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Abstract		

The	 marmoset	 monkey	 has	 become	 an	 important	 primate	 model	 in	 Neuroscience.	 Here	 we	

characterize	salient	statistical	properties	of	inter-areal	connections	of	the	marmoset	cerebral	cortex,	

using	 data	 from	 retrograde	 tracer	 injections.	 We	 found	 that	 the	 connectivity	 weights	 are	 highly	

heterogeneous,	 spanning	 five	orders	of	magnitude,	 and	are	 log-normally	distributed.	The	 cortico-

cortical	network	is	dense,	heterogeneous	and	has	high	specificity.	The	reciprocal	connections	are	the	

most	prominent	and	the	probability	of	connection	between	two	areas	decays	with	their	functional	

dissimilarity.		The	laminar	dependence	of	connections	defines	a	hierarchical	network	correlated	with	

microstructural	 properties	 of	 each	 area.	 The	 marmoset	 connectome	 reveals	 parallel	 streams	

associated	with	 different	 sensory	 systems.	 Finally,	 the	 connectome	 is	 spatially	 embedded	with	 a	

characteristic	 length	 that	obeys	a	power	 law	as	a	 function	of	brain	volume	across	species.	 	These	

findings	provide	a	connectomic	basis	 for	 investigations	of	multiple	 interacting	areas	 in	a	complex	

large-scale	cortical	system	underlying	cognitive	processes.	
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Introduction	

Cognitive	 processes	 involve	 multiple	 interacting	 brain	 areas;	 however,	 characterization	 of	 the	

underlying	 inter-areal	 architecture	 is	 not	 yet	 fully	 understood.	 The	 last	 decade	 has	 seen	 a	 rapid	

change	in	neuroanatomy,	from	descriptive	studies	focused	on	few	areas	and	nuclei	at	a	time	to	those	

aimed	 at	 identifying	 the	 organizational	 principles,	 based	on	 comprehensive	 and	quantified	 large-

scale	datasets.	Endeavors	towards	characterizing	the	full	matrix	of	connections	in	the	mouse	brain	

using	 cellular	 resolution	 tracers	 are	 well	 underway1–3.	 In	 parallel,	 analogous	 attempts	 based	 on	

magnetic	 resonance	 imaging	 have	 enabled	 studies	 of	 cortical	 parcellation	 and	 structure-function	

relationships	in	the	human	brain	connectivity,	albeit	at	lower	resolution4.		

Many	 of	 the	 brain	 areas	 in	 humans	 that	 are	 involved	 in	 high-order	 cognitive	 processes	 and	 are	

affected	in	psychiatric	conditions	have	no	obvious	rodent	counterpart5.	Primates	have	a	large	portion	

of	the	cortex	devoted	to	vision,	including	many	areas	devoted	to	fine	recognition	of	objects	and	to	the	

complex	 spatial	 analyses	 required	 for	 oculomotor	 coordination6.	 The	 auditory	 cortex	 is	 similarly	

specialized,	including	a	network	of	areas	for	identifying	and	localizing	vocalizations7,	while	the	motor	

cortex	 contains	 a	 unique	 mosaic	 of	 premotor	 areas	 for	 planning	 and	 executing	 movements8.	

Furthermore,	 the	 prefrontal	 cortex	 has	 expanded	 and	 become	more	 complex	 through	 biological	

evolution.	Therefore,	 to	 facilitate	 translation	of	discoveries	 in	 animal	models	 to	 improvements	 in	

human	health,	studies	of	non-human	primates	are	crucial	to	fill	the	gap	between	rodent	and	human	

models.		

Macaques	are	the	genus	for	which	the	most	comprehensive	knowledge	of	the	connectional	network	

of	 the	cortex	has	been	achieved,	 initially	by	studies	based	on	meta-analyses	of	 the	 literature,	and	

more	recently	by	retrograde	tracer	injections	obtained	with	a	consistent	methodology9.	Analyses	of	

macaque	 data	 have	 already	 highlighted	 putative	 organizational	 principles	 of	 the	 primate	 cortical	

mesoscale	connectome,	enabling	computational	models	to	exhibit	functional	properties10–12.	Similar	

data	acquisition	studies	have	also	been	achieved	in	the	mouse	brain13,14.	However,	extrapolating	from	
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any	 single	 species	 to	 human	 is	 problematic	 without	 knowledge	 of	 the	 scaling	 rules	 that	 govern	

anatomical	similarities	and	differences15.		

The	marmoset	 is	 a	 non-human	 primate	model	with	 characteristics	 that	 complement	 those	 of	 the	

macaque	in	terms	of	facilitating	analyses	of	brain	anatomy,	development,	and	function.	Marmosets	

have	a	relatively	short	maturation	cycle,	which	facilitates	the	development	of	transgenic	 lines	and	

studies	across	the	life	span16.	At	the	same	time,	the	key	anatomical	features	that	motivate	studies	of	

the	macaque	brain	are	present,	including	well	developed	networks	of	frontal,	posterior	parietal	and	

temporal	association	cortex.	The	volume	of	the	marmoset	brain	is	approximately	12	times	smaller	

than	 that	of	 the	macaque	brain,	which	 in	 turn	 is	15	 times	smaller	 than	 the	human	brain,	offering	

potential	insights	on	scaling	properties	of	the	cortical	network.		

Here	we	provide	the	first	account	of	the	statistical	properties	of	the	marmoset	cortical	connectome,		

taking	advantage	of	an	online	database	of		the	results	of	retrograde	tracer	injections	into	55,	out	of	

the	116	in	total,	cortical	areas17.	The	dataset	consists	of	connectivity	weights,	laminar	origin	of	the	

projections	and	wiring	distances.	This	allowed	us	to	explore	the	statistical	properties	of	the	cortico-

cortical	connections,	the	architecture	of	the	connectome	by	defining	its	hierarchical	organization,	and	

the	characteristics	of	its	spatial	embedding.	Furthermore,	we	studied	how	microstructural	properties	

within	each	cortical	area	relate	to	the	hierarchical	organization	of	the	connectome,	providing	a	direct	

link	to	different	scales	within	the	cortex.	In	addition,	we	note	conserved	properties	of	the	cortico-

cortical	connections	across	species,	as	well	as	differences	that	are	species,	or	brain	size,	dependent.	

Finally,	we	present	an	allometric	scaling	law	of	the	spatial	localization	of	the	connections	with	brain	

size	which	enables	us	to	extrapolate	this	connectional	attribute	to	humans.	
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Results	

Connectivity	weights	are	highly	heterogeneous	and	log-normally	distributed	

We	have	analyzed	the	results	of	143	retrograde	tracer	injections	placed	in	52	young	adult	marmosets	

(1.3	-	4.7	years;	31	male,	21	female;	Supplementary	Tables	1,2;	Online	Methods),	available	through	

the	Marmoset	Brain	Connectivity	Atlas	(http://marmosetbrain.org)17.	The	injections	were	centered	

in	55	cortical	areas	(here	referred	to	as	target	areas),	which	were	distributed	across	the	marmoset	

cortex	(Fig.	1a;	Supplementary	Table	3).	The	use	of	retrograde	tracers	allows	quantification	of	the	

number	of	neurons	that	project	from	115	potential	source	areas	to	a	given	target	area.	

	

a b
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Fig.	 1	 |	Cortico-cortical	 connectivity	weights.	 (a)	 The	 analysis	 is	 focused	 on	 55	 cortical	 areas	

highlighted	in	different	colors	on	the	two-dimensional	 flattened	map	of	the	marmoset	cortex.	The	

grey	shaded	areas	are	those	for	which	no	tracer	injection	was	available.	(b)	Schematic	description	of	

the	fraction	of	labeled	neurons	found	in	area	𝑌𝑛	after	the	retrograde	tracer	injection	𝑖	in	the	cortical	

area	𝑋	(𝐹𝐿𝑁()*+ ).	(c)	The	weighted	and	directed	marmoset	cortical	 interareal	connectivity	matrix.	

The	rows	are	the	55	target	areas	and	the	columns	the	116	source	areas	that	provide	inputs	to	the	

target	areas.	Each	entry	in	the	matrix	is	the	base	10	logarithm	of	the	arithmetic	mean	of	the	fraction	

of	 labeled	 neurons	 (𝑙𝑜𝑔01𝐹𝐿𝑁) 	across	 injections	 within	 the	 same	 target	 area.	 Grey:	 absence	 of	

connections,	green,	along	the	diagonal	line:	presence	of	intra-area	connections	(they	have	not	been	

quantitively	measured	and	 the	corresponding	𝐹𝐿𝑁	is	 set	 to	0).	The	vertical	green	 line	defines	 the	

limit	of	the	edge	complete	55×55	subnetwork	in	which	all	 inputs	and	outputs	are	known.	(d)	The	

distribution	of	the	connectivity	weights,	shown	in	(c),	reveals	that	the	connectivity	weights	are	highly	

heterogenous,	they	span	five	orders	of	magnitude,	and	they	are	log-normally	distributed.	Bin	size	=	

0.5	on	logarithmic	scale.	The	black	line	is	Gaussian	fit	to	the	𝑙𝑜𝑔01𝐹𝐿𝑁	values.	

