

1 **Alternative splicing of COQ-2 determines the choice between ubiquinone and
2 rhodoquinone biosynthesis in helminths**

3 **June H. Tan¹, Margot Lautens¹, Laura Romanelli-Cedrez², Jianbin Wang^{3,4}, Michael R. Schertzberg¹,
4 Samantha R. Reinl⁵, Richard E. Davis³, Jennifer N. Shepherd^{5*}, Andrew G. Fraser^{1*}, Gustavo Salinas^{2*}**

5 ¹The Donnelly Centre, University of Toronto, Toronto, Canada; ²Laboratorio de Biología de Gusanos. Unidad
6 Mixta, Departamento de Biociencias, Facultad de Química, Universidad de la República - Institut Pasteur de
7 Montevideo, Montevideo, Uruguay; ³Department of Biochemistry and Molecular Genetics, RNA Bioscience
8 Initiative, University of Colorado School of Medicine, Aurora, Colorado, USA; ⁴Department of Biochemistry
9 and Cellular and Molecular Biology, University of Tennessee, Knoxville, USA; ⁵Department of Chemistry and
10 Biochemistry, Gonzaga University, Spokane, Washington, USA

11

12 ***For correspondence:**

13 shepherd@gonzaga.edu (JNS);

14 andyfraser.utoronto@gmail.com (AGF);

15 gsalin@fq.edu.uy (GS)

16

17 **Abstract**

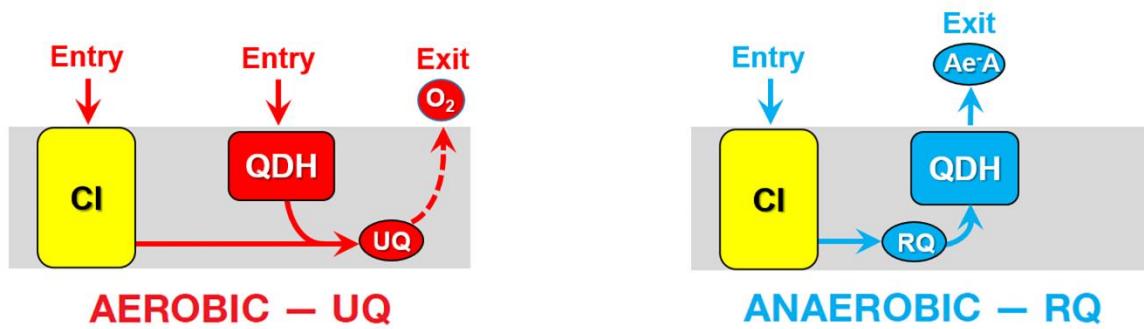
18 Parasitic helminths use two benzoquinones as electron carriers in the electron transport chain. In aerobic
19 environments they use ubiquinone (UQ) but in anaerobic environments inside the host, they require rhodoquinone
20 (RQ) and greatly increase RQ levels. The switch to RQ synthesis is driven by substrate selection by the
21 polyprenyltransferase COQ-2 but the mechanisms underlying this substrate choice are unknown. We found that
22 helminths make two *coq-2* isoforms, *coq-2a* and *coq-2e*, by alternative splicing. COQ-2a is homologous to COQ2
23 from other eukaryotes but the COQ-2e-specific exon is only found in species that make RQ and its inclusion

24 changes the enzyme core. We show COQ-2e is required for RQ synthesis and for survival in cyanide in *C. elegans*.
25 Crucially, we see a switch from COQ-2a to COQ-2e as parasites transition into anaerobic environments. We
26 conclude that under anaerobic conditions helminths switch from UQ to RQ synthesis via alternative splicing of
27 *coq-2*.

28

29 **Introduction**

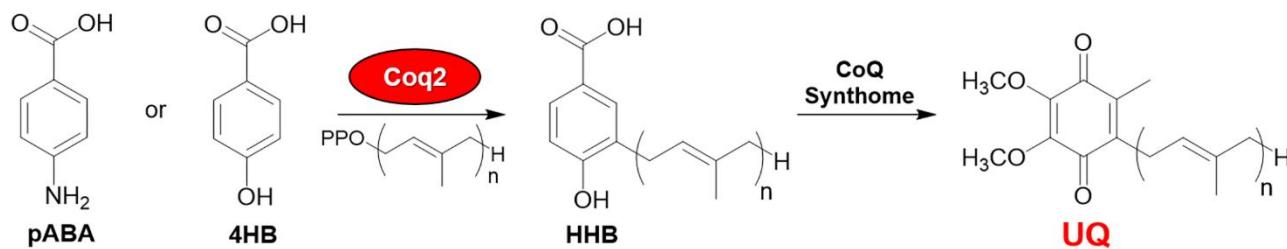
30 Parasitic helminths are major human pathogens. Soil transmitted helminths (STHs) such as the nematodes
31 *Ascaris*, hookworms, and whipworms infect well over a billion humans and seven out of the 18 neglected diseases
32 categorized by WHO are caused by helminths (CDC, 2019). Despite the huge impact on global health of these
33 infections, there are few classes of available anthelmintics and resistance is increasing in humans and is
34 widespread in some species that infect animals — for example, *Haemonchus contortus*, a wide-spread parasite in
35 small ruminants, has developed multidrug resistance (Jackson, Coop, 2000, Kotze, Prichard, 2016). There is thus
36 a serious need to develop new classes of anthelmintics that target the parasites while leaving their animal hosts
37 unaffected. One potential target for anthelmintics is their unusual anaerobic metabolism which differs from that
38 of their hosts. When STHs are in their free-living stages of their life cycles, they use the same aerobic respiration
39 as their hosts and use ubiquinone (referred to here as UQ and as Q in other papers) as an electron carrier in their
40 mitochondrial electron transport chain (ETC). However, when they infect their hosts, they encounter highly
41 anaerobic environments. This is particularly the case when they live in the host gut and *Ascaris*, for example, can
42 live for many months in this anaerobic environment (Dold, Holland, 2011). To survive, they use an alternate form
43 of anaerobic metabolism that relies on the electron carrier rhodoquinone (RQ). Since hosts do not make or use
44 RQ, RQ-dependent metabolism could be a key pharmacological target since it is required by the parasite but is
45 absent from their mammalian hosts.


46 RQ is an electron carrier that functions in the mitochondrial ETC of STHs (Van Hellemond et al., 1995). RQ
47 is a prenylated aminobenzoquinone that is similar to UQ (Figure 1), but the slight difference in structure gives

48 RQ a lower standard redox potential than UQ (-63 mV and 110 mV, respectively) (Unden, Bongaerts, 1997, Erabi
49 et al., 1976). This difference in redox potential means that RQ, but not UQ, can play a unique role in anaerobic
50 metabolism. In aerobic metabolism, UQ can accept electrons from a diverse set of molecules via quinone-coupled
51 dehydrogenases — these include succinate dehydrogenase and electron-transferring-flavoprotein (ETF)
52 dehydrogenase. In RQ-dependent anaerobic metabolism, RQ does the reverse — it carries electrons to these same
53 dehydrogenase enzymes and drives them in reverse to act as reductases that transfer electrons onto a diverse set
54 of terminal acceptors (Tielens, Van Hellemond, 1998, van Hellemond et al., 2003). UQ thus allows electrons to
55 enter the ETC via dehydrogenases; RQ can drive the reactions that let electrons leave the ETC and this difference
56 in direction of electron flow is driven by the difference in redox potential (Figure 1A). This ability of RQ to
57 provide electrons to an alternative set of terminal electron acceptors allows helminths to continue to use a form
58 of mitochondrial ETC to generate ATP without oxygen. In this RQ-dependent anaerobic metabolism, electrons
59 enter the ETC from NADH through complex I and onto RQ, and this is coupled to proton pumping to generate
60 the proton motive force required for ATP synthesis by the F0F1ATPase (van Hellemond et al., 2003). The
61 electrons are carried by RQ to the quinone-coupled dehydrogenases which are driven in reverse as reductases and
62 the electrons thus exit onto a diverse set of terminal acceptors, allowing NAD^+ to be regenerated and the redox
63 balance to be maintained. This RQ-dependent metabolism does not occur in the hosts and it is thus an excellent
64 target for anthelmintics (Kita, Nihei & Tomitsuka, 2003).


65 In the animal kingdom, RQ is present in several facultative anaerobic lineages that face environmental anoxia
66 or hypoxia as part of their lifecycle. Among animals, RQ has only been described in nematodes, platyhelminths,
67 mollusks and annelids (Van Hellemond et al., 1995). Key steps of RQ biosynthesis in animals were recently
68 elucidated (Roberts Buceta et al., 2019, Del Borrello et al., 2019). In contrast to bacteria and protists, where RQ
69 derives from UQ (Brajcich et al., 2010, Stairs et al., 2018), RQ biosynthesis in animals requires precursors derived
70 from tryptophan via the kynurenine pathway (Figure 1B). Studies performed by two teams in *C. elegans* have
71 recently demonstrated that animals that lack a functional kynureninase pathway (e.g. strains carrying mutations

72 in *kynu-1*, the sole kynureninase) are unable to synthesize RQ (Roberts Buceta et al., 2019, Del Borrello et al.,
73 2019). It is presumed that 3-hydroxyanthranilic acid (3HA here, also sometimes referred to as 3HAA) from the
74 kynurenine pathway is prenylated in a reaction catalyzed by COQ-2. The prenylated benzoquinone ring can then
75 be modified by methylases and hydroxylases (COQ-3, COQ-5 and COQ-6) to form RQ. This proposed pathway
76 is analogous to the biosynthesis of UQ from 4-hydroxybenzoic acid (4HB) or *para*-aminobenzoic acid (pABA)
77 (Figure 1C). The key insight from these previous studies is that the critical choice between UQ and RQ synthesis
78 is the choice of substrate by COQ-2 — if 4HB is prenylated by COQ-2, UQ will ultimately be made, but if 3HA
79 is used, the final product will be RQ. In most parasitic helminths there is a major shift in quinone composition as
80 they move from aerobic to anaerobic environments e.g. RQ is less than 10% of *H. contortus* total quinone when
81 the parasite is in an aerobic environment but is over 80% of total quinone in the anaerobic environment of the
82 sheep gut and similar shifts occur in other parasites (Van Hellemond et al., 1995, Sakai et al., 2012, Luemmen et
83 al., 2014). Somehow, COQ-2 must therefore switch from using 4HB to using 3HA as a substrate but the
84 mechanism for this substrate switch is completely unknown. Understanding this mechanism is important — if we
85 could interfere pharmacologically with the switch to RQ synthesis, it could lead to a new class of anthelmintics.
86 In this study, we reveal that two variants of COQ-2, derived from alternative splicing of mutually exclusive exons,
87 are the key for the discrimination in the RQ/UQ biosynthesis. The removal of one of the mutually exclusive exons,
88 present only in species that synthesize RQ, abolishes RQ biosynthesis in *C. elegans*. The analysis of COQ-2
89 RNA-seq data from parasites revealed that the RQ-specific exon expression is increased in hypoxic lifestages,
90 while the alternative exon is increased in normoxic lifestages. We thus conclude that the alternative splicing of
91 COQ-2 is the key mechanism that regulates the switch from UQ to RQ synthesis in the parasite life-cycle. We
92 also propose that the reason that RQ is only synthesised in helminths, annelids, and molluscs is due to the
93 independent evolution of COQ-2 alternative splicing in these animal lineages.

