Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex
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Abstract

We used the 10x Genomics Visium platform to define the spatial topography of gene expression
in the six-layered human dorsolateral prefrontal cortex (DLPFC). We identified extensive
layer-enriched expression signatures, and refined associations to previous laminar markers. We
overlaid our laminar expression signatures onto large-scale single nuclei RNA sequencing data,
enhancing spatial annotation of expression-driven clusters. By integrating neuropsychiatric
disorder gene sets, we showed differential layer-enriched expression of genes associated with
schizophrenia and autism spectrum disorder, highlighting the clinical relevance of
spatially-defined expression. We then developed a data-driven framework to define
unsupervised clusters in spatial transcriptomics data, which can be applied to other tissues or
brain regions where morphological architecture is not as well-defined as cortical laminae. We
lastly created a web application for the scientific community to explore these raw and
summarized data to augment ongoing neuroscience and spatial transcriptomics research
(http://research.libd.org/spatialLIBD).
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Introduction

The spatial organization of the brain is fundamentally related to its function. This
structure-function relationship is especially apparent in the context of the laminar organization of
the human cerebral cortex where cells residing within different cortical layers show distinct gene
expression patterns and exhibit differing patterns of morphology, physiology, and connectivity
(DeFelipe and Farifias, 1992; Harris and Shepherd, 2015; Narayanan et al., 2017; Radnikow
and Feldmeyer, 2018). To the extent that structure entrains function, understanding normal
brain development as well as disorders of the central nervous system will require identifying the
cell types that make up the brain, and ultimately linking functional correlates of individual cell

classes with structural architecture.

Major advances in single-cell (scRNA-seq) and single-nuclei (snRNA-seq) sequencing
technologies have dramatically increased identification of molecularly-defined cell types in the
human brain and implicated unique cell classes in risk for specific brain disorders (Darmanis et
al., 2015; Hodge et al., 2019; Lake et al., 2016, 2018; Mathys et al., 2019; Nowakowski et al.,
2017; Velmeshev et al., 2019). While scRNA-seq approaches are common in rodent brain
tissue, the relatively large size and fragility of human neurons, coupled with the fact that most
available postmortem human brain tissue is frozen, has resulted in nearly all available data in
the human brain being generated on isolated nuclei with snRNA-seq approaches (Skene et al.,
2018). While nuclear profiles are generally representative of whole cell profiles (Bakken et al.,
2018), isolated nuclei lack the cytoplasmic compartment as well as axons and proximal
dendrites, which limits our understanding of gene expression in the cytosol and neuropil (Skene

et al., 2018). This is problematic for studies of brain disorders as converging evidence suggests
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that impairments in the formation or maintenance of synapses in critical cortical microcircuits are
involved in many neuropsychiatric and neurodevelopmental disorders, including schizophrenia
disorder (SCZD) and autism spectrum disorder (ASD) (Moyer et al., 2015; Sweet et al., 2010;
Velmeshev et al., 2019). Indeed, studies in the postmortem brains of individuals with these
disorders have implicated not only specific cell types (Gandal et al., 2018; Skene et al., 2018;
Velmeshev et al., 2019), but also revealed differences in neuronal and synaptic structure that
are spatially localized to specific cortical layers (Sweet et al., 2010; Velmeshev et al., 2019).
Furthermore, genes associated with increased risk for SCZD that were identified by
genome-wide association studies (GWAS) are preferentially enriched for synaptic neuropil
transcripts (Skene et al., 2018), suggesting that the extra-nuclear information missed by
snRNA-seq approaches may be especially relevant for understanding genetic risk for brain
disorders. While molecular profiles derived from sc/sn-RNAseq data can be used to predict
anatomical location based on canonical marker genes described in the literature or from curated
datasets, precisely assigning gene expression to the spatial coordinates of individual cell
populations within intact brain cytoarchitecture of postmortem human brain tissue would

significantly advance our understanding of studies of human brain development and disease.

Because it is considered a gold standard for quantifying gene expression with high
spatial resolution, we recently established and optimized methods for using multiplex
single-molecule fluorescent in situ hybridization (smFISH) in postmortem human brain tissue
(Maynard et al., 2019). However, multiplexing with these technologies is limited, and even for
methodologies that can accommodate hundreds to thousands of transcripts simultaneously,
molecular crowding within cells leads to fluorescence overlap, which introduces significant

microscopy-related issues and computational challenges (Burgess, 2019; Lein et al., 2017). The
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relatively large size of the human brain and lipofuscin-derived autofluorescence pose additional
challenges for microscopy-based spatial transcriptomic methods in postmortem human tissue.
While methods such as laser capture microdissection (LCM)-seq do allow for
transcriptome-wide profiling from cytosol in a spatially-defined area (Dong et al., 2018; He et al.,
2017; Jaffe et al., 2019), the tissue is removed from the surrounding spatial context and
processed separately, hindering the ability to analyze gradients of gene expression and

examine spatial relationships within intact sections.

Emerging technologies for genome-wide spatial transcriptomics offer significant potential
for providing detailed molecular maps that overcome limitations associated with sn/scRNA-seq
and microscopy-based spatial transcriptomic methods. Importantly, these technologies use an
on-slide cDNA synthesis approach that captures gene expression in the architecture of intact
tissue, meaning that information from cytosol and neuronal processes is retained (Rodriques et
al., 2019; Stahl et al., 2016). To further our understanding of gene expression within the context
of the spatial organization of the human cortex, we used the recently-released, 10x Genomics
Visium platform, a novel barcoding-based transcriptome-wide spatial transcriptomics
technology, to generate spatial maps of gene expression in the six-layered dorsolateral
prefrontal cortex (DLPFC) of the adult human brain. The Visium platform expands the spatial
resolution 5-fold beyond the first-generation 'Spatial Transcriptomics' approach (Stahl et al.,
2016) upon which it is based. While the original approach was successfully used to generate
gene expression atlases and identify perturbations in transcriptional pathways for several
normal and pathological human tissues, including the developing heart (Asp et al., 2018),
invasive ductal cancer (Stahl et al., 2016), pancreatic ductal adenocarcinoma (Moncada et al.,

2018), prostate cancer (Berglund et al., 2018), postmortem spinal cord (Maniatis et al., 2019)
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and cerebellum (Gregory et al., 2020) of patients with amyotrophic lateral sclerosis (ALS), it
lacked the necessary spatial resolution to resolve both individual cells and laminar structures in

the human cortex.

Since some differences in pathology and gene expression associated with
neuropsychiatric disorders are localized to specific cortical layers (Sweet et al., 2010;
Velmeshev et al., 2019), the ability to localize spatial gene expression in the human brain at
cellular resolution will be critical to gain further insight into disease mechanisms. Towards this
end, we sought to define the laminar topography of gene expression in the human DLPFC, a
brain area that has been implicated in a number of neuropsychiatric disorders. We overlaid data
from recent large-scale snRNA-seq studies in the human brain with our spatial data to first
confirm our layer-enriched expression signatures, and to then increase precision in manual
annotation of gene expression-driven clusters to cortical laminae. To exemplify the potential of
this type of data for clinical translation, we integrated our dataset with various neuropsychiatric
disorder gene sets to demonstrate preferential layer-enriched expression of ASD risk genes and
layer-enriched association of risk for several neuropsychiatric disorders. Finally, we compared
the manually-annotated laminar clusters to entirely data-driven spatial clusters in the same
human cortical tissue, using an approach that can also be applied to other human tissues and
brain regions that do not have as clear morphological patterning as the cerebral cortex. We
provide these data and analysis tools as a significant scientific resource for the neuroscience
community to augment current molecular profiling and spatial transcriptomics efforts in the

human brain.

Results
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We profiled spatial gene expression in human postmortem DLPFC tissue sections from
two pairs of 'spatial replicates' from three independent neurotypical adult donors. Each pair
consisted of two, directly adjacent 10um serial tissue sections with the second pair located
300um posterior from the first, resulting in a total of 12 samples run on the Visium platform
(Figure 1 A, Table S1, Method Details: Tissue processing and Visium data generation). We
sequenced each sample to a median depth of 291.1M reads (IQR: 269.3M-327.7M), which
corresponded to a mean 3,462 unique molecular indices (UMIs) and a mean 1,734 genes per
spot. We note these rates are analogous to snRNA-seq and scRNA-seq data using the 10x
Genomics Chromium platform, where a ‘cell’ barcode on the Chromium platform corresponds to
a ‘spatial’ barcode on the Visium platform. However, unlike snRNA-seq data from postmortem
human brain, which contains high numbers of intronic reads that map to immature transcripts,
we found strong enrichment of mature mRNAs with high mean rates of exonic alignments
(mean: 83.3%, IQR: 82.5-84.3%, Method Details: Visium raw data processing). Independent
processing and cell segmentation of high-resolution histology images acquired before on-slide
cDNA synthesis indicated an average of 3.3 cells per spot (IQR: 1-4), with a mean 15.0% (IQR:
12.8-17.9%) spots per sample containing a single cell body and 9.7% (IQR: 5.4-12.3%)
‘neuropil’ spots that lacked any cell bodies (Method Details: Histology image processing and
segmentation). Tissue sections were acquired in the plane perpendicular to the pial surface that
extended to the gray-white matter junction. The orientation of each sample was confirmed by
delineating the border between layer 6 (L6) and the adjacent white matter (WM) and identifying
layer (L5) using marker genes for gray matter/neurons (SNAP25), WM/oligodendrocytes

(MOBP), and L5 (PCP4) in each tissue section (Figure S1, Figure S2, and Figure S3).



Gene expression in the DLPFC across cortical laminae

We first generated aggregated layer-enriched expression profiles for each spatial
replicate using a ‘supervised’ approach. We used cytotectonic architecture (Rajkowska and
Goldman-Rakic, 1995a, 1995b) and robustly expressed region/layer-enriched markers
(MBP-WM, PCP4-L5) combined with a dimensionality reduction method, specifically
t-Distributed Stochastic Neighbor Embedding (--SNE) (van der Maaten and Hinton, 2008), to
assign individual spots to each of the six neocortical layers or the WM (Figure S4, Method
Details: Spot-level data processing). Then, we performed ‘pseudo-bulking’ (Crowell et al., 2019;
Kang et al., 2018; Lun and Marioni, 2017) by summing the UMI counts for each gene within
each layer across each spatial replicate to generate layer-enriched expression profiles (Figure
2A, Method Details: Layer-level data processing). The pseudo-bulking approach, summarizing
47,681 spots to 76 layer-aggregated profiles across the 12 samples, removed sparsity and
greatly increased UMI coverage of genes (Figure 2A). Unsupervised clustering of these
layer-enriched expression profiles revealed the top component of variation in the data related to
laminar differences, particularly between the white and gray matter (Figure 2B), with high
concordance between the pairs of spatial replicates (Figure S5). Segmentation of histological
images confirmed sparser cell densities in layer 1 (L1), a molecular layer enriched in synaptic
processes, with 33.4% and 21.7% of spots containing 0 and 1 cell body, respectively. We
observed increased cell densities in the oligodendrocyte-enriched WM, with 3.9% and 5.9% of
spots containing 0 and 1 cell body, respectively (Table $2). We hypothesized that these
‘neuropil spots’ with 0 cell bodies may be enriched with neuronal processes (i.e. axons and
dendrites; Table S3), and as predicted we identified significant enrichment of genes that are
preferentially expressed in the transcriptome of synaptic terminals (Hafner et al., 2019) (p=0.38,

p=1.9e-30, Figure S6) (Method Details: Neuropil enrichment analyses). Together, these
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analyses demonstrate the power of concurrently acquiring histology and gene expression data
and highlight the ability of the Visium platform to achieve high resolution spatial expression

profiling within the human DLPFC.