	

A	quantitative	measure	of	the	connectivity	weight	from	each	source	area	to	a	target	area	(Fig.	1b)	is	

defined	as	the	number	of	projection	neurons	found	in	each	source	area	divided	by	the	total	number	

found	across	all	source	areas	in	the	same	hemisphere,	called	the	fraction	of	labeled	neurons	(FLN).	

This	 analysis,	 which	 excluded	 connections	 from	 cells	 located	 in	 the	 same	 cytoarchitectural	 area	

(intrinsic	 connections),	 resulted	 in	 a	 55×116 	connectivity	 matrix	 (Fig.	 1c).	 We	 found	 that	 the	

marmoset	connectivity	weights	are	highly	heterogeneous,	spanning	 five	orders	of	magnitude,	and	

are	log-normally	distributed	(Fig.	1d),	similar	to	macaque	monkey9.	

	

The	connectome	is	dense,	heterogeneous,	and	has	high	specificity		

In	the	graph	theory	framework,	the	cortex	can	be	considered	as	a	network	where	nodes	correspond	

to	areas,	and	edges	to	the	connections	between	them.	To	characterize	the	network	properties	of	the	

marmoset	 cortex	we	 considered	 the	 edge-complete	 𝑁×𝑁 = 55 subnetwork,	 for	which	 all	 inputs	

and	outputs	are	known.	This	corresponds	to	approximately	half	of	the	full	mesoscale	connectome	of	

this	species	(55/116	=	47.41%).		

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 2, 2020. ; https://doi.org/10.1101/2020.02.28.969824doi: bioRxiv preprint 

https://doi.org/10.1101/2020.02.28.969824
http://creativecommons.org/licenses/by-nc-nd/4.0/


7	
	

	

Fig.	2	|	Marmoset	network	connectivity	properties.	(a)	The	edge-complete	subnetwork,	in	which	

all	inputs	and	outputs	are	known,	shows	a	dense	matrix	of	topological	connections.	Black:	existence,	

white:	absence	of	a	connection.	(b)	In-	(left)	and	out-	(right)	degree	distribution	of	the	target	areas.	

Gray	 lines	are	Gaussian	fits	 to	the	data.	 (c)	Average	 fraction	of	 two-	(left)	and	three-	(right)	node	

d
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motif	counts	of	the	edge-complete	subnetwork	to	the	two-	and	three-node	motif	counts,	respectively,	

of	 a	 randomized	 version	 of	 the	 edge-complete	 network	 keeping	 the	 in-	 and	 out-degree	 the	 same	

across	100	realizations.	Error	bars	are	one	standard	deviation	of	these	fractions.	(d)	Proportion	of	

connection	as	a	function	of	the	output	(left)	and	input	(middle)	similarity	distance.	Black	circles	are	

the	number	of	present	connections	divided	by	the	number	of	possible	connections	in	the	distance	

bin.	Black	line	is	maximum	likelihood	fit	on	the	unbinned	data.	Light	grey	line	is	prediction	for	the	

reciprocal	pairs	from	the	fitted	black	plot	and	light	gray	squares	are	the	proportions	of	reciprocal	

pairs	 in	 the	 given	bin.	Dark	 grey	 line	 is	 the	prediction	 for	 the	unidirectional	 pairs	 and	dark	 grey	

triangles	are	the	proportions	of	unidirectional	pairs	in	the	given	bin.	Right:	Distribution	of	the	output	

(black)	and	input	(grey)	similarity	distances.	(e)	Left:	Base	10	logarithm	of	the	proportion	of	cliques	

as	function	of	the	clique	size	in	the	data	and	the	average	proportion	of	cliques	in	1000	realizations	of	

a	random	network	of	same	size	where	the	in-	and	out-	degree	sequences	are	the	same	as	in	the	data	

(error	bars	are	one	standard	deviation).	Right:	5	cliques	of	size	17,	combinedly	formed	by	20	areas	

that	constitute	the	core	of	the	marmoset	cortical	connectome.	

	

The	inter-areal	network	density	𝜌 = 𝑀 𝑁(𝑁 − 1)	defined	as	the	fraction	of	existing	connections	(𝑀)	

to	all	possible	ones	was	found	to	be	62.43%.	Even	though	the	network	is	dense	(Fig.	2a),	there	is	high	

heterogeneity	 in	the	number	of	 inputs	and	outputs	of	an	area,	as	shown	by	its	broad	 in-	and	out-	

degree	normal	distributions	 (Fig.	 2b).	 	 Early	 analyses	of	 cortico-cortical	 connectivity	 emphasized	

reciprocity	of	connections	as	a	prominent	property18.	In	the	edge	complete	network	of	the	marmoset	

connectome	50.3%	are	reciprocal	connections,	24.24%	are	unidirectional	and	25.45%	are	absent	in	

both	directions	(similarly	in	macaque	with	densities	52.71%,	26.26%,	and	24.26%	correspondingly).	

While	 reciprocal	 connections	 are	 the	 most	 abundant,	 as	 well	 as	 stronger	 on	 average	 than	 the	

unidirectional	 (Supplementary	 Fig.	 1a),	 bidirectionally	 absent	 connections	 are	 overrepresented	

when	compared	to	 those	 in	an	average	random	network	that	has	same	 in-	and	out-	degrees	(and	

hence	 density),	 while	 unidirectional	 connections	 are	 underrepresented	 (Fig.	 2c,left).	 Similar	

conclusions	 are	 reached	 when	 3-node	 motifs,	 which	 are	 basic	 network	 building	 blocks19,	 are	

considered	 (Supplementary	 Fig.	 1b).	 The	 motifs	 that	 are	 overrepresented	 in	 the	 marmoset	

connectome	are	 those	 that	 include	 reciprocally	present	 and	 absent	 connections	 (Fig.	 2c,right).	 In	
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addition,	these	appear	more	often	(data/random	ratio	>2)	than	2-node	motifs	(data/random	ratio	<	

2).	Finally,	using	a	measure	of	functional	similarity	between	any	pair	of	areas	defined	by	the	degree	

of	their	shared	inputs	or	outputs20,	the	more	functionally	related	two	areas	are,	the	more	likely	they	

are	to	be	connected	(Fig.	2d).		

Another	 network	 feature	 used	 to	 characterize	 the	 structure	 of	 heterogeneous	 dense	 networks	 is	

cliques,	which	are	subnetworks	of	fully	interconnected	areas13,21,22.	The	proportion	of	cliques	of	any	

size	in	the	marmoset	connectome	is	much	higher	than	that	of	a	random	network	with	same	in-	and	

out-	degree	sequences,	indicating	high	specificity	(Fig.	2e,left).	The	largest	clique	size	is	17	and	there	

are	five	such	cliques	formed	by	overall	20	areas	(Fig.	2e,right)	which	define	the	so-called	core	of	the	

connectome	and	has	98.42%	density.	This	is	broadly	compatible	with	the	core	reported	in	Goulas	et	

al.	201922,	with	small	differences	being	due	to	the	use	of	the	updated	dataset17	in	the	present	analysis.	

The	 remaining	 areas	 constitute	 the	 so-called	 periphery,	 which	 form	 a	 subnetwork	 with	 density	

44.29%,	 and	 the	 density	 of	 the	 connections	 between	 core	 and	 periphery	 areas	 is	 69.07%.	 	 The	

weights	of	the	connections	between	areas	within	the	core,	and	within	the	periphery,	are	found	to	be	

stronger	 than	 those	 between	 core-	 and	 periphery	 (Supplementary	 Fig.	 2a).	 Areas	 of	 the	 putative	

default	mode	network	(DMN),	including	those	in	the	posterior	parietal	cortex	(PGM,	PG,	OPt,	AIP),	

posterior	cingulate	cortex	(A23a,	A23b)	and	dorsolateral	prefrontal	cortex	(A8aD,	A6DR)	lie	in	the	

core	structure,	but	not	 those	 in	 the	medial	prefrontal	 cortex	 (A24d,	A32,	A32V),	 reflecting	 recent	

studies	in	the	marmoset23,24.	

	

Feedforward	projections	tend	to	be	stronger	than	the	feedback	projections	

The	 structural	 connectivity	 of	 the	 mammalian	 cortex	 is	 characterized	 by	 both	 the	 weights	 of	

connections	between	areas	and	by	their	laminar	organization.		A	structural	hierarchy	of	the	macaque	

cortex	has	been	defined	based	on	the	laminar	spatial	profile	of	the	connections,	according	to	which	

ascending	 (feedforward)	 pathways	 originate	 primarily	 from	 the	 supragranular	 layers	 and	 target	
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layer	4	of	 the	 target	area;	 conversely,	descending	 (feedback)	pathways	originate	mostly	 from	 the	

infragranular	layers,	and	target	supragranular	and	infragranular	layers10,18,25,26.	A	similar	description	

of	 information	 flow	has	been	proposed	based	on	 the	 architectonic	 type	of	 each	 area	 leading	 to	 a	

structural	model	of	the	cortex	that	connects	connectivity	to	evolution,	and	development27,28.	

