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ABSTRACT  

Comparative genomics among bacteria has been used to gain insight into the minimal 

number of conserved genes in biological pathways. Essentiality studies have provided information 

regarding which genes are non-dispensable (essential, E) for cell growth. Here, we integrated studies 

of gene conservation, essentiality and function, performed in 47 diverse bacterial species. We showed 

there is a modest positive correlation between genome size and number of essential genes. 

Interestingly, we observed a clear shift in the functions assigned to these essential genes as genome 

size increases. For instance, essential genes related to transcription and translation dominate small 

genomes. In contrast, in large genomes functions of essential genes are related with cellular 

processing and metabolism. Finally, and most intriguing, we found a group of genes that while being 

highly conserved are also typically non-essential. This suggests that some housekeeping genes 

confer a significant survival benefit in nature while being non-essential in vitro. 

INTRODUCTION 

Describing the minimal number of genes that are non-dispensable for life is one of the main 
challenges in biology, specifically in regard to the rational engineering of a living system. In recent 
years, theoretical and experimental studies have addressed the question of what constitutes a 
minimal genome, mainly using prokaryotes as model organisms (1–5). While there are many 
fundamental processes common to all un-cellular life (6–9), bacteria inhabit almost all known niches 
on the planet, from intracellular parasites to the Atacama desert (10–12). As such, establishing a 
common metabolome under such vast differences in nutrient availability and composition is unlikely 
(1,7). 

Studies investigating the conservation of genes by genome comparison in prokaryotes have 
come out with many different numbers. Brown et al. found 23 genes conserved among 45 genomes 
(13), Harris et al. found 80 genes common to 34 genomes (14), Koonin found 63 conserved genes 
from approximately 100 genomes (15). When only 7 minimal endosymbionts and parasites were 
compared the value rises to 156 (16). In all cases, the number of conserved metabolic and structural 
genes rises comparatively to the decrease in diversity of the pool of organisms studied, as they are 
either closer evolutionarily, or have similarities in lifestyle or niche (endosymbionts and parasites). 
Charlebois and Doolittle (17) analysed 130 bacterial genomes and found around 62 conserved genes. 
More recently, analysis of 2000 fully sequenced bacterial genomes identified 73 additional marker 
genes that are each present within at least 90% of all prokaryotes (18).  

On the other hand, experimental genome reduction coupled with transposon mutagenesis has 
resulted in the creation of a minimal bacterial genome consisting of 473 genes, of which 149 have 
unknown functionality (2). Essentiality studies in naturally occurring genome reduced bacteria such as 
Mycoplasma pneumoniae and Mycoplasma agalactiae show that 301 and 303 protein coding genes 
are essential, respectively (4,19). This disparity in numbers points to the fact that conservation of 
functionality (i.e. the presence of a chaperone) is more important than conservation of a specific gene. 
Genetic redundancy allows bacteria to survive the loss or disruption of a specific gene, either through 
duplication (20), or via the presence of a protein that exhibits a moonlighting function able to recover 
the lost phenotype (21). Finally, the fact that in some cases two different genes can perform the same 
function, like in the case of some aa tRNA synthetases (15) also explains the lower number of 
universally conserved genes (14–17). Comparative analysis of essentiality across 23 bacterial 
species has shown that essential (E) genes are more evolutionarily conserved than non-essential 
(NE) genes (22). 

In recent years, multiple studies have addressed the essentiality of genes in a specific 
bacterium; mainly via transposon mutagenesis studies (see suppl. Table S1). In these studies, the 
resolution depends on the saturation of insertions. High saturation allows for proper classification of 
genes of different lengths as essential, non-essential or fitness (F) (23,24). E genes cannot be 
disrupted or removed without killing the bacteria, and are by definition non-dispensable for cell 
survival. NE genes can be deleted without initiating a lethal phenotype (1,25). The third category, F 
genes, also known as quasi-essential genes (2), are those that can be deleted from the genome but 
incur a significant cost to the viability of the organism (4). Other methods like site directed 
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mutagenesis could also be used to classify gene essentiality, but lack the power offered by deep 
sequencing and transposon insertion (26). When doing transposon essentiality studies it is important 
to note that essentiality of some genes will depend on the experimental conditions (biological 
dependent essentiality) and on the number of passages (experimental dependent essentiality).  

As complexity within the genome increases, redundancies in essential functions  in principle 
should allow for fewer genes to be labelled as essential (27). However, it is possible that as genome 
size increases, and more modules and functions are added, there could be a proportional increase in 
the number of critical nodes. This in turn could lead to an increase in the number of E genes. This 
relationship has been explored analogously by Basler et al, showing that metabolic networks of 
different sizes demonstrate the same pattern with regard to the number of “driver reactions” (28). As 
the complexity of the system increases, more points of failure become present, and certain NE 
functions become integrated into new essential circuits, changing their original essentialities.  

Essentiality studies combined with the presence of high numbers of sequenced genomes 
allows us to answer the following questions: a) What is the minimum number of E genes in all species 
studied? b) Are the highly conserved genes always E or could we find conserved NE genes? c) Does 
increasing genome complexity imply a higher number of E genes due to increased critical node 
number or epistatic interactions? d) Does the function of the cell’s E genes change depending on 
genome size? In other words, large genomes will have more essential genes in a given functional 
category, while small genomes will have a different composition? 