We used three strategies to perform differential expression (DE) analyses using the
layer-enriched expression profiles generated above with linear mixed-effects modeling (Figure
S7, Method Details: Layer-level gene modeling). The first strategy involved testing for
differences in mean expression across the six layers plus WM (we also tested for differences in
mean expression with only six layers, excluding WM), termed the ‘ANOVA’ model (Figure 2 C),
which estimates an F-statistic for each gene. This strategy revealed extensive differential
expression across the laminar organization of the DLPFC, with 10,633 (47.6%) DE genes
(DEGs) across the six gray matter layers plus WM (at FDR < 0.05) and 8,581 (38.4%) DEGs
across the six gray matter layers excluding WM (FDR < 0.05). As expected, these results
suggested extensive differences in gene expression between the layers of the DLPFC beyond
broad white versus gray matter comparisons. The second strategy identified layer-enriched
genes by testing for differences in expression between one layer versus all other layers, termed
the ‘enrichment’ model (Figure 2 D), which resulted in a t-statistic (termed ‘layer-enriched
statistics’ hereafter) and p-value (and corresponding FDR adjusted g-value) for each expressed
gene and layer (Method Details: Layer-level gene modeling). The largest expression differences
were between WM and the neocortical layers, with 9,124 DEGs (FDR < 0.05), and the smallest
differences were between L3 and all other layers with 183 DEGs genes (Table S4). In the third
strategy, we tested for genes differentially expressed between each pair of layers (21 pairs),
termed the ‘pairwise’ model (Figure 2 E, Method Details: Layer-level gene modeling), which

produced significant DEGs ranging from 8,500 for WM versus L3 to 292 for L4 versus L5 (Table



S$4). Together, these analyses highlight the extensive gene expression differences between the

different layers of the human adult DLPFC.

Identifying novel layer-enriched genes in human cortex

Several resources have compiled genes that exhibit laminar-specific expression across
both rodent (Molyneaux et al., 2007) and human cortex (Zeng et al., 2012). While both
overlapping and unique marker genes have been identified, these studies used different
technologies, examined different developmental stages, and queried different regions of cortex.
Therefore, we systematically assessed the robustness of these previously identified marker
genes in our human adult DLPFC layer-enriched gene expression dataset. First, we tested for
enrichment of previously published layer-enriched genes - as a set - among our layer-enriched
DEGs, and found strong enrichment (p=1.22e-41). Since many of these marker genes were
previously annotated to multiple layers (i.e. CCK and ENC1, Figure 3), rather than a single layer
as queried in our DE analyses, we fit the ‘optimal’ statistical model for each gene using our
layer-enriched expression profiles (Method Details: Known marker genes optimal modeling,
Table S5). For example, CCK was annotated to L2, L3, L5 and L6, which were together tested
against combining L1, L4, and WM in this optimal model. Only a subset of previously-associated
layer-enriched genes showed high ranks and significant differential expression in our human
DLPFC data (Figure S8), which were largely driven by markers identified by Zeng et al. (Zeng

et al., 2012).

We further confirmed laminar enrichment of a number of canonical marker genes,
including CCK, ENC1, CUX2, RORB, and NTNG2, and validated these findings against publicly

available singleplex in situ hybridization data from the Allen Brain Institute’s Human Brain Atlas
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(Hawrylycz et al., 2012) (Figure 3 and Figure S9). Interestingly, while many of these genes
(FABP7, ADCYAP1, PVALB) showed layer-enriched expression in our data, they were not
classified by the Allen Brain Institute resources as being layer markers, demonstrating the utility
of quantitative transcriptome-scale spatial approaches. Although we confirmed several
canonical layer-enriched/specific genes, we found that only 59.5% of previously identified
marker genes were significant DEGs (FDR < 0.05) in human DLPFC (Table S5). Indeed, we
identified several genes previously underappreciated as laminar markers in human DLPFC,
including AQP4 (L1), HPCAL1 (L2), FREM3 (L3), TRABD2A (L5) and KRT17 (L6) (Figure 4 and
Figure $10). We validated these novel layer-enriched DEGs using multiplex single molecule
fluorescent in situ hybridization (Figure 4 and Figure S11, Methods Details: RNAscope
smFISH). Novel layer-enriched DEGs were also validated by multiplexing with previously
identified layer markers in the literature, many of which were also replicated in our Visium data

(Figure S12).

Spatial reqgistration of single nuclei RNA sequencing (snRNA-seq)

Adding spatial resolution to snRNA-seq datasets generated from human brain tissue has
the potential to provide further insights about the function of molecularly-defined cell types.
Specifically, layer-enriched expression profiles and differential expression statistics derived from
the ‘enrichment model’ in our Visium data can be used to spatially "register" snRNA-seq
datasets and add layer-enriched information to data-driven expression clusters that do not
contain inherent anatomical information (Figure 5 A, Methods Details: snRNA-seq spatial
registration). We first used snRNA-seq data from Hodge et al. (Hodge et al., 2019) to confirm
our layer-enriched expression profiles and validate this spatial registration strategy. While the

snRNA-seq data in that study was obtained predominantly from NeuN+ sorted neuronal nuclei
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that were isolated from manually-dissected layers of the human postmortem middle temporal
gyrus cortex, our layer-enriched DEGs from spatially-barcoded bulk tissue sections were in
agreement with the laminar assignments from which these nuclei were derived (Figure 5 B). We
further validated this strategy on bulk RNA-seq data that was generated from
manually-dissected laminar serial sections of the human cortex from four donors (He et al.,
2017). This data however lacked corresponding histology data to definitively annotate specific
cortical layers, and assignment of sections to layers likely underestimated the amount of WM
present (~5 sections/sample instead of just one predicted section), and missed L1 in one of their

four subjects (H1) (Figure $13).

We then used our layer-enriched statistics to perform spatial registration across three
independent snRNA-seq datasets from human cortex. First, we generated our own snRNA-seq
data from DLPFC using 5,231 nuclei from two donors, and performed data driven clustering to
generate 30 preliminary cell clusters across 7 broad cell types (Figure S14, Method Details:
DLPFC snRNA-seq data generation). Integration of our layer-enriched statistics refined
excitatory and inhibitory neuronal subclasses into upper and deep layer subgroups beyond
expected enrichments of glial cells in the WM (Figure S15 A). We further assessed the
robustness of this approach by re-analyzing processed snRNA-seq from 48 donors across
70,634 nuclei obtained from the human prefrontal cortex (BA10) across 44 broad clusters in a
study of Alzheimer's disease (Mathys et al., 2019). Glial cell subpopulations showed expected
enrichments, with preferential expression of oligodendrocyte subtypes in the WM, astrocyte
subtypes in L1, and microglia, oligodendrocyte precursor (OPC), pericytes, and endothelial
subtypes in both L1 and WM (Figure 5 C). Neuronal cell subtypes showed greater laminar

diversity, with multiple excitatory and inhibitory neuronal cell types associating with L2/L3, L4,
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L5, and L6 preferential expression, with generally more layer-enriched expression within
excitatory cells (Figure 5 C). Interestingly, our analysis showed that the excitatory neuronal
subclasses (Ex2, Ex4, Ex6) identified by Mathys et al. that were most associated with clinical
traits of Alzheimer's disease were preferentially localized to the upper layers (L2/L3) of DLPFC
in our data. This finding contrasts the inferences that were drawn by Mathys et al., which made
layer assignments based on data obtained from the serial sections in He et al. described above
(He et al., 2017). Specifically, they concluded that excitatory neuronal subclass Ex4 and Ex6
were preferentially expressed in the deeper layers while excitatory neuronal subclass Ex2

showed no laminar enrichment.

We lastly applied our spatial registration analysis to a study of autism spectrum disorder
(ASD) (Velmeshev et al., 2019) including snRNA-seq data from 104,559 nuclei isolated from the
human prefrontal cortex and anterior cingulate cortex that were obtained from 41 samples
across 31 donors, which were annotated to 17 clusters in a study of ASD (Velmeshev et al.,
2019) (Figure S15 B). As expected, we confirmed expected spatial contexts; for example, the
highest enrichment of oligodendrocytes was again found in our histologically-defined WM. Our
spatial registration framework was also able to refine the laminar predictions of cell-types in
these previous studies. For example, integration of layer-enriched genes defined by Visium with
snRNA-seq data from Velmeshev et al. indicated that astrocyte populations were most enriched
in L1, while excitatory neurons annotated to L4 were more likely to be found in L5. These
analyses demonstrate how this ‘spatial registration’ framework can be readily applied to any
existing snRNA-seq or scRNA-seq datasets from dissociated cells to add back anatomical

information.
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Clinical relevance of layer-enriched gene expression profiling

Given that several studies have identified associations between different brain disorders
and molecularly-defined cell types, we assessed the clinical relevance of spatial gene
expression using several different brain disorder-associated gene sets. We assessed the
laminar enrichment of (1) gene sets derived from genes linked to different disorders via DNA
profiling, (2) genes differentially expressed in postmortem brains of patients with a variety of
brain disorders and neurotypical controls, and (3) genes associated with genetic risk via
transcriptome-wide association studies (TWAS) (Gusev et al., 2016). We first used broad gene
sets for different brain disorders compiled by Birnbaum et al. (Birnbaum et al., 2014), which
showed laminar enrichments specifically for ASD (Figure $16, Table S6, Method Details:
Clinical gene set enrichment analyses). We used the latest SFARI Gene database (Abrahams
et al., 2013) to refine these associations, and demonstrate enrichments of L2 (OR=2.74,
p=6.0e-21), L5 (OR=2.1, p=8.7e-7) and L6 (OR=2.7, p=1.8e-7) with ASD risk genes (Figure 6
A). We confirmed the L2 (OR=3.6, p=3.9e-6) and L5 (OR=4.0, p=6.7e-5) associations in a
recent exome sequencing study by Satterstrom et al. (Satterstrom et al., 2020), which identified
102 genes with ASD-associated variants. Interestingly, stratifying these genes by their clinical
symptoms refined the laminar enrichments, as the 53 genes associated with ASD-dominant
traits were more enriched for L5 (OR=4.9, p=5.3e-4, 8 genes: TBR1, SATB1, ANK2, RORB,
MKX, CELF4, PPP5C, AP2S1), whereas the 49 genes associated with neurodevelopmental
delay were more enriched for L2 (OR=4.5, p=7.8e-5, 12 genes: CACNATE, MYT1L, SCN2A,
TBL1XR1, NR3C2, SYNGAP1, GRIN2B, IRF2BPL, GABRB3, RAI1, TCF4, ADNP), suggesting
that different functional subclasses of neurons might be contributing to each clinical subgroup.
These layer-enriched expression associations for risk genes were largely independent of the

enrichments seen comparing genes more highly expressed (WM: p=1.9e-29 and L1: p=4.5e-61)
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or more lowly expressed (L3: p=2.9e-5, L4: p=1.7e-42, L5: p=3.2e-36, and L6: p=1.9e-7) in

brains of ASD patients compared to neurotypical controls (Table S6).