	

	

Fig.	3	 |	Structural	hierarchy.	(a)	Schematic	description	of	 the	computation	of	 the	supragranular	

labeled	 neurons	 found	 in	 area	𝑌𝑛 	after	 the	 retrograde	 tracer	 injection	 𝑖 	in	 the	 cortical	 area	𝑋	

(𝑆𝐿𝑁()*+ ).	Projections	with	𝑆𝐿𝑁 > 0.5	(red	entries	in	(b))	are	considered	as	feedforward	projections	

(FF)	and	those	with	𝑆𝐿𝑁 < 0.5	are	feedback	projections	(FB;	blue	entries	in	(b)).	(b)	The	SLN	matrix.	

The	rows	are	the	55	target	areas	and	the	columns	the	116	source	areas	that	provide	inputs	to	each	

target	area,	ordered	according	to	the	computed	hierarchy	(Fig.	4a,	Supplementary	Fig.	4b,right).	Each	

entry	in	the	matrix	is	the	weighted	mean	supragranular	labeled	neurons	across	injections	within	the	

same	 target	 area.	Grey:	 absence	of	 connections,	 red:	presence	of	 recurrent	 connections.	(c)	Two-

dimensional	distribution	of	the	FLN	and	SLN	values.	The	distribution	of	SLN	is	not	dependent	on	the	

a b
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strength	of	 connections,	 except,	 as	 expected,	 at	 the	 edges	 of	 the	distribution	 formed	by	 very	 few	

labeled	neurons.	(d)	Distribution	of	the	FLN	values	of	the	feedforward	connections	(red;	SLN	>	0.	5)	

and	of	the	feedback	connections	(blue;	SLN	<	0.5),	with	the	first	being	stronger	than	the	latter	(higher	

mean;	 the	 two	 distribution	 are	 different	 (two-sided	 two-sample	 Kolmogorov-Smirnov	 test:	𝑝 =

2.58×10CD1,	Hedges’	g	effect	size:	𝑔 = 0.52),	with	different	mean	(two-sided	two-sample	t-test:	𝑝 =

1.93×10CDG)	but	same	variance	(two-sided	two-sample	F-test:	𝑝 = 0.86).	

	

In	this	framework,	the	global	hierarchical	organization	can	be	computed	based	on	the	percentage	of	

supragranular	neurons	involved	in	the	different	connections:	feedforward	connections	are	formed	

by	high	percentages	 of	 supragranular	 neurons	 in	 source	 areas,	 and	 feedback	 connections	 by	 low	

percentages.	 We	 calculated	 the	 percentage	 of	 supragranular	 neurons	 (SLN)	 for	 a	 given	 tracer	

injection	as	the	number	of	labeled	neurons	above	layer	4	divided	by	the	total	number	of	all	labeled	

neurons	found	in	the	source	area	(Fig.	3a).	When	multiple	injections	were	placed	in	the	same	area,	

the	 SLN	 was	 calculated	 as	 the	 weighted	 average	 value	 for	 the	 injections	 that	 revealed	 a	 given	

connection	(Fig.	3b).	We	 found	that	marmoset	cortical	connections	span	the	entire	range	(0-1)	of	

possible	SLN	values	(Fig.	3c).	Furthermore,	we	found	that	predominantly	feedforward	(𝑆𝐿𝑁 > 0.5)	

connections	tended	to	be	stronger	than	predominantly	feedback	projections	(higher	mean	FLN	by	a	

factor	of	two;	Fig.	3d,	similarly	in	macaque,	but	less	pronounced;	Supplementary	Fig.	3).	

	

Laminar	organization	of	connections	reveals	modal	hierarchies	

To	characterize	the	global	hierarchy,	we	followed	a	framework	used	in	previous	studies10,26	in	which	

hierarchical	indices	are	assigned	to	each	area	such	that	for	any	pair	of	cortical	areas	the	difference	of	

their	 hierarchical	 indices	 predicts	 the	 SLN	 of	 their	 projection	 (Online	 Methods).	 Ordering	 these	

indices	in	Fig.	4a	reveals	the	hierarchy	of	the	edge-complete	network.		Sensory	areas	are	situated	at	

the	bottom	of	the	hierarchy	providing	feedforward	inputs	to	most	other	areas,	and	association	areas	

form	mostly	feedback	projections	(Fig.	4a).		
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Fig.	4	|		Hierarchical	structure.	(a)	Hierarchy	of	the	edge-complete	network.	(b)	Two-dimensional	

representation	of	the	connectivity	strength	between	areas.	The	radial	direction	(distance	from	the	

outer	edge)	is	defined	by	the	hierarchical	position,	and	the	angular	distance	is	given	by	the	inverse	

of	 the	 strength	 of	 the	 connection.	 It	 reveals	 that	 functionally	 related	 areas	 are	 grouped	 together,	

sensory	 areas	 form	 parallel	 streams	 of	 processing,	 and	 different	 association	 areas	 are	 related	 to	

different	sensory	modalities.	

	

Furthermore,	motor	 areas	 tend	 to	 be	 concentrated	 above	 posterior	 parietal	 and	 prefrontal	 areas	

(similarly	in	macaque	cortex	but	to	a	lesser	extent,	Supplementary	Fig.	4a),	with	the	ventral	premotor	

cortex	being	situated	at	the	top	of	the	hierarchy.	

a

b
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This	hierarchical	 ordering	 aligns	 the	 cortical	 areas	based	on	SLN	and	doesn’t	 capture	 topological	

properties	of	the	connectivity,	e.g.	the	fact	that	many	connections	do	not	exist.	This	caveat	is	mitigated	

by	considering	also	the	core-periphery	structure.	In	this	representation,	functionally	related	sensory	

areas	are	grouped	together	in	the	wings	of	a	“bowtie”	graph,	with	the	core	occupying	the	center29	

(Supplementary	Fig.	 5).	 The	 core	 structure	 receives	 effectively	 stronger	 feedforward	 inputs	 from	

visual	 areas,	 somatosensory	 and	 medial	 prefrontal	 areas	 and	 effectively	 stronger	 feedback	

projections	from	auditory,	posterior	parietal	and	motor	areas	

The	 bowtie	 graph	 is	 based	 on	 topological	 binary	 connections.	 By	 including	 the	 weights	 of	

connections,	 we	 can	 extract	 information	 about	 the	 overall	 underlying	 cortical	 architecture,	

represented	by	a	polar	plot	on	a	two-dimensional	plane10.	In	this	representation	(Fig.	4b)	both	the	

weight	of	the	connections	(inverse	of	the	angle	between	areas)	and	their	hierarchical	index	(distance	

from	the	edge)	are	considered.	Areas	deemed	to	correspond	to	low	hierarchical	levels	appear	in	the	

periphery	of	the	graph,	with	hierarchical	level	progressing	towards	the	center.	This	analysis	shows	

that	 the	 marmoset	 cortical	 network	 is	 better	 described	 by	 a	 series	 of	 modal	 hierarchies,	 which	

converge	towards	a	region	 formed	by	multimodal	and	high-order	premotor	areas.	For	example,	a	

hierarchy	of	visual	areas	is	revealed,	grouped	together	in	one	quadrant	of	the	plot,	which	progresses	

towards	parietal	areas	and	frontal	areas	which	are	involved	in	visual	cognition	(e.g.	LIP,	Opt,	PGM,	

the	frontal	eye	field	[area	A8aV]	and	ventrolateral	prefrontal	area	A47L).	The	somatosensory	and	

motor	areas	form	another	hierarchical	grouping	in	a	different	quadrant,	and	areas	that	are	involved	

in	visuomotor	integration	and	planning	lie	between	the	visual	and	somatosensory/	motor	clusters	

(e.g.	PEC,	MIP	and	AIP).	Finally,	the	auditory	cortex	forms	a	third	grouping	in	a	separate	quadrant	of	

the	plot,	with	multisensory	areas	of	 the	temporal	 lobe	(e.g.	caudal	TPO,	PGa-IPa)	separating	them	

from	visual	areas.		Interestingly,	the	prefrontal	areas	that	align	best	with	the	auditory	hierarchy	are	

those	in	which	single	unit	activity	is	related	to	orientation	to	sounds	in	space	(e.g.	area	A8aD)	and	
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processing	of	vocalization	sounds	(e.g.	areas	A32/	A32V).	Areas	associated	with	the	DMN23,24		tend	to	

be	located	near	the	center	of	the	diagram	(e.g.	A23a,	A6DR).	

