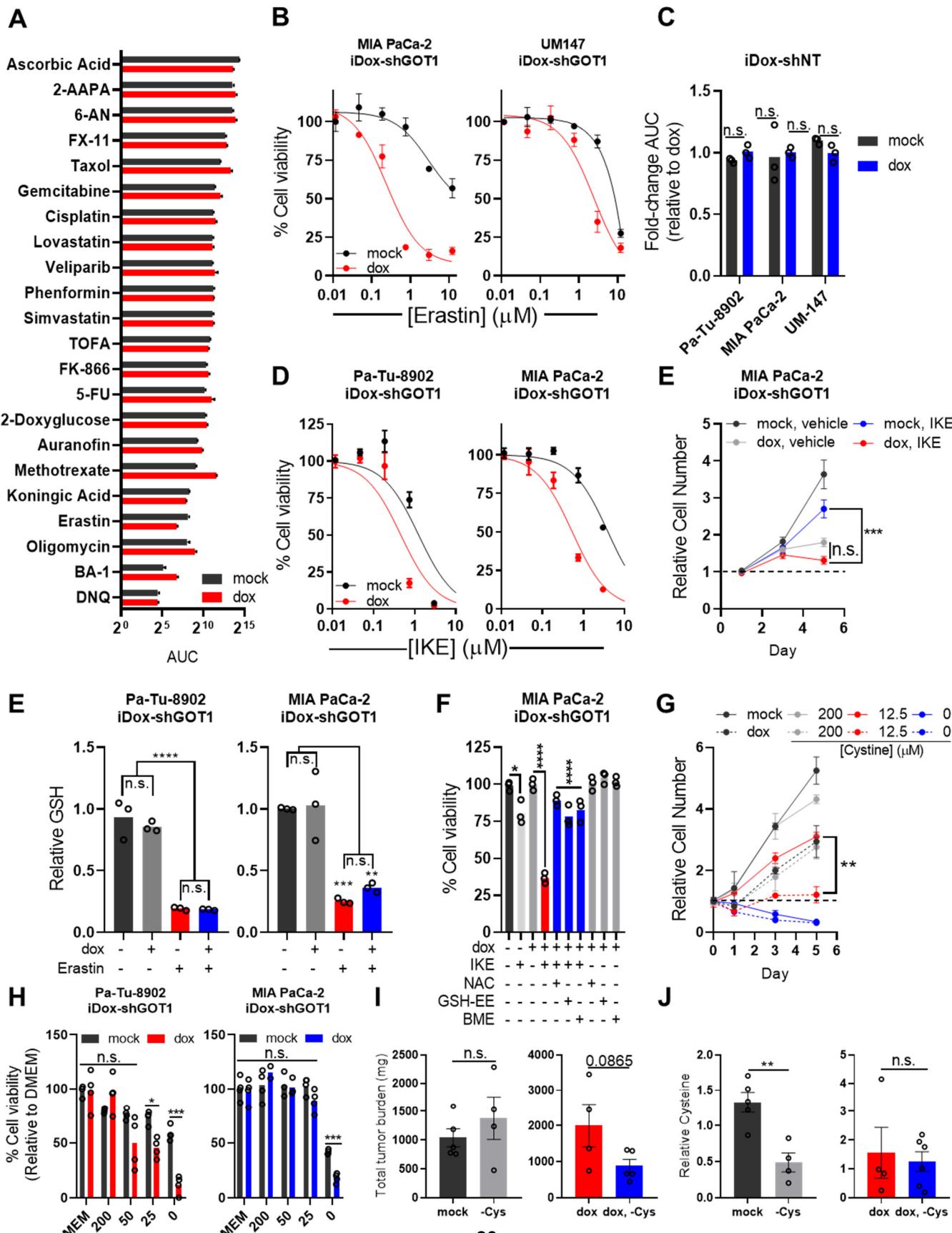
682 Statistics were performed using GraphPad Prism 7 (Graph Pad Software Inc). Groups of 2 were
683 analyzed using the unpaired two-tailed Student's t test and comparisons across more than 2
684 groups were conducted using one-way ANOVA Tukey post-hoc test. All error bars represent
685 mean with standard deviation, unless noted otherwise. A P value of less than 0.05 was
686 considered statistically significant. All group numbers and explanation of significant values are
687 presented within the figure legends.
688