We further assessed laminar enrichment of genes proximal to common genetic variation
associated with SCZD, ASD, bipolar disorder (BPD), and major depressive disorder (MDD) (de
Leeuw et al., 2015). These analyses identified significant overlap between L2-enriched and
L5-enriched genes and risk for SCZD (at Bonferroni < 0.05), with additional overlap between
L2-enriched genes and risk for bipolar disorder (at FDR < 0.05, Table S7). As above with ASD,
there were markedly different laminar enrichments for genes associated with SCZD iliness state.
Enrichment analyses of DEGs identified in two large SCZD postmortem brain datasets
(Collado-Torres et al., 2019; Gandal et al., 2018), while highly convergent across studies,
showed extensive enrichment across all layers, with increased expression of L1, L2, and L3
genes and decreased expression of WM, L4, L5 and L6 genes in patients compared to controls
(Figure 6 B). As secondary analyses, we performed heritability partitioning analysis (Finucane
et al., 2015) for layer-enriched gene sets, which again identified significant heritability
enrichment exclusively for L2 enriched-genes, specifically for SCZD, BPD, and educational
attainment (Table S8, Method Details: Clinical gene set enrichment analyses). We additionally
assessed TWAS statistics constructed for SCZD and BPD from single nucleotide polymorphism
(SNP) weights computed from DLPFC (Gandal et al., 2018; Jaffe et al., 2020). While we did not
observe strong enrichments of TWAS signal for any layer-enriched gene expression, SCZD risk
genes in L2 and L5 suggested decreased expression in iliness (Figure 6 B, Table S6).
Together, these analyses highlight the potential utility of these data in gleaning clinical insights
by incorporating layer-enriched gene expression of the adult DLPFC into the interpretation of

risk genes.
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Data-driven layer-enriched clustering in the DLPFC

Lastly, we explored the use of three alternative ‘data-driven’ approaches to classify
Visium spots into laminar and non-laminar patterns, in contrast to the ‘supervised’ approach of
identifying layer-enriched DEGs from manually-annotation of layers based on cytoarchitecture
(Figure 7 A, B; Figure S17), which may not be feasible in other brain regions or human tissues
that lack clear or established morphological boundaries. Towards this goal, we explored the use
of two gene sets: (1) genes exhibiting spatially variable expression patterns (SVGs) using the
SpatialDE method (Svensson et al., 2018) within each of the 12 samples (Table S9), and (2)
highly variable genes (HVGs) using the scran Bioconductor package (Lun et al., 2016). While no
laminar information was used to identify SVGs and HVGs, interestingly these gene sets could
identify both laminar and non-laminar spatial patterns (Figure 7 C, D). For example, we
identified several SVGs that were non-laminar, including HBB, IGKC, and NPY, which likely
relate to blood cells, immune cells, and inhibitory interneuron classes (Figure 7 D). In a
completely data-driven and ‘unsupervised’ approach, we then used several implementations of
unsupervised clustering methods with spot-level Visium data using these gene sets, with the
possibility of further incorporating spatial coordinates of the spots, since we reasoned that
adjacent spots should tend to show more similar expression levels (Figure 7 E, Figure S18,
Figure $S19 and Supplementary File 1; Method Details: Data-driven layer-enriched clustering
analysis). We compared these results to a ‘semi-supervised’ approach (unsupervised clustering
guided by the layer-enriched genes identified using the DE “enrichment” models (Figure S7)
and an approach using known rodent and human layer marker genes from Zeng et al. (Zeng et

al., 2012) (Figure 7 E, Supplementary File 1, and Table S10).
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Using the manually-annotated layers as a ‘gold standard’ (Figure 7 A, Figure S17), we
evaluated the performance of the three approaches (‘unsupervised’, ‘semi-supervised’ and
‘markers’) using the adjusted Rand index (ARI) as the performance metric. Specifically, the ARI
measures the similarity between the predicted cluster labels from our three approaches and the
‘gold standard’ cluster labels, with higher values corresponding to better performance (Figure 7
F). First, we found consistent, but moderate, performance improvements by incorporating x, y
spatial coordinates of the spots into the clustering methods across all three approaches (Figure
7 F). Within the ‘unsupervised’ approach, we found that using the HVGs resulted in the highest
ARI, but with the SVGs also comparable in performance (Figure 7 F). However, the
‘semi-supervised’ approach resulted in the highest ARI out of all three approaches. This likely
stems from the circularity of performing data-driven clustering guided by our layer-enriched
DEGs on the same data, but this could be powerful in future spatial transcriptomics studies in

the human cortex.

Discussion

In this study we used the 10x Genomics Visium spatial transcriptomics platform to define
the topography of gene expression in the DLPFC of the postmortem human brain. While a
number of genome-scale spatial technologies have been successfully used in the mouse brain,
our study is the first, to our knowledge, to implement Visium technology in human brain tissue.
Based on examination of its histological organization and cytoarchitecture, the neocortex can be
divided into six layers. Histological layers contain multiple cell types, including excitatory
neurons, inhibitory neurons, and glia, and layers can be differentiated based on cell type
composition and density, as well as morphology and connectivity of resident cell types

(DeFelipe and Farifas, 1992; Harris and Shepherd, 2015; Narayanan et al., 2017; Radnikow
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and Feldmeyer, 2018). Studies of postmortem brains from individuals with neuropsychiatric
disorders have identified disease-associated changes in gene expression and synaptic structure
that can be spatially localized to different cortical laminae (Sweet et al., 2010; Velmeshev et al.,
2019). Because brain structure and function are tightly intertwined, defining the molecular
landscape within the existing tissue architecture is a critical next step in understanding how
brain function goes awry in neurodevelopmental, neuropsychiatric and neurodegenerative
disorders. Our study takes a key step in adding new functional insights into spatially and
molecularly-defined cell populations in the cortex by analyzing gene expression within the intact
spatial organization of the human DLPFC.

First, we demonstrated the potential clinical translation of quantifying layer-enriched
expression profiles in human brain samples. By integrating our data with clinical gene sets and
genes differentially expressed in the brains of individuals with various neuropsychiatric
disorders, we demonstrated preferential layer-enriched expression of genes implicated in ASD
and SCZD. Genes that harbor de novo mutations associated with ASD (Satterstrom et al., 2020)
were preferentially expressed in L2 and L5 based on Visium data. Subsets of these genes
associated with specific clinical characteristics could be further partitioned into specific laminae,
as genes predominantly associated with neurodevelopmental delay (NDD) were preferentially
expressed in L2 and genes predominantly associated with ASD were preferentially expressed in
L5. These specific laminar associations with penetrant de novo variants were in contrast to
broad laminar enrichments of genes differentially expressed in the brains of patients with ASD
(Gandal et al., 2018) and lack of laminar enrichment of genes implicated by common genetic
variation (Grove et al., 2019). Interestingly these same two layers - L2 and L5 - showed
preferential enrichment of genes implicated in common variation for SCZD (Pardifias et al.,

2018), and to a lesser extent, BPD (Stahl et al., 2019). These results were in contrast to
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differential expression analyses from postmortem studies of brain tissue from patients with
SCZD compared to neurotypical controls (Collado-Torres et al., 2019; Gandal et al., 2018),
which showed increased expression of upper layer genes and decreased expression of deep
layer and WM genes. Further, we show that the heritability of schizophrenia is enriched for L2, a
finding that implicates intracortical information processing as the focus of genetic risk
mechanisms. These spatial gene expression patterns thus refine the laminar contexts of
different neuropsychiatric disorders and may provide new targets for molecular interrogation.

Second, we overlaid recent large-scale snRNA-seq data from several cohorts to both
confirm our layer-enriched expression signatures and further annotate gene expression-driven
clusters to individual cortical layers. The shift from homogenate sequencing studies of brain
tissue (Collado-Torres et al., 2019; Fromer et al., 2016; Jaffe et al., 2018) to large-scale
snRNA-seq has already begun, with increasing sample sizes and numbers of nuclei (Mathys et
al., 2019; Velmeshev et al., 2019), and will only continue to grow. Our strategy of "spatial
registration" using individual gene-level statistics from both layer-specific versus cell
type-specific expression profiles from hundreds or thousands of genes is likely more powerful
than table-based enrichment analyses using small subsets of previously-defined marker genes.
Spatial registration of multiple independent datasets with our Visium data showed that
layer-enriched patterns of expression can be extracted from snRNA-seq data, as subtypes of
excitatory neuronal cells, and to a lesser extent, inhibitory neuronal cells, could be classified by
their preferential laminar enrichment. While this strategy does not aid in constructing cell
clusters in snRNA-seq data, it is a powerful tool to better annotate and interpret data-driven
clusters and add spatial context to cell type-specific gene expression in the brain.

Third, in contrast to manually annotating laminar clusters based on cytoarchitecture,

which is very labor-intensive, we evaluated the performance of alternative, data-driven
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approaches to cluster spots based on spatially variable genes (Svensson et al., 2018). We note
that these unsupervised approaches can be used to identify novel spatial organizations,
particularly those related to inhibitory neuronal subpopulations, brain vasculature, or immune
function. Indeed, we identified variable spatial expression of 1) NPY, which encodes a
neuropeptide highly expressed in a subpopulation of inhibitory interneurons, 2) HBB, which
encodes a subunit of hemoglobin found in red blood cells, and 3) IGKC, which encodes the
constant region of immunoglobulin light chains found in antibodies (Figure 7 D). The
layer-enriched genes defined here can be used to aid data-driven clustering in human cortex,
and performed better than previously-defined markers (Figure 7 E, F). Data-driven approaches
identify previously unknown cellular organizations, and can also be applied to other human
tissues or brain structures whose morphological patterning is not as defined as the cerebral
cortex.

Microdissection techniques, including LCM approaches have been used to generate
laminar-specific gene expression profiles in human cortex (Dong et al., 2018; He et al., 2017;
Jaffe et al., 2019). However, because dissected regions are removed from the surrounding
spatial context, boundaries cannot be definitively defined, hindering the ability to examine
spatial relationships between cell populations or to define gradients of gene expression across
structures. For example, several layer-enriched genes identified by Visium show striking
gradients of gene expression, such as HPCAL 1 which is highly expressed in L2 but steadily
decreases in expression through L4, L5, and L6. Conversely, KRT17 is enriched in L6 and
progressively decreases in expression through L5, L4, L3, and L2. Moreover, given the spatial
organization of most brain regions, LCM approaches are often unable to isolate neuropil from
cell bodies. In contrast, the Visium platform provides genome-wide transcriptomic information

within the context of brain cytoarchitecture, which allowed us to sample regions containing only
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neuropil without having to perform specialized dissections. A major advantage of Visium in the
human brain is the flexibility to analyze spatial gene expression from numerous angles (i.e.
supervised clustering, unsupervised clustering, neuropil only) within a single experiment, which
would be nearly impossible to accomplish with more labor intensive approaches such as LCM.
While the current resolution of a spatially-barcoded spot in the Visium platform is 55um, we
found that 15.0% of spots contained a single cell body, highlighting an additional available level
of interrogation for downstream analysis. Ongoing advances in these technologies will only
improve this spatial resolution, as custom platforms can reach subcellular resolutions of 10um
and 2um (Rodriques et al., 2019; Vickovic et al., 2019). Finally, Visium afforded several
experimental advantages compared to fluorescence microscopy-based spatial transcriptomics
approaches (Chen et al., 2015; Codeluppi et al., 2018) including, 1) coverage across a large
area of brain tissue, 2) unbiased, transcriptome-wide analysis of gene expression (i.e. no
requirement to select gene targets of interest), and 3) no confounds from lipofuscin
autofluorescence. However, consistent dissections will be critical for applying Visium technology
at large scale to generate equivalent clusters across tissue sections for spot aggregation
approaches as performed here. As spatial transcriptomic technologies continue to develop,
integration of transcriptomic and proteomic data in the same tissue section by incorporating
immunohistochemical approaches will be an important future capability.