Here, we tried to answer the above questions. We showed that both the size and composition 
of the essential genome of a bacteria changes as the complexity of the genome increases. In 
addition, we showed that universally conserved genes have a strong bias towards functions relating to 
transcription, translation and DNA replication & repair. However, the essentiality of these genes is not 
strongly conserved, and universally E genes are rare. We also identify a subset of genes that are 
highly conserved, yet rarely essential. We show how the essentiality of each COG category changes 
with genome size, and that while there are few individual examples of genes becoming more or less 
essential as genome size changes, global trends relating to COG category essentiality do emerge. 

Finally, we show that there is a non-linear correlation between the level of gene conservation 
and its essentiality. Genes that are present in less than 30 species become less essential as they are 
included in more species, yet once a gene is present in more than 30 species, it becomes the 
likelihood of it being E increases. 
 

MATERIAL AND METHODS 

Database creation 

A PubMed search was initiated using the search terms “Essential genes” and “Bacteria”. 107 
separate entries were found listing the essential genes of a specific bacterial species, corresponding 
to 84 different bacterial species across 68 papers. These results were filtered to allow for a 
standardised comparison across the different data sets. As such, the studies were filtered via three 
categories: i) The authors must have used mini-transposons do disrupt the genome; ii) Insertions and 
thus gene essentiality were determined via a Next Generation Sequencing methodology; and iii) The 
paper must provide a list of genes deemed essential for the organism being studied. In addition, 
studies done in Escherichia coli and Bacillus subtilis by using systematic knockouts of every gene 
within the genome, were deemed to be representative for this study and were added. 47 entries 
matched the inclusion criteria and were included in Suppl. Table 1, spanning 8 phyla (Suppl. Figure 1 
& Suppl. Table 2). 

For each species strain, the relevant genome assembly was downloaded to build up a 
relational database. Wherever possible, RefSeq datasets were preferred. GenBank datasets where 
chosen if RefSeq ones did not exist for that strain. FASTA sequence files were gathered from each 
dataset jointly with extracted GenBank-formatted information for each entry extracted with NCBI 
Entrez Direct command-line tools (29). If .gff annotation files were available, they were also used with 
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the previous other files in order to collect different synonyms for each entry identifier. All this 
information was stored in a specific table in the relational database. 

The datasets above were parsed to remove all pseudogenes and RNAs from the analysis, 
ensuring that only protein coding sequences were analysed. For each species, the list of E genes was 
extracted from the appropriate paper. The list of E genes was cross-referenced to the genes within 
the annotations for that species, ascribing an essentiality status of E or NE to each gene. Since in 
many studies they don't distinguish between F and NE genes, we included F genes into the NE 
category. Any cases where the two lists did not match automatically were manually annotated, using 
BLAST to identify homologs.  

COG assignations were extracted from the available files. All genes with a RefSeq ID or 
GenBank ID that contained a GOG assignation was ascribed with a corresponding COG category. 
Any gene without a COG category assigned, but having otherwise a homolog with an assigned COG 
one, was also ascribed with the functional annotation of the homolog. Any cluster that contained a “S” 
annotation, denoting “Unknown Function” as well as a different annotation had the “S” annotation 
removed, as the function that had been ascribed to one member of the cluster was ascribed to them 
all, thus the “S” COG became redundant. COGs were grouped into four Super-COGs for general 
analysis, which are shown in Suppl. Table 3. 

All previous assignations and annotations were also stored in separate relational tables that 
could be interlinked to the original table containing entries IDs. The same approach was followed for 
subsequent analyses data, so it became easier to design queries for retrieving aggregated total 
numbers or relevant lists, such as the ones presented in the supplemental material.     

Gene homologue clustering and assignment 

Genes were clustered into groups of homologs using ProteinOrtho . This tool generates 
clusters containing protein sequences grouped according to their mutual similarity by using the results 
of successive BLASTP runs. For our case, we used an E-value parameter of 1e-05, a similarity of 
“0.95”, an identity of “25” and a coverage of “50” (full list of parameters can be found in Suppl. Table 
4). Duplicated genes in a single species were filtered out so only one record remained, and fusion 
proteins were treated as a single protein or two proteins, depending on their RefSeq ID. In total, 
63923 unique clusters of homologs were established. 

To try and keep everything as standardised as possible, we attempted to use the same 
genome annotation format throughout and cluster genes with homologs. This could allow annotated 
species to infer and double check annotations from less well defined species. In this spirit, we decided 
to focus on ORFs encoding for proteins, excluding functional or non coding RNAs from the analysis. 
Within the issue of standardisation, we encountered a wide variety in the quality and completeness of 
the annotations used. While we tried to standardise all of the genes from each organism in our 
database to be linked to a RefSeq ID, this was not always possible. As such, GenBank IDs, and rarely 
other IDs, were also used to ensure that there were no gaps in our records for each species. On top 
of this, matching the IDs given for the essential genes to our database for the species often non-
trivial. This was due in part to the variety of reporting methodologies used by each author, and in part 
to a lack of synchronisation between the genome annotations and the list of E genes provided.  

As a point of clarity, we use the phase ‘homolog’ to define genes that cluster together using 
our ProteinOrtho search, but are found in different organisms. ‘Paralog ‘ is used to define genes that 
perform identical functions but do not appear in the same cluster, due to divergent sequence identity.  