689 **Acknowledgements**

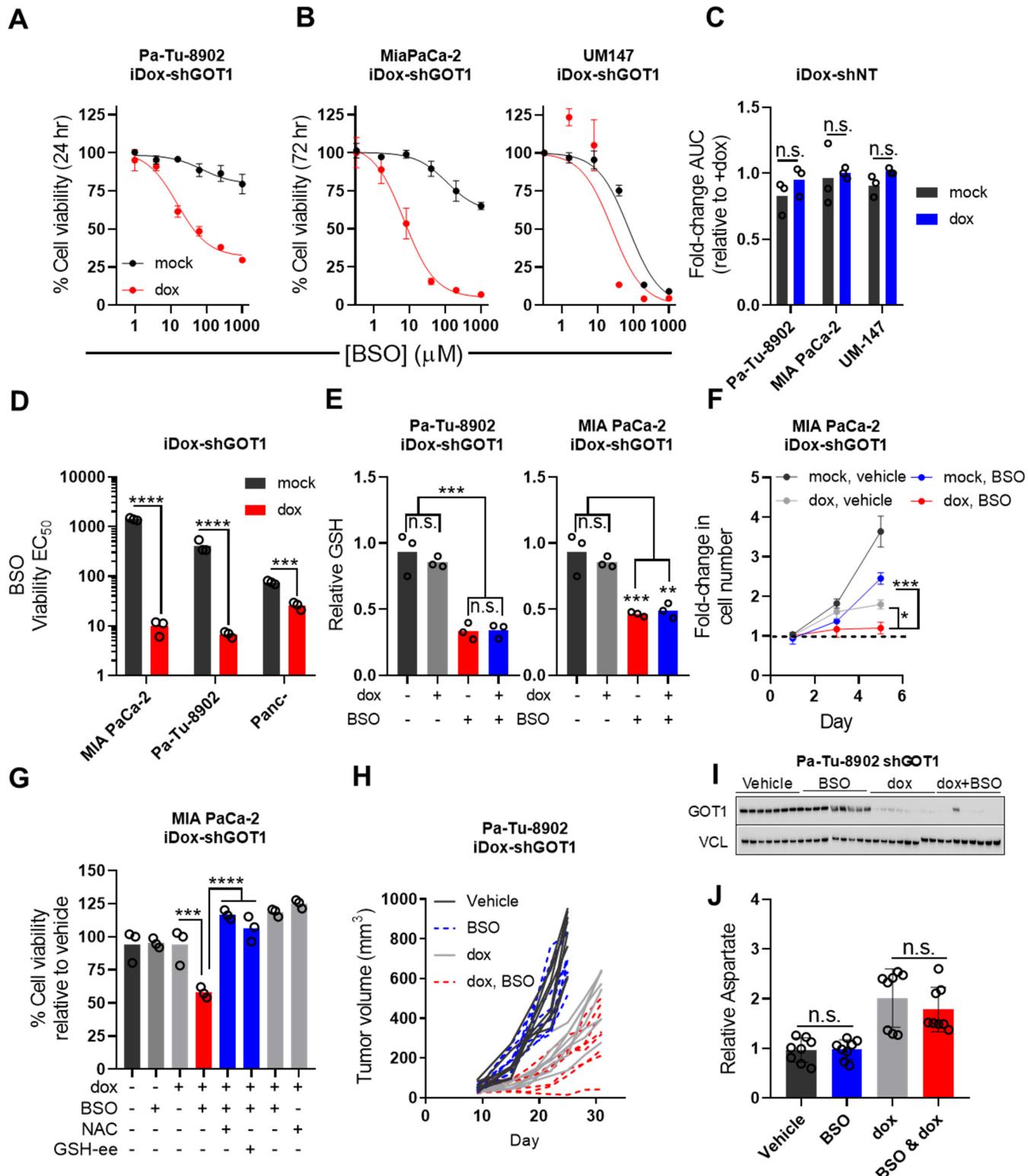
690 The authors would like to thank members of the Olive, Shah, and Lyssiotis lab for critical
691 discussion and scientific feedback. D.M.K was supported by a Department of Education GAANN
692 fellowship through The University of Michigan Program in Chemical Biology. B.S.N was
693 supported by Institutional National Research Service Awards through NIDDK (T32-DK094775)
694 and NCI (T32-CA009676). M.P.M. was supported by NCI R01-CA-198074, R01-CA-151588,
695 and an ACS Research Scholar Grant. Y.M.S was supported by NIH grants (R01CA148828 and
696 R01DK095201). C.A.L. was supported by the Pancreatic Cancer Action Network/AACR (13-70-
697 25-LYSS), Damon Runyon Cancer Research Foundation (DFS-09-14), V Foundation for Cancer
698 Research (V2016-009), Sidney Kimmel Foundation for Cancer Research (SKF-16-005), the
699 AACR (17-20- 01-LYSS), and an ACS Research Scholar Grant (RSG-18-186-01). M.P.M.,
700 Y.M.S., H.C.C., and C.A.L. were supported by the Cancer Center Support Grant (P30
701 CA046592). M.P.M., H.C.C., and C.A.L. were supported by U01-CA-224145. K.P.O. and C.A.L.
702 were supported by R01CA215607. Metabolomics studies at U-M were supported by DK09715,
703 the Charles Woodson Research Fund, and the UM Pediatric Brain Tumor Initiative.
704