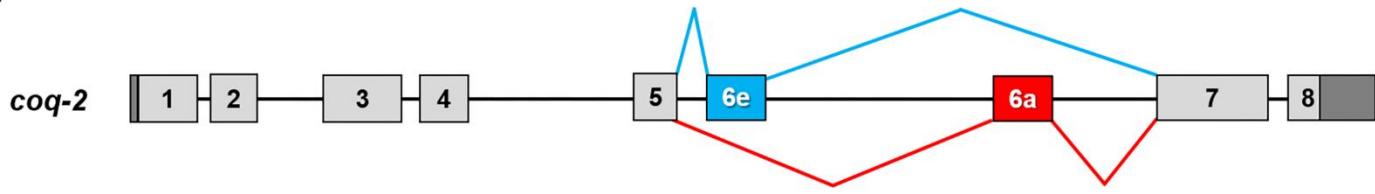

A.

B.

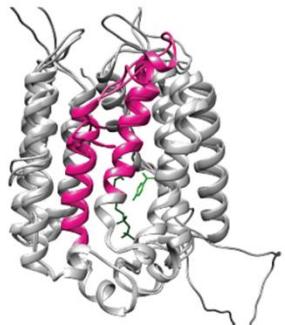
C.

94 **Figure 1.** Rhodoquinone and ubiquinone biosynthesis and function in electron transport chains. (A) In aerobic
95 metabolism, ubiquinone (UQ) shuttles electrons in the ETC from Complex I and quinone dehydrogenases
96 (QDHs), such as Complex II and electron-transferring flavoprotein (ETF), which are ultimately transferred to
97 oxygen. In anaerobic metabolism, rhodoquinone (RQ) reverses electron flow in QDHs and facilitates an early
98 exit of electrons from the ETC at anaerobic electron acceptors (Ae-A), such as fumarate. (B) The RQ
99 biosynthetic pathway in *C. elegans* requires *L*-tryptophan, a precursor in the kynureneine pathway. *L*-Trp is
100 transformed into 3-hydroxyanthranilic acid (3HA) in four steps. It is proposed that 3HA is a substrate for COQ-
101 2, producing 3-hydroxy-5-nonenylanthranilic acid (NHA) where n = 9. Transformation of NHA to RQ
102 requires several shared proteins from the UQ biosynthetic pathway. (C) Yeast can use either *p*-aminobenzoic
103 acid (pABA) or 4-hydroxybenzoic acid (4HB) as precursors to UQ. Prenylation is facilitated by Coq2 to form 3-
104 hexaprenyl-4-hydroxybenzoic acid (HHB), where n = 6. Further functionalization occurs through a CoQ
105 synthome (Coq3-Coq9 and Coq11) to yield UQ.

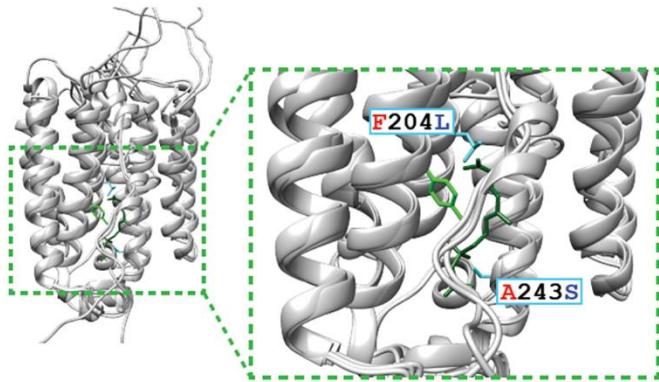
106 **Results**


107 **The *C. elegans* COQ-2 polyprenyl transferase required for quinone biosynthesis has two major**
108 **alternative splice forms**

109 Our groups previously showed that if COQ-2 uses 4HB as a substrate, this will lead to synthesis of UQ; however,
110 if it uses 3HA this will ultimately yield RQ. As parasites move from aerobic environments to the anaerobic niches
111 in their host, they change their quinone composition from high UQ to high RQ. For this to occur, COQ-2 must
112 switch its substrate from 4HB to 3HA but the mechanism for this switch is unknown.

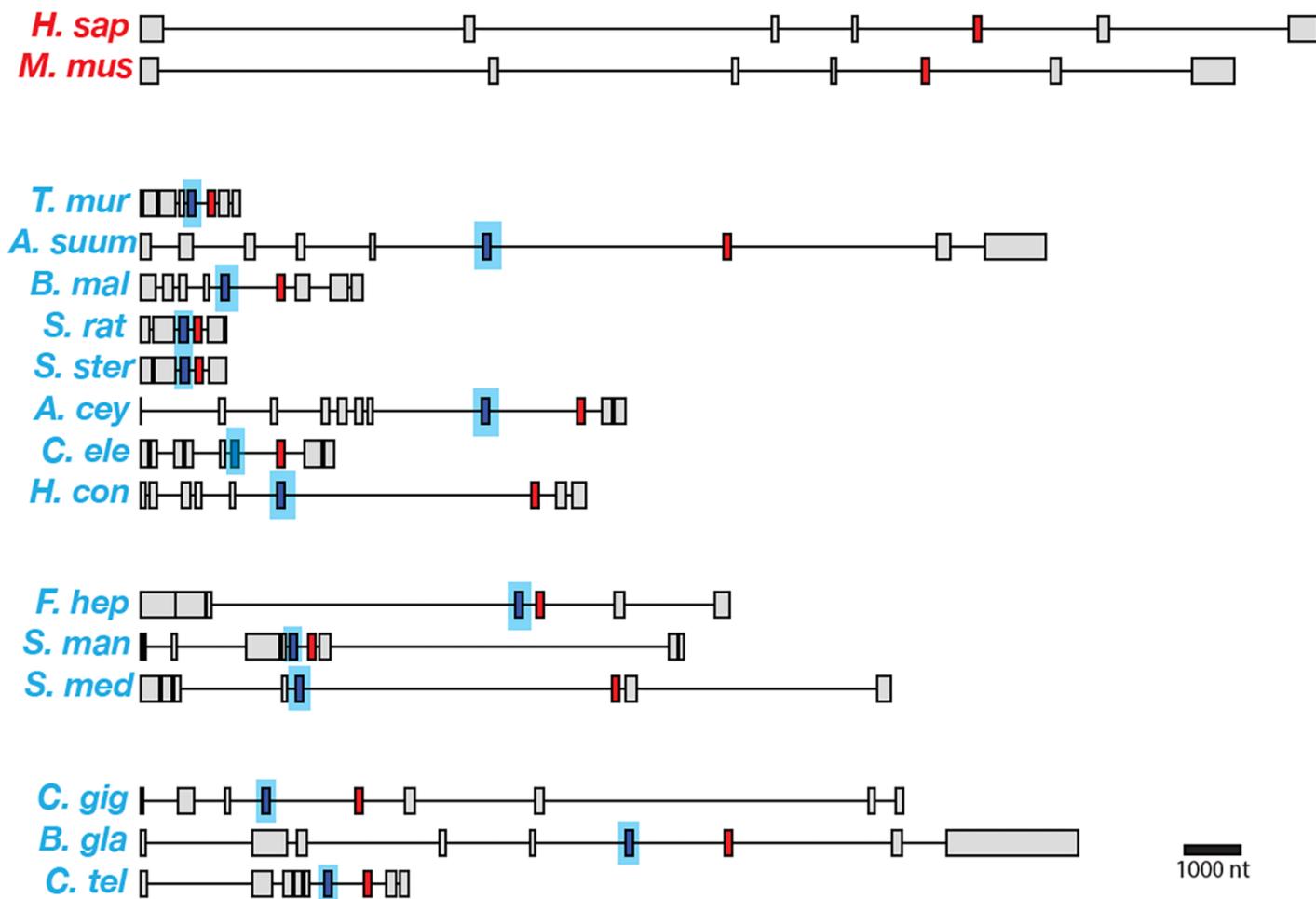

113 We identified two distinct splice forms of *C. elegans* *coq-2*: *coq-2a* and *coq-2e*. These are annotated in the
114 genome and confirmed by RNA-seq, by nanopore sequencing, and by targeted validation studies (Ramani et al.,
115 2011, Kuroyanagi, Takei & Suzuki, 2014, Roach et al., 2020, Li et al., 2020). These two isoforms differ by the
116 mutually exclusive splicing of two internal exons (6a and 6e), both of 134 nucleotides (see Figure 2A). We note
117 that mutually exclusive splicing of cassette exons is very rare in the *C. elegans* genome and fewer than 100 such
118 splicing events have ever been identified (Ramani et al., 2011, Kuroyanagi, Takei & Suzuki, 2014). Both *coq-2a*
119 and *coq-2e* splice forms are abundant in *C. elegans* across all stages of development, where ~30-50% of *coq-2* is
120 the *coq-2e* isoform (Ramani et al., 2011, Gerstein et al., 2010, Grun et al., 2014).

121 To examine how the alternative splicing of COQ-2 might affect its function, we threaded the predicted COQ-
122 2a and COQ-2e protein sequences onto the solved crystal structure of the archaeal *Aeropyrum pernix* COQ-2
123 orthologue (PDB:4OD5). We found that the splicing change causes a switch in two alpha-helices at the core of
124 the COQ-2 structure (Figure 2B). This is a region of the protein that is thought to form a hydrophobic tunnel
125 along which the aromatic substrates must pass to the active site for the key polyprenylation reaction (Desbats et
126 al., 2016) suggesting that the change in splicing could affect COQ-2 substrate selection and thus could explain a
127 shift from UQ to RQ synthesis. We therefore examined whether similar COQ-2 alternative splicing is seen in
128 parasitic helminths and how the different splice forms compare to COQ-2 sequences in parasite hosts which do
129 not make RQ.


A.

B.