For the list of E genes from each species, an essentiality indicator was established from each 
paper. For example, the list of essential genes provided for Synechoccus elongatus contained the 
RefSeq ID for each E gene (30), so matching this against our database was easy to do automatically, 
and allowed us to easily annotate which genes in the database relating to S. elongatus were E. Most 
lists gave a locus ID that matched to the genome annotation, such as those given for Streptococcus 
pyogenese (31), and some such provided genomic loci for each gene, along with other identifiers, 
such as Herbaspirillum seropedicae (32). In general these were fairly simple to match, however there 
were ambiguous cases. For those lists that contained other identifying information, such as genetic 
loci, resolving these miss-matches was much easier. Some papers provided only common genes 
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names, like the list provided for Bacillus subtilis (33). This was most problematic, as many genes have 
multiple common names, such as the Ribosomal RNA small subunit methyltransferase A being 
referred to as either rsmA or ksgA interchangeably (34). 

Due to the large amount of variation in the input data, this meant that many E genes had to be 
identified manually, as they did not match directly to the database. In such cases, we generally ran 
BLASTP to identify if there were any obvious homologs in our dataset already if the sequence of the 
protein was known. If this was not the case, descriptions of the proteins function were used to see if it 
could be mapped to a protein in that species from the database. 

These efforts were hampered further by a mix of miss-annotation of E genes and changes to 
the genome annotation files after the papers had been published. For example, in the list of essential 
genes provided for Bacillus thuringiensis, there are five typos in the gene names (35). The essential 
Asparginase in this organism is labelled with the incomplete locus tag “BMB171_C1”. Looking into the 
genome, B. thuringiensis contains two Asparginases, BMB171_C2086 and BMB171_C1329. As no 
other information on the gene is provided, it was annotated as BMB171_C1329 on the basis of the 
partial locus tag. Other errors, such as underscores (_) being replaced with hyphens (-) were less 
ambiguous to correct, but still required manual curation. 

Other times, the genome annotation had been updated or modified since the paper relying on 
it had been published. A good example of this can be found in the annotations of M. tuberculosis, 
where the genes Rv3021c and Rv1784 are designated as E (36). However, in the genome annotation 
we downloaded of M. tuberculosis, Rv3021c was annotated as a pseudogene and Rv1784 no longer 
existed, as it had been determined that it was actually a part of Rv1783, not a unique protein itself. As 
such, both annotations were discarded, as we discarded all pseudogenes from the analysis (on the 
basis that they are not genes) and Rv1783 was already annotated as E.   

All of our clustering techniques were based on protein identity, grouping genes with a similar 
protein structure with each other and assuming homology of structure equals homology of function. 
However, this ignores the fact that there is often more than one gene responsible for the same 
phenotype in different bacteria (37). As a standard, we used the genes in M. pneumoniae as the basis 
for the initial clustering, as they are well described and annotated (38). However, just because a gene 
performs a specific function in M. pneumoniae, does not mean all other bacteria that contain that 
function will contain that specific gene. While the M. pneumoniae genes were used as a base, we 
clustered the entire database by homology, so all gene groups that are homologs are successfully 
clustered. The issue comes when querying the database about information for a specific gene.  

A clear example of this was found in the genes coding for the proline tRNA synthetase. 
According to Charlebois & Doolittle (17) and Koonin et al., (15), we should find the proline tRNA 
synthetase in every species. However, the copy of the gene found in M. pneumoniae only had 
homologs in eight other species. We therefore had to manually query every species to see if it 
contained an annotated proline tRNA synthetase, and we found that there were three distinct paralogs 
of the gene that were generally split along phylogenetic line, though two species contain two different 
versions of the gene (B. thuringiensis & B. phytofirmans). Notably, while many species lack an 
asparagine and glutamine tRNA synthetases, they contain the gatA/gatB system, which amidates Asp 
and Glu loaded on Asn-tRNA and Gln-tRNA (39). Having different classes of tRNA synthases has 
been well documented (40), and serves as a reminder that evolution has allowed for multiple different 
paths to the same outcome.   

Another problem happens when a small gene is fused to another, is elongated or has a long 
insertion. An example is the M. pneumoniae copy of nusG. When we searched the database, we 
found no other species that contained the gene. The reason being that it the gene is much longer in 
M. pneumoniae and has an insertion in the most conserved region (See Suppl. Figure 2). In those 
cases, manual sequence comparisons should be performed. This issue of search results being biased 
due to the expectation of preserved homologs gives further credence to the secondary search 
strategy employed by Charlebois & Doolittle (17), where they ascribed a function and gene name to 
each homolog cluster they collated. Searching databases via protein sequence or a RefSeq ID alone 
will inevitably bias the results towards that specific homolog, ignoring important paralogs. While there 
is a huge variance in the gene name annotations given, the ability to search via function instead of a 
specific gene would be a huge help in identifying common features among multiple species. 
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Clustering essentiality by genome size 

All clusters of homologs containing an essential gene were isolated and divided by COG 
category. They were then plotted against all bacterial species in order of genome size to form a heat-
map. A green colour indicates the gene was present in that organism but was NE, a red colour 
indicates the gene was present and E, and a white colour indicated the gene was not present.  

 
RESULTS 

Universally conserved genes and their functions 

By performing a bibliographic search, we collected data of essentiality from 107 entries, which 
were selected as indicated in Methods. After cleaning by the methodology used and completeness of 
the study, a total of 47 species, represented by 8 phyla, were selected to generate the essentiality 
database that was used in posterior analysis (Suppl. Tables 1, 2 and Suppl. Figure 1). This database 
contained 191341 genes that can be further split into 63923 clusters of homologs (As defined in 
Methods). Of the 63923 clusters of homologs in the database, we could assign COG categories to 
15823 (25%) of them. However, these 15823 clusters with a COG annotation account for 109549 of 
the 191341 (57%) of the genes in the database. The composition of the database via COG categories 
is shown in Suppl. Table 5. 