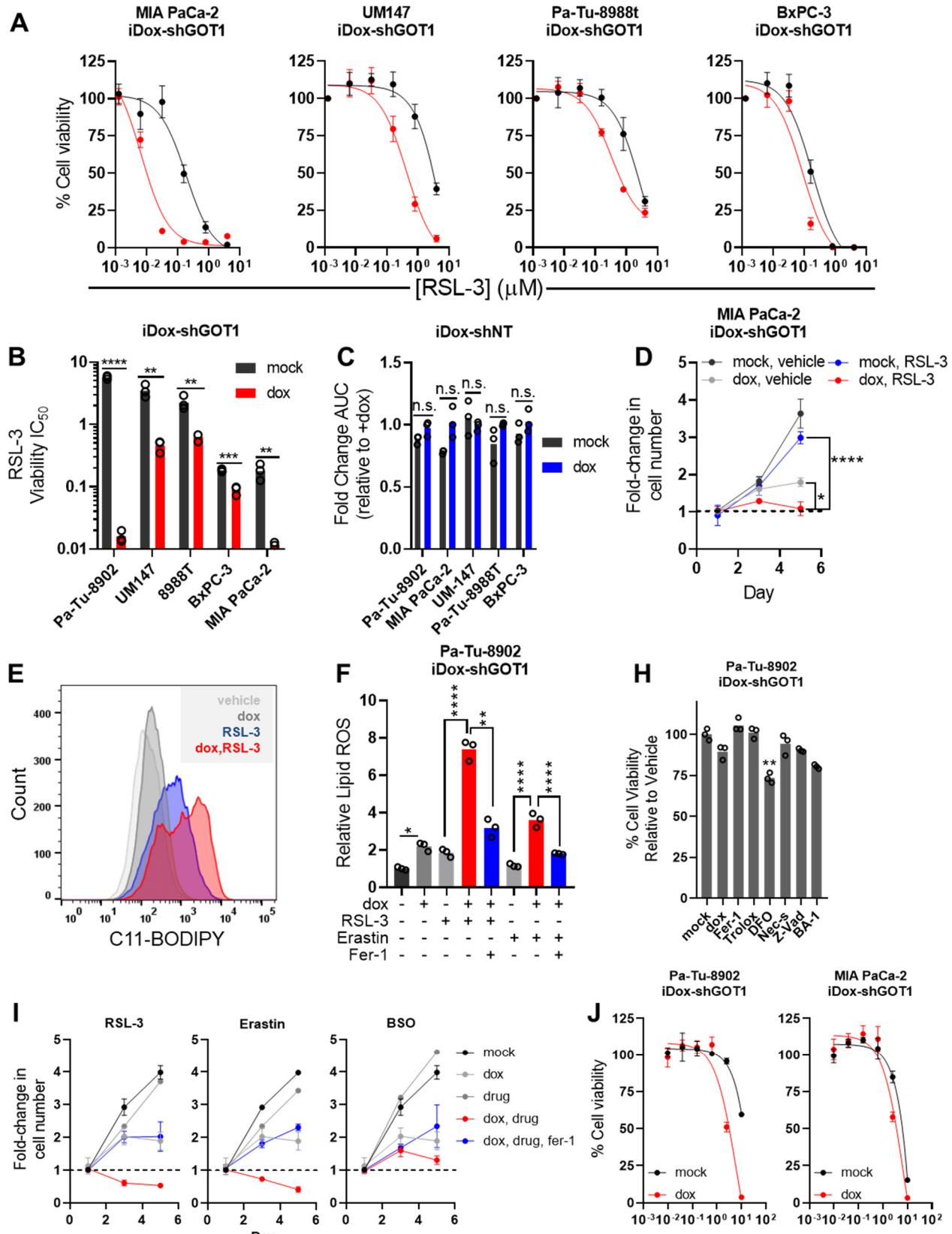

705 **Author Contributions**

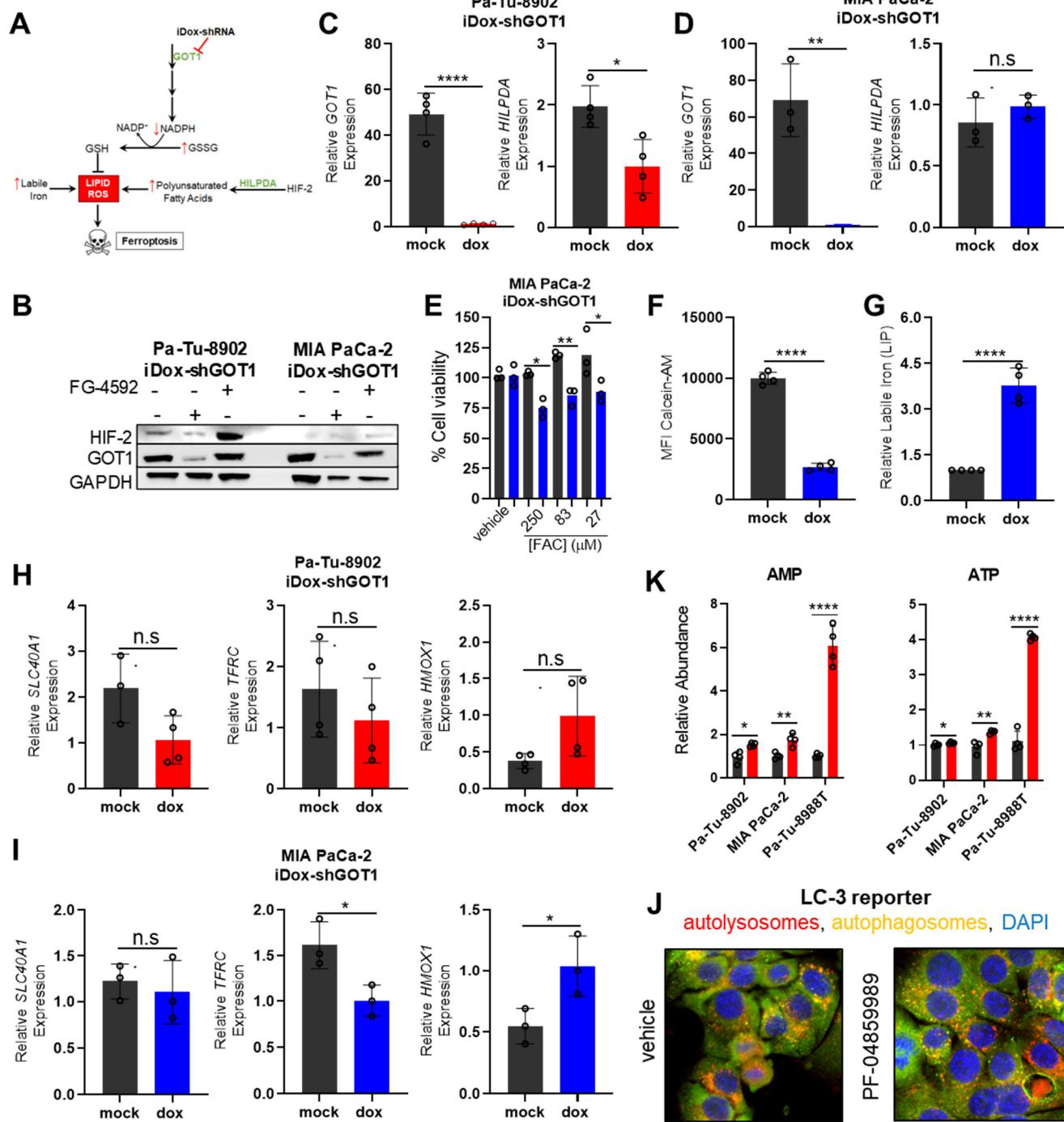
706 Conceptualization, D.M.K. and C.A.L.; Investigation, D.M.K, B.S.N., L.L., E.L.Y, A.M., G.T.,
707 C.J.H., S.A.K., N.C., S.W., J.R., S.S., C.P., and T.G.; Resources, E.C., L.Z., M.A.B., P.S.,
708 H.C.C., A.C.A., Z.C.N., J.M.A., M.P.DM., Y.M.S, and K.P.O.; Data Curation, D.M.K., P.S., A.C.A,
709 and L.Z.; Writing – Original Draft, D.M.K. and C.A.L.; Writing – Review & Editing, D.M.K., B.S.N,
710 E.L.Y., Z.C.N., Y.M.S., K.P.O., and C.A.L.; Formal analysis and Visualization, D.M.K;
711 Supervision and Funding Acquisition, C.A.L.
712


713 **Declaration of Interests**

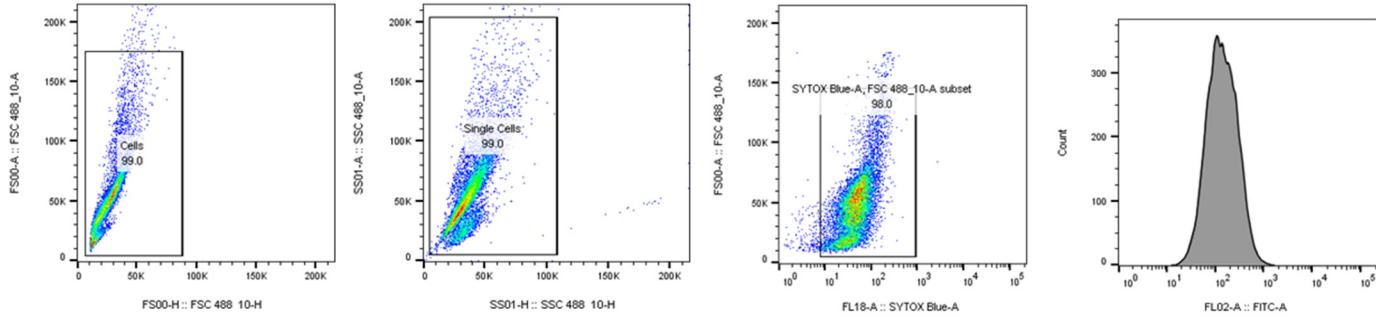
714 C.A.L. is an inventor on patents pertaining to Kras regulated metabolic pathways,
715 redox control pathways in pancreatic cancer, and targeting GOT1 as a therapeutic approach.
716