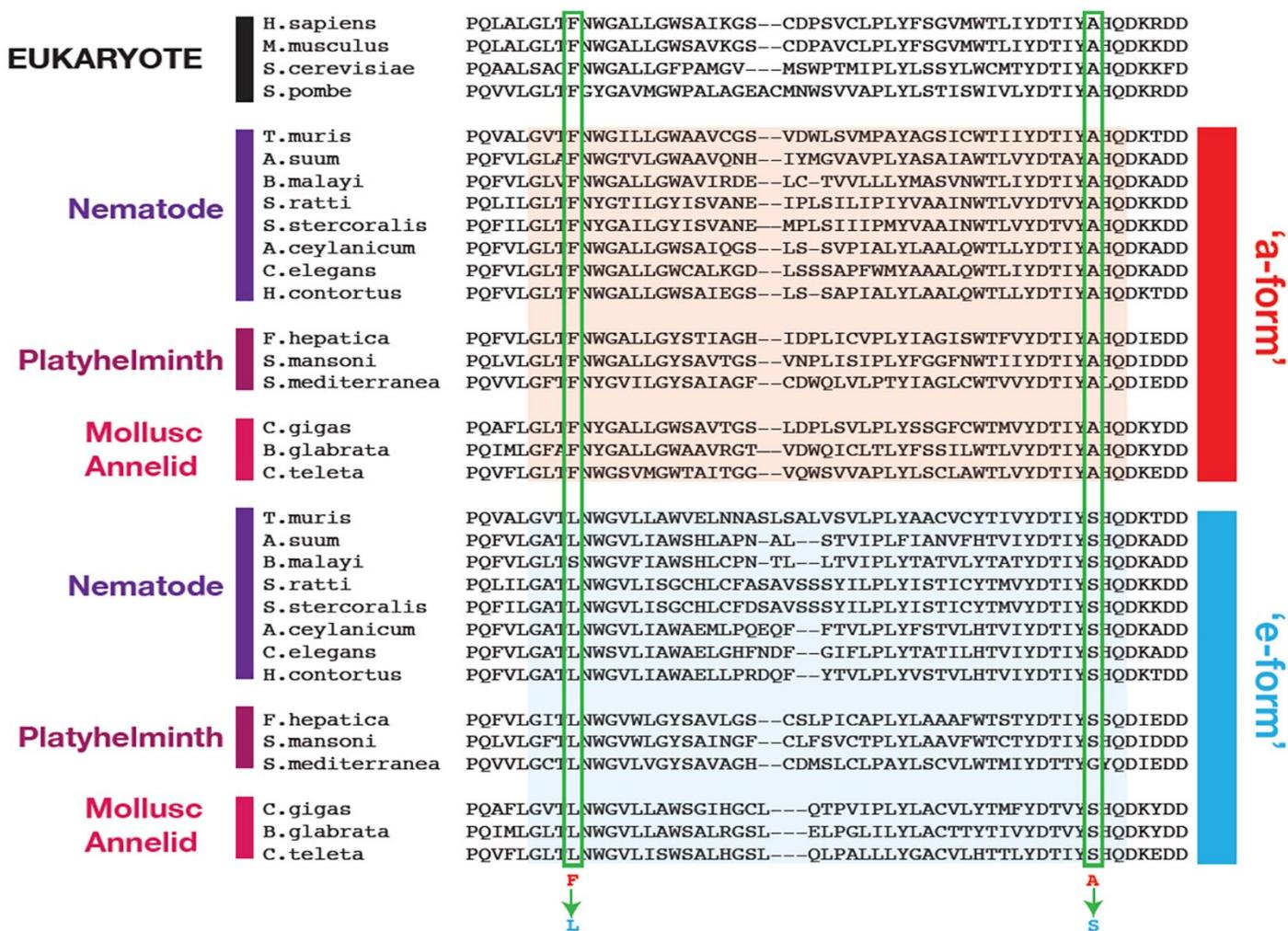
C.



130 **Figure 2.** *C. elegans* *coq-2* gene model. (A) The *coq-2* gene contains two mutually exclusive exons, 6e (blue box)
131 and 6a (red box), that are alternatively spliced (blue and red lines, respectively) generating two COQ-2
132 isoforms. Light grey boxes represent coding sequences of exons 1-5 and 7-8, black lines represent introns, and
133 dark grey boxes denote 5' and 3' untranslated regions of exons 1 and 8. (B) Alternative splicing of COQ-2
134 changes the enzyme core. The sequences of *C. elegans* *coq-2a* and *coq-2e* were threaded onto the crystal
135 structure of the apo-form of the *A. pernix* COQ-2 homologue (PDB: 4OD5) in Chimera using Modeller. The
136 region switched by mutually exclusive alternative splicing is shown magenta. (C) The alternative exons found
137 in all RQ-synthesising species have two residues that are invariant (L204 and S243 show in cyan; *C. elegans*
138 numbering) that are near the binding site of the two substrates. Substrates are the polyprenyl tail (dark green;
139 geranyl S-thiolodiphosphate in the crystal structure), and the aromatic ring (light green; *p*-hydroxybenzoic acid
140 (4HB) in the crystal structure). Note that COQ-2 is rotated from panel B to panel C for clarity.

141 **Parasitic helminths have a distinct splice form of *coq-2* that is not present in any of the parasitic hosts**

142 *C. elegans* has two major isoforms of *coq-2* which are the result of mutually exclusive alternative splicing of
143 two internal exons and affects the core of the enzyme. If this alternative splicing affects the choice of COQ-2
144 substrate and thus the switch from UQ to RQ synthesis, we reasoned that parasitic helminths that make RQ should
145 have a similar gene structure and that the hosts that do not make RQ should not. We used both gene predictions
146 and available RNA-seq data to examine the *coq-2* gene structure and splicing in parasitic helminths and their
147 hosts (human, sheep, cow, and rat respectively). As shown in Figure 3, all the parasites examined have a similar
148 *coq-2* gene structure with the same two mutually exclusive internal exons — note that while many of the parasite
149 gene structures were not correctly annotated, all the relevant exon junctions in Figure 3 were manually annotated
150 and confirmed with RNA-seq data (see Materials and Methods). Remarkably, we find a similar gene structure
151 with the same mutually exclusive exons in all parasites known to make RQ. Furthermore, annelids and molluscs
152 are the only other phyla known to make RQ and their *coq-2* orthologues also show mutually exclusive alternative
153 splicing of homologous exons. This gene structure is only seen in species that make RQ — we find no evidence
154 in any available data for similar alternative splicing in any mammalian hosts (human and mouse are shown as
155 representatives in Figure 3) or in other lineages that lack RQ, such as yeasts. This suggests that this *coq-2*
156 alternative splicing could indeed be linked to the ability to synthesize RQ.


157

158 **Figure 3.** Gene models for *coq-2* orthologues in various species. Parasitic helminths, as well as annelids and
159 molluscs, have 2 internal exons that are spliced in a mutually exclusive manner. In contrast, humans and other
160 hosts only express one exon that is homologous to exon 6a of *C. elegans* *coq-2*. The a-form exon (red) shares
161 greater similarity to the exon present in species that do not make RQ, while the e-form (blue) is present only in
162 RQ-producing species. The genes used for each species are listed in Supplemental Table 3. The gene structures
163 shown are based on genome annotations but in many cases include manual reannotations — in all such cases,
164 the manual annotations are confirmed with RNA-seq data.
165

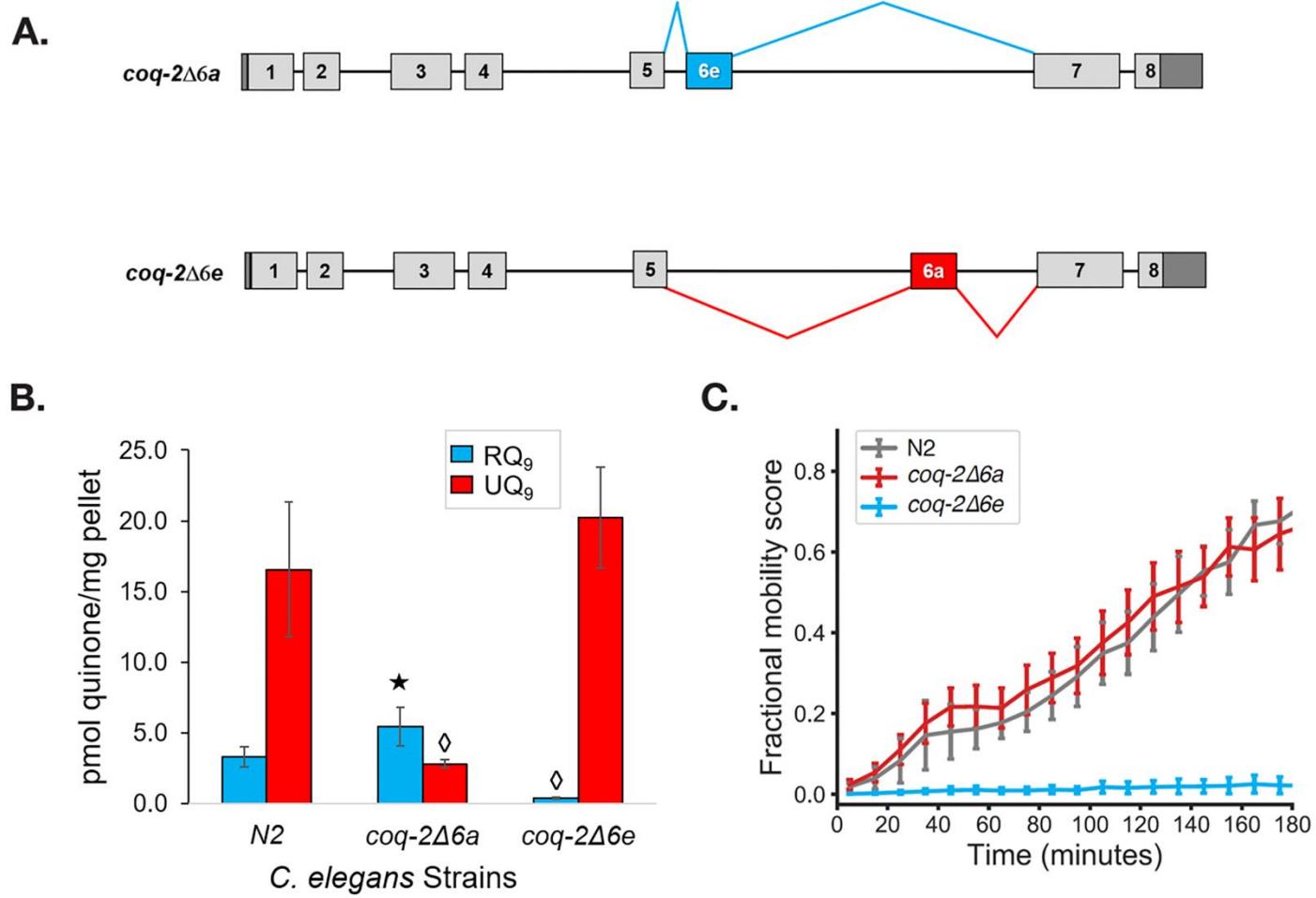
166 We aligned the two mutually exclusive exons across helminth species and compared them to the similar
167 regions of their host COQ-2 sequences, and of other eukaryotes that cannot make RQ (*S. cerevisiae*, *S. pombe*)
168 (Figure 4). We find that the *coq-2a*-specific exon is similar to the pan-eukaryotic COQ-2 sequence whereas the
169 *coq-2e*-specific exon is distinct in all species that make RQ. We examined the alignments of the a-specific and e-
170 specific exons and identified two residues that are strictly conserved in pan-eukaryotic COQ-2 sequences, Phe204
171 and Ala243 (*C. elegans* numbering), that are switched to a Leu and a Ser residue in all COQ2-e-specific exons

172 that we examined (Figure 4). These residues sit very close to the substrates in the active site of the enzyme (Figure
173 2C) and we note that mutation of the equivalent Ala243 residue dramatically affects the ability of human COQ2
174 to make UQ (Desbats et al., 2016). Altogether these results suggest that animals that make both UQ and RQ make
175 two forms of COQ-2 — one looks similar to that in all other eukaryotic species, whereas the other has a single
176 exon that appears to be specific for species that make RQ. To test whether these two COQ-2 isoforms have distinct
177 roles in UQ and RQ synthesis, we turned to *C. elegans*.

Figure 4. Conserved changes between a- and e-form exons across RQ-producing phyla. Amino acid sequences of COQ-2 orthologues were aligned using Clustal Omega (Madeira et al., 2019). The sequences of exons homologous to exon 6a/e in *C. elegans*, as well as the flanking 5 amino acid sequences were used to generate the alignment. Sequences of the mutually exclusive exons are shaded in red (a-form) or blue (e-form). Two residue changes between the a- and e- forms are highlighted (Phe to Leu, Ala to Ser) and are invariant across diverse species that make RQ. The COQ-2 orthologues and exons used for each species are listed in Supplemental Table 3.

