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Abstract

Chromosomes are positioned non-randomly inside the nucleus to coordinate with their tran-
scriptional activity. The molecular mechanisms that dictate the global genome organization
and the nuclear localization of individual chromosomes are not fully understood. We introduce
a polymer model to study the organization of the diploid human genome: it is data-driven as
all parameters can be derived from Hi-C data; it is also a mechanistic model since the energy
function is explicitly written out based on a few biologically motivated hypotheses. These two
features distinguish the model from existing approaches and make it useful both for reconstruct-
ing genome structures and for exploring the principles of genome organization. We carried
out extensive validations to show that simulated genome structures reproduce a wide variety
of experimental measurements, including chromosome radial positions and spatial distances
between homologous pairs. Detailed mechanistic investigations support the importance of both
specific inter-chromosomal interactions and centromere clustering for chromosome position-
ing. We anticipate the polymer model, when combined with Hi-C experiments, to be a powerful
tool for investigating large scale rearrangements in genome structure upon cell differentiation

and tumor progression.
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Introduction

Three-dimensional genome organization is essential for DNA templated processes, including tran-
scription, DNA replication, and repair. "> Advances in chromosome-conformation-capture (Hi-C)
and related methods have greatly improved its high-resolution characterization, and have led to the
discovery of chromatin loops,* topologically associating domains (TADs),>® and compartments’
at various scales. Much progress has been made towards unraveling the molecular mechanism of
loop and TAD formation as well.® In particular, the loop extrusion model that hypothesizes a pro-
cessive movement of cohesin molecules along the DNA®!9 helps to explain the co-localization of
CCCTC-binding factor (CTCF) and cohesin at TAD boundaries. Numerous predictions of the ex-
trusion model have been validated with perturbative Hi-C and single-cell super-resolution imaging
experiments. ! I=14 Most recently, it has been proposed that loop extrusion and compartmentalization
are both crucial for the formation of TADs. 316

Though much is known about the structure and folding of individual chromosomes, questions
regarding the genome organization at a global scale remain outstanding. !”~!° In particular, imaging
studies have long demonstrated that chromosome nuclear localizations are non-random and highly
correlated with transcriptional activity.?? What drives the relative positioning of individual chromo-
somes is not well understood, however. Such questions are challenging to address experimentally
since high-throughput sequencing-based techniques measure contact frequencies via proximity lig-
ation and do not directly report 3D positions. In addition, due to its inherent limitation in detecting

rare contacts that are separated farther apart in space,>'2

the usefulness of Hi-C for characterizing
inter-chromosomal interactions remains to be shown. On the other hand, imaging-based techniques,
though ideally suited for spatial measurements, are often low throughput and can face challenges
for mechanistic explorations that require large data set collection for statistical significance.

As a complementary approach, polymer simulations can be useful for studying genome organi-
zation as well. >3 In particular, numerous groups have developed computational techniques to recon-
24-28

struct high-resolution chromosome structures as polymer models that recapitulate Hi-C data.

These studies have provided great details into the organization of both interphase and metaphase
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chromosomes. However, it is often difficult to address questions regarding why chromosomes
adopt certain structures with these purely data-driven approaches. Alternatively, great insight can
be gained by engineering specific mechanisms of genome organization into polymer simulations and
evaluating the quality of resulting chromosome structures. Such hypothesis-driven approaches have

demonstrated the importance of various biological factors, including protein-mediated loop forma-

29-33 15,34 35-37 in

tion, phase separation and compartmentalization, and non-equilibrium dynamics
genome organization. Due to the presence of free parameters whose values cannot be determined
straightforwardly, generalizing these approaches to evaluate the relative significance of various
mechanisms and identify a minimum set of hypotheses that are both necessary and sufficient for
modeling genome organization is difficult.

Coupling the data- and hypothesis-driven approaches together can potentially produce a power-
ful strategy for modeling genome organization.3%*" This strategy ensures the biological relevance
of simulated genome structures since all model parameters will be derived from Hi-C data. In
the meantime, it will be well suited for mechanistic investigation as the polymer model’s energy
function will be designed explicitly from biological factors that are known to contribute to genome
organization. Recently, we applied this strategy to model individual chromosomes at a 5kb reso-
lution by parameterizing a chromatin-state based energy function from Hi-C data.® Starting from
one-dimensional genomics and epigenomics data that are available for hundreds of cell types, the
model provides a high-resolution characterization of various chromatin structural motifs that is
in quantitative agreement with Hi-C and super-resolution microscopy measurements. In addition,
it uncovers numerous chromatin features that contribute to cell-type specific enhancer-promoter
contacts.