	

Microstructural	properties	of	the	cortex	reflect	the	hierarchical	organization	

An	emerging	theme	of	large-scale	cortical	organization	is	that	biological	properties	of	cortical	areas	

show	 spatial	 gradients	 that	 correlate	 with	 hierarchical	 level10,30–32.	 Microscale	 properties	 are	

correlated	with	macroscale	connectivity	patterns33.		In	addition,	previous	studies	in	the	macaque34	

suggested	that	hierarchical	processing	is	associated	with	progressively	greater	numbers	of	synaptic	

inputs	 (leading	 to	 greater	 allocation	 of	 space	 to	 neuropil,	 hence	 lower	 neuronal	 densities).	 The	

analysis	illustrated	in	Fig.	5	lends	support	to	this	hypothesis	for	the	marmoset	cortex,	in	an	analysis	

that	 combines	 the	 newly	 quantified	 hierarchical	 rank	 and	 estimate	 of	 spine	 counts	 on	 the	 basal	

dendritic	trees	of	layer	III	pyramidal	neurons	(see	Supplementary	Table	4	and	Supplementary	Fig.	6	

for	 sources	 of	 data	 and	 harmonization	 of	 nomenclatures).	 The	 average	 spine	 counts	 are	 highly	

correlated	with	hierarchical	level	(r	=	0.81).	This	correlation	is	equally	strong	to	that	against	a	model	

based	on	spatial	 location	of	the	area	along	the	rostrocaudal	axis	(Supplementary	Fig.	7a,b),	which	

was	 suggested	 as	 another	 strong	 predictor	 of	 network	 architecture	 based	 on	 developmental	

considerations35.	This	constitutes	the	rostrocaudal	axis	as	proxy	for	hierarchy.	

If	we	hypothesize	that	the	total	number	of	spines	across	areas	remain	constant,	we	predict	that	the	

spine	count	is	inversely	proportional	to	the	neural	density;	along	the	hierarchy	there	are	fewer	bigger	

neurons	with	more	spines.	Based	on	estimates	of	neuronal	density	across	the	marmoset	cortex36,	we	

found	that	neuronal	density	is	indeed	decreasing	ascending	hierarchical	levels	(Supplementary	Fig.	

7c,left).	However	the	spine	count	increases	as	the	inverse	cube	of	neural	density	suggesting	that	the	

total	spine	count	is	not	constant	across	areas	(Supplementary	Fig.	7d).	Note	of	course	that	the	spine	

count	corresponds	 to	 the	spines	of	 the	basal	dendrites	of	 the	average	 layer	 III	pyramidal	neuron,	

while	the	neural	density	to	all	neurons.		It	has	been	suggested	that	the	number	of	neurons	in	a	cortical	
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column	 is	 a	 better	 correlate	 of	 hierarchical	 processing36,	 but	 we	 found	 weaker	 correlations	

(Supplementary	Fig.	7c,right).	Finally,	our	results	support	the	proposal	that	both	neural	density	and	

spine	count	are	good	predictors	of	the	laminar	origin	of	projections37	since	they	are	highly	correlated,	

and	both	correlate	strongly	with	the	hierarchy.	

	
Fig.	5	|	Microstructural	properties	along	the	hierarchy.	Spine	count	of	basal	dendrite	in	a	layer	3	

pyramidal	neuron	is	correlated	with	hierarchical	position.	r	is	the	Pearson	correlation.	

	

Spatial	embedding	of	the	connectivity	

Parcellated	 areas	 in	 a	 neocortical	 network	 are	 traditionally	 considered	 as	 nodes	 of	 a	 topological	

graph,	 without	 considering	 their	 spatial	 relationships.	 However,	 in	 addition	 to	 its	 statistical	 and	

topological	properties,	the	cortical	connectome	is	spatially	embedded.	It	has	been	proposed	that	the	

metabolic	 cost	 of	 sending	 information	 from	 one	 area	 to	 another	 increases	 with	 distance,	 being	

reflected	 in	an	exponential	distance	rule	 (EDR)21	according	 to	which	 the	projection	 lengths	decay	

exponentially.	Incorporation	of	this	attribute	in	generative	models	of	the	connectome	helps	explain	

network	properties	such	as	efficiency	of	information	transfer,	wiring	length	minimization,	3-motif	

distribution,	and	the	existence	of	a	core13,20,21,38.			
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To	 study	 the	 spatial	 organization	of	 the	marmoset	 cortical	 connectome	we	used	 estimates	 of	 the	

distances	between	the	barycenters	of	cortical	areas,	obtained	with	an	algorithm	that	simulates	white	

matter	tracts	connecting	points	on	the	cortical	surface17.	 In	agreement	with	observations	 in	other	

species	[macaque21,	mouse13]	we	found	that		the	wiring	distances	are	normally	distributed	(Fig.	6a).	

The	distribution	of	the	wiring	distances	of	the	pairs	for	which	we	have	connectivity	data	(55×116	

matrix,	Fig.	1c)	overlaps	with	that	for	all	the	cortical	areas	(116×116),	indicating	that	this	subset	of	

data	is	representative	of	the	full	network.	

	

	

Fig.	6	|	Exponential	distance	rule.	(a)	Distribution	of	the	inter-areal	wiring	distances	among	all	116	

areas	(gray	bars)	and	between	the	target-source	pairs	of	areas	(pink	bars).	Bin	size	is	2	mm.	Solid	

lines	 are	 gaussian	 fits	 to	 the	 data.	 The	 normal	 distributions	 for	 these	 two	 samples	 of	 data	

indistinguishable	 (two-sided	 two-sample	 Kolmogorov-Smirnov	 test:	𝑝 = 0.97 ).	 (b)	 The	 base	 10	

logarithm	 of	 the	 fraction	 of	 the	 extrinsic	 labeled	 neurons	(𝑙𝑜𝑔01𝐹𝐿𝑁) 	as	 a	 function	 of	 interareal	

wiring	distance.	Black	dots	and	error	bars	are	the	mean	and	standard	deviation	within	a	window	of	

173	 data	 points	 (bin	 size	 is	 20)	 and	 the	 red	 plot	 is	 the	 same	 as	 in	 (c).	 (c)	The	 histogram	 of	 the	

projection	 lengths	 of	 all	 labeled	 neurons	 (both	 intrinsic	 (551,664	 labeled	 neurons)	 and	 extrinsic	

(1,414,364	labeled	neurons),	in	total	1,966,028	labeled	neurons).	Bin	size	is	2	mm	and	the	bars	are	

the	counts	of	the	projection	lengths	lying	in	the	bin	size	divided	by	the	total	number	of	the	projections.	

The	 red	 line	 is	 a	 linear	 fit	 to	 the	 base	 10	 logarithm	 values	 of	 the	 histogram	 (𝑙𝑜𝑔01 𝑝(𝑑) =

	−0.1295	𝑙𝑜𝑔01 𝑝𝑟𝑜𝑗𝑒𝑐𝑡𝑖𝑜𝑛	𝑙𝑒𝑛𝑔𝑡ℎ − 0.0262	giving	𝑝 𝑑 = 𝑐𝑒CQR, 𝜆 ≈ 0.3, 𝑐 ≈ 0.94,	where	d	is	the	

projection	length).	

	

ba c
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We	show	that	the	more	distant	two	areas	are,	the	lower	the	probability	of	a	projection	from	one	to	

the	other,	as	evidenced	by	reduced	FLN	(Fig.	6b).	However,	analyses	based	on	FLN	are	anchored	on	

estimates	 of	 the	 borders	 of	 cytoarchitectural	 areas,	 which	 in	 most	 cases	 are	 imprecise39.	 This	

limitation	can	be	overcome	by	measuring	the	wiring	distance	between	each	labeled	neuron	and	the	

corresponding	injection	site,	in	an	area-independent	manner.	Based	on	the	stereotaxic	coordinates	

of	each	injection	site	and	labeled	neuron,	we	calculated	the	shortest	distance	across	the	white	matter	

corresponding	to	each	connection	detected	in	the	database	(Online	Methods	and	Majka	et	al.	202017).	

This	included	the	projection	lengths	of	1,966,028	labeled	neurons,	including	both	those	estimated	to	

be	in	the	same	area	that	received	the	injection	(intrinsic	connections)	and	those	in	other	areas.	The	

cost	of	each	neuron	to	project	to	longer	distances	can	then	be	expressed	by	the	distribution	of	the	

projection	lengths	of	all	the	retrogradely	labeled	neurons	(Fig.	6c),	which	illustrates	the	probability	

of	a	projection	length	d,	irrespectively	of	the	areas	involved.		