186 **RQ synthesis requires the *coq-2e* isoform**

187 We found that helminths make two major isoforms of *coq-2* whereas their hosts only make a single isoform. To
188 test the requirement for each of the two major helminth isoforms of *coq-2* for RQ synthesis, we used CRISPR
189 engineering to generate *C. elegans* mutant strains that either lack *coq-2* exon 6a (*coq-2(syb1715)*) or *coq-2* exon
190 6e (*coq-2(syb1721)*) — we refer to these as *coq-2Δ6a* and *coq-2Δ6e* respectively from here on (see Figure 5A
191 and Supplemental Table 1 for details of engineering). We find that the *coq-2Δ6e* strain makes essentially no
192 detectable RQ but has higher levels of UQ, whereas *coq-2Δ6a* has greatly reduced UQ levels but higher RQ levels
193 (Figure 5B, Supplemental Table 2). We conclude that the *coq-2e* isoform, that includes the helminth-specific exon
194 6e, is required for RQ synthesis.


195 To further examine whether COQ-2e is required for RQ synthesis and thus for RQ-dependent metabolism, we
196 tested whether the *coq-2Δ6a* and *coq-2Δ6e* strains could survive long-term exposure to potassium cyanide (KCN)
197 (Figure 5C). We previously showed that when *C. elegans* is exposed to KCN it switches to RQ-dependent
198 metabolism and that while wild-type worms can survive a 15 h exposure to KCN, *C. elegans* strains that do not
199 make RQ cannot survive. We found that while the *coq-2Δ6a* strain (that can make RQ) survives 15 h of KCN
200 exposure as well as wild-type animals, the *coq-2Δ6e* strain that makes no RQ does not survive, confirming the
201 functional relevance of the *coq-2e* isoform as being critical for RQ synthesis.

202

203 **Regulation of the alternative splicing of *coq-2* in helminths**

204 Helminths make two isoforms of COQ-2 — COQ-2a resembles the pan-eukaryotic consensus and cannot make
205 RQ, whereas COQ-2e includes an exon that is only found in species that make RQ and COQ-2e is required for
206 RQ synthesis. Changing the levels of *coq-2a* and *coq-2e* splice forms could thus regulate the switch from UQ
207 synthesis in the aerobic environment outside the host to RQ synthesis in the host gut. We thus examined RNA-
208 seq data to see whether parasites switch from between these isoforms as they switch between these environments.

209

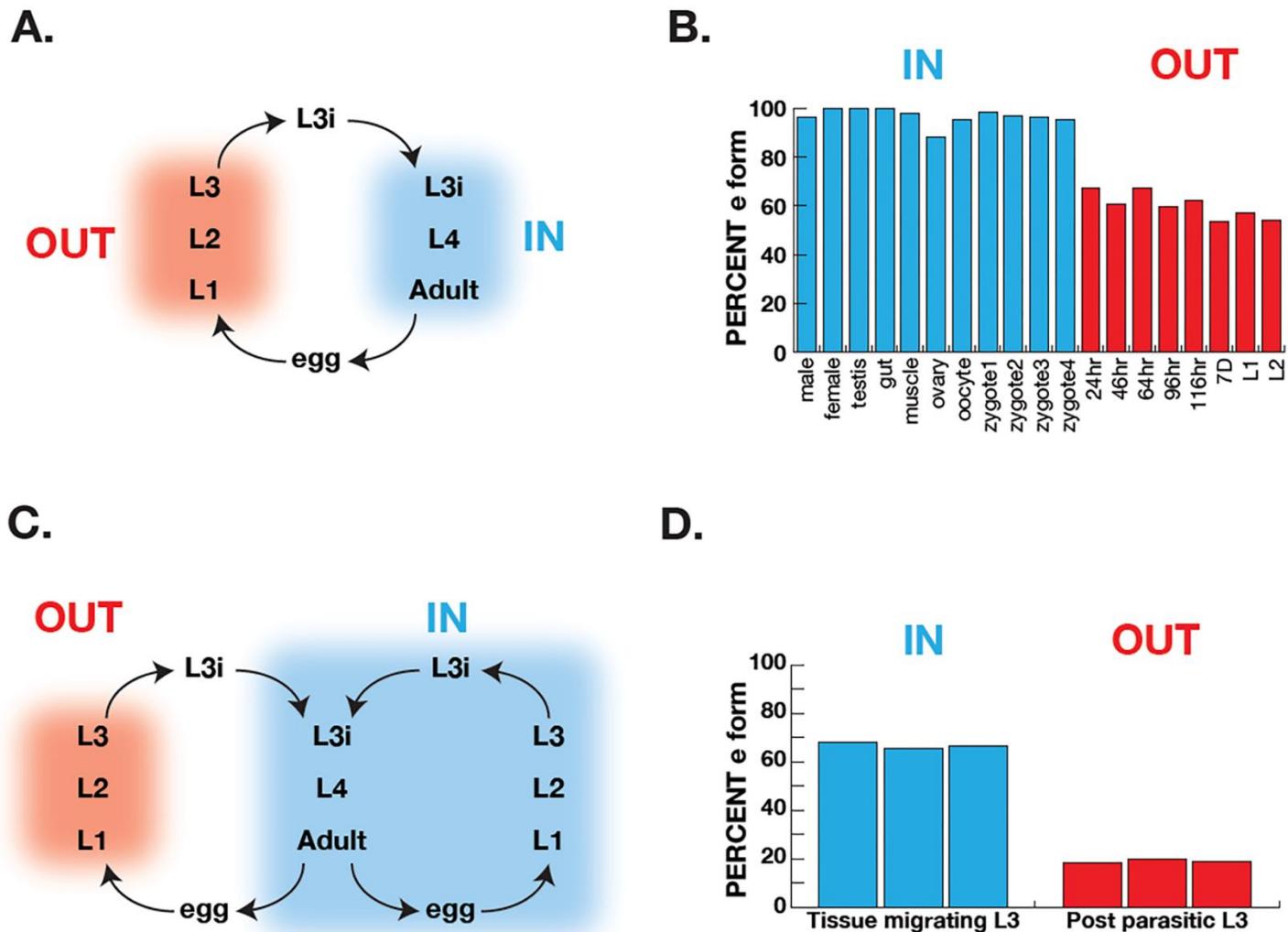


Figure 5. The *C. elegans* *coq-2* edited strains and effects of exon 6a and 6e deletions on quinone biosynthesis. (A) Mutant strains were generated in *C. elegans* by deletion of exon 6a (*coq-2Δ6a*) or exon 6e (*coq-2Δ6e*). (B) Deletion of exon 6a from the *coq-2* gene significantly increased the level of RQ₉ ($p = 0.013$) and significantly decreased UQ₉ ($p < 0.001$) compared to the N2 control. In contrast, the deletion of exon 6e decreased RQ₉ to a negligible level ($p < 0.001$) and slightly increased the level of UQ₉ ($p = 0.130$) compared to N2. Statistically significant increases and decreases with respect to N2 levels are denoted with ★ and ◇, respectively; error bars reflect standard deviation where $N = 4$. (C) Deletion of *coq-2* exon 6e affects the ability of worms to survive extended KCN treatment. Wild-type (N2) and *coq-2* mutant L1 worms were exposed to 200 μ M KCN for 15 h. KCN was then diluted 6-fold and worm movement was measured over 3 h to track recovery from KCN exposure (see Materials and Methods). Worms without exon 6e could not survive extended treatment with KCN while deletion of exon 6a had little effect on KCN survival. Curves show the mean of 4 biological replicates and error bars are standard error.

Ascaris suum has a relatively simple life cycle (schematic Fig 6A) and is the pig equivalent of *Ascaris lumbricoides* which infects ~900 M humans. Eggs are laid in the host and emerge via defecation and the L1-L3

225 larval stages develop within the egg outside the host. The L3 infective larval stage then enters the host via
226 ingestion into the digestive tract. These then leave the digestive tract and make their way to the lungs where they
227 develop into L4 larvae and, finally, the L4 re-enter the digest tract and move to the small intestine where adults
228 develop.. The adults remain in the anaerobic environment for the remainder of their life. The free-living larval
229 stages have relatively low RQ (~ 35% of total quinones), whereas in adults, RQ is ~ 100% of total quinones
230 (Takamiya et al., 1993). We used RNA-seq data (Wang et al., 2011, Wang et al., 2012) to analyse *coq-2* isoforms
231 in free-living stages and in the adults to examine whether there was switch from *coq-2a* to *coq-2e* as the parasites
232 switch from low RQ aerobic-respiring embryos and larvae to high RQ anaerobic adults. We see a clear switch:
233 ~60% of *coq-2* transcripts are *coq-2e* in the free-living, aerobic stages but >90% is the RQ-synthesising *coq-2e*
234 form in adults (Figure 6B). Increased *coq-2e* levels thus correlate with increased RQ levels.

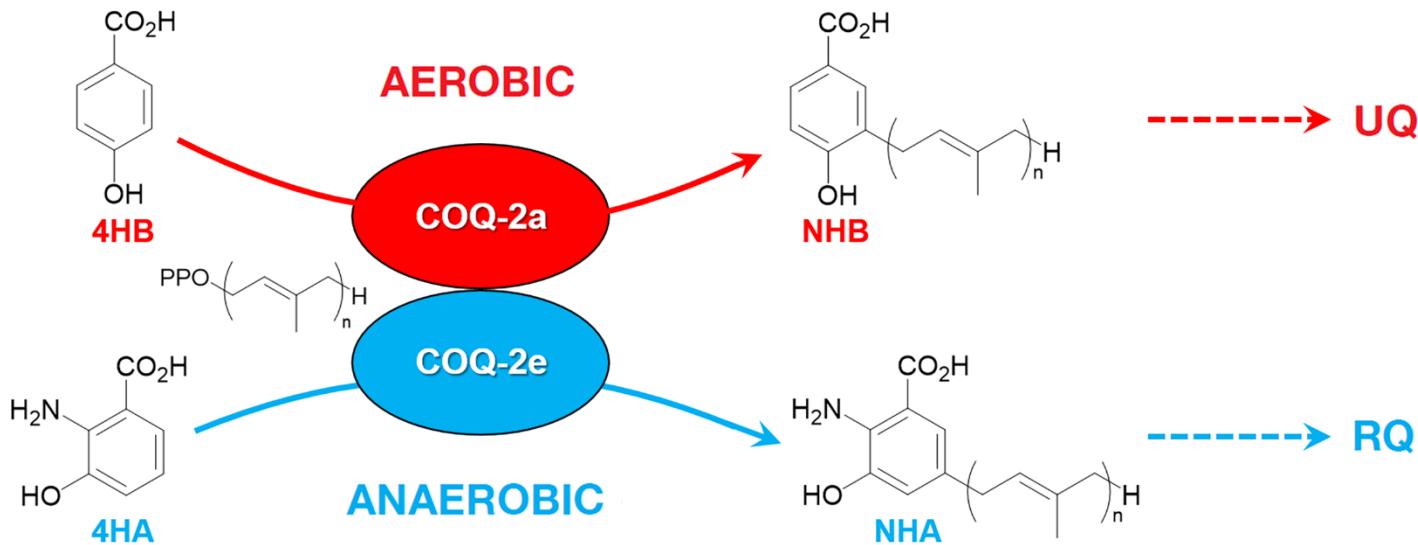
235 The analysis in *Ascaris* is complicated by the life cycle: while we are comparing *coq-2* splicing in two distinct
236 environments, this is also necessarily a comparison between developing embryos and larvae and adults. It is
237 possible that the changes in splicing we see are not environmentally-induced by the switch from normoxia to
238 anaerobic conditions, but is simply a developmentally programmed switch. To address this, we turned to
239 *Strongyloides stercoralis*. The life cycle of *S. stercoralis* (schematic Figure 6C) is broadly similar to *Ascaris* —
240 L1-L3 stages are free-living, the L3 infective stage infects hosts, and L4 larvae and adults develop and live in the
241 host. However, they have an alternative life cycle where instead of L1-L3 developing outside the host, the eggs
242 can hatch in the host and the entire life cycle takes place inside the host. This allows us to compare the same larval
243 stage in two conditions — here we compare L3 animals that developed inside the host anaerobic environment
244 with L3 animals that developed outside the host. The difference is clear: <20% of *coq-2* transcripts are *coq-2e* in
245 the free-living L3s but >60% is the RQ-synthesizing *coq-2e* form in L3s that developed inside the host (Figure
246 6D) (Stoltzfus et al., 2012).
247