Here, we generalize the data-driven mechanistic-modeling approach to study the organiza-
tion of the diploid genome. We model chromosomes at 1Mb resolution and explicitly consider
forces that drive A/B compartmentalization, centromere clustering, and X chromosome inactiva-

tion. Parameters that evaluate the strength of these interaction forces were derived using only

haploid-specific Hi-C data. We find that, despite its simplicity, the polymer model succeeds in
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quantitatively reproducing Hi-C data, including intra- and inter-chromosomal contacts. Simu-
lated genome structures are also in qualitative agreement with a wide variety of imaging studies,
including the preferential interior localization of active chromosomes, the radial positioning of
individual chromosomes, the condensation of the inactive X-chromosome, centromere clustering,
etc. In addition, homolog-specific structural features are in good agreement with models built
from single-cell diploid Hi-C data as well. Detailed mechanistic investigations suggest that the
nuclear localization of individual chromosomes is not fully driven by the phase separation of A/B
compartments; both centromere clustering and specific inter-chromosomal interactions contribute
significantly to chromosome positioning. Our study, therefore, establishes a modeling framework
for efficient and accurate reconstruction of homolog-resolved whole-genome organization from

haploid Hi-C data.

Results

A data-driven mechanistic model for the diploid human genome

We introduce a polymer model to study the 3D organization of the diploid human genome in
interphase. As shown in Fig. 1, each one of the 46 chromosomes is modeled as a string of beads
that are 1Mb in length. Though fine structural details such as chromatin loops are inevitably
lost at this resolution, global features of genome organization, including territory formation and
compartmentalization, can be readily recognized and captured. ’ We further differentiate the beads as
either compartment A or B based on the corresponding interaction patterns detected in Hi-C contact
maps. Since most Hi-C data are processed at the haploid level, identical compartment profiles were
used for the two homologous copies of each chromosome. Prior studies with diploid-specific
Hi-C data indeed support the validity of this approximation,**' and the rare single-nucleotide
polymorphisms (SNPs) or imprinted loci do not contribute significantly to the megabase level
organization considered here.

The block copolymer model based on A/B compartments outlined above is too simplistic to
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Figure 1: Overview of the iterative algorithm for parameterizing the polymer model of diploid
genome organization. Each one of the 46 chromosomes is explicitly represented at the 1Mb
resolution as a string of beads, which are further distinguished as compartment A, B or C. Given
a set of parameters that measures the interaction strength among chromosomes, we use molecular
dynamics simulations to collect an ensemble of genome structures. By converting these structures
into a haploid contact map, polymer simulations can then be directly compared against Hi-C data.
The difference between the two will provide further guidance on updating the parameters.

capture the full complexity of genome organization, however.*> We added the following modi-
fications to better describe inter-chromosomal interactions. First, we defined a new type C to
recognize centromeric regions and distinguish them from the A/B compartments. Separating out
the centromeric regions is necessary to capture the specific interactions among them that can sig-
nificantly impact the localization of numerous chromosomes.?>*** Second, we modeled intra-
and inter-chromosomal interactions with two sets of parameters to account for the presence of
distinct driving forces for chromosome contacts at different length scales. In particular, numerous
dynamical processes powered by processive motors that track along the DNA molecule, including

9,10

loop extrusion by cohesin molecules®!? and transcription by RNA polymerase,* only contribute
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to the organization of individual chromosomes. On the other hand, contacts between chromosomes
can arise independently from these processes as a result of their mutual interaction with the same
nuclear landmark such as the envelope and the nucleolus. 3#¢ Third, to capture the structural dif-
ference between the two X chromosomes, we applied additional intra-chromosomal interactions
for the inactive copy inspired by its association with IncRNA molecules that promote chromatin
condensation. *’* Lastly, recognizing that the polymer model built upon A/B compartments cannot
resolve any DNA sequence specific effects, we introduced correction terms to each individual pair
of chromosomes to further improve the model’s accuracy.