As	in	previous	studies	in	macaque	and	mouse13,21,38		we	found	that	the	histogram	of	axonal	projection	

lengths	follows	an	exponential	decay	(Fig.	6c)	with	decay	rate	𝜆 = 0.3;	 that	 is,	 the	probability	of	a	

projection	 of	 length	 d	 is	 given	 by	 𝑝 𝑑 = 𝑐𝑒CQR .	 Approximating	 this	 with	 the	 probability	 of	

connections	 (FLN),	 it	 was	 analytically	 shown	 to	 underlie	 the	 log	 normal	 distribution	 of	 the	

connectivity	 weights21.	 In	 the	 marmoset	 this	 approximation	 is	 also	 valid	 since	 the	 decay	 of	 the	

probability	of	projection	lengths	agrees	with	the	𝑙𝑜𝑔01𝐹𝐿𝑁	decay	with	wiring	distance	(the	red	plot	

falls	within	the	range	of	the	FLN	defined	by	the	error	bars	in	Fig.	6b),	indicating	that	the	EDR	derives	

the	log-normal	distribution	of	the	FLN.	We	should	note	that	the	curvature	of	the	average	𝑙𝑜𝑔01𝐹𝐿𝑁	

and	the	small	bump	of	projection	lengths	at	distances	around	20	mm	may	suggest	the	possibility	of	a	

more	complex	relation	of	the	projection	lengths	distribution.	Nevertheless,	we	showed	the	projection	

lengths	distribution	can	be	approximated	by	the	EDR,	which	is	an	overall	statistical	property	of	the	

cortex.		
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Exponential	decrease	in	wiring	distance	scales	with	brain	volume	

Finally,	we	address	the	question	of	how	the	EDR	of	cortical	connectomes	scales	across	species.	It	was	

previously	shown	that	the	decay	rate	of	the	EDR	is	larger	in	macaque	than	in	the	mouse	following	

normalization	of	the	distances	by	the	average	interareal	wiring	distance	(common	template)13.	This	

suggests	that	the	larger	the	brain,	the	fewer	are	the	long-range	connections	linking	different	cortical	

systems	(as	shown	schematically	in	Fig.	7,bottom).		

	

Fig.	7	|	Cortical-connectivity	spatial	length	as	a	function	of	brain	size:	extrapolation	to	humans.	

Top.	The	base	10	logarithm	of	the	decay	rate	of	the	exponential	distance	rule	(EDR;		λ)	of	the	mouse,	

marmoset	and	macaque,	computed	in	the	same	way	in	all	three	cases.	The	plot	is	a	linear	fit	on	these	

three	 points	with	 a	 slop	 of	≈ −2 9 	(𝑙𝑜𝑔01 𝜆 = 	−0.2290	𝑙𝑜𝑔01 𝑔𝑟𝑎𝑦	𝑚𝑎𝑡𝑡𝑒𝑟	𝑣𝑜𝑙𝑢𝑚𝑒 + 0.3559) .	

The	red	square	is	the	predicted	value	of	the	decay	rate	of	the	EDR	of	the	rat	which	is	validated	by	

indirect	methods40	of	computing	it,	and	the	intersection	of	the	blue	dotted	lines	is	the	extrapolation	

of	the	decay	rate	of	spatial	dependence	of	cortico-cortical	connectivity	in	the	human	species.	Bottom.	

A	schematic	representation	of	the	decrease	of	long-range	connections	as	the	gray	matter	gets	bigger,	

showing	that	the	bigger	the	brain	the	more	local	the	connectivity.	
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This	principle	was	upheld	in	our	analysis	of	the	marmoset	cortex	(Supplementary	Fig.	8),	where	the	

decay	rate	 in	the	marmoset	shows	an	intermediate	value.	Plotting	the	present	data	relative	to	the	

previous	studies	in	which	similar	methods	were	used	(macaque	and	mouse)	as	a	function	of	the	gray	

matter	volume,	we	found	that	the	decay	rate	of	the	EDR	 𝜆 	scales	with	grey	matter	volume	following	

a	power	law	(Fig.	7,top)	with	an	exponent	of	−2 9.	Given	that	𝑊𝑀~𝐺𝑀D G	(where	𝑊𝑀:	white	matter	

volume	and	𝐺𝑀:	gray	matter	volume)41,	and	if	we	define	the	linear	dimension	𝑑	as	𝑊𝑀0 G,	the	decay	

rate	 of	 the	 axonal	 projections	 scales	 with	 the	 inverse	 square	 root	 of	 the	 white	 matter	 linear	

dimension,	𝜆	~	𝑑C0 a.	It	is	surprising	that	the	dependence	of	the	characteristic	spatial	length	for	EDR	

is	 slower	 than	 the	 linear	 dimension	 of	 the	 white	 matter,	 the	 implication	 is	 that	 the	 interareal	

connections	become	more	spatially	 restricted	 in	a	bigger	cortex,	which	presumably	 is	desired	 for	

increasing	complexity	of	modular	organization.		

This	power	law	predicts	the	decay	rate	for	the	rat	cortex	to	be	𝜆bcd,ebfR+gdfR	~	0.57	𝑚𝑚C0,	which	is	

validated	 by	 that	 estimated	 indirectly	 for	 the	 rat	 (𝜆bcd,Rcdc = 0.6	𝑚𝑚C0 )	 by	 fitting	 the	 EDR	 to	

properties	of	the	rat	connectome40.	Finally,	using	this	relation	we	can	extrapolate	the	decay	rate	of	

the	 projection	 lengths	 of	 the	 human	 cortical	 connectome,	 which	 is	 predicted	 to	 be		

𝜆hijc*,			fkdbcelmcdfR	~	0.1	𝑚𝑚C0	(Fig.	7).		

	

Discussion	

We	 studied	 the	 statistical,	 architectonic	 and	 spatial	 characteristics	 of	 the	 marmoset	 cortical	

mesoscale	 connectome,	 based	 on	 the	 largest	 available	 dataset	 for	 cellular-level	 connectivity	 in	 a	

primate	 brain	 (http://marmosetbrain.org).	 Our	 main	 findings	 are	 threefold.	 First,	 the	 marmoset	

cortical	connectome	is	highly	dense	at	the	inter-areal	level,	characterized	by	high	heterogeneity	of	

inputs	 and	 outputs	 as	 well	 as	 connectivity	 weights.	 Moreover,	 connections	 are	 highly	 specific,	

evaluated	by	the	presence	and	absence	of	reciprocal	connections,	the	dependence	of	connections	on	

the	functional	similarity,	the	distribution	of	cliques,	and	the	core-periphery	structure.	Second,	based	
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on	 the	 laminar	 origin	 of	 the	 projections	 we	 also	 provided	 here,	 for	 the	 first	 time,	 a	 quantified	

hierarchical	 structure	 of	 the	 marmoset	 cortex	 which,	 in	 conjunction	 with	 connectivity	 weights,	

revealed	parallel	 processing	 streams	of	 sensory	 and	 association	 areas	which	 converge	 towards	 a	

highly	connected	core.	Third,	 inter-areal	connections	obey	 the	same	exponential	distance	rule	 for	

marmoset	 as	 for	macaque	 and	mouse	 cortex.	 Intriguingly,	 the	 characteristic	 spatial	 length	 of	 the	

inter-areal	 connections	 revealed	 an	 allometric	 scaling	 rule	 as	 a	 function	 of	 the	 brain	 size	 among	

mammals,	leading	to	a	predicted	value	for	the	human	cortex	that	can	be	tested	experimentally.		

	

Scaling	across	species	

Marmosets	are	New	World	monkeys,	a	group	which	shared	a	last	common	ancestor	with	macaques	

and	humans	approximately	43	million	years	ago42.	In	contrast,	the	divergence	between	rodents	and	

primates	 is	estimated	 to	have	occurred	around	80	million	years	ago43.	Here	we	provide	evidence	

towards	 the	 common	 and	 species-unique	 cortical	 connectivity	 properties.	 We	 show	 that	 the	

connectivity	weights	of	the	marmoset	are	log-normally	distributed,	similar	to	that	of	the	macaque9	

and	 mouse1,14,	 indicating	 that	 this	 is	 a	 general	 property	 of	 the	 mammalian	 cortico-cortical	

connections.	In	addition,	the	range	of	connectivity	weights	encompasses	five	orders	of	magnitude,	

with	a	gradual	increase	in	mean	connectivity	weight	as	the	brain	gets	smaller	(Supplementary	Fig.	

9).	Current	estimates	indicate	~40	cytoarchitectural	areas	in	the	mouse	brain,	excluding	subdivisions	

of	 the	 hippocampal	 formation1,	 116	 in	 the	 marmoset44,	 and	 152	 in	 the	 macaque45.	 Thus,	 one	

possibility	to	account	for	the	above	observations	is	that	the	dilution	of	connectivity	reflects	a	gradual	

redistribution	 of	 connections	 across	 a	 larger	 number	 of	 nodes,	 in	 larger	 brains.	 To	 test	 this,	 we	

compared	the	density	of	the	edge-complete	graph	for	available	data	obtained	in	the	macaque,	mouse	

and	marmoset.	Perhaps	surprisingly,	the	results	(Supplementary	Fig.	10)	revealed	that	this	is	not	the	

case:	 the	 density	 of	 the	 cortico-cortical	 graph	 is	 very	 similar	 in	macaque	 and	marmoset,	 despite	

substantial	differences	in	cortex	mass	and	number	of	cytoarchitectural	areas.	The	above	conclusion	
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is	 robust	 across	 application	 of	 different	 thresholds	 for	what	 is	 considered	 a	 valid	 connection,	 an	

analysis	which	minimizes	the	possibility	of	artifacts	related	to	assignment	of	cells	to	adjacent	areas,	

due	 to	uncertainty	 in	histological	assessment	of	borders.	Both	primates	differ	 from	the	mouse,	 in	

which	the	graph	density	 is	much	higher	 irrespective	of	the	threshold	applied	(Supplementary	Fig.	