Figure 6. Correlation of COQ-2 splicing with change from aerobic to anaerobic life stages. (A) Schematic of life cycle of *A. suum*. ‘OUT’ denotes aerobically-respiring free-living stages; ‘IN’ indicates stages living inside the host intestine. (B) Graph indicates the percentage of all COQ-2 transcripts that include the RQ-specific exon (‘Percent e form’) in a number of life cycle stages, sexes, and tissues. Timings for embryogenesis show the time post-fertilisation in hours. (C) Schematic of life cycle of *Strongyloides stercoralis*. ‘OUT’ denotes aerobically-respiring free-living stages; ‘IN’ indicates stages living inside the host. Note that egg, L1, L2 and L3 can either develop inside or outside the host. (D) Graph indicates the percentage of all COQ-2 transcripts that include the RQ-specific exon (‘Percent e form’) in L3 larvae that either developed outside the host (‘OUT’) or inside the host (‘IN’). Data derive from three individual replicates.

In summary, our data show that eukaryotic species that make RQ regulate the choice between making UQ and RQ by alternative splicing of the polypropenyltransferase COQ-2. A switch between two mutually exclusive exons changes the core of the COQ-2 enzyme and switches it from generating UQ precursors to RQ precursors.

261 This alternative splicing event is only seen in species that make RQ and the switch correlates with the change
262 from aerobic to anaerobic metabolism in parasitic helminths.

263


264 **Discussion**

265 Organisms are continually challenged by changes in their environments and they must be able to respond for them
266 to survive. Hypoxia is one such challenge and animals have evolved diverse strategies to alter their metabolism
267 to cope with low oxygen levels. For example, humans rapidly switch to anaerobic glycolysis, generating lactate;
268 goldfish on the other hand can adapt to hypoxia by fermenting carbohydrates to generate ethanol (Shoubridge,
269 Hochachka, 1980). In this paper, we focus on how helminths can survive in anaerobic conditions by switching
270 from ubiquinone (UQ)-dependent aerobic metabolism to rhodoquinone (RQ)-dependent anaerobic metabolism.
271 The ability to use RQ is highly restricted amongst animal species — only helminths, molluscs, and annelids are
272 known to make and use RQ. This is a key adaptation since it allows them to rewire their mitochondrial electron
273 transport chain (ETC) to use a variety of terminal electron acceptors in the place of oxygen. They can therefore
274 still use Complex I to pump protons and generate the proton motive force need to power the F0F1ATPase in the
275 absence of oxygen. This allows them to survive without oxygen for long periods — they are thus facultative
276 anaerobes. This ability is critical for parasitic helminths which survive for long periods in the anaerobic
277 environment of the human gut. Since the host does not make RQ or use RQ-dependent metabolism if we could
278 interfere with RQ synthesis, this would be an excellent way to target the parasite and leave the host untouched.

279 We previously showed that the key decision on whether to make UQ to power aerobic metabolism or RQ to
280 make anaerobic metabolism is dictated by the choice of substrate of the polyprenyltransferase COQ-2 (Roberts
281 Buceta et al., 2019, Del Borrello et al., 2019). COQ-2 must switch from using 4HB to make UQ in aerobic
282 conditions to 3HA to make RQ in anaerobic conditions. Here we reveal the simple mechanism for that switch in
283 substrate specificity in helminths: they use the mutually exclusive alternative splicing of two internal exons to
284 remodel the core of COQ-2. Inclusion of exon 6a results in the COQ-2a enzyme that can make UQ but not RQ;

285 switching 6a for the alternative exon 6e yields COQ-2e which principally makes RQ (Figure 7). All eukaryotes
286 make a homologue of COQ-2a — only the species known to make RQ (helminths, annelids, and molluscs) have
287 genomes encoding the RQ-specific exon 6e and this exon is introduced by alternative splicing in a similar
288 mutually exclusive splicing event in all these phyla. These different lineages thus have the same solution to the
289 problem of substrate switching in COQ-2 — to have two distinct forms of COQ-2 due to alternative splicing —
290 and all do it with the same structural switch in COQ-2.

291

292 **Figure 7.** Discrimination between RQ and UQ biosynthesis in *C. elegans*. There are two variants of exon 6 in the
293 *C. elegans* *coq-2* gene (6a and 6e) which undergo mutually exclusive alternative splicing leading to COQ-2a and
294 COQ-2e isoforms, respectively. Synthesis of UQ originates from 4-hydroxybenzoic acid (4HB) and prenylation
295 is catalyzed by COQ-2a (and marginally by COQ-2e) to form 4-hydroxy-3-nonaprenylbenzoic acid (NHB). In
296 contrast, RQ is most likely synthesized from 3HA, and prenylation is facilitated by COQ-2e to form NHA. Several
297 additional steps are required to convert NHB to UQ and NHA to RQ, respectively.
298

299 The alternative splicing of COQ-2 in all lineages that make RQ draws focus to COQ-2 as a potential
300 anthelmintic target. COQ-2e is required for RQ generation and has a distinct sequence to the pan-eukaryotic
301 COQ-2a. The switch between COQ-2a to COQ-2e causes a change in the core of the COQ-2 active site and all
302 species that make RQ have a pair of conserved residues in COQ-2e. We suggest that small molecule inhibitors
303 that selectively target COQ-2e and not the host COQ-2 enzyme could be potent anthelmintics and our groups are

304 initiating these screens at this point. We also note that it is rare to see such a clear and profound change in enzyme
305 specificity due to a single splice event affecting the core of an enzyme catalytic site. There are other examples,
306 most notably a switch in the substrate specificity of the cytochrome P450 CYP4F3 from LTB4 to arachidonic
307 acid (Christmas et al., 1999, Christmas et al., 2001). This switch is tissue specific rather than environmentally
308 induced, however, and there are few other examples to our knowledge. The regulation of COQ-2 specificity by
309 alternative splicing is thus a beautiful and rare example of this type of enzyme regulation by alternative splicing.
310 We note that while alternative splicing of COQ-2 appears to be the key regulated step in determining RQ or UQ
311 biosynthesis, we see no such splicing regulation for other enzymes that are required for both RQ and UQ synthesis
312 downstream of COQ-2 (Roberts Buceta et al., 2019) e.g. there are no known splice variants of COQ-3 and COQ-
313 5, which are quinone methylases downstream of COQ-2. This suggests that while COQ-2 can clearly discriminate
314 between substrates that have/lack a 2-amino group, COQ-3 and COQ-5 would be more promiscuous than COQ-
315 2 and act on both RQ and UQ precursors.

316 Finally, the mechanism of alternative splicing to regulate the synthesis of UQ or RQ may explain some part
317 of the evolution of RQ synthesis in animals and its phylogenetic distribution. One of the enduring mysteries of
318 RQ synthesis is that it only occurs in very restricted animal phyla. RQ synthesis could either be the ancestral state
319 with widespread loss across most animal species or else RQ synthesis could have arisen independently in
320 helminths, annelids, and molluscs. We believe that the alternative splicing switch from UQ to RQ synthesis
321 favours this independent evolution model. First, we note that there are only two key conserved residues in the
322 RQ-specific exons — this minor sequence change could easily have arisen independently in multiple lineages.
323 Second, there is a clear precedent for a mutually exclusive splicing event that has arisen independently in
324 helminths, annelids, and molluscs in the gene *mrp-1* (Yue et al., 2017). This encodes a transporter that is required
325 for the uptake of vitamin B12 into mitochondria. We note that B12 is critical for aspects of RQ-dependent
326 metabolism. The B12-dependent propionate breakdown pathway (Bulcha et al., 2019) may be required under
327 production of high levels of succinate (under anaerobiosis); succinate can be converted into propionyl-CoA and
328 further used to synthesise branched-chain fatty acids such as 2-methyl butyrate and 2-methyl valerate. This

329 synthesis of branched-chain fatty acids is an RQ-dependent reductive process: RQ carries electrons to ETFDH
330 which is driven in reverse to fatty acid oxidation (Muller et al., 2012). The *mrp-1* gene undergoes alternative
331 splicing in these species and just like in *coq-2*, *mrp-1* has mutually exclusive exons of exactly the same length.
332 Crucially, *mrp-1* mutually-exclusive alternative splicing has arisen independently in each lineage in which it is
333 seen. We suggest that the reason that RQ synthesis is only seen in helminths, annelids, and molluscs is that these
334 phyla have likewise independently evolved a gene structure of *coq-2* that allows them to switch from a UQ-
335 specific form to a RQ-specific form by mutually-exclusive alternative splicing. Our data thus show that alternative
336 splicing of COQ-2 provides a simple switch from UQ synthesis to RQ synthesis but may also explain how RQ
337 synthesis has arisen independently in multiple distinct animal lineages.

338

339 **Materials and methods**

340

341 **Sequence identification and analysis**

342 To identify COQ-2 sequences from lineages known to synthesize RQ we searched and analyzed from genomes and
343 transcriptomes platyhelminths (*Schistosoma mansoni*, *Fasciola hepatica* and *Schmidtea mediterranea*), nematodes
344 (*Ascaris suum*, *Brugia malayi*, *Haemonchus contortus*, *Trichuris muris*, *Strongyloides stercoralis*, *Strongyloides*
345 *ratti*, *Ancylostoma ceylanicum* and *C. elegans*), mollusc (*Crassostrea virginica*, and *Biomphalaria glabrata*) and
346 annelid (*Capitella teleta*). Sequences were retrieved from <https://parasite.wormbase.org> (WBPS14), *S.*
347 *mediterranea* database (<http://smedgd.neuro.utah.edu>), NCBI protein and nucleotide databases and UniProt
348 (<https://www.uniprot.org>). Human, mice and *Saccharomyces cerevisiae* COQ-2, eukaryotic lineages known to be
349 unable to synthesize RQ, were also identified for comparison. Searches were performed initially with BLASTP
350 (protein databases) using human and *C. elegans* COQ-2 sequences as queries. Additionally, TBLASTN searches
351 were performed using genomic sequences and cDNAs databases. This served to confirm the annotated protein
352 sequences and to identify the non-annotated ones. Identified sequences were confirmed by best reciprocal hits in

353 BLAST. Multiple sequence alignments were made with MUSCLE 3.8 (Chojnacki et al., 2017). Gaps were
354 manually refined after alignment inspection.