Study of gene conservation revealed that only 92 out of 63923 clusters were universally 
conserved (Table 1), and allowing for one species missing a gene (to consider error of annotation or 
sequence search) the number raised to 127. We compared our list of universally conserved genes 
with studies previously performed by other groups (See Suppl. Table 6) and found that all genes 
previously described by Charlebois and Doolittle (17) as universally conserved were also found within 
our dataset of 140 genes. However, only 70% of the genes identified by Charlebois and Doolittle had 
an identical homolog shared by all species. The remaining 30% of genes were still present in all 
species, but via paralogs.  

Of the list of near universal genes generated by Lan et al., (18), 60% of them had a homolog 
in all species in our dataset, 30% were universally conserved but with multiple paralogs and 10% 
were not universally conserved.  In the following text, we will use the term universally conserved 
genes for the 127 genes we have found in our database that are found in all species, or missing in 
just one.   

The study revealed that the majority of those universally conserved genes generally fall into 
one of four functional categories: i) Ribosomal proteins, or those associated to them (38%). ii) 
Proteins involved in signal transduction and post-translational modifications (6%). iii) Proteins that 
interact with the synthesis, replication or repair of DNA and RNA (24%), and iv) tRNA synthetases, 
and proteins associated with them (17%) (Figure 1).  When looking for functionality and not gene 
similarity we find that all species encode for 18 tRNA synthetases and either they have Asn and Gln-
tRNA synthetases or they have the GatA/GatB system capable of amidating Asp and Glu loaded on 
Asn and Gln tRNA (39).  

Gene essentiality analysis of universal genes 

We then examined the gene essentiality of all the genes in our database. Interestingly, only 
the dnaA gene is annotated as essential in all 47 species. This could be due to the fact that we 
considered F genes as NE, but in transposon studies sometimes E genes can be classified as F. For 
example, insertions found at the beginning or at the end of a gene could have no overall effect on the 
protein function, or the protein could contain a NE extension full of insertions. As a result, a gene 
could be classified as F or even NE instead of E (see Suppl. Figure 2).  

To account for these cases, we established a threshold to define universally essential genes. 
For this purpose, we considered that the universally conserved alpha and beta subunits of the RNA 
polymerase and all non-duplicated tRNA synthetases should be E. Thus, we set a threshold for 
universal essentiality at 89%, and applying this threshold to all the list of candidate genes, we could 
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identify 22 universally essential genes in our analysis (See Table 1).  There are also many genes that 
are highly conserved yet rarely, if ever, E. We looked for genes that were found in ≥90% of species, 
but whose cluster had an essentiality of <10%. 57 clusters of homologs were returned, of which 20 
were NE in all species (Figure 2 & Suppl. Table 7). Similarly with the universally conserved proteins, 
this list is dominated by genes relating to the Information storage & Processing. However, while that 
most highly represented class of genes (66.3%) in the universally conserved list related to translation, 
ribosome structure and biogenesis (COG category J), in the rarely E genes relating to DNA 
replication, recombination and repair were the most common, followed by translation, ribosome 
structure and biogenesis (33.3% and 26.3% respectively). There was also a large number of genes 
with only general or no function ascribed to them (COG categories R and S, 19.3% combined). 

Genome complexity and essentiality  

To evaluate the relationship between genome complexity and essentiality, we studied the 
correlation between the number of E genes and the genome size (total number of genes) in our 
database. As shown in Figure 3A, our dataset contains species with a large variety of genome sizes. 
The value of the Pearson’s Product-Moment correlation was between genome size and number of E 
genes was 0.28 (P=0.055). This indicated that the number of E genes could be higher in more 
complex genomes.  

To gain insight into the relationship between essentiality and complexity in functional 
pathways, we studied if the composition of a cells’ essential genome changed depending on the 
genome size. First, the 47 selected bacterial were classified into four categories based on their 
genome sizes; minimal genomes (<1000 genes), small genomes (1000-3000 genes), medium 
genomes (3000-6000 genes) and large genomes (>6000 genes). Secondly, the COG categories were 
also grouped into four super categories; ‘Cellular processes and signalling’, ‘Information storage and 
processing’, ‘Metabolism’, and ‘Poorly characterised’ (See Suppl. Table 3). Then, we studied the 
relation between genome size and essentiality in different functional groups (Figure 3B). 

For genes involved in ‘Metabolism’ and ‘Cellular processes and signalling’, there is a 
generally positive correlation between the increase in genome size and their percentage contribution 
to the essential genome. However, for genes related to ‘Information Storage & Processing’ and 
‘Poorly characterised’ the number of essential genes per super COG is relatively stable, independent 
of genome size (Suppl. Table 8). For each of the COG categories within the super COG, the 
essentiality was plotted against the genome size category to see if the individual COG categories 
aligned with the change in the super COG, and the pattern of the individual COG categories tends to 
follow that of their super COG category (Suppl. Figures 3-10).   

Looking at the overview of the distribution of individual essential genes across COG category 
and genome size (Supp. Figures S10-13), we see few clear examples of genes become more or less 
E as the complexity of the genome increases. However, more trends appear at the COG level.  For 
example, E genes for cell motility (COG category N) and signal transduction mechanisms (COG 
category T) tend to cluster in the larger organisms, yet are much rarer in smaller ones. 