Supplementary Figure 1

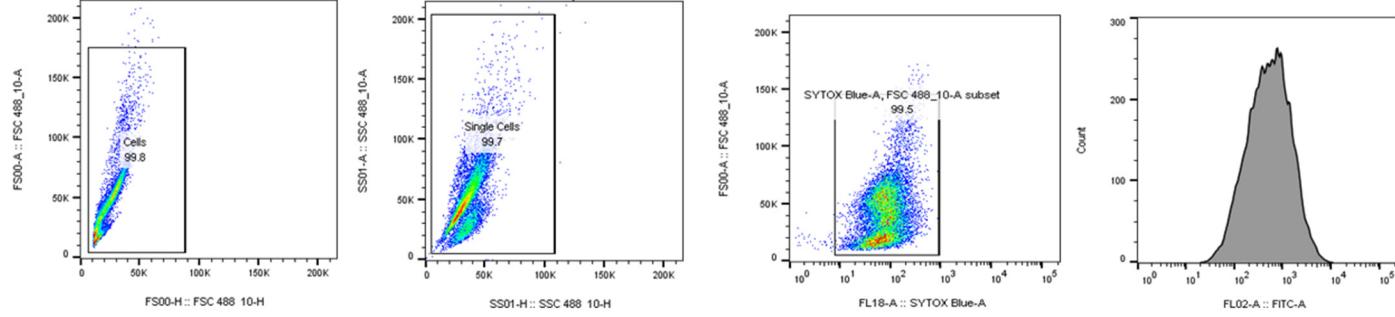

Supplementary Figure 2


Supplementary Figure 3

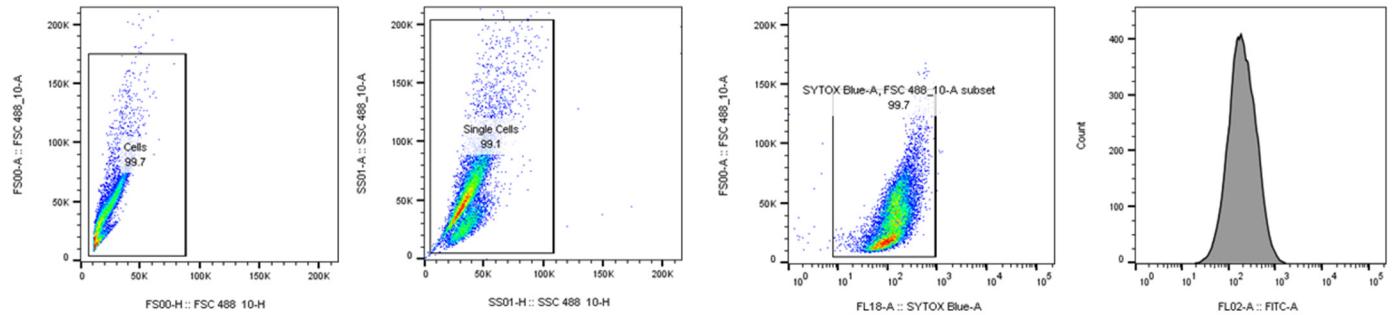
Supplementary Figure 4

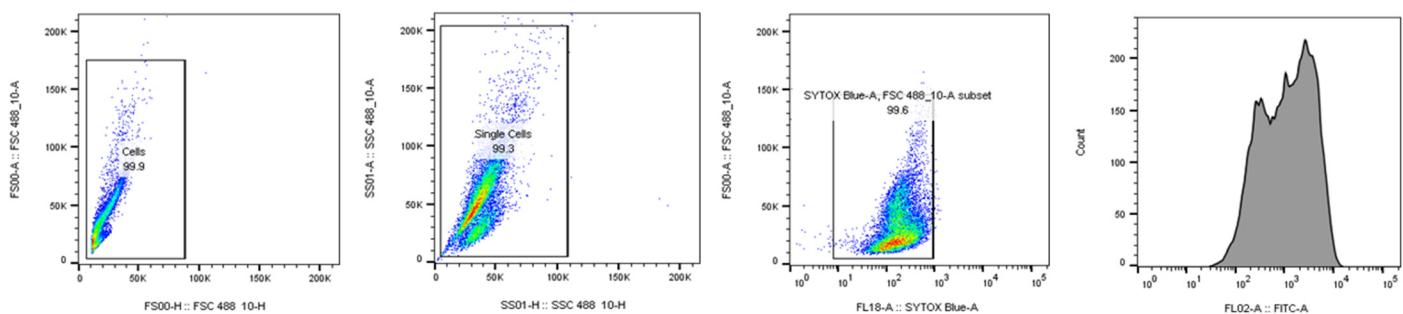


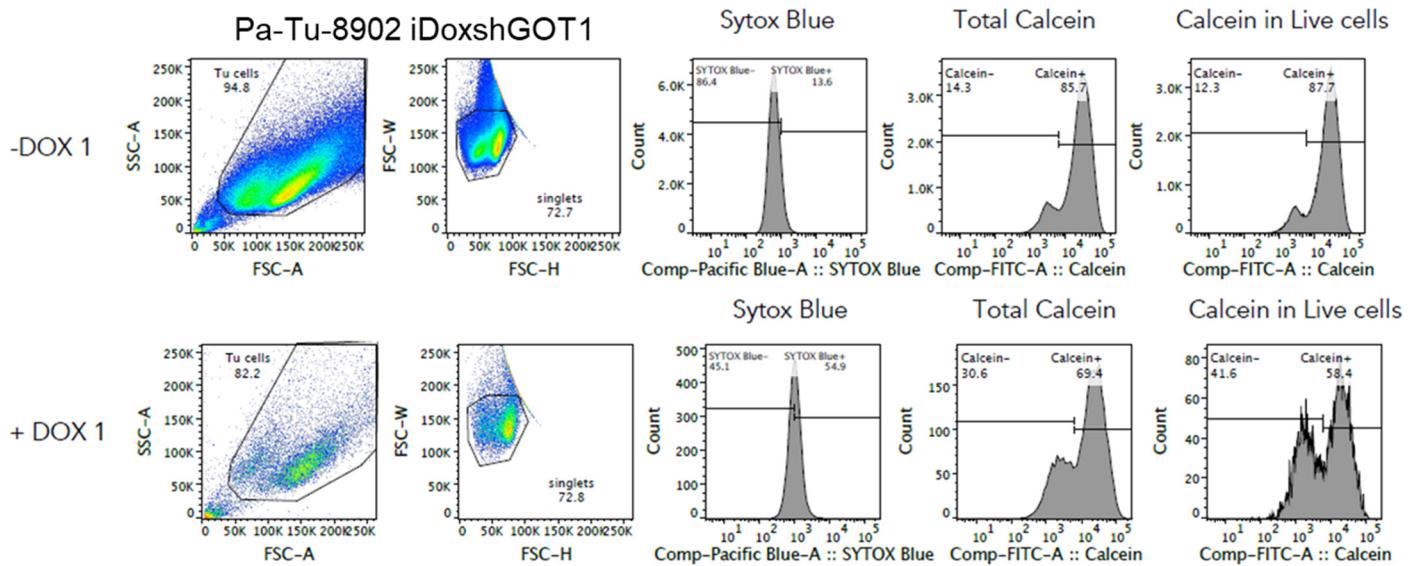
Supplementary Figure 5



Supplementary Figure 6: Representative C11 BODIPY Gating


MIA PaCa-2 iDoxshGOT1 -DOX


MIA PaCa-2 iDoxshGOT1 -DOX, RSL-3


MIA PaCa-2 iDoxshGOT1 +DOX

MIA PaCa-2 iDoxshGOT1 +DOX, RSL-3

Supplementary Figure 7: Representative Calcein-AM Gating

724 **References**

725 1. Siegel, R. L., Miller, K. D. & Jemal, A. Cancer statistics, 2019. *CA: A Cancer Journal for*
726 *Clinicians* **69**, 7–34 (2019).

727 2. Olive, K. P. *et al.* Inhibition of Hedgehog signaling enhances delivery of chemotherapy in a
728 mouse model of pancreatic cancer. *Science* **324**, 1457–1461 (2009).

729 3. Feig, C. *et al.* The Pancreas Cancer Microenvironment. *Clin Cancer Res* **18**, 4266–4276
730 (2012).

731 4. Zhang, Y., Crawford, H. C. & Pasca di Magliano, M. Epithelial-Stromal Interactions in
732 Pancreatic Cancer. *Annual Review of Physiology* **81**, 211–233 (2019).

733 5. Koong, A. C. *et al.* Pancreatic tumors show high levels of hypoxia. *International Journal of*
734 *Radiation Oncology*Biology*Physics* **48**, 919–922 (2000).

735 6. Perera, R. M. & Bardeesy, N. Pancreatic Cancer Metabolism: Breaking It Down to Build It
736 Back Up. *Cancer Discov* **5**, 1247–1261 (2015).

737 7. Halbrook, C. J. & Lyssiotis, C. A. Employing Metabolism to Improve the Diagnosis and
738 Treatment of Pancreatic Cancer. *Cancer Cell* **31**, 5–19 (2017).

739 8. Son, J. *et al.* Glutamine supports pancreatic cancer growth through a KRAS-regulated
740 metabolic pathway. *Nature* **496**, 101–105 (2013).

741 9. Chakrabarti, G. *et al.* Targeting glutamine metabolism sensitizes pancreatic cancer to
742 PARP-driven metabolic catastrophe induced by β -lapachone. *Cancer & Metabolism* **3**, 12
743 (2015).