10).	Thus,	whereas	one	may	expect	an	inverse	relationship	between	connection	densities	and	brain	

volume14,46,	our	results	suggest	a	difference	between	primates	and	rodents.	

Since	FLN	can	be	viewed	as	area-dependent	probability	of	inter-areal	connection,	our	data	suggest	

scaling	of	the	weights	of	cortico-cortical	connections	in	such	a	way	that	the	larger	the	brain,	the	larger	

the	proportion	of	 very	 sparse	 connections.	Extrapolation	of	 these	 results	 suggest	 that	 the	human	

cortex	 is	 likely	 to	be	characterized	by	a	comparatively	more	distributed	architecture,	 showing	an	

even	larger	proportion	of	numerically	sparse	connections.	Further,	given	the	scaling	of	the	EDR	with	

brain	 size,	 the	 data	 also	 predicts	 that	 the	 larger	 human	 brain	 likely	 shows	 a	 more	 marked	

predominance	of	 	 local	connectivity,	resulting	in	a	larger	number	of	subnetworks	linked	by	a	core	

(Fig.	7,bottom),	as	suggested5.	

	

Comparative	aspects	of	the	cortical	network	properties	

We	have	shown	that	both	the	marmoset	and	macaque	connectomes	exhibit	high	and	similar	density.	

In	addition,	 their	 in-	and	out-degree	distributions,	and	 the	2-	and,	3-node	motif	distributions,	are	

similar	 (Supplementary	Figs.	1c,d,11),	 indicating	conserved	 topological	properties	 independent	of	

the	brain	size.	Another	conserved	property	 is	 that	 functionally	related	areas	are	most	 likely	to	be	

connected.	This	is	related	to	the	wiring	distance,	with	the	decay	rate	of	the	probability	of	connections	

of	the	marmoset	following	closely	that	of	the	macaque	(Supplementary	Fig.	12)20.	Furthermore,	the	

marmoset	cortex	has	more	fully	interconnected	large	subnetworks	(clique	size	>	6)	in	comparison	

with	the	macaque	(Supplementary	Fig.	2b),	supporting	the	view	that	the	smaller	the	brain,	the	higher	
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the	 interconnectivity,	 even	 among	 primates.	 Finally	 both	 the	 marmoset	 (Fig.	 2e,right)	 and	 the	

macaque21	show	a	similar	core	structure	consisting	mainly	of	association	areas.	

	

Variability	of	injections	

Repeated	injections	in	what	are	currently	considered	single	cytoarchitectural	areas	(Supplementary	

Table	5)	revealed	variability	in	their	patterns	of	afferent	connections	(Supplementary	Fig.	13a).	In	

similar	 studies	 of	 the	 macaque	 and	 mouse	 connectomes9,14,47	 it	 has	 also	 been	 shown	 that	 the	

connectivity	 weights	 are	 variable,	 but	 less	 so	 in	 the	 mouse	 compared	 to	 the	 macaque.	 One	

interpretation	 of	 these	 observations	 is	 that	 connectivity	 patterns	 across	 individuals	 are	 more	

consistent	 in	smaller	brains,	which	have	 fewer	subdivisions.	This	could	result	 from	differences	 in	

postnatal	 refinement	 of	 patterns	 of	 connections	 in	 different	 individuals,	 which	 could	 be	 more	

significant	in	light	of	more	complex	behaviors	and	interactions	with	the	environment.	However,	other	

potential	 sources	 are	within	 area	 variability	 (e.g.	 differences	 between	 the	 connections	 of	 regions	

serving	foveal	and	peripheral	vision48,	and	between	parts	of	the	motor	cortex	related	to	limb	and	face	

movements49),	hemispheric	differences	(a	subject	for	which	little	is	known	in	non-human	primates),	

and	 those	 related	 to	 the	 characteristics	 of	 individual	 injections17.	 In	 previous	 studies	 there	 was	

deliberate	targeting	of	the	same	part	of	the	area	across	subjects,47,	while	in	our	sample	the	injections	

covered	 different	 parts	 across	 and	within	 subjects	 (Supplementary	 Table	 2).	 Thus,	 the	macaque	

samples	 were	 inherently	 homogeneous,	 while	 ours	 may	 better	 reflect	 the	 real	 variability	 of	

connections	 of	 cytoarchitectural	 areas.	 In	 order	 to	 assess	 this	 variability	 thoroughly,	 a	 larger	

statistical	sample	is	required.	Nevertheless,	the	qualitative	results	based	on	the	weighted	values	(the	

FLN	 and	 SLN)	 should	 be	 robust	 to	 appropriately	 applied	 thresholds	 based	 on	 variability	 across	

injections.	 As	 an	 example,	 we	 show	 that	 the	 decay	 of	 the	 FLN	 with	 distance	 is	 not	 affected	 by	

considering	only	the	FLN	with	smaller	coefficient	of	variation	across	 injections	 in	the	same	target	

area	(Supplementary	Fig.	13b).	
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Another	 potential	 source	 of	 variability	 is	 the	 inclusion	 of	 injections	 that	 crossed	 the	 estimated	

borders	 between	 two	 cytoarchitectural	 areas17.	 This	 is	 intrinsically	 difficult	 to	 evaluate	 in	many	

cases,	since	the	borders	of	many	areas	are	not	sharp39.	Here	injections	were	assigned	to	areas	based	

on	 estimates	 of	 how	 close	 the	 injection	 was	 to	 the	 border	 and	 of	 percentages	 of	 the	 injections	

contained	in	each	area	(see	Discussion	and	Supplementary	Table	S1	in	Majka	et	al.	202017).	However,	

considering	only	 the	 injections	estimated	to	be	confined	at	 least	80%	within	 the	 target	area	(120	

injections	in	50	target	areas;	Supplementary	Fig.	14b),	or	injections	confined	100%	within	a	target	

area	 (79	 injections	 in	 34	 target	 areas;	 Supplementary	 Fig.	 14c)	 does	 not	 substantially	 affect	 our	

conclusions	(Supplementary	Figs.	10,15,16).	

	

Hierarchical	organization	

Our	analysis	of	the	hierarchical	structure	of	the	marmoset	cortex	indicates	that	some	of	the	premotor	

areas,	including	the	ventral	premotor	cortex	(area	6Va),	are	situated	at	the	top	of	the	hierarchy	(Fig.	

4).	In	other	words,	such	areas	form	a	large	proportion	of	projections	with	characteristics	of	feedback	

projections	(low	SLN).	This	appears	in	conflict	with	the	data	so	far	obtained	in	the	macaque,	in	which	

association	areas	such	as	the	prefrontal	cortex	lie	at	the	highest	hierarchical	levels10	(Supplementary	

Fig.	 4).	 	 In	 addition,	 the	 intermediate	 functional	 groups	were	 less	 clearly	 differentiated.	 To	 some	

extent	this	may	simply	reflect	differences	in	the	availability	of	data.	For	example,	to	date	data	of	the	

macaque	 cortical	 network	 does	 not	 include	 injections	 in	 ventral	 premotor	 cortex	 (areas	 F4/F5).	

Conversely,	data	obtained	in	the	rostral	part	of	the	superior	temporal	polysensory	cortex	(area	TPO,	

or	“STPr”	in	the	macaque)	are	not	available	for	the	marmoset,	where	only	the	caudal	part	of	TPO	was	

injected.	Functionally,	if	the	final	goal	for	the	cortex	is	to	generate	behaviors,	it	could	be	expected	that	

the	flow	of	information	culminates	in	motor	areas	involved	in	higher-order	planning	of	sequences	of	

movements,	 such	 as	 A6Va	 and	 A6DR,	 which	 integrate	 stimulus-initiated	 and	 internally-initiated	

information,	towards	generation	and	evaluation	of	actions.	The	ventrolateral	posterior	region	of	the	

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 2, 2020. ; https://doi.org/10.1101/2020.02.28.969824doi: bioRxiv preprint 

https://doi.org/10.1101/2020.02.28.969824
http://creativecommons.org/licenses/by-nc-nd/4.0/


24	
	

frontal	 lobe	has	expanded	considerably	 in	human	evolution15,	 including	 the	emergence	of	Broca’s	

area	in	the	human	brain,	suggesting	a	high-order	station	for	integration	of	information	from	various	

sources,	towards	generation	of	complex	behavior.	However,	including	the	orthogonal	dimensions	of	

the	 presence/absence	 of	 connections	 and	 weights	 of	 connections	 enabled	 us	 to	 obtain	 a	 more	

comprehensive	 insight	 of	 the	 inter-areal	 architecture,	 	 where	 there	 are	 parallel	 sensory	 streams	

associated	with	different	higher-level	areas.	Given	the	larger	number	of	target	areas	and	pathways	

studied,	this	configuration	appears	clearer	than	in	previous	studies	of	the	macaque	cortex10.		