In contrast to the snRNA-seq approaches that encompass the vast majority of gene
expression profiling studies in frozen postmortem human brain tissue, Visium is not limited to
analysis of information in the nucleus. Indeed, on-slide cDNA synthesis methods preserve the
integrity of information from both cytosol and neuronal processes, including dendrites and axons
(neuropil). Cell segmentation of high-resolution histology images acquired before on-slide cDNA

synthesis allowed us to determine that each spot contained an average of 3.3 cells with 9.7% of
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spots containing no cell bodies and only neuropil. We hypothesized that spots with no cell
bodies would be enriched for transcripts highly expressed in neuronal processes and synapses.
As predicted, we identified significant enrichment of genes preferentially expressed in synaptic
terminals within ‘neuropil spots’ that contained no cell bodies. Given that robust evidence now
supports the existence of localized mMRNA expression and protein synthesis in both the pre- and
post- synaptic compartments (Biever et al., 2019), directly studying neuropil-enriched transcripts
in human brain has the potential to provide novel insights about expression of locally translated
synaptic genes that may be missed with snRNA-seq analysis of dissociated nuclear
preparations. Better understanding the regulation of synaptically localized transcripts in human
cortex is important because the regulation of synaptic proteins controls neuronal homeostasis
and drives synaptic plasticity (Biever et al., 2019). We further found enriched mitochondrial gene
expression in sparser layers like L1 (Figure $20). This likely relates to our finding that L1 was
most enriched for ‘neuropil spots’, and a higher energetic supply to axons and dendrites would
be expected (Harris et al., 2012; Overly et al., 1996). Moreover, converging evidence suggests
that impairments in the formation or maintenance of synapses in key circuits underlies risk for
neuropsychiatric and neurodevelopmental disorders, including SCZD and ASD (Moyer et al.,
2015; Sweet et al., 2010; Velmeshev et al., 2019). Supporting this notion, genes associated with
increased risk for SCZD that were identified by GWAS were found to be preferentially enriched
for synaptic neuropil transcripts (Skene et al., 2018).

While the laminar structure of the neocortex is largely preserved across mammalian
species, several recent studies have underscored key similarities and differences in laminar
gene expression between humans, primates, and rodents (He et al., 2017; Hodge et al., 2019;
Zeng et al., 2012). Given the functional importance associated with laminar origin, recent

snRNA-seq studies in postmortem human cortex have attempted to annotate
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molecularly-defined cell type clusters to the layer from which they originated (Mathys et al.,
2019; Velmeshev et al., 2019) as discussed above. However, these laminar annotations are
largely derived from curated gene sets that come from rodents and non-human primates, and
not necessarily human studies. While we validated laminar-enrichment of some canonical
layer-specific genes that were previously identified in the rodent and human cortex (Figure 3
and Figure S9), some classical markers, such as BCL11B (L5), showed weak laminar
patterning in DLPFC. Likewise, many genes showed no laminar patterning (Figure S8). These
findings reinforce previous studies that urge caution in translating rodent and primate studies of
molecularly and spatially-defined cell types into the human brain. Indeed, using a genome-wide
approach such as Visium, we identified a number of previously underappreciated layer-enriched
genes in human DLPFC, including HPCAL1 (L2) , KRT17 (L6), and TRABDZ2A (L5), that may
represent markers with higher fidelity for laminar annotation of snRNA-seq clusters in human
brain (Figure 4). We also confirmed laminar enrichment of several genes identified as cell type
markers in specific cortical layers by Hodges et al. (LAMP5, AQP4, FREMS3).

In addition to these biological insights into the structure and function of the DLPFC, we
have created several resources. All raw and processed data and code presented here are freely
available to the scientific community through our web application

(http://spatial.libd.org/spatialLIBD), to augment current neuroscience and spatial transcriptomics

research. Through our application "spatialLIBD", researchers can visualize the spot-level Visium
data, manually annotate spots to layers, visualize the layer-level results, assess the enrichment
of gene sets among layer-enriched genes, and perform spatial registration. These, and

additional features, are described in detail at http://research.libd.org/spatialLIBD/.

In summary, our study demonstrates that the Visium spatial transcriptomics platform is

capable of analyzing gene expression with high spatial resolution within the existing architecture
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of the human DLPFC. We demonstrate the ability to integrate Visium with snRNA-seq data for
spatial registration, further increasing the utility in discovering patterns of gene expression within
spatially defined cell populations in the normal as well as brain of individuals with
neuropsychiatric disorders. Given the promise of spatial transcriptomics for linking molecular cell
types with morphological, physiological and functional correlates of connectivity, we believe
these approaches are the next frontier of transcriptomics in neuroscience and psychiatry. Our
study represents a major advance towards this goal by providing data, resources and proof of
concept examples for how this data can be used to understand human brain function and

disease.
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Figure Legends
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Figure 1: Spatial transcriptomics in DLPFC using Visium. (A) Tissue blocks of DLPFC were
acquired in the anatomical plane perpendicular to the pial surface and extended to the
gray-white matter junction. Each block spanned the 6 cortical layers and WM. (B) Schematic of
experimental design including two pairs of 'spatial replicates' from three independent
neurotypical adult donors. Each pair consisted of two, directly adjacent 10um serial tissue
sections with the second pair located 300um posterior from the first, resulting in a total of 12
samples run on the Visium platform. (C) DLPFC tissue block and corresponding histology from
sample 151673. (D-F) Spotplots depicting log-transformed normalized expression (logcounts)
for sample 151673 for genes SNAP25 (D), MOBP (E), and PCP4 (F). Expression of these
genes confirmed the spatial orientation of each sample by delineating the border between gray
matter/neurons (SNAP25) and white matter/oligodendrocytes (MOBP) and defining L5 (PCP4).
Spotplots of SNAP25, MOBP, and PCP4 for all 12 samples can be found in Figure S1, Figure

S$2, and Figure S3. See also Table S1.
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Figure 2: Layer-enriched gene expression in the DLPFC. (A) Visual description of the
‘pseudo-bulking’ statistical procedure, which collapses the spatial transcriptomics data from
spot-level (~4000 spots) to layer-level (6 layers + WM) data within each tissue section. (B)
Principal component analysis (PCA) of layer-level (‘pseudo-bulked’) expression profiles across
all sections and subjects. The first principal component separates the white and gray matter,
and the second principal component associates with laminae. Visual depictions of the three
statistical models employed to assess laminar enrichment, using MOBP as an example,
including (C) "ANOVA" model, which tests whether the means of the seven layers are different,
(D) ‘enrichment’ model, which tests whether each layer differs from all other layers - shown is
WM (orange) vs other 6 layers (light blue), and (E) ‘pairwise’ model, which tests each layer
versus each other layer - shown in WM (orange) versus L3 (light blue), which other layers in

gray. See also Figure S4, Figure S5, Figure S7, and Table S4.
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Figure 3: Visium replicates layer-enrichment of previously identified layer marker genes.
(A-D) Left panels: Boxplots of log-transformed normalized expression (logcounts) for genes
FABP7 (A, L1>rest, p=5.01e-19), PVALB (B, L4>rest, p=1.74e-09), CCK (C, L6>WM,
p=4.48e19), and ENC1 (D, L2>WM, p=4.61e-25). Middle panels: Spotplots of log-transformed
normalized expression (logcounts) for sample 151673 for genes FABP7 (A), PVALB (B), CCK
(C), and ENC1 (D). Right panels: in situ hybridization (ISH) images from temporal cortex (A, D),
DLPFC (B), or visual cortex (C) of adult human brain from Allen Human Brain Atlas:

http://human.brain-map.org/ (Hawrylycz et al., 2012). Box and spot plots can be reproduced

using our web application at: http://spatial.libd.org/spatialLIBD. Scale bar for Allen Brain Atlas

ISH images=1.6mm. See also Figure S9 and Table S5.
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Figure 4: Discovery and smFISH validation of novel layer-enriched genes. (A-D) Left
panels: Boxplots of log-transformed normalized expression (logcounts) for genes AQP4 (A,
L1>rest, p=1.47e-10), TRABD2A (B, L5>rest, p=4.33e-12), HPCAL1 (C, L2>rest, p=9.73e-11),
and KRT17 (D, L6>rest, p=5.05e-12). Middle panels: Spotplots of log-transformed normalized
expression (logcounts) for sample 151673 for genes AQP4 (A), TRABD2A (B), HPCAL1 (C) and
KRT17(D). (E) Multiplex single molecule fluorescent in situ hybridization (smFISH) in a cortical
strip of DLPFC. Maximum intensity confocal projections depicting expression of DAPI (nuclei),
AQP4, HPCAL1, TRABD2A, KRT17, and lipofuscin autofluorescence. Merged image without
lipofuscin autofluorescence. Scale bar=200um. See also Figure $10, Figure S11, and Figure

S12.
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Figure 5: Spatial registration of snRNA-seq data. (A) Overview of the spatial registration
approach. Heatmap of Pearson correlation values evaluating the relationship between our
derived layer-enriched statistics (y-axis) for 700 genes and (B) layer-enriched statistics from
snRNA-seq data in human medial temporal cortex produced by Hodge et al. (Hodge et al.,
2019) (these data only profiled layers 1-6 in the gray matter, x-axis) and (C) cell type-specific

statistics for cellular subtypes that were annotated by Mathys et al. from snRNA-seq data in
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human prefrontal cortex (Mathys et al., 2019)(x-axis). Oli = oligodendrocyte, Ast = astrocyte, Mic
= microglia, Opc = oligodendrocyte precursor cell, Per = pericyte, End = endothelial, Ex =

excitatory neurons, In = inhibitory neurons. See also Figure S13, Figure S14, and Figure S15.
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Figure 6: Layer-enrichment of neurodevelopmental and neuropsychiatric gene sets. We
performed enrichment analyses using Fisher's exact tests for our layer-enriched statistics
versus a series of predefined gene sets related. (A) Autism spectrum disorder (ASD) laminar
enrichments for SFARI (Abrahams et al., 2013) and Satterstrom et al (Satterstrom et al., 2020)
for 102 overall ASD genes (ASC102), which were further stratified into 53 predominantly ASD
(ASD53) and 49 predominantly developmental delay (DDID49) genes, as well as genes
differentially expressed (DE) in the brains of individuals with ASD versus neurotypical controls
as reported in the Gandal et al psychENCODE (PE) study (Gandal et al., 2018).(B)
Schizophrenia disorder (SCZD) genes, including those from differential expression (DE) and
transcriptome-wide association study (TWAS) analyses of RNA-seq data from brains of

individuals with SCZD compared to neurotypical controls in the BrainSeq (BS) (Collado-Torres
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et al., 2019) and PE (Gandal et al., 2018) studies. ‘Up’ and ‘Down’ labels indicate whether
genes are more highly or lowly expressed, respectively, in individuals with ASD or SCZD
compared to neurotypical controls. Color scales indicate -log10(p-values), which were
thresholded at p=10""?, and numbers within significant heatmap cells indicate odds ratios (ORs)

for the enrichments. See also Figure S16, Table S6, Table S7, and Table S8.
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Figure 7: Data-driven layer-enriched clustering in the DLPFC. (A) Supervised annotation of
DLPFC layers based on cytoarchitecture and selected gene markers (as shown in Figure 2A),
used as ‘ground truth’ to evaluate the data-driven clustering results, for sample 151673. (B)
Schematic illustrating the data-driven clustering pipeline, consisting of: (i) identifying genes
(HVGs or SVGs) in an unbiased manner, (ii) clustering on these genes, and (iii) evaluation of
clustering performance by comparing with ground truth. (C) Comparison of gene-wise test
statistics for SVGs identified using SpatialDE (log-likelihood ratio, LLR) and genes from the DE
‘enrichment’ models (Figure S7) (F-statistics; WM included) for sample 151673. Colors indicate

selected genes with laminar (red shades) and non-laminar (yellow shades) expression patterns.