744 10. Anglin, J. *et al.* Discovery and optimization of aspartate aminotransferase 1 inhibitors to
745 target redox balance in pancreatic ductal adenocarcinoma. *Bioorganic & Medicinal*
746 *Chemistry Letters* **28**, 2675–2678 (2018).

747 11. Holt, M. C. *et al.* Biochemical Characterization and Structure-Based Mutational Analysis
748 Provide Insight into the Binding and Mechanism of Action of Novel Aspartate
749 Aminotransferase Inhibitors. *Biochemistry* **57**, 6604–6614 (2018).

750 12. Sun, W. *et al.* Aspulvinone O, a natural inhibitor of GOT1 suppresses pancreatic ductal
751 adenocarcinoma cells growth by interfering glutamine metabolism. *Cell Communication and*
752 *Signaling* **17**, 111 (2019).

753 13. Yoshida, T. *et al.* A covalent small molecule inhibitor of glutamate-oxaloacetate
754 transaminase 1 impairs pancreatic cancer growth. *Biochemical and Biophysical Research*
755 *Communications* **522**, 633–638 (2020).

756 14. O’Neil, N. J., Bailey, M. L. & Hieter, P. Synthetic lethality and cancer. *Nature Reviews*
757 *Genetics* **18**, 613–623 (2017).

758 15. Zecchini, V. & Frezza, C. Metabolic synthetic lethality in cancer therapy. *Biochimica et*
759 *Biophysica Acta (BBA) - Bioenergetics* **1858**, 723–731 (2017).

760 16. Mancias, J. D., Wang, X., Gygi, S. P., Harper, J. W. & Kimmelman, A. C. Quantitative
761 proteomics identifies NCOA4 as the cargo receptor mediating ferritinophagy. *Nature* **509**,
762 105–109 (2014).

763 17. Li, C. *et al.* Identification of Pancreatic Cancer Stem Cells. *Cancer Res* **67**, 1030–1037
764 (2007).

765 18. Nelson, B. S. *et al.* Tissue of origin dictates GOT1 dependence and confers synthetic
766 lethality to radiotherapy. *Cancer & Metabolism* **8**, 1 (2020).

767 19. Dolma, S., Lessnick, S. L., Hahn, W. C. & Stockwell, B. R. Identification of genotype-
768 selective antitumor agents using synthetic lethal chemical screening in engineered human
769 tumor cells. *Cancer Cell* **3**, 285–296 (2003).