355

356 **RNA-seq analysis of mutually exclusive exons**

357 To confirm if *coq-2* exons are spliced in a mutually exclusive manner in other helminths, molluscs and annelids,
358 we analyzed existing RNA-seq data for evidence of alternative splicing (listed in Supp. Table 3). Whippet
359 (v0.11) (Sterne-Weiler et al., 2018) was used to analyze RNA-seq data for quantification of AS events. To
360 create a splicing index of exon-exon junctions in Whippet, genome annotations were taken from WormBase
361 Parasite (WBPS14) and Ensembl Metazoa (Release 45). To identify novel exons and splice sites, reads were
362 first aligned to the genome using HISAT2 (Kim, Langmead & Salzberg, 2015). The BAM file generated was
363 then used to supplement existing genome annotations to create a splicing index of known and predicted exon-
364 exon junctions in Whippet (using the --bam --bam-both-novel settings). Where required, TBLASTN data was
365 also used to guide manual re-annotation of the *coq-2* gene. Quantification of AS events was then performed by
366 running whippet quant at default settings. This analysis was repeated for all species listed in Figure 5. A
367 summary of *coq-2* exons with reads that mapped to alternative exon-exon junctions are listed in Supplemental
368 Table 3. We also identified cases where both *coq-2* exons were either included or skipped. However, since
369 these are likely to be non-productive transcripts due to a pre-mature termination codon, we expressed exon
370 usage as the proportion of events where either only the ‘a’ or the ‘e’ form is included.

371

372 **Structural analysis**

373 Multiple sequence alignment was performed using Clustal Omega (Madeira et al., 2019). The substrate-bound
374 structure of a UbiA homolog from *A. pernix* (PDB: 4OD5) was displayed on Chimera (Pettersen et al., 2004)
375 and the *C. elegans* sequence was threaded by homology using Modeller (Sali, Blundell, 1993, Webb, Sali,
376 2016).

377

378 ***Caenorhabditis elegans* strains and culture conditions**

379 The *C. elegans* wild-type Bristol strain (N2) was obtained from the Caenorhabditis Genetics Center (CGC,
380 University of Minnesota, USA), which is supported by the National Institutes of Health-Office of Research
381 Infrastructure Programs. The *C. elegans* mutant strains in *coq-2* exon 6A (PHX1715, *coq-2(syb1715)*) and *coq-2*
382 exon 6E (PHX1721, *coq-2(syb1721)*) were generated by Suny Biotech Co., Ltd (Fuzhou City, China) using
383 CRISPR/Cas9 system. The precise deletion of both mutant strains (134 bp) was verified by DNA sequencing the
384 flanking region of exons 6a and 6e. The wild-type sequence, the deleted sequence in each strain, the sgRNAs, and
385 primers used are listed in Supplemental Table 1.

386 The general methods used for culturing and maintenance of *C. elegans* are described in (Brenner, 1974). All
387 chemical reagents were purchased from Sigma-Aldrich (St. Louis, MO, USA). The *E. coli* OP50 strain, used as *C.*
388 *elegans* food, was also received from CGC.

389

390 **Lipid extraction and LC-MS quantitation**

391 Lipid extractions of *C. elegans* N2 and mutant strains were performed on ~100 mg worm pellets after adding 1000
392 pmol UQ₃ internal standard (11). LC-MS samples were prepared from lipid extracts and diluted 1:100 (Bernert, et
393 al., 2019). Standards were extracted using the same method as for worm samples at the following concentrations:
394 UQ₃ (10 pmol/10 μ L injection), RQ₉ (0.75, 1.5, 3.0, 4.5, or 6.0 pmol/10 μ L injection), and UQ₉ (3.75, 7.5, 15.0,
395 22.5, or 30.0 pmol/10 μ L injection). The Q₃ standard was synthesized at Gonzaga University (Campbell et al.,
396 2019), the RQ₉ standard was isolated by preparative chromatography from *A. suum* lipid extracts (Roberts Buceta
397 et al., 2019) and the UQ₉ standard was purchased (Sigma-Aldrich, St. Louis, MO). The general LC-MS conditions
398 and parameters were previously reported (Bernert et al., 2019, Campbell et al., 2019). Samples were analyzed in

399 quadruplicate and the pmol quinone was determined from the standard curve and corrected for recovery of internal
400 standard. Samples were normalized by mg pellet mass.

401
402 **Image-based KCN recovery assay**

403 The KCN recovery assay was performed as previously described (Spensley et al., 2018, Del Borrello et al.,
404 2019). Briefly, L1 worms were isolated by filtration through an 11 μ m nylon mesh filter (Millipore:
405 S5EJ008M04). Approximately 100 L1 worms in M9 were dispensed to each well of a 96 well plate and an
406 equal volume of potassium cyanide (KCN) (Sigma-Aldrich St. Louis, MO) solution was then added to a final
407 concentration of 200 μ M KCN. Upon KCN addition, plates were immediately sealed and incubated at room
408 temperature for 15 h on a rocking platform. After 15 h, the KCN was diluted 6-fold by addition of M9 buffer.
409 Plates were immediately imaged on a Nikon Ti Eclipse microscope every 10 min for 3 h. Fractional mobility
410 scores (FMS) were then calculated using a custom image analysis pipeline (Spensley et al., 2018). For each
411 strain, FMS scores for the KCN-treated wells were normalized to the M9-only control wells at the first
412 timepoint. Three technical replicates were carried out in each experiment and the final FMS scores taken from
413 the mean of four biological replicates.

414
415 **Acknowledgements**

416 *C. elegans* strain N2, and *E. coli* OP50 were provided by the Caenorhabditis Genetics Center, which is funded
417 by NIH Office of Research Infrastructure Program: P40 OD010440. We thank Exequiel Barrera, John Calarco
418 and Amy Caudy for helpful discussions.

419
420

421 **Funding**

422 This study was supported by Agencia Nacional para la Innovación y la Investigación ANII, Uruguay (Grants
423 FCE_2014_1_104366 and FCE_1_2019_1_155779) and Universidad de la Republica, Uruguay. J.H.T., M.L.,
424 M.R.S. and A.G.F were supported by CIHR grants 501584 and 503009.

425

426 **References**

427 Bernert, A.C., Jacobs, E.J., Reinl, S.R., Choi, C.C.Y., Roberts Buceta, P.M., Culver, J.C., Goodspeed, C.R.,
428 Bradley, M.C., Clarke, C.F., Basset, G.J. & Shepherd, J.N. 2019, "Recombinant RquA catalyzes the *in vivo*
429 conversion of ubiquinone to rhodoquinone in *Escherichia coli* and *Saccharomyces cerevisiae*", *BBA Mol.*
430 *Cell Biol. Lipids*, vol. 1864, pp. 1226-1234.

431 Brajcich, B.C., Iarocci, A.L., Johnstone, L.A.G., Morgan, R.K., Lonjers, Z.T., Hotchko, M.J., Muhs, J.D.,
432 Kieffer, A., Reynolds, B.J., Mandel, S.M., Marbois, B.N., Clarke, C.F. & Shepherd, J.N. 2010, "Evidence
433 that ubiquinone is a required intermediate for rhodoquinone biosynthesis in *Rhodospirillum rubrum*",
434 *Journal of Bacteriology*, vol. 192, no. 2, pp. 436-445.

435 Brenner, S. 1974, "The genetics of *Caenorhabditis elegans*", *Genetics*, vol. 77, no. 1, pp. 71-94.

436 Bulcha, J.T., Giese, G.E., Ali, M.Z., Lee, Y., Walker, M.D., Holdorf, A.D., Yilmaz, L.S., Brewster, R.C. &
437 Walhout, A.J.M. 2019, "A Persistence Detector for Metabolic Network Rewiring in an Animal.", *Cell*
438 *Reports*, vol. 26, no. 2, pp. 460-468.e4.

439 Campbell, A.R.M., Titus, B.R., Kuenzi, M.R., Rodriguez-Perez, F., Brunsch, A.D.L., Schroll, M.M., Owen,
440 M.C., Cronk, J.D., Anders, K.R. & Shepherd, J.N. 2019, "Investigation of candidate genes involved in the
441 rhodoquinone biosynthetic pathway in *Rhodospirillum rubrum*.", *PLoS ONE*, vol. 14, no. 5, pp. e0217281.

442 CDC 2019, November 18-last update, *Neglected Tropical Diseases* [Homepage of CDC], [Online]. Available:
443 <https://www.cdc.gov/globalhealth/ntd/diseases/index.html> [2020, February 21].

444 Chojnacki, S., Cowley, A., Lee, J., Foix, A. & Lopez, R. 2017, "Programmatic access to bioinformatics tools
445 from EMBL-EBI update: 2017.", *Nucleic acids research*, vol. 45, no. W1, pp. W550-W553.

446 Christmas, P., Jones, J.P., Patten, C.J., Rock, D.A., Zheng, Y., Cheng, S., Weber, B.M., Carlesso, N., Scadden,
447 D.T., Rettie, A.E. & Soberman, R.J. 2001, "Alternative splicing determines the function of CYP4F3 by
448 switching substrate specificity.", *Journal of Biological Chemistry*, vol. 276, no. 41, pp. 38166-38172.

449 Christmas, P., Ursino, S.R., Fox, J.W. & Soberman, R.J. 1999, "Expression of the CYP4F3 gene. Tissue-
450 specific splicing and alternative promoters generate high and low Km forms of leukotriene B4 β -
451 hydroxylase.", *Journal of Biological Chemistry*, vol. 274, no. 30, pp. 21191-21199.

452 Del Borrello, S., Lautens, M., Dolan, K., Tan, J.H., Davie, T., Schertzberg, M.R., Spensley, M.A., Caudy, A.A.,
453 Fraser, A.G. & Spensley, M.A. 2019, "Rhodoquinone biosynthesis in *C. elegans* requires precursors
454 generated by the kynurenine pathway", *eLife*, vol. 8, pp. e48165.

455 Desbats, M.A., Morbidoni, V., Silic-Benussi, M., Doimo, M., Ciminale, V., Cassina, M., Sacconi, S., Hirano,
456 M., Basso, G., Pierrel, F., Navas, P., Salviati, L. & Trevisson, E. 2016, "The COQ2 genotype predicts the
457 severity of coenzyme Q10 deficiency.", *Human molecular genetics*, vol. 25, no. 19, pp. 4256-4265.

458 Dold, C. & Holland, C.V. 2011, "Ascaris and ascariasis", *Microbes and Infection*, vol. 13, no. 7, pp. 632-637.

459 Erabi, T., Higuti, T., Sakata, K., Kakuno, T., Yamashita, J., Tanaka, M. & Horio, T. 1976, "Polarographic
460 studies in presence of Triton X-100 on oxidation-reduction components bound with chromatophores from
461 *Rhodospirillum rubrum*.", *Journal of Biochemistry*, vol. 79, no. 3, pp. 497-503.