(D) Expression patterns for selected laminar (top row) and non-laminar (bottom row) genes
identified using SpatialDE (corresponding to highlighted genes in (C)) in sample 151673. (E)
Visualization of clustering results for the best-performing implementations of: (i) ‘unsupervised’
clustering (method ‘HVG_PCA_spatial’, which uses highly variable genes (HVGs) from scran
(Lun et al., 2016), 50 principal components (PCs) for dimension reduction, and includes spatial
coordinates as features for clustering); (ii) ‘semi-supervised’ clustering guided by layer-enriched
genes identified using the DE enrichment models; and (iii) clustering guided by known markers
from Zeng et al. (Zeng et al., 2012) (Method Details: Data-driven layer-enriched clustering
analysis and Table $10). (F) Evaluation of clustering performance for all methods across all 12
samples, using manually annotated ground truth layers (as in (A)) and adjusted Rand index
(ARI). Points represent each method and sample, with results stratified by clustering
methodology (Method Details: Data-driven layer-enriched clustering analysis and Table S$10).
P-values represent statistical significance of the difference in ARI scores when including the two
spatial coordinates as features within the clustering, using a linear model fit for each method
(overall model across all methods: p=5.8e-6). See also Figure S$17, Figure $18, Figure S$19,

Table S9, Table $10, and Supplementary File 1.
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STAR Methods
CONTACT FOR REAGENT AND RESOURCE SHARING
Further information and requests for resources and reagents should be directed to and

will be fulfilled by the Lead Contact: Andrew E Jaffe (andrew.jaffe@libd.org).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Post-mortem human tissue samples

Post-mortem human brain tissue from three donors of European ancestry (Table S1)
was obtained by autopsy primarily from the Offices of the Chief Medical Examiner of the District
of Columbia, and of the Commonwealth of Virginia, Northern District, all with informed consent
from the legal next of kin (protocol 90-M-0142 approved by the NIMH/NIH Institutional Review
Board). Clinical characterization, diagnoses, and macro- and microscopic neuropathological
examinations were performed on all samples using a standardized paradigm, and subjects with
evidence of macro- or microscopic neuropathology were excluded. Details of tissue acquisition,
handling, processing, dissection, clinical characterization, diagnoses, neuropathological
examinations, RNA extraction and quality control measures have been described previously
(Lipska et al., 2006). Briefly, dorsolateral prefrontal cortex (DLPFC) was microdissected and
embedded in OCT in a 10mm x 10mm cryomold. Each sample was dissected in a plane
perpendicular to the pial surface in area 46 of the cortex to capture from the pial surface to the

gray-white matter junction and spanned L1-6 and the WM.
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METHOD DETAILS

Tissue processing and Visium data generation

Frozen samples were embedded in OCT (TissueTek Sakura) and cryosectioned at -10C
(Thermo Cryostar). Sections were placed on chilled Visium Tissue Optimization Slides
(3000394, 10X Genomics) and Visium Spatial Gene Expression Slides (2000233, 10X
Genomics), and adhered by warming the back of the slide. Tissue sections were then fixed in
chilled methanol and stained according to the Visium Spatial Gene Expression User Guide
(CG000239 Rev A, 10X Genomics) or Visium Spatial Tissue Optimization User Guide
(CG000238 Rev A, 10X Genomics). For gene expression samples, tissue was permeabilized for
18 minutes, which was selected as the optimal time based on tissue optimization time course
experiments. Brightfield histology images were taken using a 10X objective (Plan APO) on a
Nikon Eclipse Ti2-E (27755 x 50783 pixels for TO, 13332 x 13332 pixels for GEX). Raw images
were stitched together using NIS-Elements AR 5.11.00 (Nikon) and exported as .tiff files with
low and high resolution settings. For tissue optimization experiments, fluorescent images were
taken with a TRITC filter (ex/em brand) using a 10X objective and 400 ms exposure time.

Libraries were prepared according to the Visium Spatial Gene Expression User Guide
(CG000239,

https://assets.ctfassets.net/an68im79xiti/3pyXucRaikKWcscXy3cmRHL/a1ba41c77cbf603662028

05ead8f64d7/CG000239 VisiumSpatialGeneExpression UserGuide Rev A.pdf). Libraries

were loaded at 300 pM and sequenced on a NovaSeq 6000 System (lllumina) using a NovaSeq
S4 Reagent Kit (200 cycles, 20027466, lllumina), at a sequencing depth of approximately
250-400M read-pairs per sample. Sequencing was performed using the following read protocol:

read 1, 28 cycles; i7 index read, 10 cycles; i5 index read, 10 cycles; read 2, 91 cycles.
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Visium raw data processing

Raw FASTQ files and histology images were processed by sample with the Space
Ranger software, which uses STAR v.2.5.1b (Dobin et al., 2013) for genome alignment, against
the Cell Ranger hg38 reference genome "refdata-cellranger-GRCh38-3.0.0", available at:

http://cf.10xgenomics.com/supp/cell-exp/refdata-cellranger-GRCh38-3.0.0.tar.gz. Quality control

metrics returned by this software are available in Table S1.

Histology image processing and segmentation

Histology images were processed and nuclei were segmented using the “Color-Based
Segmentation using K-Means Clustering” in MATLAB. The MATLAB function rgb21ab is used
to convert the image from RGB color space to CIELAB color space also called L*a*b color
space (L - Luminosity layer measures lightness from black to white, a - chromaticity-layer
measures color along red-green axis, b - chromaticity-layer measures color along blue-yellow
axis). The CIELAB color space quantifies the visual differences caused by the different colors in
the image. The a*b color space is extracted from the L*a*b converted image and is given to the
K-means clustering function imsegkmeans along with the number of colors the user visually
identifies in the image. The imsegkmeans outputs a binary mask for each color it identifies.
Since the nuclei in the histology images have a bright color that can be easily differentiated from
the background, a binary mask generated for the nuclei color is used as the nuclei
segmentation.

The segmented binary mask was used to estimate the number of nuclei in each spot.
For each histology image, there is a JSON file describing some properties of the image,
including the spot diameter in pixels at the full-resolution image. Additionally, for each image

there is a text file in tabular format that includes one row for each spot with an identification
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barcode, a row, a column and pixel coordinates for the center of the spot on the full-resolution
image. Using this information, the following protocol was implemented. For each spot, all pixels
of the binary mask were set to zero except those within the spot radius of the center of that spot.
The resulting binary mask was then labeled with a unique integer for each unique contiguous
cluster of pixels. The maximum of this labeled mask was stored as an estimate of the number of

nuclei within that spot.

Spot-level data processing

The raw Visium files for each sample (Method Details: Visium raw data processing) were
read into R into a custom structure using the SummarizedExperiment R package (Martin
Morgan, 2017) to keep them paired with the low resolution histology images for visualization
purposes. They were then combined into a single SingleCellExperiment (Aaron Lun [Aut, 2017)
object (sce) to allow us to perform analyses using the gene expression data from all samples.
We added information, including the number of estimated cell counts (Method Details: Histology
image processing and segmentation), the sum of UMIs per spot, number of expressed genes
per spot, and graph-based clustering results (computed by sample) provided by 10x Genomics
Space Ranger software to the sce object. We evaluated the per-spot quality metrics using the
function percellQCMetrics from the scran R Bioconductor package (Lun et al., 2016) and
did not drop any spots given the spatial pattern they presented. We used the scran (Lun et al.,
2016) functions quickCluster, blocking by the six pairs of spatially adjacent replicates,
computeSumFactors, and scater's (McCarthy et al., 2017) logNormCounts to compute the
log-normalized gene expression counts at the spot-level. By modeling the gene mean
expression and variance with the mode1GeneVar scran (Lun et al., 2016) function, blocking

again by the six pairs of spatially adjacent replicates, followed by getTopHVGs we identified the
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top 10% highly variable genes (HVGs): 1,942 genes. Using this subset of HVGs, we computed
principal components (PCs) with scater's (McCarthy et al., 2017) runPCA to produce 50
components. Using these 50 top PCs, we computed tSNE (van der Maaten and Hinton, 2008)
and UMAP (Mclnnes et al., 2018) dimension reduction methods using runTSNE (perplexity 5,
20, 50, 80) and runUMAP (15 neighbors) from scater (McCarthy et al., 2017). With the top 50
PCs, we performed graph-based clustering across all samples using 50 nearest neighbors using
buildSNNGraph from scran (Lun et al., 2016) and the Walktrap method from implemented by
igraph (Csardi and Nepusz, 2006) resulting in 28 clusters (snn_k50 k4 through
snn_ k50 k28). We further cut the graph to produce clusters from 4 to the 28 in increments of
1. Members of our team used an initial spatialLIBD (Collado-Torres, 2020) version to assign the
graph-based clusters from 10x Genomic to the closest anatomical layers for each sample
(Maynard and Martinowich).

All this information was combined and displayed through a shiny (Chang et al., 2019)

web application at http://spatial.libd.org/spatialLIBD in such a way that we, and now the

scientific community, can visualize the expression of a given gene, or a given set of clustering
results, across all samples or each sample individually. For any chosen sample, spatialLIBD
allows users to view gene expression and selected cluster results both in the context of spatial
histology and given dimension reduction results (PCA, tSNE, UMAP) using plotly (Sievert,
2018). Using this web application to visualize cytoarchitecture as well as the expression
patterns of MBP and PCP4, known WM and L5 marker genes, a single experimenter manually
assigned each spot to a cortical layer for each sample for all but 352 out of the 47,681 spots
across all samples. These 352 spots were located on small fragments of damaged tissue

disconnected from the main tissue section. We added these supervised layer annotations to our
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sce object and the final version is available for download through the fetch data function in

spatialLIBD (Collado-Torres, 2020).