770 20. Dixon, S. J. *et al.* Ferroptosis: An Iron-Dependent Form of Nonapoptotic Cell Death. *Cell*
771 **149**, 1060–1072 (2012).

772 21. Larraufie, M.-H. *et al.* Incorporation of metabolically stable ketones into a small molecule
773 probe to increase potency and water solubility. *Bioorganic & Medicinal Chemistry Letters* **25**,
774 4787–4792 (2015).

775 22. Gorrini, C., Harris, I. S. & Mak, T. W. Modulation of oxidative stress as an anticancer
776 strategy. *Nature Reviews Drug Discovery* **12**, 931–947 (2013).

777 23. Kamphorst, J. J. *et al.* Human pancreatic cancer tumors are nutrient poor and tumor cells
778 actively scavenge extracellular protein. *Cancer Res.* **75**, 544–553 (2015).

779 24. Sullivan, M. R. *et al.* Quantification of microenvironmental metabolites in murine cancers
780 reveals determinants of tumor nutrient availability. *eLife* **8**, e44235 (2019).

781 25. Meister, A. & Anderson, M. E. Glutathione. *Annual Review of Biochemistry* **52**, 711–760
782 (1983).

783 26. Griffith, O. W. Mechanism of action, metabolism, and toxicity of buthionine sulfoximine and
784 its higher homologs, potent inhibitors of glutathione synthesis. *J. Biol. Chem.* **257**, 13704–
785 13712 (1982).

786 27. Harris, I. S. *et al.* Deubiquitinases Maintain Protein Homeostasis and Survival of Cancer
787 Cells upon Glutathione Depletion. *Cell Metab.* **29**, 1166–1181.e6 (2019).

788 28. Bailey, H. H. L-S,R-buthionine sulfoximine: historical development and clinical issues.
789 *Chemico-Biological Interactions* **111–112**, 239–254 (1998).

790 29. Villablanca, J. G. *et al.* A Phase I New Approaches to Neuroblastoma Therapy Study of
791 Buthionine Sulfoximine and Melphalan With Autologous Stem Cells for Recurrent/Refractory
792 High-Risk Neuroblastoma. *Pediatric Blood & Cancer* **63**, 1349–1356 (2016).

793 30. Yang, W. S. *et al.* Regulation of ferroptotic cancer cell death by GPX4. *Cell* **156**, 317–331
794 (2014).

795 31. Stockwell, B. R. *et al.* Ferroptosis: A Regulated Cell Death Nexus Linking Metabolism,
796 Redox Biology, and Disease. *Cell* **171**, 273–285 (2017).

797 32. Viswanathan, V. S. *et al.* Dependency of a therapy-resistant state of cancer cells on a lipid
798 peroxidase pathway. *Nature* **547**, 453–457 (2017).

799 33. Skouta, R. *et al.* Ferrostatins inhibit oxidative lipid damage and cell death in diverse disease
800 models. *J. Am. Chem. Soc.* **136**, 4551–4556 (2014).

801 34. Gaschler, M. M. *et al.* FINO2 initiates ferroptosis through GPX4 inactivation and iron
802 oxidation. *Nat. Chem. Biol.* **14**, 507–515 (2018).

803 35. Doll, S. *et al.* FSP1 is a glutathione-independent ferroptosis suppressor. *Nature* **575**, 693–
804 698 (2019).

805 36. Bersuker, K. *et al.* The CoQ oxidoreductase FSP1 acts parallel to GPX4 to inhibit
806 ferroptosis. *Nature* **575**, 688–692 (2019).

807 37. Alvarez, S. W. *et al.* NFS1 undergoes positive selection in lung tumours and protects cells
808 from ferroptosis. *Nature* **551**, 639–643 (2017).

809 38. Zou, Y. *et al.* A GPX4-dependent cancer cell state underlies the clear-cell morphology and
810 confers sensitivity to ferroptosis. *Nature Communications* **10**, 1–13 (2019).

811 39. Thomas, F. *et al.* Calcein as a fluorescent probe for ferric iron. Application to iron nutrition in
812 plant cells. *J. Biol. Chem.* **274**, 13375–13383 (1999).

813 40. Kimmelman, A. C. & White, E. Autophagy and Tumor Metabolism. *Cell Metab.* **25**, 1037–
814 1043 (2017).

815 41. Yang, S. *et al.* Pancreatic cancers require autophagy for tumor growth. *Genes Dev.* **25**,
816 717–729 (2011).

817 42. Sousa, C. M. *et al.* Pancreatic stellate cells support tumour metabolism through autophagic
818 alanine secretion. *Nature* **536**, 479–483 (2016).

819 43. Zhou, X., Curbo, S., Li, F., Krishnan, S. & Karlsson, A. Inhibition of glutamate oxaloacetate
820 transaminase 1 in cancer cell lines results in altered metabolism with increased dependency
821 of glucose. *BMC Cancer* **18**, 559 (2018).

822 44. Gao, M., Monian, P., Quadri, N., Ramasamy, R. & Jiang, X. Glutaminolysis and Transferrin
823 Regulate Ferroptosis. *Mol. Cell* **59**, 298–308 (2015).

824 45. Gao, M. *et al.* Ferroptosis is an autophagic cell death process. *Cell Res.* **26**, 1021–1032
825 (2016).

826 46. Hou, W. *et al.* Autophagy promotes ferroptosis by degradation of ferritin. *Autophagy* **12**,
827 1425–1428 (2016).

828 47. Torti, S. V. & Torti, F. M. Iron and cancer: more ore to be mined. *Nat. Rev. Cancer* **13**, 342–
829 355 (2013).

830 48. Gui, D. Y. *et al.* Environment dictates dependence on mitochondrial complex I for NAD⁺ and
831 aspartate production and determines cancer cell sensitivity to metformin. *Cell Metab* **24**,
832 716–727 (2016).

833 49. Maddocks, O. D. K. *et al.* Modulating the therapeutic response of tumours to dietary serine
834 and glycine starvation. *Nature* **544**, 372–376 (2017).

835 50. Mandal, P. K. *et al.* System x(c)- and thioredoxin reductase 1 cooperatively rescue
836 glutathione deficiency. *J. Biol. Chem.* **285**, 22244–22253 (2010).

837 51. Gao, M. *et al.* Role of Mitochondria in Ferroptosis. *Mol. Cell* **73**, 354–363.e3 (2019).