While the relationship between genome complexity and essentiality is shown in Figure 3 on a 
global level, Figure 4 shows the relative contributions of each individual COG category has on the 
total essential genome in minimal genomes vs the largest genomes. The pie charts show both the 
size of the average essential genome, with the large genomes having on average 434 ± 101.3 (1SD) 
essential genes compared to the minimal bacteria’s 311 ± 22 (1SD), and their overall makeup in 
regards to the super-COGs. The bias towards translational and ribosomal genes in the minimal 
bacteria is readily apparent, along with the lack of essentiality in the cellular process and 
housekeeping genes. 

B. thuringiensis appeared to be an outlier from the rest of the species analysed in regard to 
pattern of E genes, specifically within the Information Storage & Processing Super-COG. As the 
eighth largest organism by genome size, its bias towards non-essentiality stands out clearly in COG 
category J, and to a lesser extent in categories K and L (See Suppl. Figure 12). This deviation from 
the standard pattern of essentiality can be explained by the fact there are no ribosomal proteins 
classified as essential, according to the paper investigating B. thuringiensis (35). This lack of 
ribosomal genes is not mentioned in the original paper, and analysis of the organism at the genome 
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level does not indicate multiple copies of the proteins to provide redundancy. Therefore, either they 
were excluded deliberately or lost to experimental noise. 

 

Gene essentiality correlates in a non-linear way with gene conservation 

Of the 191341 genes in our database, 21796 are classified as essential in at least one 
species. Theses E genes can be divided among 5510 clusters of homologous genes. However, the 
essentiality of a gene in one organism does not infer essentiality in all others, and there are 42471 
separate NE genes that have a homolog that is E in another species. On average, each cluster of 
homologous genes that contains an E gene is represented in 10.6 species (SD ± 12.8), and the genes 
in the cluster are essential 51.8% (SD ± 37%) of the time. As previously described in Luo et al., (22), 
the pattern of a clusters essentiality changes based on how well conserved it is, as shown in Figure 5. 
As the number of species a cluster is found in increases, the chance of that gene being essential 
decreases. However, once a cluster is found in more than 30 species, its essentiality increases, thus 
the chance of it being an essential gene in more organisms begins to rise. 
 

DISCUSSION 

Within this study, out of 47 species we found 92 genes with a homolog present in every 
species analysed, and 127 if we assumed that a gene could not be found in a species due to 
annotation error or search problems. Comparison between our dataset and those generated by 
Charlebois and Doolittle (17), Koonin (15) and Lan et al., (18) show a high degree of overlap. While 
not all species shared an exact homolog, the genes deemed universal by Charlebois and Doolittle 
(17) were present in all our species, along with 90% of the genes identified by Lan et al., (18). This list 
of universally conserved genes is dominated by COG category J, translation and biosynthesis, which 
is in line with previous analyses (15,17). The remaining COG categories have very few genes shared 
between all species. This is most evident in the genes regarding transcription (COG category K) and 
the genes involved in metabolism. Transcription initiation is a vital cellular processes, yet there are 
only four genes that are conserved across all species: the Holliday junction resolvase ruvX, 
transcription termination/anti-termination protein nusA, and the two DNA directed RNA polymerase 
subunits A & B, rpoA and rpoB. These four proteins are responsible for the process of transcription, 
and functions relating to its termination, but there are no universal transcription initiation proteins. 

The lack of universal transcription factors is interesting, as is the general lack of essentiality 
within the class. Of the 10829 genes in the database that belong to COG category K, only 712 are 
essential. While this is not the lowest percentage of essentiality for a COG at 6.6%, compared to the 
other COGs in its cluster (J has 40.4% essentiality and L has 19.9%), it is a significant change. By 
contrast, the transcription genes are far more diverse than the genes relating to translation and DNA 
replication and repair, as transcription in bacteria is a highly diverse process. Many bacteria rely on a 
vast array of different, niche specific transcription factors, along with other factors such as 
supercoiling DNA and nucleoid associated proteins (41–43), all of which are far more species specific 
than the fundamental DNA repair & replication and translation machinery. 

One of the problems we have in our analysis is that the phyla belonging to the Proteobacteria 
comprised 33 of 47 species in our analysis. Thus, a bias towards this phyla’s genetic predispositions 
is inevitable. This is not just an issue specific to this study, but found across microbiology in general. 
A review of the GenBank entries regarding sequenced bacterial genomes in 2015 found that just six 
bacterial phyla comprise 95% of all sequenced bacterial genomes, and 46% of the total sequences 
were from Proteobacteria (44). Of the remaining phyla, in order of number of genomes sequenced, 
were the Firmicutes (31%), Actinobacteria (13%), Bacteroidetes (3%), Spirochaetes (2%), 
Cyanobacteria (1%), then all other phyla (5%). Therefore, while our ratios are slightly different, this 
study did analyse data that is generally representative of the overall state of sequenced bacteria. 
Because of the bias towards Proteobacteria, there is a second implicit bias towards Gram-negative 
bacteria. This could be due to the fact that Gram-negative bacteria are intrinsically more receptive to 
transformation due to their lack of peptidoglycan cell wall, thus essentiality studies on them are easier 
to perform. The thick peptidoglycan layer acts as a natural barrier for transformation and makes 

.CC-BY-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 28, 2020. ; https://doi.org/10.1101/2020.02.28.969238doi: bioRxiv preprint 

https://doi.org/10.1101/2020.02.28.969238
http://creativecommons.org/licenses/by-nd/4.0/


methods such as electroporation less effective, though polyethethylene glycol has been shown to be 
effective (45).  