Layer-level data processing

For the subject with brain ID Br§595, which lacked L1 and clear cytoarchitecture for L2
and L3, we re-labelled all “L2/L3” ambiguous spots as L3 and dropped the 352 un-assigned
spots. We then pseudo-bulked (Crowell et al., 2019; Kang et al., 2018; Lun and Marioni, 2017)
the spots into layer-level data by summing the raw gene expression counts across all spots in a
given sample and in a given layer, and repeated this procedure for each gene, sample and layer
combination (Figure 2 A). This resulted in 47,329 genes quantified across 76 layer-sample
combinations (7 * 12 = 84, because not all layers were clearly observed in each sample as
Br5595 had no distinct L1 or L2 across all four spatial replicates, Figure S4). This resulted in
another SingleCellExperiment (Aaron Lun [Aut, 2017) object called sce layer. We used
librarySizeFactors and logNormCounts from scater (McCarthy et al., 2017) to compute
layer-level log normalized gene expression values. We dropped all mitochondrial genes and
retained genes that were expressed in at least 5% (4 / 76 layer-sample combinations) and had
an average counts greater than 0.5 as computed by calculateAverage from scater
(McCarthy et al., 2017), resulting in a final set of 22,331 genes. We identified 1,280 top HVGs at
the layer-level and computed 20 PCs (Figure 2 B) which we then used in the tSNE (perplexity =
5, 15 and 20) and UMAP (15 neighbors) computations similar to Method Details: Spot-level data
processing. We then clustered the layer-level data using several graph-based approaches as
well as using k-means. This is the sce layer data that is available for download through the

fetch data function in spatialLIBD (Collado-Torres, 2020).
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Neuropil enrichment analyses

We performed differential expression analysis at the spot-level in our Visium data,
comparing the 4,855 spots with 0 cell bodies to the other 42,474 spots containing at least 1 cell
body, adjusting for fixed effects of layer and spatial replicate. We downloaded differential
expression statistics from RNA-seq of vGLUT1+ enriched synaptosomes in mouse brain from
Hafner et al. (Hafner et al., 2019), and lined up these data at the gene-level using homologous
entrez IDs between mouse and human (via

http://www.informatics.jax.org/downloads/reports/HMD_HumanPhenotype.rpt). We compared

the effects of spots containing 0 cells in our data to vGLUT1+ enriched cells from Hafner et al,
both across the full homologous transcript and then within genes significant in the Hafner

dataset at FDR < 0.05.

Layer-level gene modeling

Using the layer-level data we fit three types of models (Figure 2 C, Figure S7):

1) ANOVA: For this model we tested for each gene whether the log normalized gene
expression counts are variable between the layers by computing F-statistics. We used
ImFit and eBayes from limma (Ritchie et al., 2015) after blocking by the six pairs of
spatially adjacent replicates and taking this correlation into account as computed by
duplicateCorrelation.

2) Enrichment. Using the same functions and taking into account the same correlation
structure, we computed t-statistics comparing one layer against the other six using the
layer-level data. This resulted in seven sets of t-statistics (one per layer) with
double-sided P-values. We focused on genes with positive t-statistics (expressed higher

in one layer against the others) as these are enriched genes instead of depleted genes.
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3) Pairwise: Using the same functions and taking into account the same correlation
structure in addition to using contrasts. fit from limma (Ritchie et al., 2015), we
computed t-statistics for each pair of layers resulting in t-statistics with double-sided
P-values.

The modeling results are available for download through the fetch data function in

spatialLIBD (Collado-Torres, 2020) as the modeling results object as well as in Table S4.

Known marker genes optimal modeling

Using two lists of known layer marker genes derived from previous mouse or human
studies (Zeng et al., 2012) (Molyneaux et al., 2007), we identified 29 different unique optimal
models for these genes. For example, L1 + L2 versus the other layers. Using the same
modeling framework (Method Details: Layer-level gene modeling) we computed t-statistics for all
genes at the layer-level data for each of these 29 unique models. For each of the 29 unique
models, we then retained information about the statistics for the known marker genes matching

the model as well as the top ranked (with a positive t-statistic gene, Table S5).

RNAscope single molecule fluorescent in situ hybridization (smFISH)

Fresh frozen DLPFC from the same neurotypical control samples used for Visium were
sectioned at 10um and stored at -80°C. /n situ hybridization assays were performed with
RNAscope technology utilizing the RNAscope Fluorescent Multiplex Kit V2 and 4-plex Ancillary
Kit (Cat # 323100, 323120 ACD, Hayward, California) according to the manufacturer's
instructions. Briefly, tissue sections were fixed with a 10% neutral buffered formalin solution (Cat
# HT501128 Sigma-Aldrich, St. Louis, Missouri) for 30 minutes at room temperature (RT), series

dehydrated in ethanol, pretreated with hydrogen peroxide for 10 minutes at RT, and treated with
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protease IV for 30 minutes. Sections were incubated with 4 different probe combinations: A) L1
and L5: AQP4, RELN, TRABD2A, BCL11B (Cat 482441-C4, 413051-C2, 532881, 425561-C3,
ACD, Hayward, California); B) L3 and L6: CARTPT, FREM3, NR4A2, (506591, 829021-C4,
582621-C3); C) L2/3 and WM: LAMPS5, HPCAL1, NDRG1, MBP (487691-C2, 846051-C3,
481471, 411051-C4); D) Visium-identified genes: AQP4, TRABD2A, KRT17 (463661-C2),
HPCAL1. Following probe labeling, sections were stored overnight in 4x SSC (saline-sodium
citrate) buffer. After amplification steps (AMP1-3), probes were fluorescently labeled with Opal
Dyes (Perkin Elmer, Waltham, MA; 1:500) and stained with DAPI
(4',6-diamidino-2-phenylindole) to label the nucleus. Lambda stacks were acquired in z-series
using a Zeiss LSM780 confocal microscope equipped with 20x x 1.4 NA and 63x x 1.4NA
objectives, a GaAsP spectral detector, and 405, 488, 555, and 647 lasers. All lambda stacks
were acquired with the same imaging settings and laser power intensities. For each subject, a
cortical strip was tile imaged at 20x to capture L1 to WM. Following image acquisition, lambda
stacks in z-series were linearly unmixed in Zen software (weighted; no autoscale) using
reference emission spectral profiles previously created in Zen (Maynard et al., 2019), stitched,

maximum intensity projected, and saved as Carl Zeiss Image “.cz/” files.

snRNA-seq spatial registration

For each snRNA-seq dataset, we utilized publicly-available processed unique molecular
index (UMI) count data for each gene and nucleus, and provided annotations of cell
clusters/subtypes. Within each dataset, we performed ‘pseudo-bulking’ (Crowell et al., 2019;
Kang et al., 2018; Lun and Marioni, 2017) of nuclei-level UMIs into cell type-specific
log-transformed normalized counts for each unique subject. We then computed cell type

‘enrichment’ statistics for each gene and dataset-provided cell type within their pseudo-bulk
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profiles by performing linear mixed effects modeling comparing each cell type to all other cell

types, treating donor as a random intercept (Law et al., 2014), and adjusting for study-specific

covariates described below. This strategy was analogous to the layer ‘enrichment’ statistics

described for our Visium data (Method Details: Layer-level gene modeling). We then computed

Pearson correlation coefficients between our layer-enriched ‘enrichment’ statistics and

snRNA-seq cell type-specific "enrichment" statistics among the 700 most layer-enriched genes

(combining the 100 most significant genes for each of the six layers and WM in the Visium data)

expressed in each snRNA-seq dataset. In addition to our DLPFC snRNA-seq dataset (Method

Details: DLPFC snRNA-seq data generation), we utilized these publicly-available datasets:

1)

Hodge et al. (Hodge et al., 2019): Processed data was obtained from

https://portal.brain-map.org/atlases-and-data/rnaseq. We retained total gene counts

(exons plus introns) from 49,494 nuclei corresponding to postmortem human brain tissue
across both neurons and non-neurons across 50,281 genes across 6 layers and 2 cell
types. These data were reduced to 52 pseudo-bulk profiles, for all unique
donor-layer-type combinations. We calculated ‘enrichment’ statistics for each of the six
layers in their dataset, adjusting for the fixed effect of cell type (neuronal or glial) with a
random intercept of donor.

Velmeshev et al. (Velmeshev et al., 2019): Processed data was obtained from

https://cells.ucsc.edu/ (under the "Autism" study data download). We used the post-QC

UMI counts from all 104,559 nuclei across 65,217 genes across 41 unique donor-region
pairs (for 31 unique donors and 2 brain regions) and 17 cell types. These data were
reduced to 691 pseudo-bulked profiles, for all unique donor-region-type combinations.

We calculated ‘enrichment’ statistics for each of the 17 cell types in this dataset,
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adjusting for the fixed effect of brain region, age, sex, and ASD diagnosis, with a random
intercept of donor.

3) Mathys et al. (Mathys et al., 2019): Processed data were obtained from Synapse at
accession: syn18485175. We used the post-QC UMI counts from all 70,634 nuclei
across 17,926 genes across 48 unique donors and 44 cell subtypes (across 8 broad cell
classes). These data were reduced to 1877 pseudo-bulked profiles, for all unique
donor-subtype combinations. We calculated ‘enrichment’ statistics for each of the 44 cell
subtypes in this dataset, adjusting for the fixed effect of age, sex, race, and Alzheimer's
disease diagnosis, with a random intercept of donor.

4) We also downloaded and reprocessed RNA-seq data from He et al. (He et al., 2017)
from SRA accession SRP199498 using our previously-described RNA-seq processing
pipeline (Collado-Torres et al., 2019). These data consisted of homogenate RNA-seq

data from 18 serial sections across 4 unique donors.

DLPFC snRNA-seq data generation

We performed single-nucleus RNA-seq (snRNA-seq) on DLPFC tissue from two
neurotypical donors using 10x Genomics Chromium Single Cell Gene Expression V3
technology. Nuclei were isolated using a “Frankenstein” nuclei isolation protocol developed by
Martelotto et al. for frozen tissues (Habib et al., 2016, 2017; Hu et al., 2017; Lacar et al., 2016;
Lake et al., 2016). Briefly, ~40mg of frozen DLPFC tissue was homogenized in chilled Nuclei EZ
Lysis Buffer (MilliporeSigma) using a glass dounce with ~15 strokes per pestle. Homogenate
was filtered using a 70um-strainer mesh and centrifuged at 500 x g for 5 minutes at 4°C in a
benchtop centrifuge. Nuclei were resuspended in the EZ lysis buffer, centrifuged again, and

equilibrated to nuclei wash/resuspension buffer (1x PBS, 1% BSA, 0.2U/uL RNase Inhibitor).
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Nuclei were washed and centrifuged in this nuclei wash/resuspension buffer three times, before
labeling with DAPI (10pg/mL). The sample was then filtered through a 35um-cell strainer and
sorted on a BD FACS Aria Il Flow Cytometer (Becton Dickinson) at the Johns Hopkins
University Sidney Kimmel Comprehensive Cancer Center (SKCCC) Flow Cytometry Core into
10X Genomics reverse transcription reagents. Gating criteria hierarchically selected for whole,
singlet nuclei (by forward/side scatter), then for G, /G, nuclei (by DAPI fluorescence). A “null”
sort into wash buffer was additionally performed from the same preparation for quantification of
nuclei concentration and to ensure nuclei input was free of debris. Approximately 8,500 single
nuclei were sorted directly into 25.1uL of reverse transcription reagents from the 10x Genomics
Single Cell 3’ Reagents kit (without enzyme). Libraries were prepared according to
manufacturer’s instructions (10x Genomics) and sequenced on the Next-seq (lllumina) at the
Johns Hopkins University Transcriptomics and Deep Sequencing Core.