462 Gerstein, M.B., Lu, Z.J., Van Nostrand, E.L., Cheng, C., Arshinoff, B.I., Liu, T., Yip, K.Y., Robilotto, R.,
463 Rechtsteiner, A., Ikegami, K., Alves, P., Chateigner, A., Perry, M., Morris, M., Auerbach, R.K., Feng, X.,
464 Leng, J., Vielle, A., Niu, W., Rhrissorrakrai, K., Agarwal, A., Alexander, R.P., Barber, G., Brdlik, C.M.,
465 Brennan, J., Brouillet, J.J., Carr, A., Cheung, M., Clawson, H., Contrino, S., Dannenberg, L.O., Dernburg,
466 A.F., Desai, A., Dick, L., Dose, A.C., Du, J., Egelhofer, T., Ercan, S., Euskirchen, G., Ewing, B., Feingold,
467 E.A., Gassmann, R., Good, P.J., Green, P., Gullier, F., Gutwein, M., Guyer, M.S., Habegger, L., Han, T.,
468 Henikoff, J.G., Henz, S.R., Hinrichs, A., Holster, H., Hyman, T., Iniguez, A.L., Janette, J., Jensen, M.,
469 Kato, M., Kent, W.J., Kephart, E., Khivansara, V., Khurana, E., Kim, J.K., Kolasinska-Zwierz, P., Lai,
470 E.C., Latorre, I., Leahey, A., Lewis, S., Lloyd, P., Lochovsky, L., Lowdon, R.F., Lubling, Y., Lyne, R.,
471 MacCoss, M., Mackowiak, S.D., Mangone, M., McKay, S., Mecenas, D., Merrihew, G., Miller, D.M., III,
472 Muroyama, A., Murray, J.I., Ooi, S., Pham, H., Phippen, T., Preston, E.A., Rajewsky, N., Raetsch, G.,
473 Rosenbaum, H., Rozowsky, J., Rutherford, K., Ruzanov, P., Sarov, M., Sasidharan, R., Sboner, A., Scheid,
474 P., Segal, E., Shin, H., Shou, C., Slack, F.J., Slightam, C., Smith, R., Spencer, W.C., Stinson, E.O., Taing,
475 S., Takasaki, T., Vafeados, D., Voronina, K., Wang, G., Washington, N.L., Whittle, C.M., Wu, B., Yan, K.,
476 Zeller, G., Zha, Z., Zhong, M., Zhou, X., Ahringer, J., Strome, S., Gunsalus, K.C., Micklem, G., Liu, X.S.,
477 Reinke, V., Kim, S.K., Hillier, L.W., Henikoff, S., Piano, F., Snyder, M., Stein, L., Lieb, J.D. & Waterston,
478 R.H. 2010, "Integrative analysis of the *Caenorhabditis elegans* genome by the modENCODE project.",
479 *Science (Washington, DC, United States)*, vol. 330, no. 6012, pp. 1775-1787.

480 Grun, D., Thierfelder, N., Stoeckius, M., Kirchner, M., Selbach, M. & Rajewsky, N. 2014, "Conservation of
481 mRNA and protein expression during development of *C. elegans*", *Cell reports*, vol. 6, no. 3, pp. 565-577.

482 Jackson, F. & Coop, R.L. 2000, "The development of anthelmintic resistance in sheep nematodes",
483 *Parasitology*, vol. 120 Suppl, pp. S95-107.

484 Kim, D., Langmead, B. & Salzberg, S.L. 2015, "HISAT: a fast spliced aligner with low memory requirements.",
485 *Nature Methods*, vol. 12, no. 4, pp. 357-360.

486 Kita, K., Nihei, C. & Tomitsuka, E. 2003, "Parasite mitochondria as drug target: diversity and dynamic changes
487 during the life cycle", *Current medicinal chemistry*, vol. 10, no. 23, pp. 2535-2548.

488 Kotze, A.C. & Prichard, R.K. 2016, "Anthelmintic Resistance in *Haemonchus contortus*: History, Mechanisms
489 and Diagnosis", *Advances in Parasitology*, vol. 93, pp. 397-428.

490 Kuroyanagi, H., Takei, S. & Suzuki, Y. 2014, "Comprehensive analysis of mutually exclusive alternative
491 splicing in *C. elegans*", *Worm*, vol. 3, pp. e28459.

492 Li, R., Ren, X., Ding, Q., Bi, Y., Xie, D., Zhao, Z. & Zhao, Z. 2020, "Direct full-length RNA sequencing
493 reveals unexpected transcriptome complexity during *Caenorhabditis elegans* development", *Genome
494 research*, vol. 30, no. 2, pp. 287-298.

495 Luemmen, P., Huang, L., Lisse, D. & Berry, E.A. 2014, "Mitochondrial respiratory complex II: Molecular
496 target of novel active ingredients for pest management.", *Abstracts of Papers, 248th ACS National Meeting
497 & Exposition, San Francisco, CA, United States, August 10-14, 2014*, , pp. AGRO-131.

498 Madeira, F., Park, Y.M., Lee, J., Buso, N., Gur, T., Madhusoodanan, N., Basutkar, P., Tivey Adrian, R.N.,
499 Potter, S.C., Finn, R.D. & Lopez, R. 2019, "The EMBL-EBI search and sequence analysis tools APIs in
500 2019", *Nucleic acids research*, vol. 47, no. W1, pp. W636-W641.

501 Muller, M., Mentel, M., van Hellemond, J.J., Henze, K., Woehle, C., Gould, S.B., Yu, R., van der Giezen, M.,
502 Tielens, A.G.M. & Martin, W.F. 2012, "Biochemistry and evolution of anaerobic energy metabolism in
503 eukaryotes.", *Microbiology and Molecular Biology Reviews*, vol. 76, no. 2, pp. 444-495.

504 Pettersen, E.F., Goddard, T.D., Huang, C.C., Couch, G.S., Greenblatt, D.M., Meng, E.C. & Ferrin, T.E. 2004,
505 "UCSF Chimera-A visualization system for exploratory research and analysis.", *Journal of Computational*
506 *Chemistry*, vol. 25, no. 13, pp. 1605-1612.

507 Ramani, A.K., Calarco, J.A., Pan, Q., Mavandadi, S., Wang, Y., Nelson, A.C., Lee, L.J., Morris, Q., Blencowe,
508 B.J., Zhen, M. & Fraser, A.G. 2011, "Genome-wide analysis of alternative splicing in *Caenorhabditis*
509 *elegans*.", *Genome research*, vol. 21, no. 2, pp. 342-348.

510 Roach, N.P., Alessi, A.F., Taylor, J., Kim, J.K., Sadowski, N., Timp, W. & Taylor, J. 2020, "The full-length
511 transcriptome of *C. elegans* using direct RNA sequencing", *Genome research*, vol. 30, no. 2, pp. 299-312.

512 Roberts Buceta, P.M., Romanelli-Cedrez, L., Babcock, S.J., Xun, H., VonPaige, M.L., Higley, T.W., Schlatter,
513 T.D., Davis, D.C., Drexelius, J.A., Culver, J.C., Carrera, I., Shepherd, J.N. & Salinas, G. 2019, "The
514 kynurenone pathway is essential for rhodoquinone biosynthesis in *Caenorhabditis elegans*.", *Journal of*
515 *Biological Chemistry*, vol. 294, no. 28, pp. 11047-11053.

516 Sakai, C., Tomitsuka, E., Esumi, H., Harada, S. & Kita, K. 2012, "Mitochondrial fumarate reductase as a target
517 of chemotherapy: From parasites to cancer cells.", *Biochimica et Biophysica Acta, General Subjects*, vol.
518 1820, no. 5, pp. 643-651.

519 Sali, A. & Blundell, T.L. 1993, "Comparative protein modeling by satisfaction of spatial restraints.", *Journal of*
520 *Molecular Biology*, vol. 234, no. 3, pp. 779-815.

521 Shoubridge, E.A. & Hochachka, P.W. 1980, "Ethanol: novel end product of vertebrate anaerobic metabolism.",
522 *Science (Washington, DC, United States)*, vol. 209, no. 4453, pp. 308-309.

523 Spensley, M., Del Borrello, S., Pajkic, D. & Fraser, A.G. 2018, "Acute effects of drugs on *Caenorhabditis*
524 *elegans* movement reveal complex responses and plasticity.", *G3: Genes, Genomes, Genetics*, vol. 8, no. 9,
525 pp. 2941-2952.

526 Stairs, C.W., Eme, L., Muñoz-Gómez, S.A., Cohen, A., Dellaire, G., Shepherd, J.N., Fawcett, J.P. & Roger,
527 A.J. 2018, "Microbial eukaryotes have adapted to hypoxia by horizontal acquisitions of a gene involved in
528 rhodoquinone biosynthesis", *eLife*, vol. 7:e34292, pp. 1-23.

529 Sterne-Weiler, T., Weatheritt, R.J., Best, A.J., Ha, K.C.H. & Blencowe, B.J. 2018, "Efficient and Accurate
530 Quantitative Profiling of Alternative Splicing Patterns of Any Complexity on a Laptop.", *Molecular cell*,
531 vol. 72, no. 1, pp. 187-200.e6.

532 Stoltzfus, J.D., Minot, S., Berriman, M., Nolan, T.J. & Lok, J.B. 2012, "RNAseq analysis of the parasitic
533 nematode *Strongyloides stercoralis* reveals divergent regulation of canonical dauer pathways", *PLoS
534 neglected tropical diseases*, vol. 6, no. 10, pp. e1854.

535 Takamiya, S., Kita, K., Wang, H., Weinstein, P.P., Hiraishi, A., Oya, H. & Aoki, T. 1993, "Developmental
536 changes in the respiratory chain of *Ascaris* mitochondria.", *Biochimica et Biophysica Acta, Bioenergetics*,
537 vol. 1141, no. 1, pp. 65-74.

538 Tielens, A.G. & Van Hellemond, J.J. 1998, "The electron transport chain in anaerobically functioning
539 eukaryotes", *Biochimica et biophysica acta*, vol. 1365, no. 1-2, pp. 71-78.

540 Unden, G. & Bongaerts, J. 1997, "Alternative respiratory pathways of *Escherichia coli*: energetics and
541 transcriptional regulation in response to electron acceptors", *Biochim. Biophys. Acta*, vol. 1320, pp. 217-
542 234.

543 van Hellemont, J.J., van, d.K., van Weelden, S.,W.H. & Tielens, A.G.M. 2003, "Biochemical and evolutionary
544 aspects of anaerobically functioning mitochondria", *Philosophical Transactions Of The Royal Society Of*
545 *London.Series B, Biological Sciences*, vol. 358, no. 1429, pp. 205-213.

546 van Hellemont, J.J., Klockiewicz, M., Gaasenbeek, C.P., Roos, M.H. & Tielens, A.G. 1995, "Rhodoquinone and
547 complex II of the electron transport chain in anaerobically functioning eukaryotes", *The Journal Of*
548 *Biological Chemistry*, vol. 270, no. 52, pp. 31065-31070.

549 Wang, J., Czech, B., Crunk, A., Wallace, A., Mitreva, M., Hannon, G.J. & Davis, R.E. 2011, "Deep small RNA
550 sequencing from the nematode *Ascaris* reveals conservation, functional diversification, and novel
551 developmental profiles.", *Genome research*, vol. 21, no. 9, pp. 1462-1477.