Accounting for experimental noise is a key issue with this analysis. Analysing transposon data 
for essentiality is inherently prone to many confounding factors, and eventually based on statistical 
probabilities instead of empirical observation (25,46). Because of this, by combining multiple different 
results, each utilising variations in methodology, such as choice of transposon, transformation 
method, growth condition(s) and analysis pipeline, this noise will propagate throughout this study. The 
case of B. thuringiensis shows that there is a level of noise generated by the described issues in 
reporting and annotation of essential genes. As such, while it may be feasible or useful to conclude 
that there is a strong chance that genes with a percentage essentiality of 89% or higher can be 
assumed to be universally essential; there are certain to be individual cases that do not conform. 
Being strict we only find DnaA as universally essential, and when adopting the 89% cutoff we find 26 
genes which are essential across all organisms analysed here, and their function is dominated by 
DNA replication & translation machinery (see Table 1). 

However, we must be careful ascribing the lack of 100% essentiality to experimental errors. 
This is exemplified by the S-adenosylmethionine gene metX. This gene is found in all species, and is 
a major component of the methylation systems of both DNA, RNA and proteins (47). It is essential in 
89% of species, but is non-essential in many of the larger bacteria. For example, A. tumefaciens 
contains a secondary adenine methyltransferase known as CcrM, which is essential (48). This gene 
performs a highly similar function to metX, and could explain the loss of essentiality of the latter gene. 
This inherent probability that there are paralogs or moonlighting functions for highly conserved genes 
shows why it is probably not feasible to ascribe a hard delineation to the number of essential genes 
within the population. As it is the phenotype that is essential, and multiple genotypes can allow for 
this, it may be more accurate to attempt to define the essential phenotypes needed for life and work 
out the essentialities relating to them. Alternatively, we can treat the percentage of essentiality of a 
gene as a confidence level that it is truly essential across a disparate population of bacteria. 

This phenomenon is shown clearly when looking at the absence of certain genes from the 
conserved list. A noteworthy absentee is the Sigma 70, which is present in 38 species (80%) and 
essential only in 68% of the species it is found. A member of the sigma 70 is a ubiquitous requirement 
for bacteria, as its role in housekeeping transcription is supposedly vital (49). Here, we find that while 
the canonical Sigma 70 is well conserved, a large number of species contain non-homologous 
members of the sigma 70 protein family. Along with its relatively low level of essentiality across the 
dataset, this implies that despite its fundamental role in housekeeping transcription, there must be 
other members of the sigma family that can provide the same function, at least in in vitro conditions.   

The almost universal preservation of many NE genes shows that high level conservation of a 
gene is not dependant on it being essential to cellular survival. However, this could be a good 
example of the role of genetic redundancy and the divide between an essential function vs an 
essential gene. Some of these genes could truly be NE in some organisms, however they may also 
contribute to an essential function. Of the 57 near universally conserved but rarely E genes, 33% are 
involved in DNA replication & repair Having multiple redundant systems to repair DNA damage could 
impart a strong survival advantage in situ, which in turn is not needed for highly controlled laboratory 
conditions. For example, the UvrABC system is nearly universally conserved, and nearly universally 
NE. However, DNA damage via UV irradiation is controlled against in vitro, thus the function becomes 
NE in the conditions it was tested under.  

The identification of these proteins, and those like them, could be highly useful in regards to 
genome engineering. Even the most ambitious genome reduction projects have had to retain certain 
NE genes (2). Knowing which are highly conserved, and thus most likely to have a strong fitness 
impact on the cell under certain conditions, could help guide rational design of new genomes beyond 
the simple dichotomy of preserving E genes and dispensing with as many NE genes as possible.     

As the complexity of the genome increases, new reaction pathways are added, and thus 
become integrated into pre-existing circuits. This can make some genes become NE, as new genes 
bring with them redundancies for pre-existing ones, but it can also make pre-existing genes E. This 
can be due to the fact the substrate they produce is now vital to the proper functioning of a new 
pathway, or is somehow involved in its regulation, thus leading to an increase in the E genes. A good 
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example of this is found within the lipid metabolism pathways. Organisms in the ‘minimal’ or ‘small’ 
genome category have a reduced ability to synthesise their own lipids (50). The 1-deoxy-D-xylulose 5-
phosphate reductoisomerase gene dxr is the first step in the isopentenyl diphosphate biosynthesis 
pathway. It is present in 41 of the 47 species and is essential in 38, absent in the three mollicute 
species analysed here, the two streptococci and L. crescens, all of which are in the ‘minimal’ or ‘small’ 
genome categories. This could explain the small correlation between genome size and the number of 
E genes (Pearson’s Product-Moment correlation of 0.28) that we find.  

The reason perhaps why this correlation is not very high could be due to the fact that as the 
number of genes within a genome increases, more and more pathways are added and thus pathways 
can be replaced, increasing genetic redundancy. A good example of this can be seen in the genes 
related to carbohydrate metabolism in Suppl. Figure 13. Among the highly conserved genes, there is 
a clear tendency for genes to be essential in the smaller genomes and non-essential in the larger 
ones. This is also seen in the genes involved in translation (COG category J, Suppl. Figure 12), 
though to a much smaller extent. 