	

Future	directions:	Large	scale	models	of	the	mammalian	brain	

One	 of	 the	 principal	 open	 problems	 in	 systems	 neuroscience	 is	 understanding	 the	 structure-to-

function	relationship.	Towards	achieving	this	goal,	there	is	an	increasing	interest	in	modeling	whole-

brain	dynamics,	as	opposed	to	modeling	individual	areas.	Early	models	incorporated	neuroimaging-

based	structural	connectivity	data50,51.	The	major	advantage	of	these	studies	is	that	they	can	model	

the	human	brain	based	on	noninvasive	data.	However,	there	are	important	caveats	to	these	modeling	

studies	including	the	low	resolution	of	the	imaging	techniques	and,	critically,	unidirectionality	of	the	

resulting	structural	connectivity	matrix.	On	the	other	hand	we	show	that	reciprocity	of	connections,	

and	 absence	 of	 connections,	 are	 prominent	 attributes	 of	 the	 connectome	 (Supplementary	 Fig.	 1)	

which	begs	 the	question	whether	and	how	unidirectional	connections	are	 important	 to	 functions.	

More	recently,	there	have	been	a	series	of	large-scale	network	models	that	incorporate	the	weighted	

and	 directed	 structural	 connectivity	 obtained	 via	 retrograde	 tracing	 methods,	 as	 well	 as	 the	

hierarchical	organization	of	the	areas	based	on	the	laminar	distribution	of	the	projections10–12.	The	

results	presented	here	provide	a	foundation	for	a	future	large-scale	network	model	of	the	marmoset	

cortex,	 which	 will	 serve	 to	 clarify	 the	 computations	 underlying	 marmoset	 brain	 function	 and	

behavior.	 Ultimately,	 the	 increased	 knowledge	 of	 the	 scaling	 properties	 of	 the	 cortical	 cellular	

network	in	non-human	primates,	together	with	large	scale	in	silico	models	of	other	mammals	and	
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comparisons	 of	 data	 obtained	with	 neuroimaging	 techniques52,	will	 help	 bridge	 the	 gap	 between	

animal	models	and	humans,	leading	to	a	better	understanding	of	normal	and	pathological	functions,	

as	well	as	brain	evolution.	

	

	

Online	methods	

Connectivity	data	

The	 marmoset	 connectivity	 data	 consists	 of	 the	 first	 complete	 large-scale	 cortico-cortical	

connectivity	 dataset	 which	 is	 available	 through	 the	 Marmoset	 Brain	 Connectivity	 Atlas	 portal	

(http://marmosetbrain.org).	The	detailed	methods	regarding	data	collection	have	been	described	

elsewhere17,53.	In	brief,	143	retrograde	tract-tracing	experiments	were	performed	in	52	young	adult	

(1.3	–	4.7	years)	common	marmosets	(Callithrix	jacchus;	31	male	and	21	female),	using	six	types	of	

retrograde	 tracers	 (DY	 (diamidino	 yellow,	 35	 injections),	 FR	 (fluororuby:	 dextran-conjugated	

Tetramethylrhodamine,	 35	 injections),	 FB	 (Fast	 blue,	 29	 injections),	 FE	 (fluoroemerald:	 dextran-

conjugated	 fluorescein,	 23	 injections),	 CTBgr	 and	CTBr	 (cholera	 toxin	 subunit	B,	 conjugated	with	

Alexa	488	(12	injections)	or	Alexa	594	(9	injections)	respectively)).	These	143	injections	were	made	

in	55	cortical	areas,	some	of	which	received	more	than	one	injection	(Supplementary	Tables	1,2,5).	

All	experiments	conformed	to	the	Australian	Code	of	Practice	 for	the	Care	and	Use	of	Animals	 for	

Scientific	Purposes	and	were	approved	by	 the	Monash	University	Animal	Experimentation	Ethics	

Committee17.	 The	 use	 of	 retrograde	 tracers	 allowed	 unambiguous,	 quantized	 visualization	 of	

individual	 cell	 bodies	 and	 their	 precise	 location	 relative	 to	 cortical	 layers,	 which	 subsequently	

allowed	for	precise	counting	of	the	labeled	cells.	Each	injection	of	a	retrograde	tracer	in	a	cortical	

area	(named	as	target	area)	results	in	labelling	the	neurons	that	project	to	it.	It	has	been	shown	that	

the	 majority	 of	 the	 projections	 to	 the	 injected	 site	 stem	 from	 within	 the	 same	 cortical	 area9,47.	

Similarly,	 in	 the	marmoset	most	of	 the	projections	are	 from	within	the	 injected	area,	but	here	we	
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don’t	 consider	 these	 connections.	 Based	 on	 the	 parcellation	 under	 consideration44	 the	 labeled	

neurons	found	in	each	cortical	area	(referred	to	as	source	areas)	are	counted	and	categorized	based	

on	 their	 laminar	 position.	 If	 the	 labeled	 neurons	 lie	 above	 layer	 IV	 they	 are	 categorized	 as	

supragranular	 labeled	 neurons	 and	 infragranular	 neurons	 otherwise.	 At	 the	 same	 time	 their	

stereotaxic	coordinates	are	measured	to	allow	area-independent		analyses.	

	

By	normalizing	the	number	of	labeled	neurons	in	each	cortical	area	(other	than	the	target	area)	with	

the	 total	 number	 of	 labeled	 neurons	 	 in	 all	 cortical	 areas	 (except	 the	 target	 area)	 in	 the	 same	

hemisphere,	we	obtained	the	so	called	fraction	of	extrinsic	labeled	neurons	(FLN),	which	are	thought	

to	represent	the	connection	weight	from	the	source	area	to	the	target	area26.	Specifically,	if	𝑋	is	an	

injected	cortical	area	with	a	retrograde	fluorescent	tracer,	then	the	fraction	of	labeled	neurons	found	

extrinsic	 to	 it,	 for	 example	 in	 area	 𝑌 ,	 is	 defined	 as	 𝐹𝐿𝑁𝑒 𝑋 ← 𝑌 ≡ 𝐹𝐿𝑁() =

*ijpfb	lq	mcpfmfR	*fibl*r	+*	cbfc	)
dldcm	*ijpfb	lq	fkdb+*r+g	mcpfmfR	*fibl*r

.	The	𝐹𝐿𝑁()	can	be	interpreted	as	the	probability	of	an	extrinsic	

labeled	neuron	that	projects	into	the	target	area	𝑋,	is	in	area	𝑌.	In	Figs.	1b,c	the	arithmetic	average	

value	of	the	FLN	for	each	target-source	pair	across	injections	within	the	same	target	area	is	shown.	

The	bars	in	the	density	plot	in	Fig.	1d	(as	well	as	in	all	density	plots	accordingly)	are	the	counts	of	

𝑙𝑜𝑔01𝐹𝐿𝑁	values	falling	in	each	bin,	divided	by	the	bin	size	(bin	size	=	0.5)	and	by	the	total	number	

of	the	non-zero	FLN	values	(3474	out	of	55×116	=	6380	in	total	possible	interareal	connections	were	

present).	Within	an	area	the	FLN	value	is	set	to	zero,	and	therefore	also	excluded	from	the	density	

plot.	The	line	is	the	maximum	likelihood	Gaussian	fit	on	the	𝑙𝑜𝑔01𝐹𝐿𝑁	values.	

	

Network-related	properties		

For	the	topological	properties	of	the	connectome	we	binarized	the	FLN	connectivity	matrix	(Fig.	1c)	

by	 assigning	 the	 value	 1	 (presence	 of	 connection)	when	𝐹𝐿𝑁 > 0 	and	 0	 (absence	 of	 connection)	

otherwise	and	considered	the	edge-complete	𝑁×𝑁	 𝑁 = 55 	network	where	all	inputs	and	outputs	
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are	known	(Fig.	2a).	The	in-degree	of	an	area	X	(𝑘(+*)	is	the	number	of	inputs	to	this	area,	meaning	the	

number	of	areas	that	project	to	it.	The	out-degree	of	an	area	X	(𝑘(lid)	is	the	number	of	outputs	from	

this	area,	meaning	the	number	of	areas	that	this	are	projects	to.	In	Fig.	2b	the	density	of	in-	and	out-	

degree	of	 the	edge-complete	subnetwork	(excluding	self-connections)	binned	with	bin	size	5.	The	

height	of	each	bar	denotes	the	counts	divided	by	the	bin	size	and	the	total	number	of	areas	(N).	The	

gray	lines	are	the	maximum	likelihood	Gaussian	fits	on	the	normalized	in-	and	out-	degree	values.	

The	 clique	 size	𝑘 	is	 a	𝑘×𝑘 	subnetwork	 that	 is	 fully	 connected	 (100%	density).	 In	 Fig.	 2e,left,	 and	

Supplementary	Fig.	2b	for	a	clique	of	size	k	we	plot	the	base	10	logarithm	of	cliques	found	in	the	edge-

complete	network	divided	by	the	maximum	number	of	cliques	of	size	𝑘	that	could	be	found	in	the	

edge-complete	 network,	 by	 taking	 the	𝑛	choose	𝑘 		 combinations.	 We	 plot	 the	 same	 also	 for	 the	

average	random	network	of	same	size	with	same	in-	and	out-	degree	sequences.	The	probability	of	

connections	as	a	function	of	similarity	distance	(Fig.	2d)	was	computed	following	the	same	method	

as	in	Song	et	al.	201420.		