The potential energy function of the whole genome model detailed above can be written as the
following

UGenome(r) = U(l‘) + Uintra(r) + Uinter(r) + UXi(r) + U.speciﬁc(r). (1)

inter

U(r)is a generic polymer potential applied to all chromosomes to define the topology of the polymer,
the excluded volume effect among genomic loci and the volume fraction of the DNA inside the
nucleus. Ujna(r) = 257 X jel u(rij, T;, T;) describes the type-specific intra-chromosomal potential,
with 7 indexing over different chromosomes. The strength of the interaction energy u between a
pair of genomic loci i and j depends both on their distance r;; and the chromatin type 7', which can
be A, B or C. Uiner(r) = X1y Zier jes V(rij» Ti, Tj) is similarly defined but for interactions between
genomic loci from different chromosomes. The weakly attractive potential Uxi(r) = 2; jexi w(rij)
is only applied to the inactive X-chromosome. U;ﬁziﬁc(r) = 21 Zierjes V1s(rij, Ti, Tj) defines a
specific interaction potential for every pair of heterologous chromosomes. Detailed expressions for
the different energy terms are provided in the Methods Section. We note that Ugenome(T) is designed
to be general so that it can capture the diverse set of mechanisms of genome organization. It does
not enforce any of the hypotheses mentioned above, however. As shown below, the relative strength
of different energy terms will be derived from Hi-C data. If the experimental data does not support
a particular hypothesis, the strength of the corresponding energy will be automatically set to zero.

While the polymer model is motivated to recapitulate various biological mechanisms of genome

organization, it is also data-driven and all of its parameters can be determined from haploid Hi-


https://doi.org/10.1101/2020.02.27.968735
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.02.27.968735; this version posted February 28, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

C data with an iterative optimization algorithm.?’-3® Model parameterization is possible because
mathematical expressions for the various energy terms in Ugenome(T) were designed such that their
ensemble averages can be mapped onto combinations of contact frequencies measured in Hi-C. As
shown in Fig. 1, we first perform molecular dynamics simulations to collect an ensemble of genome
structures. By averaging over homologous chromosomes, we then convert the simulated structures
into a haploid contact map as similarly done in Hi-C data processing. From the simulated contact
map, constraints that correspond to the different energy terms can be determined and compared
with the counterparts estimated using Hi-C data. For constraints involving centromeric regions, we
approximated the experimental values using contact frequencies estimated from peri-centromeric
regions due to the lack of Hi-C data. Finally, model parameters can be updated based on the
difference between simulated and experimental constraints. With the newly updated parameters,
one can restart the three steps if necessary to further improve the agreement between simulation and
experiment. More details on parameter optimization can be found in the supporting information

(SD).

Simulated contact map reproduces experimental Hi-C data

We applied the optimization algorithm to derive a whole genome model for GM12878 cells.
Using the parameterized energy function, we simulated the ensemble of genome structures and
determined the contact probability map. As shown in Fig. 2a, the contact map supports the
formation of chromosome territories and intra-chromosomal interactions are much stronger than
the inter-chromosomal ones. The mean contact probabilities within each chromosome (Fig. 2b)
and the contact probability as a function of genomic separation averaged over all chromosomes
(Fig. 2c¢) both match well with the corresponding experimental values. Further zooming in on
individual chromosomes reveals that large-scale compartmentalization is reproduced satisfactorily
(Fig. 2d), though some fine features seen in Hi-C along the diagonal are evidently missing in
the simulated contact map. Capturing such detailed interaction patterns potentially requires the

use of sub-compartment types or chromatin states to resolve the varying degree of active (A) and
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Figure 2: Polymer simulations succeeds in reproducing intra- and inter-chromosomal contacts
measured in Hi-C experiments.4 (a, b, ¢, ) Comparison between simulated and experimental,
whole genome contact map at the 1Mb resolution (a), average intra-chromosomal contact probabil-
ities (b), the contact probability as a function of genomic separation averaged over all chromosomes
(c), and average inter-chromosomal contact probabilities (e). (d) A zoomed-in view of the whole
genome contact map shown in part a for chromosome 2, with simulated and experimental results
shown in the upper and lower triangle, respectively. (f) Zoomed-in views of representative inter-
chromosomal contacts. Chromosomes IDs are provided on the side and the Pearson correlation
coeflicients between simulated and experimental inter-chromosomal contact matrices are shown
in parentheses. (g) Comparison between simulated and experimental average inter-chromosomal
contacts formed with maternal (Left) or paternal (Right) chromosomes.

inactive (B) chromatin.**® However, we found that these finer structures were not necessary for
an accurate modeling of chromosome positioning and inter-chromosomal interactions, indicating
that sub-compartments might only contribute to local chromatin folding rather than global genome

organization.
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Next, we examined the quality of simulated inter-chromosomal contacts. As shown in Fig. 2e,
the average contact probabilities between pairs of chromosomes agree well with the experimental
values. Close examination of inter-chromosomal contact blocks, with examples provided in Fig.
2f, suggests that the model succeeds in recapitulating specific interaction patterns as well. Pearson
correlation coefficient between these blocks is around 0.65 when averaged over all chromosome
pairs (Fig. S1). This correlation coefficient is comparable to the one between experimental replicates
(Pearson correlation coefficient = 0.78).