The bi-modal trend of the essentiality of the genes changing with the number of homologs 
present fits well with our hypothesis of increasing complexity and gene utilisation. Genes only found in 
a single organisms are likely to be there as a response to some form of environmental stress specific 
to the niche that bacteria inhabits. This trait is especially true in pathogenic bacteria, which tend to 
evolve similar orphan genes when dealing with similar pathogenic niches. These genes are rarely if 
ever found in non-pathogenic species, even within the same genus, implying that there is a strong 
evolutionary pressure stemming from their niche which these genes help alleviate (51). However, as 
genes become present in more and more species, this implies that their functionality becomes useful 
to a wider range of niches. The more widely conserved a gene is, the more likely to encode for a 
protein that assists in a general or housekeeping function instead of a niche specific one, thus the 
more likely it is to have some level of genetic redundancy. Finally, genes that are nearly universally 
conserved, by definition must play a role in a fundamental cell process. While there will be some level 
of redundancy in its functionality, the fact that none of the species analysed has replaced the original 
protein with a redundant or modified one implies that the function it provides is still vital for cellular 
function at a fundamental level.  

Finally, it is probable that the potentially unclassifiable variation in bacteria (11), coupled with 
the abilities of genes to moonlight to other functions (52–54), especially in pathogenic bacteria (55–
57) could explain the lack of commonality in gene conservation and essentiality. This potential for 
bacteria to employ similar genes to fill multiple roles allows for a level of redundancy within key 
processes, enabling bacteria to specialise their function, and perfectly suit their niche (58).  

Therefore, while certain cornerstone functions of life seem conserved across the Bacterial 
Domain, bacteria have evolved many redundancies and replicate systems to allow for differentiation. 
Even the ribosome, one of the most conserved structures across all domains of life, cannot be fully re-
created from the conserved proteins, and many of those proteins are NE in many species. This lack of 
consensus between E genes and E functions highlights the need to understand the functionality of all 
genes, and their cumulative role in cell processes, if we are to fully understand what components truly 
are and are not essential for all bacterial life.  
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TABLE AND FIGURES LEGENDS 

 

Table 1. List of 92 genes universally conserved in our dataset, as well as the 35 genes missing in only 

a single species indicated with a (*), showing standard gene name, the percentage of species in the 

database that the gene is annotated as essential in, and COG category(s). 

Figure 1. Essentiality profiles of the conserved genes, grouped by functional categories. Gene 
essentiality is indicated by the panel in the centre. [A] Ribosomal proteins. Number refers to that 
Subunit’s specificity, i.e. gene 3 in the 50S denotes ribosomal protein 50S L3. A- 23S rRNA gunosine 
methyltransferase rlmB. B- Ribosomal RNA small subunit methyltransferase A. C- Ribosomal RNA 
small subunit methyltransferase H. D- Ribosomal RNA small subunit methyltransferase I. E – 
Ribosome-binding ATPase ychF. [B] Genes involved in signal transduction and post-translational 
modification. A- Chaperone dnaJ, B- chaperone dnaK, C- ssrA-binding protein, D- ATP-dependant 
zinc metalloprotease ftsH, E – protein translocase subunit secA, F - protein translocase subunit secY, 
G – Signal recognition particle receptor ftsY, H – Peptide chain release factor 1. I- Methionine 
aminopeptidase map. J- Signal recognition particle ffh. K- Ribosome-recycling factor frr. [C] Genes 
involved in DNA & RNA synthesis, replication and repair. 1– Chromosomal replicaton initiator protein 
dnaA. 2 – UvrABC system protein A. 3 – UvrABC system protein B. 4- Recombination protein recA. 5- 
Recombination protein recR. 6- DNA primase dnaG. 7- DNA polymerase III subunit alpha. 8- Holliday 
junction ATP-dependant DNA helicase ruvA. 9- Holliday junction ATP-dependant DNA helicase ruvB. 
10- DNA ligase ligA. 11- DNA-directed RNA polymerase subunit alpha. 12- DNA-directed RNA 
polymerase subunit beta. 13- Transcription termination/antitermination protein nusA. 14- Transcription 
termination/antitermination protein nusG. 15- Holliday junction resolvase ruvX. 16- DNA gyrase 
subunit A. 17- DNA gyrase subunit B. 18- Transcription elongation factor greA. 19- Translation 
initiation factor IF-13 20- Translation initiation factor IF-2. 21- Elongation factor G. 22- Elongation 
factor P. 23- Elongation factor Tu. 24- Elongation factor 4. 25- Elongation factor Ts. 26- Release 
factor glutamine methyltransferase. [D] tRNA synthetases, indicated via common 1-letter abbreviation. 
1- Methionyl-tRNA formyltransferase fmt. 2- tRNA guanine methyltransferase trmD. 3- tRNA guanine 
methyltransferase trmB. 4- tRNA modification GTPase mnmE. 5- tRNA N6-adenosine 
threonylcarbamoyltransferase tsaD. 6- tRNA pseudouridine synthase B. 7- tRNA uridine 5-
carboxymethylaminomethyl modification enzyme mnmG. 8- tRNA-specific 2-thiouridylase mnmA. 9- 
Peptidyl-tRNA hydrolase. 

Figure 2. Composition of the highly conserved but lowly essential genes and the universally 

conserved genes via COG category. D - Cell cycle control, cell division, chromosome partitioning. M - 

Cell wall/membrane/envelope biogenesis. O - Post-translational modification, protein turnover, and 

chaperones. T - Signal transduction mechanisms. U - Intracellular trafficking, secretion, and vesicular 

transport. J - Translation, ribosomal structure and biogenesis. K – Transcription. L - Replication, 

recombination and repair. C - Energy production and conversion. E - Amino acid transport and 

metabolism. F - Nucleotide transport and metabolism. G - Carbohydrate transport and metabolism. H 

- Coenzyme transport and metabolism. R - General function prediction only. S – Function unknown. 