	

Hierarchical	structure	

The	fraction	of	labeled	neurons	found	in	the	supragranular	layers	of	the	source	area	can	be	used	to	

calculate	 the	 hierarchical	 rank	 of	 each	 area	 and	 it	 is	 related	 to	 hierarchical	 distance10,25,26.	 This	

fraction	 of	 labeled	 supragranular	 layer	 neurons	 (SLN)	 is	 given	 by 𝑆𝐿𝑁 𝑋 ← 𝑌 ≡ 𝑆𝐿𝑁() =

*ijpfb	lq	riebcybc*imcb	mcpfmfR	*fibl*r	+*	cbfc	)
*ijpfb	lq	mcpfmfR	*fibl*r	+*	cbfc	)

,	where	𝑋 	is	 the	 area	 injected	 with	 retrograde	 tracer		

(target	 area)	 and	𝑌 	is	 the	 source	 area	whose	 neurons	 project	 to	 area	𝑋 .	 In	 Fig.	 3b	 the	weighted	

average	across	injections	in	the	same	target	area	is	shown.	The	areas	are	ordered	with	increasing	

hierarchical	 index	 values	 (Supplementary	 Fig.	 4b,right).	 Areas	 APir,	 Pir,	 Ent	 and	 A29a-c	 are	 not	

shown	in	the	matrix	because	a	layer	4	could	not	be	identified	and	therefore	the	SLN	is	not	defined.	In	

Fig.	3c	the	bars	are	counts	of	FLN	and	SLN	within	the	corresponding	bin	size	(bin	size	of	SLN	=	0.05,	

bin	size	of	𝑙𝑜𝑔01𝐹𝐿𝑁	=	0.289)	divided	by	the	bin	sizes	of	SLN	and	FLN	and	the	total	number	of	the	
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non	zero	SLN	values.		In	Fig.	3d	we	categorized	the	FLN	values	based	on	whether	their	corresponding	

SLN	is	greater	than	0.5	corresponding	to	a	feedforward	projection,	and	less	than	0.5	to	a	feedback	

projection,	and	plotted	the	probability	density	as	in	Fig.	1d.	

The	hierarchical	index	for	each	cortical	area	hi	(Fig.	4a)	is	computed	via	a	beta-regression	model54,		

where	for	any	target	-	source	pair	of	areas	the	difference	of	their	indices	can	predict	the	SLN	in	the	

source	area,	as	was	done	for	the	macaque	cortical	areas10,26.	This	relationship	is	expressed	through	

the	following	equation:	𝑆𝐿𝑁 𝑋 ← 𝑌 ≈ 𝑔C0 ℎ( − ℎ) ,	where	𝑔C0	is	the	logit	link	function.	To	obtain	

the	hierarchical	indices	we	used	the	model	fitting	function	“betareg”	in	R	software,	which	results	in	

high	 correlation	 between	 predicted	 and	 observed	 SLN	 values	 (Supplementary	 Fig.	 17c).	

Nevertheless,	a	linear	regression	model,	as	in	the	case	of	the	macaque	hierarchy	gives	similar	results	

(Supplementary	Fig.	17a,b).	 In	the	model	we	considered	the	SLN	values	of	all	existing	projections	

from	all	the	injections.	

The	circular	embedding	in	Fig.	4b	is	a	polar	plot	of	the	target	areas	𝐴+ ,	with	radial	coordinate	𝑅 𝐴+ =

1 − ℎ+ 	and	 angular	 coordinate	𝜃 𝐴+ = 𝜃+ ,	where	𝜃+ 	is	 the	 angle	 assigned	 to	 each	 area	 such	 that	

−𝑙𝑜𝑔01 𝐹𝐿𝑁 𝐴+, 𝐴} = 𝑟	min 𝜃+ − 𝜃} , 2𝜋 −	 𝜃+ − 𝜃} ,	where	r	is	a	free	parameter,	and	computed	

following	the	same	method	applied	to	the	macaque	cortical	areas10.	The	angle	of	V1	area	was	assigned	

to	be	zero	and	the	system	of	coordinates	were	shifted	such	that	the	highest	area	in	the	hierarchy	is	

at	the	center	of	the	plot.	

	

Wiring	distances	and	EDR	

If	X	and	Y	are	two	cortical	areas,	then	the	wiring	distance	𝑑 ≡ 𝑑(↔)	between	them	is	defined	as	the	

shortest	path	through	the	white	matter,	avoiding	the	grey	matter,	between	their	barycenters.	The	

definition	 is	 the	 same	as	 in	 the	 studies	were	 the	wiring	distance	of	 the	macaque	and	mouse	was	

measured	and	used	for	the	EDR13,21.	The	details	of	the	way	the	wiring	distance	were	computed	can	

be	 found	 in	 the	 resource	paper	of	 the	connectivity	data17.	 In	brief,	 the	 shortest	path	between	 the	
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barycenters	of	two	areas	was	computed	by	simulating		three	dimensional	trajectories	between	the	

areas,	where	 each	 voxel	 in	 the	 three-dimensional	 template	 of	 the	marmoset	 cortex	was	 assigned	

different	 viscosity	 parameters.	 The	 fastest	 trajectory	 corresponded	 to	 the	 shortest	 path.	 The	

interareal	wiring	distance	were	used	in	Figs.	6a,b	and	Supplementary	Fig.	12b.	For	the	EDR	(Fig.	6c	

and	Supplementary	Fig.	8)	we	used	the	projection	lengths	of	each	labeled	neuron,	from	the	injection	

site	 to	 its	 coordinates	 (after	 projecting	 them	 to	 the	midthickness	 surface	 in	 order	 to	 avoid	 bias	

between	distances	of	supragranular	and	infragranular	neurons)	measured	with	the	same	method	as	

described	above.	In	the	EDR	plots,	each	bar	represents	the	counts	of	the	projection	lengths	lying	on	

the	 bin	 divided	 by	 the	 total	 number	 of	 projection	 lengths	 (1,966,028	 in	 total)	 including	 the	

projections	lengths	of	the	labeled	neurons	found	within	the	injected	area.	The	red	plot	in	Figs.	6b,c	is	

the	linear	fit	to	the	log	bar	plot	of	the	projection	lengths,	as	applied	in	previous	studies13,21.	Similar	

fits	are	also	drawn	in	the	common	template	case	(Supplementary	Fig.	8).		

	

Local	microstructural	properties	

We	extracted	the	spine	count	of	marmoset	cortical	areas	from	studies	where	the	same	method	was	

used	(intracellular	injection	of	lucifer	yellow),	and	the	same	type	of	spines	have	been	measured	(at	

the	basal	dendrites	of	the	average	pyramidal	neuron	in	layer	III)	in	marmosets	of	the	same	age	as	the	

ones		of	the	current	study	(from	18	months	to	4.5	years	old).	We	have	collected	the	spine	count	for	

15	cortical	areas	based	on	the	nomenclature	of	 the	papers,	which	correspond	to	22	cortical	areas	

according	to	the	Paxinos	et	al.	201244	parcellation.	Details	of	the	spine	count	and	the	corresponding	

references	are	shown	in	Supplementary	Table	4	and	Supplementary	Fig.	6.		In	Fig.	5,	the	hierarchical	

values	of	the	22	areas	have	been	normalized	to	1	and	then	averaged	among	areas	that	correspond	to	

the	 same	 spine	 count	 (for	 example	 the	 hierarchical	 index	 of	 the	 area	 A8b/A9	 is	 the	 average	

normalized	hierarchical	 index	of	areas	A8b	and	A9).	In	Supplementary	Fig.	6b	we	show	that	if	we	

instead	keep	the	hierarchical	rank	of	each	area	and	duplicate	the	spine	count	for	the	merged	areas	
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(for	example	area	A8b	has	the	same	spine	count	with	area	A9	but	different	hierarchical	index)	the	

correlation	of	the	spine	count	is	still	high.	The	brain	volumes	of	the	marmoset,	macaque,	mouse,	rat	

and	human	have	been	obtained	from	the	literature41	(Supplementary	Table	6).		

	

Data	availability	

The	cortico-cortical	connectivity	datasets	analyzed	in	the	current	study	are	available	under	the	terms	

of	 Creative	 Commons	 Attribution-ShareAlike	 4.0	 License	 and	 publicly	 available	 through	 the	

Marmoset	Brain	Connectivity	Atlas	portal	(http://marmosetbrain.org).	

	

Code	availability	

Software	 was	 written	 in	 the	 MATLAB	 (https://www.mathworks.com/products/matlab.html),	 R	

(https://www.r-project.org/)	 and	 Python	 (https://www.python.org/)	 programming	 languages,	

based	on	the	algorithms	of	the	corresponding	published	articles	and	are	available	upon	reasonable	

request.	
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