Homologous autosomes in our polymer model share identical compartment profiles and interact
with the rest of the genome in the same way. To validate the accuracy of this assumption, we
reprocessed the Hi-C data* to build a diploid contact map using allele-specific SNPs information
(see Method Section). Since contacts with both DNA strands containing at least one SNP is
extremely rare, only the parental origin for one of the loci contributing to the contact is resolved.
The inter-chromosomal contacts are now, therefore, split into two sets that correspond to contacts
originating from maternal or paternal chromosomes. As shown in Fig. S2a, these two data sets
are well correlated with each other, thus providing strong support for our approximate treatment of
homologous chromosomes.

InFig. 2g, we further compare the simulated allele-specific average contact probabilities between
pairs of chromosomes with those estimated from diploid Hi-C contacts. Since the polymer model
does not distinguish the two homologs, we randomly assigned one of them as the maternal copy
and the other one as the paternal copy for the convenience of data processing. The simulated results
are in good agreement with the experimental values, with a Pearson correlation coefficient of 0.88.
As expected, flipping the maternal and paternal assignment in the polymer model does not lead to

noticeable changes in the resulting contact probabilities (Figs. S2b and S2c).

Simulated polymer structures recapitulate 3D genome organization

Encouraged by its success in reproducing Hi-C data, we now analyze the structural details of the

polymer model. A snapshot for the simulated genome organization is provided in Fig. 3a, with

10
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heterologous chromosomes marked in distinct colors for better visualization. The model clearly

49-51 In

reproduces the formation of spatially separated territories for individual chromosomes.
addition, it also predicts a large difference in terms of morphology for the two X chromosomes,
with the inactive one being more compact and adopting a more spherical shape (also see Fig. 3c
and Fig. S3).

Prior studies have suggested that the spatial organization of the genome is nonrandom and
chromosomes adopt well-defined radial positions.??>? Fig. 3a indicates that the model succeeds
in recapitulating the well-known observation that the gene-rich chromosome 19 is closer to the
nuclear interior than the gene-poor chromosome 18.2093:3% For a more systematic comparison,
we determined the 3D localization of each chromosome as the average distance from its center of
mass to the nuclear origin. As shown in Fig. 3b, the polymer model quantitatively reproduces the
data from chromosome painting experiments performed by Bickmore and coworkers.?’ Additional
analyses further revealed that simulated chromosome positions are strongly correlated with gene
density, Lamina-associated domain density, and chromosome compactness (Fig. S4).

In addition to chromosome-specific behavior, we examined the spatial distribution of various
compartment types as well. As shown in Fig. 3d, the genome exhibits a clear phase separation,
with A compartments (euchromatin) localizing at the nuclear interior, while B compartments
(heterochromatin) remain close to the nuclear envelope. This separation is also evident from
the cross-section of a representative structure shown on the right. Fig. 3d further reveals that
centromeric regions do not mix with A/B compartments, but form spatial clusters that localize
more or less in between the two compartments. These observations are indeed consistent with
results from fluorescence in situ hybridization (FISH) experiments that probe the 3D localization
of genomic regions corresponding to distinct compartment types. '8:23-54-61

To evaluate the quality of homolog-specific predictions, we compared the simulated genome
structures with those reconstructed from single-cell diploid Hi-C data.®? As demonstrated by

the pair-wise distance maps between all 46 chromosomes (Fig. 4a), the two structural models

bear a resemblance. They both support that, consistent with their interior nuclear localization,

11
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Figure 3: Polymer simulations reproduce large scale genome organization. (a) Example genome
structure predicted by the polymer model with chromosomes shown in different colors. A blow-up
version is shown on the side. (b) Comparison between simulated and experimental > average radial
position of individual chromosomes. (c) Probability distribution of the radius of gyration for the
active (orange) and inactive (red) X-chromosome. (d) Radial distribution of various compartment
types as a function of the distance from the nuclear center. An average distribution of all genomic
loci is shown in grey for reference. A cross section of a genome structure is shown on the side
using the same coloring scheme. R, is the radius of the nucleus used in polymer simulations.

chromosomes shorter in sequence length (chr15-chr22) reside in spatial proximity. Chromosome
18, however, appears to be an outlier of this trend. Given the difference in the experimental data

and computational algorithms used for their reconstruction, the apparent agreement between the