552 Wang, J., Mitreva, M., Berriman, M., Thorne, A., Magrini, V., Koutsovoulos, G., Kumar, S., Blaxter, M.L. &
553 Davis, R.E. 2012, "Silencing of germline-expressed genes by DNA elimination in somatic cells.",
554 *Developmental Cell*, vol. 23, no. 5, pp. 1072-1080.

555 Webb, B. & Sali, A. 2016, "Comparative Protein Structure Modeling Using MODELLER", *Current protocols*
556 *in bioinformatics*, vol. 54, pp. 5.6.1-5.6.37.

557 Yue, Y., Hou, S., Wang, X., Zhan, L., Cao, G., Li, G., Shi, Y., Zhang, P., Hong, W., Lin, H., Liu, B., Shi, F.,
558 Yang, Y., Jin, Y. & Wang, X. 2017, "Role and convergent evolution of competing RNA secondary
559 structures in mutually exclusive splicing", *RNA biology*, vol. 14, no. 10, pp. 1399-1410.

560

561 **Supplementary Documentation**

SUPPLEMENTAL TABLE 1: *C. elegans* strains

A. Strain PHX1715 (*coq-2(syb1715)*), deletion mutant in *coq-2* exon 6A

1) *coq-2* wild-type sequence of exon 6A (capital letters) and 30bp flanking sequence (red):

atctcttacactctcttatcatagtagcag GACTCACGTTCAATTGGGGCGCTCTTGGATGGTGTGCGCTGAAAGGT
GATTGTCGTCTAGTGCACCGTTGGATGTATGCAGCTGCACTTCAATGGACACTGATCTACGACA
CTATCTATGCACATCAG gtggcctatttgggattggactttt

2) Deleted sequence (-134 bp):

GACTCACGTTCAATTGGGGCGCTCTTGGATGGTGTGCGCTGAAAGGTGATTGTCGTCTAGTGC
ACCGTTTGGATGTATGCAGCTGCACTTCAATGGACACTGATCTACGACACTATCTATGCACATCAG

3) sgRNA target sites used for strains PHX1715 (PAM motives underlined):

sg1 : acagGACTCACGTTCAATTGGGG
sg2 : TGTATGCAGCTGCACTTCAATGG
sg3 : GCACATCAGgtggcctatttggg

4) PCR and sequencing primers:

GUC01-ko-f: AAATAAGGTTTCCCGCCAG

GUC01-ko-r: GTCGACTTGACACCGATCAT

B. Strain PHX1721 (*coq-2(syb1721)*), deletion mutant in *coq-2* exon 6E

1) *coq-2* wild-type sequence of exon 6E (capital letters) and 30bp flanking sequence (red):

acacctagtctgtcgtttgcattgcag GTGCCACCCCTAAACTGGAGTGTGCTGATAGCGTGGGCAGAATTGGGCCA
TTTCAATGATTGGCATCTTTGCCACTCTACACTGCCACCACCTGCACACGGTCATCTACGACA
CTATTATAGTCATCAG gttagagctaagaaggcaggaaaaagtat

2) Deleted sequence (-134 bp):

GTCGCCACCCCTAAACTGGAGTGTGCTGATAGCGTGGGCAGAATTGGGCCATTCAATGATTGGCAT
CTTTTGCCACTCTACACTGCCACCACCTGCACACGGTCATCTACGACACTATTATAGTCATCAG

3) sgRNA target sites used for strain PHX1721 (PAM motives underlined):

sg1 : CCACCCCTAAACTGGAGTGTGCTG
sg2 : CCTGCACACGGTCATCTACGACA

4) PCR and sequencing primers:

GUC02-ko-f: CAAAAACAAGTACGGTTCCC

GUC02-ko-r: CGCAGCACGGTATGAGACTTT

SUPPLEMENTAL TABLE 2. Statistical analysis of RQ₉ and Q₉ levels in *coq-2* mutant strains

Strain	Avg pmol RQ ₉ /mg pellet	p value (N = 4)	Avg pmol Q ₉ /mg pellet	p value (N = 4)
N2	3.30 ± 0.74		16.55 ± 4.76	
<i>coq-2</i> _Δ6A	5.43 ± 1.35	0.016	2.81 ± 0.27	< 0.001
<i>coq-2</i> _Δ6E	0.40 ± 0.08	< 0.001	20.23 ± 3.54	0.130

SUPPLEMENTAL TABLE 3. Genomic coordinates of known and predicted mutually exclusive *coq-2* a/e exons (see attached Excel file).

Supplemental Table 3. Genomic coordinates of known and predicted mutually exclusive coq-2 a/e exons

Species	Gene	Exon-type	Chromosome/Scaffold	Location	Strand	Annotated	Length	Version	Phylum	RNA-seq study analyzed
<i>Trichinella spiralis</i>	T01_13908	e	scaffold26s	87773-87909	+	Novel splice site	137	WBPS14	Nematoda	SRP014316
<i>Trichinella spiralis</i>	T01_13908	a	scaffold26s	89164-89297	+	Yes	134	WBPS14	Nematoda	SRP014316
<i>Trichuris muris</i>	WBGene00293864 (TMUE_2000006714)	e	TMUE_LG2	12613169-12613308	+	Yes	140	WBPS14	Nematoda	ERP002000
<i>Trichuris muris</i>	WBGene00293864 (TMUE_2000006714)	a	TMUE_LG2	12613537-12613670	+	Novel exon	134	WBPS14	Nematoda	ERP002000
<i>Ascaris suum</i>	AgB05_g070	e	AgB05	1194260-1194390	+	Yes	131	WBPS14	Nematoda	SRP005511,SRP013573
<i>Ascaris suum</i>	AgB05_g070	a	AgB05	1198569-1198702	+	Yes	134	WBPS14	Nematoda	SRP005511,SRP013573
<i>Brugia malayi</i>	WBGene00255591 (Bm16942)	e	Bm_v4_Chr1_scaffold_001	6349844-6349974	-	Yes	131	WBPS14	Nematoda	ERP000948
<i>Brugia malayi</i>	WBGene00255591 (Bm16942)	a	Bm_v4_Chr1_scaffold_001	6348862-6348992	-	Yes	131	WBPS14	Nematoda	ERP000948
<i>Strongyloides ratti</i>	WBGene00260212 (SRAE_2000002300)	e	SRAE_chr2	66293-66432	-	Novel splice site	140	WBPS14	Nematoda	ERP002187
<i>Strongyloides ratti</i>	WBGene00260212 (SRAE_2000002300)	a	SRAE_chr2	66040-66173	-	Yes	134	WBPS14	Nematoda	ERP002187
<i>Strongyloides stercoralis</i>	SSTP_0000143000	e	SSTP_scaffold0000001	1888297-1888436	+	Yes	140	WBPS14	Nematoda	ERP001556
<i>Strongyloides stercoralis</i>	SSTP_0000143000	a	SSTP_scaffold0000001	1888554-1888687	+	Novel exon	134	WBPS14	Nematoda	ERP001556
<i>Strongyloides papillosus</i>	SPAL_0000295400	e	SPAL_scaffold0000002	401438-401577	-	Novel splice site	140	WBPS14	Nematoda	ERP016188
<i>Strongyloides papillosus</i>	SPAL_0000295400	a	SPAL_scaffold0000002	401165-401298	-	Yes	134	WBPS14	Nematoda	ERP016188
<i>Ancylostoma ceylanicum</i>	maker-ANCCEYDFT_Contig505-augustus-gene-0.53	e	ANCCEYDFT_Contig505	81986-82119	-	Novel exon	134	WBPS14	Nematoda	SRP058598
<i>Ancylostoma ceylanicum</i>	maker-ANCCEYDFT_Contig505-augustus-gene-0.53	a	ANCCEYDFT_Contig505	80277-80407	-	Novel splice site	131	WBPS14	Nematoda	SRP058598
<i>Caenorhabditis elegans</i>	WBGene00000762	e	III	6937600-6937733	+	Yes	134	WBPS14	Nematoda	
<i>Caenorhabditis elegans</i>	WBGene00000762	a	III	6938412-6938545	+	Yes	134	WBPS14	Nematoda	
<i>Haemonchus contortus</i>	HCON_00082210	e	hcontortus_chr3_Celeg_IT_arrow_pilon	2402222-24022355	-	Novel exon	134	WBPS14	Nematoda	ERP002173,SRP026668
<i>Haemonchus contortus</i>	HCON_00082210	a	hcontortus_chr3_Celeg_IT_arrow_pilon	24017677-24017807	-	Yes	131	WBPS14	Nematoda	ERP002173,SRP026668
<i>Nippostrongylus brasiliensis</i>	NBR_0001085001	e	NBR_scaffold0000650	60610-60743	-	Novel splice site	134	WBPS14	Nematoda	ERP023010
<i>Nippostrongylus brasiliensis</i>	NBR_0001085001	a	NBR_scaffold0000650	58731-58864	-	Yes	134	WBPS14	Nematoda	ERP023010
<i>Fasciola hepatica</i>	maker-scaffold10x_13_pilon-augustus-gene-0.26	e	scaffold10x_13_pilon	2309470-2309603	+	Yes	134	WBPS14	Platyhelminthes	ERP006566
<i>Fasciola hepatica</i>	maker-scaffold10x_13_pilon-augustus-gene-0.26	a	scaffold10x_13_pilon	2309839-2309972	+	Yes	134	WBPS14	Platyhelminthes	ERP006566
<i>Schistosoma mansoni</i>	Smp_347140	e	SM_V7_4	21491638-21491771	+	Yes	134	WBPS14	Platyhelminthes	ERP000427
<i>Schistosoma mansoni</i>	Smp_347140	a	SM_V7_4	21491970-21492103	+	Yes	134	WBPS14	Platyhelminthes	ERP000427
<i>Schmidtea mediterranea</i>	SMESG000018280	e	dd_Smes_g4_166	691338-691471	+	Yes	134	WBPS14	Platyhelminthes	
<i>Schmidtea mediterranea</i>	SMESG000018280	a	dd_Smes_g4_166	696985-697118	+	Yes	134	WBPS14	Platyhelminthes	
<i>Crassotrea gigas</i>	CGI_10026525	e	scaffold156	818738-818868	-	Novel splice site	131	Ensembl Metazoa 45	Mollusca	SRP014559
<i>Crassotrea gigas</i>	CGI_10026525	a	scaffold156	817079-817212	-	Yes	134	Ensembl Metazoa 45	Mollusca	SRP014559
<i>Biomphalaria glabrata</i>	BGLB019291	e	LG17_random_Scaffold1016	30223-30353	+	Yes	131	Ensembl Metazoa 46	Mollusca	SRP067658
<i>Biomphalaria glabrata</i>	BGLB019291	a	LG17_random_Scaffold1016	31998-32131	+	Yes	134	Ensembl Metazoa 46	Mollusca	SRP067658
<i>Capitella teleta</i>	CapteG154146	e	CAPTEscaffold_83	114793-114923	+	Novel exon	131	Ensembl Metazoa 45	Annelida	PRJNA379706
<i>Capitella teleta</i>	CapteG154146	a	CAPTEscaffold_83	115489-115622	+	Yes	134	Ensembl Metazoa 45	Annelida	PRJNA379706