Figure 3. Relationship between genome size and essential genes. A - Number of essential genes vs 

total genome size of the 47 species studied. B - Composition of the essential genome via Super COG 

classes as a percentage of the total essential genome, stratified by genome size. 
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Figure 4. Bubble plot showing the average composition of the essential genomes of the minimal vs 

large bacteria by COG category, as a percentage of their total essential genes. Circles represent the 

relative abundance of each COG category. Green circles denote COG categories belonging to the 

Cellular processes & Signalling Super-COG, blue circles represent COG categories belonging to the 

Information storage & Processing Super-COG, orange circles represent COG categories belonging to 

the Metabolism Super-COG, and grey circles represent COG categories belonging to the Poorly 

characterised Super-COG. D - Cell cycle control, cell division, chromosome partitioning. M - Cell 

wall/membrane/envelope biogenesis. N - Cell motility. O - Post-translational modification, protein 

turnover, and chaperones. T - Signal transduction mechanisms. U - Intracellular trafficking, secretion, 

and vesicular transport. V – Defence mechanisms. X – Mobilome. J - Translation, ribosomal structure 

and biogenesis. K – Transcription. L - Replication, recombination and repair. C - Energy production 

and conversion. E - Amino acid transport and metabolism. F - Nucleotide transport and metabolism. G 

- Carbohydrate transport and metabolism. H - Coenzyme transport and metabolism. I – Lipid 

metabolism. P – Inorganic ion transport and metabolism. Q – Secondary metabolite biosynthesis, 

transport and catabolism. R - General function prediction only. S – Function unknown. 

 

Figure 5. Changes in the essentiality of a cluster of homologs containing an essential gene. By 

studying the conservation of essential genes we have found a bi/modal trend in essentiality when the 

number of homologs increases.  

Gene 
% 

Essentiality 
COG Gene 

% 
Essentiality 

COG Gene 
% 

Essentiality 
COG 

dnaA 100.0 L rpsB* 82.6 J map 59.6 J 

pheS 97.9 J argS* 82.6 J ybeY* 58.7 J 

rplB 95.7 J tsf* 82.6 J rplS 55.3 J 

gltX* 95.7 J frr* 82.6 J pgk 55.3 G 

hisS 95.7 J nusG* 82.6 K infA 55.3 J 

secY 95.7 U era 80.9 J rpsO 53.2 J 

rplC 93.6 J prfA 80.9 J rpe 53.2 G 

aspS 93.6 J ffh* 80.4 U efp 51.1 J 

gyrB 93.6 L rpsK 78.7 J rpmI 48.9 J 

dnaE 93.6 L ftsH 78.7 M dnaJ 48.9 M 

rpoA 93.6 K nusA 78.7 K ruvX 48.9 K, L 

rpoB 93.6 K trpS 78.7 J gpsA* 47.8 C 

pheT* 93.5 J atpG* 78.3 C rpsT 44.7 J 

infB* 93.5 J rpsL 76.6 J rpmB 44.7 J 

rpsC 91.5 J rplA 76.6 J rsmH 44.7 M, J 

rplF 91.5 J rplK 76.6 J rpmH 42.6 J 

alaS 91.5 J rplO 76.6 J glyA 40.4 E 

leuS 91.5 J adk 76.6 F tuf 38.3 J 

serS 91.5 J secA 76.6 U rpmJ 36.2 J 

rplD 89.4 J mnmA 76.6 J rpmE 34.0 J 

gyrA 89.4 L tsaD* 76.1 NO COG smpB 34.0 M 

metK 89.4 H rplT 74.5 J mnmG* 32.6 D 

ftsY 89.4 U rplL* 73.9 J spoT* 26.1 T, K 

thrS 89.4 J rpsI 72.3 J hemK1* 26.1 J 

valS 89.4 J rplN 72.3 J mnmE* 23.9 J 
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der* 89.1 R rplR 72.3 J ruvB* 19.6 L 

rpsE 87.2 J pth* 71.7 J rsmA 19.1 J 

rplP 87.2 J rpsJ 70.2 J ruvA 14.9 L 

pyrG* 87.0 F rpsQ 70.2 J rplI 12.8 J 

prs* 87.0 E, F rplQ 70.2 J lepA* 8.7 J 

tyrS* 87.0 J rplV 70.2 J recA* 8.7 L 

rpsM 85.1 J dnaK 70.2 M recR* 8.7 L 

rpsG 85.1 J obg 70.2 D, L greA* 8.7 K 

rplJ 85.1 J rplW* 69.6 J rluA 8.5 J 

rplE 85.1 J rplX 68.1 J truB* 6.5 J 

ftsZ 85.1 D trmD 68.1 J rlmB* 4.3 J 

ligA 85.1 L fmt 66.0 J rsmI 4.3 J 

dnaG 85.1 L trxB* 63.0 O ychF 4.3 J 

fusA 85.1 J rpsR 61.7 J trmB* 4.3 J 

gmk 85.1 F rpsS 61.7 J uvrA 2.1 L 

rpsH 83.0 J folD* 60.9 H uvrB 2.1 L 

rplM 83.0 J eno* 60.9 G    

atpA 83.0 C rpmA 59.6 J    
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