838 52. Magtanong, L. *et al.* Exogenous Monounsaturated Fatty Acids Promote a Ferroptosis-
839 Resistant Cell State. *Cell Chem Biol* **26**, 420–432.e9 (2019).

840 53. Yuan, M. *et al.* Ex vivo and in vivo stable isotope labelling of central carbon metabolism and
841 related pathways with analysis by LC-MS/MS. *Nat Protoc* **14**, 313–330 (2019).

842 54. Lee, H.J. *et al.* A large-scale analysis of targeted metabolomics data from heterogeneous
843 biological samples provides insights into metabolite dynamics. *Metabolomics* **15**, 103
844 (2019).

845 **Supplemental Figure Legends**
846

847 **Supplementary Figure 1, related to Figure 1. GOT1 dependence varies among**
848 **pancreatic cancers. A)** Representative colony formation after 10-15 days (n=3)
849 corresponding to **Figure 1D. B)** Immunoblots corresponding to Figure 1D and SFigure
850 1A. Non-targeting, sh1, and sh3 stable cell lines were treated with dox for 5 days. VCL
851 was used as a loading control. **C)** Intracellular aspartate abundance in Pa-Tu-8902
852 shNT and sh1 stable cell lines after 5 days of dox-treatment accessed by liquid-
853 chromatography tandem mass spectrometry, normalized to mock (n=3). **D)** Relative
854 colony counts for NT (black/blue) stable cell lines and parental cell lines (grey/red)
855 corresponding to **Figure 1D** after 10-15 days (n=3). **E)** Relative cell number of
856 immortalized non-transformed human cell lines with shNT vectors corresponding to
857 Figure 1E. 1, 3, or 5-day time points were used, normalized to day 1 (n=3). **F)** Common
858 mutations associated with PDA from the Cancer Cell Line Encyclopedia. **G)** Expression
859 (mRNA) of malate-aspartate shuttle enzymes in GOT1 sensitive (n=7) and insensitive
860 (n=4) PDA cell lines from the Cancer Cell Line Encyclopedia. Sensitivity based on data
861 in **Figure 1D. H)** Growth of subcutaneous xenograft tumors containing non-targeting
862 (NT) vectors treated with dox (red) or vehicle (black) (n= 6), corresponding to Figure 1F.
863 **I)** Immunoblots for GOT1 corresponding to Figures 1J and SFigure 1H. VCL was used
864 as a loading control. **J)** Cell cycle distribution of Pa-Tu-8902 cells expressing shNT
865 constructs corresponding to **Figure 1K. K)** Relative cell number in iDox-shGOT1 or NT
866 cells corresponding to Figure 1H. 1, 3, and 5-day time points were used. Cell counts
867 were normalized to day 1 (n=3). Error bars represent mean \pm SD. Non-significant P >
868 0.05 (n.s. or # as noted), P \leq 0.05 (*), \leq 0.01 (**), \leq 0.001 (***), \leq 0.0001 (****). See also
869 **Figure 1.**

870
871 **Supplementary Figure 2, related to Figure 2. GOT1 knockdown sensitizes PDA to**
872 **xCT inhibition and cystine deprivation. A)** Area under the curve (AUC) in cell viability
873 for each compound in **Figure 2B** for mock (black) or knockdown conditions (red) after
874 72 hours (n=3). **B-D)** Cell viability dose response curves for erastin after 24 hours in
875 iDox-shGOT1 expressing cell lines (**B**) depicted in **Figure 2D**. shNT expressing cell
876 lines were used in (**C**) and the AUC fold-change is presented, while imidazole ketone
877 erastin (IKE) was used in (**D**) (n=3). **E)** Relative MIA PaCa-2 iDox-shGOT1 cell numbers
878 after 5 days of dox treatment with the indicated conditions. 750nM of IKE was
879 administered on day 1 and each condition is normalized to day 1 (n=3). **F)** Relative
880 reduced glutathione levels (GSH) after 5 days of knockdown followed by 750nM of
881 erastin for 6 hours. GSH levels were first normalized to cell viability and then normalized
882 again to vehicle treatment (black and grey) (n=3). **G)** Cell viability of Mia PaCa-2 iDox-
883 shGOT1 after 5 days of dox culture then 750nM IKE co-cultured with the indicated
884 conditions (n=3). **H)** Relative Mia PaCa-2 iDox-shGOT1 cell numbers following 5 days
885 of GOT1 knockdown and the indicated media conditions (n=3). **I)** Cell viability of Pa-Tu-
886 8902 iDox-shGOT1 (red) and Mia PaCa-2 iDox-shGOT1 (blue) following 5 days of dox
887 pre-treatment and 24 hours of the indicated cystine concentrations (n=4). **J)** Total post-
888 treatment tumor burden (mock, n=5), (-Cys, 4), (dox, n=4), and (dox, -Cys, n=5).
889 **K)** Cysteine levels in tumors at endpoint (mock, n=5), (-Cys, 4), (dox, n=4), and (dox, -
890 Cys, n=6). Error bars represent mean \pm SD (Figures S2a-h) or mean \pm S.E.M (Figures

891 S2i-j). Two-tailed unpaired T-test or 1-way ANOVA: Non-significant $P > 0.05$ (n.s. or # as
892 noted), $P \leq 0.05$ (*), ≤ 0.01 (**), ≤ 0.001 (***), ≤ 0.0001 (****). See also **Figure 2**.
893