We processed the sequencing data with the 10x Genomics’ Cell Ranger pipeline,
aligning to the human reference genome GRCh38, with a reconfigured GTF such that intronic
alignments were additionally counted given the nuclear context, to generate
UMl/feature-barcode matrices

(https://support.10xgenomics.com/single-cell-gene-expression/software/pipelines/latest/advance

d/references). We started with raw feature-barcode matrices for analysis with the Bioconductor
suite of R packages for single-cell RNA-seq analysis (Amezquita et al., 2020). For quality control
and cell calling, we first used a Monte Carlo simulation-based approach to assess and rule out
empty droplets or those with random ambient transcriptional noise, such as from debris (Griffiths
et al., 2018; Lun et al., 2019). This was then followed by mitochondrial rate adaptive
thresholding, which, though expected to be near-zero in this nuclear context, we allowed for a

3x median absolute deviation (MAD) threshold. This allowed for flexibility in output/purity of
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FACS workflows. This QC pipeline yielded 5,399 high-quality nuclei from the DLPFC from two
donors, which were then rescaled across all nuclear libraries, then log-transformed for
determination of highly-variable genes, again with scran’s modelGeneVar, this time taking all
genes (9,313) with a greater variance than the fitted trend. Principal components analysis (PCA)
was then performed on these selected genes to reduce the high dimensionality of nuclear
transcriptomic data. The optimal PC space was defined with iterative graph-based clustering to
determine the d PCs where resulting n clusters stabilize, with the constraint that n clusters </=
(d + 1) PCs (Lun et al., 2016), resulting in a chosen d=81 PCs. In this PCA-reduced space,
graph-based clustering was performed (specifically, k-nearest neighbors with k=20 neighbors
and the Walktrap method from R package igraph (Csardi and Nepusz, 2006) for community
detection) to identify 31 preliminary clusters. We then took all feature counts for these
assignments and pseudo-bulked counts across 31 preliminary nuclear clusters, rescaling for
combined library size and log-transforming normalized counts, then performed hierarchical
clustering to identify preliminary cluster relationships and merging with the cutreeDynamic
function of R package dynamicTreeCut (Langfelder et al., 2016). These broader clusters were
finally annotated with well-established cell type markers for nuclear type identity (Mathys et al.,
2019). We also used Bioconductor package scater's (McCarthy et al., 2017) implementation of
non-linear dimensionality reduction techniques, -SNE and UMAP, with default parameters and
within the aforementioned optimal PC space, simply for visualization of the high-dimensional

structure in the data, which complemented the clustering results (Figure S14).

Clinical gene set enrichment analyses
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We assessed the laminar enrichment of a series of predefined clinical gene sets for

various neuropsychiatric and neurodevelopmental disorders. These gene sets consisted of data

from:

1)

Birnbaum et al. (Birnbaum et al., 2014): 10 gene sets across SCZ, ASD,
neurodevelopmental disorders, intellectual disability, bipolar disorder, and
neurodegenerative disorders.

SFARI (Abrahams et al., 2013): 3 gene sets consisting of all human genes, high
confidence genes, and syndromic genes.

Satterstrom et al. (Satterstrom et al., 2020): 6 gene sets based on exome sequencing
studies.

psychENCODE (Gandal et al., 2018): 6 gene sets based on DE analyses of patients with
ASD, SCZD, and bipolar disorder (BPD), stratified by directionality in cases, and 8 gene
sets based on TWAS (ASD, SCZD, BPD, SCZD-BPD, stratified by directionality), each at
FDR < 0.05.

BrainSeq (Collado-Torres et al., 2019): 2 gene sets based on DE analyses of patients
with SCZD versus controls (at FDR < 0.05), stratified by directionality.

Down syndrome (Olmos-Serrano et al., 2016): 2 gene sets based on DE analyses of
patients with Down syndrome versus controls (at FDR < 0.05), stratified by directionality.

We collected all reported genes in each gene set, and retained the majority that were

expressed in our Visium dataset - these gene set sizes are provided in Table S6. Enrichment

for each gene set for each layer was based on a gene being significantly more highly expressed

in one layer versus all other layers (at FDR < 0.1). This calculation was performed using Fisher's

exact test, which returned an odds ratio and p-value for each gene set and layer (Table S6).

Pooling all p-values resulted in FDR control of 5% for marginal p-values < 0.01.
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We additionally performed MAGMA (de Leeuw et al., 2015) using the subset of 24,347
Ensembl gene IDs expressed in our pseudo-bulked Visium data that were present in the
provided GR37/hg19 annotation across multiple GWASs for SCZD (Pardifas et al., 2018), BPD
(Stahl et al., 2019), MDD (Wray et al., 2018) and ASD (Grove et al., 2019). We used window
sizes of +35kb and -10kb around each gene to aggregate SNPs to genes using the 1000
Genomes EUR reference profile using SNP-wise stats. We then performed gene set testing
using MAGMA for seven gene sets (related to the six layers and WM) for genes with positive (+)
enrichment statistics at FDR < 0.1. Additionally, we performed linkage disequilibrium score
regression (LDSC) and partitioned heritability analysis (Bulik-Sullivan et al., 2015; Finucane et
al., 2015) using 30 GWAS traits collected by Rizzardi et al (Rizzardi et al., 2019). Genomic
regions were created from the same enriched and FDR < 0.1 genes as above, here with +10kb

and -5kb windows, and lifted over to hg19 coordinates.

Data-driven layer-enriched clustering analysis

For the data-driven layer-enriched clustering, we first performed feature selection in two
ways to identify laminar and non-laminar patterns in our data. The first method for feature
selection used was SpatialDE (Svensson et al., 2018) to identify genes exhibiting spatially
variable expression patterns (SVGs). SpatialDE was run in Python version 3.8.0. We ran
SpatialDE individually on each of the 12 samples, which returned a set of statistically significant
(false discovery rate < 0.05) SVGs per sample. We included an additional filtering step to
remove lowly-expressed genes (less than 1,000 total UMIs summed across spots per sample),
as well as removing mitochondrial genes. This left between 521 and 2,217 genes per sample
(Table S9). In total, there were 2,775 unique genes across samples; for comparison, we also

ran clustering methods using this pooled list (Table S9 and Table $10). The second feature
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selection method used the scran R Bioconductor package (Lun et al., 2016) to identify
(non-spatial) highly variable genes (HVGs) across all samples combined, which identified 1,942
HVGs. Due to slow runtime, it was not possible to run SpatialDE on pooled spots from all
samples combined.

In the ‘unsupervised’ approach to define sub-groups of spots with similar expression
profiles in a completely data-driven manner, we considered the possible combinations of (i) two
types of methods for dimensionality reduction (top 50 principal components (PCs) with the
BiocSingular Bioconductor package (Lun, 2019), and top 10 UMAP (Mclnnes et al., 2018)
components with the uwot R package (Melville, 2019) calculated on the top 50 PCs), (ii) the
gene sets defined after applying feature selection (SpatialDE genes for each sample, pooled
SpatialDE gene lists across all 12 samples, and HVGs), and (iii) including (or not) the two spatial
coordinates (x and y coordinates) of each spot as additional features for clustering. For the
clustering algorithm, we constructed a shared nearest neighbor graph with the scran
Bioconductor package and then applied the Walktrap method from the igraph R package
(Csardi and Nepusz, 2006) to obtain predicted cluster labels. We set all clustering
implementations to return eight final clusters (i.e. one more than the six DLPFC layers plus
white matter), which gave slightly improved clustering performance (compared to seven
clusters) due to additional splitting of the white matter cluster and some outlier spots. Table S10
contains an overview of all combinations that were tried.

For comparison, we also implemented a ‘semi-supervised’ approach, where we used the
layer-enriched gene sets identified using the DE “enrichment” models described previously
(Figure S7), and a ‘markers’ approach using known marker genes from Zeng et al. (Zeng et al.,

2012) (Table S10).
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To evaluate the performance of the clustering approaches, we used the adjusted Rand
index (ARI), which measures the similarity between the predicted cluster labels and “gold
standard” cluster labels. The manually-annotated layers were used as the “gold standard”
(Figure 7 and Figure S17). Higher ARI values correspond to better clustering performance, with
a maximum value of 1 indicating perfect clustering agreement. To evaluate the improvement in
ARI when including spatial coordinates within the clustering methods, we fit a linear model on
the ARI scores, comparing these methods against methods without spatial coordinates across

all methods and samples, and recorded the p-value.

QUANTIFICATION AND STATISTICAL ANALYSIS

The different subsections of the “Method Details” further specify the statistical models
and tests used as well as the versions of the specific software used. Overall, statistical tests
were performed using R versions 3.6.1 and 3.6.2 with Bioconductor version 3.10 (current
release version) with detailed R session information provided in the code GitHub repositories
listed under “Data and Software Availability.” The threshold and method used for statistical
significance is listed in the main text along the description of the results. Plots in R were created

in either base R or with the ggplot2 R package (Wickham, 2016).

DATA AND SOFTWARE AVAILABILITY
Raw and processed data is available from ExperimentHub (Bioconductor Package
Maintainer, 2017) as well as the Bioconductor package spatialLIBD. Code is available through

GitHub at https://github.com/LieberInstitute/HumanPilot (Collado-Torres et al., 2020) and

https://github.com/Lieberlnstitute/spatialLIBD (Collado-Torres, 2020), both of which are

described in their README.md files.
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ADDITIONAL RESOURCES
In order to visualize the spot-level Visium data we generated, we created a shiny (Chang

et al., 2019) interactive browser available at http://spatial.libd.org/spatialLIBD that is powered by

the Bioconductor package spatialLIBD (Collado-Torres, 2020).
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Figure S1. SNAP25 expression, related to Figure 1 D. Log-transformed normalized
(logcounts) for SNAP25 gene expression across all 12 samples arranged in rows by subject.
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Figure S2. MOBP expression, related to Figure 1 E. Log-transformed normalized (logcounts)
for MOBP gene expression across all 12 samples arranged in rows by subject.
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Figure S3. SNAP25 expression, related to Figure 1 F. Log-transformed normalized
(logcounts) for MOBP gene expression across all 12 samples arranged in rows by subject.
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Figure S4. Supervised annotation of layers based on cytoarchitecture and known marker
gene expression, related to Figure 2. Manual annotation of cortical layers across all 12
samples arranged in rows by subject. See also Figure S5.
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Figure S5. Layer-level dendrogram, related to Results: Gene expression in the DLPFC
across cortical laminae and Figure 2. Dendrogram from the hierarchical clustering performed
across all 76 layer-level combinations: 6 layers plus WM across 12 samples, with two layers
visually absent in one sample as shown in Figure S4, second row. The layer-level combinations
are colored by the brain subject (BR5292, Br5595, Br8100), position (0 or 300) and adjacent
spatial replicate number (A or B).
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Figure S6. Enrichment of genes expressed in synaptic terminals among neuropil spots,
related to Results: Gene expression in the DLPFC across cortical laminae. We compared
DEGs from VGLUT1+ labeled synaptosomes from mouse brain from Hafner et al (Hafner et al.,
2019) on the x-axis versus the log2 fold change comparing spot-level expression between spots
with 0 cells and spots with >0 cells. Association shown between (A) all expressed homologous
genes and (B) those genes that were significant in the Hafner et al. dataset at FDR < 0.05.
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Figure S7. Layer-level modeling strategies illustrated with MOBP, related to Results:
Figure 2. Overview of the different modeling strategies we performed with the layer-level
pseudo-bulked expression data. (A) The ANOVA model, which evaluates whether the gene is
variable in any of the layers (F-statistic); MOBP is the top 10th ranked of such genes. Colors
represent each layer. (B) The enrichment model, which tests one layer against the rest
(t-statistic); MOBP is the top 36th gene for white matter against other layers. Colors show the
comparison being done. (C) The pairwise model where we test one layer against another
(t-statistic); MOBP is the top ranked gene for WM > L3. Data from layers not used is shown in

gray.
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Figure S8. Known marker genes compared to the best gene, related to Results:
Identifying novel layer-enriched genes in human cortex. Using the optimal models (Method
Details: Known marker genes optimal modeling) for each known marker gene we compared the
marker genes against the best gene for that given model. Results are visualized using the
-log10 p-values for the marker gene (y-axis) against the best gene for that model (x-axis). Points
are colored by the -log10 rank percentile of that gene in such a way that the top ranked gene is
-log10(1 / 22,331) and colored in yellow.