894 **Supplementary Figure 3, related to Figure 3. GOT1 knockdown sensitizes PDA to**
895 **GCLC inhibition.** **A-B)** Dose-response curves for iDox-shGOT1 cells after 5 days of
896 GOT1 knockdown followed by BSO treatment for 24 (**A**) or 72 hours across 2 PDA cell
897 lines (**B**) (n=3). **C)** Area under the curve (AUC) normalized to +dox in matched sh non-
898 targeting (shNT). Cells were cultured with dox for 5 days prior to drug treatment.
899 Viability is normalized to a 0.1% DMSO vehicle control (n=3). **D)** Raw EC₅₀ values
900 corresponding to Figure 3B and Figure S3B (n=3). **E)** Relative GSH levels normalized to
901 viability and vehicle after 6 hours of 40 μ M BSO treatment (n=3). **F)** Fold change of MIA
902 PaCa-2 iDox-shGOT1 cell numbers after 5 days of GOT1 knockdown and treatment
903 with the indicated conditions. 40 μ M of BSO was administered on day 1. Cell numbers
904 are normalized to day 1 for each condition (n=3). **G)** Relative viability of MIA PaCA-2
905 iDox-shGOT1 cells after 5 days of GOT1 knockdown and treatment with 40 μ M BSO or
906 co-treatment with 0.5mM N-acetyl cysteine (NAC) 0.5mM GSH-ethyl ester (GSH-EE,
907 n=3). **H)** Individual tumor volume measurements corresponding to Figure 3F (n=8). **I)**
908 Immunoblot analysis of GOT1 from tumors in Figure 3F (n=8). **J)** Relative abundances
909 of aspartate from whole tumor metabolite extracts from tumors in **Figure 3E** (n=8). Error
910 bars represent mean \pm SD. Two-tailed unpaired T-test or 1-way ANOVA: Non-significant
911 $P > 0.05$ (n.s. or # as noted), $P \leq 0.05$ (*), ≤ 0.01 (**), ≤ 0.001 (***), ≤ 0.0001 (****). See
912 also **Figure 3**.
913

914 **Supplementary Figure 4, related to Figure 4. GOT1 suppression sensitizes PDA to**
915 **ferroptotic cell death.** **A)** Percent cell viability dose-response curves from 5 additional
916 shGOT1 PDA cell lines upon 24 hours of RSL-3 treatment. GOT1 was knocked down 5
917 days prior to drug treatment. Viability is normalized to a 0.1% DMSO vehicle control
918 (n=3). **B)** Raw EC₅₀ values for cells treated with RSL-3 for 24 hours. **C)** Area under the
919 curve (AUC) normalized to +dox in matched sh non-targeting (shNT) cell lines. Cells
920 were cultured with dox for 5 days prior to drug treatment. Viability is normalized to a
921 0.1% DMSO vehicle control (n=3). **D)** Fold change Mia PaCa-2 iDox-shGOT1 cell
922 numbers following 5 days of knockdown and treatment with the indicated conditions.
923 32nM of RSL-3 was administered on day 1. Cell numbers are normalized to day 1 for
924 each condition (n=3). **E)** Distribution of Pa-Tu-8902 iDox-shGOT1 cells positive for C11-
925 BODIPY corresponding to Figure 4E. Data are normalized to the -dox and vehicle-
926 treated condition (n=3). **F)** Relative lipid ROS in Pa-Tu-8902 iDox-shGOT1 treated with
927 32nM RSL-3 or 750nM Erastin -/+ 1 μ M Ferrostatin-1 (Fer-1) for 6 hours (n=3).
928 **H)** Single agent cell viability controls corresponding to **Figures 5F** and **SFigure 5G**.
929 Data are normalized to the -dox and vehicle treated control (n=3). **I)** Fold change Pa-Tu-
930 8902 iDox-shGOT1 cell numbers following 5 days of knockdown and treatment with the
931 indicated conditions (n=3). 32nM RSL-3, 750nM Erastin, or 40 μ M BSO -/+ 1 μ M
932 Ferrostatin-1 (Fer-1) were used. Cell numbers are normalized to day 1 for each
933 condition (n=3). **J)** Cell viability dose-response curves upon 24 hours of (-)-FINO₂
934 treatment following 5 days of GOT1 knockdown (n=3). Viability is normalized to a 0.1%
935 DMSO vehicle control. Error bars represent mean \pm SD. Two-tailed unpaired T-test or 1-

936 way ANOVA: Non-significant $P > 0.05$ (n.s. or # as noted), $P \leq 0.05$ (*), ≤ 0.01 (**), ≤ 0.001 (***), ≤ 0.0001 (****). See also **Figure 4**.
937
938

939 **Supplementary Figure 5, related to Figure 5. GOT1 knockdown promotes labile**
940 **iron release in response to metabolic stress.** **A**) Model depicting known metabolic
941 regulators of ferroptosis. **B**) Immunoblot for HIF-2 in response to GOT1 knockdown. FG-
942 4592 is a positive control for HIF-2 expression. **C-D**) Gene expression (mRNA) of
943 HILPDA in Pa-Tu-8902 (**C**) and MIA PaCa-2 (**D**) following knockdown (n=4 in C, and
944 n=3 in D). **E**) Cell viability dose-response curves upon 72 hours of ferrous ammonium
945 citrate after 5 days of GOT1 knockdown (n=3). Viability is normalized to a 0.1% DMSO
946 vehicle control. **F-G**) Mean fluorescence intensity (MFI) (**F**) Calcein-AM in MIA PaCa-2
947 iDox-shGOT1 and relative labile iron (**G**) (n=4). **H-I**) mRNA expression of iron regulatory
948 genes in Pa-Tu-8902 (**H**) and MIA PaCa-2 (**I**) iDox-shGOT1 following 5 days of
949 knockdown (n=3). **J**) Representative images of basal autophagic flux in MT3-LC3
950 tandem fluorescence (GFP–RFP) reporter treated with GOT1 inhibitor PF-04859989. **K**)
951 AMP and ATP levels corresponding to **Figure 5H** measured by liquid-chromatography
952 tandem mass spectrometry, normalized to -dox (n=4). Error bars represent mean \pm SD.
953 Two-tailed unpaired T-test or 1-way ANOVA: Non-significant $P > 0.05$ (n.s. or # as
954 noted), $P \leq 0.05$ (*), ≤ 0.01 (**), ≤ 0.001 (***), ≤ 0.0001 (****). See also **Figure 5**.
955

956 **Supplementary Figure 6. Representative C11-BODIPY Gating.** Cells were first gated
957 by size using forward scatter area (FSA) vs. forward scatter height (FSH). Doublet
958 exclusion was then performed using side scatter area (SSA) vs. side scatter height
959 (SSH). Live cells were assessed selecting the Sytox Blue (DAPI) negative population in
960 both experiments. C-11 BODIPY (FITC) were measured in single and live cells for each
961 condition above.
962

963 **Supplementary Figure 7. Representative Calcein-AM Gating.** Cells were first gated
964 by size using side scatter area (SSC-A) vs. forward scatter area (FSC-A). Doublets
965 were excluded by comparing forward scatter width (FSC-W) vs. forward scatter height
966 (FSC-H). Live cells were assessed selecting the Sytox Blue (Pacific Blue) negative
967 population in both experiments. Calcein-AM (FITC) levels were measured in single and
968 live cells.