(A)

logeounts
3 4 5 6 T

Ui
M :CUXZ J 1

s
U 213 4 15 16 WM

®) ..
g
L i
L :
E’: % @
o]
< ADCYAP1 °
U 21 WK W
(C). .
s‘ ,‘ ‘:,::W
s s @
ETe
“ RORB 5
2 13 14 16 M
(D)e .' %,
g7 . H
gl o
PcP4
U213 @05 16w
(E)wrnez

logeounts
0 11 12 13 14 15

Figure S9. Replication of Visium layer-enriched genes by Allen Brain Atlas in situ
hybridization (ISH) data, Related to Figure 3. (A-F) Left panels: Boxplots of log-transformed
normalized expression (logcounts) for genes CUX2 (A, L2>L6, p=3.75e-19), ADCYAP1 (B,
L3>rest, p=3.57e-08), RORB (C, L4>rest, p=2.91e-07), PCP4 (D, L5>rest, p=1.81e-19), NTNG2
(E, L6>rest, p=5.22e-13), and MBP (F, WM>rest, p=1.71e-20). Middle panels: Spotplots of
log-transformed normalized expression (logcounts) for sample 151673 for CUX2 (A), ADCYAP1
(B), RORB (C), PCP4 (D), NTNG2 (E), and MBP (F). Right panels: in situ hybridization (ISH)
images from DLPFC (A, C, D, E, F) or frontal cortex (B) of adult human brain from Allen Brain
Institute’s Human Brain Atlas: http://human.brain-map.org/ (Hawrylycz et al., 2012). Scale bar
for Allen Brain Atlas ISH images=1.6mm.
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Figure $S10. smFISH validation of L1- and L5-enriched genes, related to Figure 4. (A-B)
Left panels: Boxplots of log-transformed normalized expression (logcounts) for previously
identified L1 and L5 marker genes RELN (A, L1>rest, p=7.94e-15,) and BCL11B (B, L5>L3,
p=4.44e-02), respectively. Right panels: Spotplots of log-transformed normalized expression
(logcounts) for sample 151673 for genes RELN (A) and BCL11B (B). Corresponding boxplots
and spotplots for Visium-identified genes AQP4 and TRABDZ2A in Figure 4. (C) Multiplex single
molecule fluorescent in situ hybridization (smFISH) in a cortical strip of DLPFC. Maximum
intensity confocal projections depicting expression of DAPI (nuclei), RELN (L1), AQP4 (L1),
BCL11B (L5), TRABDZ2A (L5) and lipofuscin autofluorescence. Merged image without lipofuscin
autofluorescence. Scale bar=500um.
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Figure S11. smFISH validation of L3- and L6-enriched genes, related to Figure 4. (A-C)
Left panels: Boxplots of log-transformed normalized expression (logcounts) for previously
identified L3 and L6 marker genes CARTPT (A, L3>rest, p=2.07e-12) and NR4A2 (C, L6>rest,
p=1.15e-13), respectively, and Visium-identified gene L3 gene FREM3 (B, L3>rest,
p=8.16e-07). Right panels: Spotplots of log-transformed normalized expression (logcounts) for
sample 151673 for corresponding genes. (D) Multiplex single molecule fluorescent in situ
hybridization (smFISH) in a cortical strip of DLPFC. Maximum intensity confocal projections
depicting expression of DAPI (nuclei), CARTPT (L3), FREM3 (L3), NR4A2 (L6) and lipofuscin
autofluorescence. Merged image without lipofuscin autofluorescence. Scale bar=500 um.
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Figure S12. smFISH validation of L2- and WM-enriched genes, related to Figure 4. (A-B)
Left panels: Boxplots of log-transformed normalized expression (logcounts) for Visium-identified
L2 and WM genes LAMPS5 (A, L2>rest, p=2.60e-09) and NDRG1 (B, WM>rest, p=1.26e-26),
respectively. Right panels: Spotplots of log-transformed normalized expression (logcounts) for
sample 151673 for LAMP5 (A) and NDRG1 (C). Corresponding boxplots and spotplots for
HPCAL1 in Figure 4 and MBP in Figure S9. (D) Multiplex single molecule fluorescent in situ
hybridization (smFISH) in a cortical strip of DLPFC. Maximum intensity confocal projections
depicting expression of DAPI (nuclei), LAMPS5 (L2), HPCAL1 (L2), MBP (WM), NDRG1 (WM)
and lipofuscin autofluorescence. Merged image without lipofuscin autofluorescence. Scale
bar=500 pm.
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Figure S13. Spatial registration of bulk RNA-seq data from serial sections from He et al.,

related to Figure 5. Heatmaps of Pearson correlation values evaluating the relationship
between our Visium-derived layer-enriched statistics across 700 genes for each of the four
individuals from that study (y-axis) across the 18 serial sections for each donor.



(A) (B) ib) O e
201 4 (Excity
27 (Excit) Bl
| 8 (Exci)
20 ’ 201 0 10 (Exait)
11 (inhib)
16 P\ib)“ (Inhib) 0 2
P 3 13 (Excit)
N 4 o~ ‘Hg ‘(Emﬂ) - 0 tagonn)
% 0 - Irﬁ) % W (& 15 (Inhib)
i i) O 16 gnhiv)

2 ® o
- = ) A 18 (Innib)
8 (Excit) SR> 19 (Excil)
20 (Inhib)
-20- “ 2‘ 25 (Inhib)
21 (Excit)
: A '3 mﬁ\) ! ,
[ 28 (innib)
® ' ) —20 1 15 (Inhib) *& 29 (Inhio)
30 (Inhib)
_apA ‘ 28 (Inhib) 51 @iy

-20 0 20 40 20 -0 0 10 20
TSNE 1 TSNE1

Figure S14: t-SNE plots of snRNA-seq data from DLPFC, related to Figure 5. (A) tSNE plot
of all nuclei, across 31 clusters. (B) tSNE plot of the subset of all neuronal nuclei.
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Figure S15. Spatial registration of snRNA-seq data, related to Figure 5. Heatmaps of
Pearson correlation values evaluating the relationship between our Visium-derived
layer-enriched statistics (y-axis) for 700 genes and (A) Data from DLPFC from two donors, with
data-driven cluster numbers and broad cell classes on the x-axis. (B) Data from Velmeshev et
al. with data-driven clusters provided in their processed data.
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Figure S16. Enrichment of clinical gene sets for different neuropsychiatric and
neurodevelopmental disorders, related to Figure 6. Shown are Fisher's exact test odds
ratios and p-values for our Visium-derived layer-enriched statistics versus a series of predefined
gene sets. Color scales indicate -log10(p-values), which were thresholded at p=10"?, and
numbers within significant heatmap cells indicate odds ratios (ORs) for the enrichments.
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Figure S$17. Supervised annotation of DLPFC layers across all samples, related to Figure
7. These ‘manually annotated’ layers were used as the ‘ground truth’ for evaluating the
data-driven clustering results for each sample. Colors represent the six DLPFC layers and white
matter (WM), and are arranged in a consistent order across samples.



Sample 151673: Clustering (unsupervised)
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Figure $18. ‘Unsupervised’ clustering results for sample 151673, related to Figure 7.
Visualization of clustering results for ‘unsupervised’ methods (Table S10) for sample 151673.
Each panel displays clustering results from one clustering method. Rows display methods either
without (top row) or with (bottom row) spatial coordinates included as additional features for
clustering. A complete description of the different combinations of methodologies implemented
in the clustering methods is provided in Table S10. See also Supplementary File 1.
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Figure $19. ‘Semi-supervised’ and ‘markers’ clustering results for sample 151673, related
to Figure 7. Visualization of clustering results for ‘semi-supervised’ and known ‘markers’ gene
set-based methods (Table S$10) for sample 151673. Each panel displays clustering results from
one clustering method. Rows display methods either without (top row) or with (bottom row)
spatial coordinates included as additional features for clustering. A complete description of the
different combinations of methodologies implemented in the clustering methods is provided in
Table $10. See also Supplementary File 1.
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Figure S20. Mitochondrial proportion of expression at the spot-level, related to
Discussion. Visualization of the proportion of mitochondrial gene expression compared to the
total gene expression at the spot-level. Each sample has its own color scale in order for the
dynamic range to be visible for each sample.



Table S1. Sample metrics from Space Ranger and demographic information, related to
Figure 1. A tab-separated table with the sequencing and alignment metrics produced by Space
Ranger as well as the age, sex and LIBD brain ID for the samples sequenced in this project.

Table S2. Percent of spots with zero or one cell across layers, related to Results: Gene
expression in the DLPFC across cortical laminae. This table shows the percentage of spots
in each annotated layer with zero or one segmented cells.

Table S3. Spot cell count differential expression statistics, related to Results: Gene
expression in the DLPFC across cortical laminae. Differential expression statistics
comparing spots with 0 cells to >0 cells. Positive log2 fold changes indicate higher expression in
spots without cells.

Table S4. Layer level differential expression statistics, related Figure 2. Differential
expression statistics for the (A) ANOVA model (one model per gene), (B) Enrichment model (7
models per gene, 1 per layer), and (C) Pairwise model (21 models per gene, 1 per pair of
layers).

Table S5. Optimal model results for known layer marker genes, related to Figure 3.
Differential expression statistics for the optimal model for each known human or mouse brain
marker gene as well as the top ranked gene using the layer-level data.

Table S6. Clinical gene sets layer enrichment statistics, related to Figure 6. Each row is a
different gene set obtained from the literature. PE: psychENCODE, BS: BrainSeq, DS: Down
Syndrome, DE: Differential Expression, TWAS: transcriptome-wide association study, OR: odds
ratio, NumSig: number of significant layer-enriched genes in the gene set for that particular
layer.

Table S7. Clinical gene set enrichment results with MAGMA, related to Figure 6. P-values
for MAGMA gene set test for layer-enriched genes across four GWAS for SCZD, MDD, ASD
and BPD. Bold indicates FDR < 0.05 significance and red indicates Bonferroni < 0.05
significance.

Table S8. LDSC results, related to Figure 6. Genomic enrichments of GWAS risk SNPs using
partitioned heritability analysis. Prop = proportion, h2 = heritability, p = p-value, holm = Holm's
adjusted p-values.

Table S9. Summary of SpatialDE genes, related to Figure 7. Number of statistically
significant spatially variable genes (SVGs) identified per sample using SpatialDE (Svensson et
al., 2018), before and after additional filtering for lowly-expressed genes and mitochondrial
genes.

Table S10. Description of clustering methods used for the data-driven layer-enriched
clustering analyses, related to Figure 7. Summary of combinations of design choices that
were implemented for the clustering methods used for the data-driven spatial clustering
analyses. Columns describe: (i) method names, (ii) the type of clustering method, (iii) the type of
dimension reduction used to summarize gene expression, (iv) the source of gene sets used,
and (v) whether spatial coordinates were included as additional features for clustering. The
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names of the clustering methods correspond to those shown in Figure S18, Figure S19, and
Supplementary File 1.

Supplementary File 1. Visualization of clustering results for the data-driven
layer-enriched clustering analyses, for all samples and clustering methods; related to
Figure 7. This supplementary file contains visualizations of clustering results for all samples and
clustering methods (Table S10) (similar to Figure S18 and Figure $19, which display results for
sample 151673 only). A description of the clustering methods is provided in Table S10.