12
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Figure 4: Homolog-resolved genome organization from polymer simulations agrees well with
structures reconstructed from single-cell diploid Hi-C data®? (a) Average pair-wise distance
maps between all 46 chromosomes determined from polymer simulations (Left) and from single-
cell structures (Right). (b) Spatial distances between pairs of homologous (Left) or heterologous
(Right) chromosomes determined from polymer simulations and single-cell structures are strongly
correlated. (c) Average distance between homologous and heterologous chromosomes from poly-
mer simulations (Left) and single-cell structures (Right). Error bars correspond to the variance over
all chromosomes. R, is the radius of the nucleus used in polymer simulations.

two sets of structures with a correlation coefficient of ~0.6 is significant. In addition, homologous
chromosomes, in general, are found to be far apart from each other, and the distances between
shorter homologous chromosomes are smaller compared to that of the longer chromosomes (Fig.
4b). These distances are comparable or slightly smaller than the ones between heterologous
chromosomes (Fig. 4c¢).

The polymer model, therefore, succeeds in reproducing a wide range of qualitative and quanti-
tative imaging and single-cell results. It is important to emphasize that only Hi-C data were used
for the model parameterization and 3D genome structures are in fact de novo predictions of the

model. The agreement between simulated structures and prior independent studies provides strong

13
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support that the hypotheses introduced in designing the model energy function are sufficient for a

faithful description of the whole genome organization.

Both specific and non-specific inter-chromosomal interactions contribute to

genome organization

A significant advantage of the polymer model is its simplicity and the clear biological meaning of
the different terms in the potential energy function. Therefore, perturbations can be performed to
selectively remove one or multiple of these terms and evaluate the corresponding impact on genome
organization. Such perturbations can help identify mechanisms that are responsible for the model’s
success in reproducing large-scale genome organization and serve as effective means to explore the
principles of genome organization.

We assumed that intra- and inter-chromosomal interactions differ and must be modeled with
two separate potentials. To evaluate the impact of this assumption on genome organization, we
built a new polymer model in which a common potential and one single set of parameters was used
for both intra- and inter-chromosomal interactions. The iterative algorithm was again employed
to ensure that this model reproduces another set of constraints derived from Hi-C data (see SI for
details). Asshown in Fig. S5a, the block-wise pattern for inter-chromosomal contacts is less evident
in the simulated contact maps. Though the two compartments remain largely separated from each
other in the simulated structures (Fig. 5a), instead of localizing in the interior, A compartments
tend to spread over the entire nucleus. Furthermore, simulated radial chromosomal positions
are poorly correlated with experimental values, partially caused by the outward movement of the
shorter chromosomes. Reproducing the spatial arrangement of chromosomes inside the nucleus,
therefore, necessitates a fine tuning of the inter-chromosomal potential. When treated separately
from the intra-chromosomal one, the potential between A compartments is stronger than that
between B compartments due to their higher inter-chromosomal contact frequency (Fig. S6b).
A stronger interaction potential drives their interior localization to maximize contacts among A

compartments. If intra- and inter-chromosomal contacts are mixed together, the relative magnitude
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Figure 5: Impact of non-specific and specific inter-chromosomal interactions on global genome
organization. Radial positions of individual chromosomes (Left), radial distributions of compart-
ment types (Middle) and example genome structures (Right) are shown for the polymer models
that ignores the difference between intra- and inter-chromosomal interactions (a), that removes the
interaction among centromeric regions (b), and that abolishes specific inter-chromosomal contacts
(¢). R, is the radius of the nucleus used in polymer simulations.

of the contact frequencies between the two compartments is comparable (Fig. S6¢) and so are the
interaction energies, resulting in a dramatic change in genome organization.
Next, we investigated the role of centromeric regions in organizing the genome with a model

that abolishes the specific interactions between them (see SI for details on model parameterization).
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Comparison between simulated and experimental Hi-C contact maps is provided in Fig. S5b. As
shown in Fig. 5b, this perturbation has little impact on the radial distribution of A/B compartments.
However, centromeric regions no longer cluster together in simulated structures but become more
scattered at the nuclear periphery. In addition, the radial positions of chromosomes now correlate
poorly with the experimental values and many of the shorter chromosomes (chrl6, 17, 19, 20
and 21) relocate towards the nuclear periphery. Therefore, A/B compartmentalization alone does
not fully determine the localization of individual chromosomes and clustering among centromeric
regions plays a crucial role as well.

Finally, we examined the impact of specific inter-chromosomal contacts on chromosome posi-
tioning by parameterizing a polymer model that abolishes the corresponding interaction potential
(see SI for details). As shown in Fig. Sc, removing this specific interaction results in subopti-
mal performance for reproducing chromosome positions, though the overall genome organization

appears reasonably preserved (see Fig. S5c as well).

Discussion

In this work, we presented a polymer model for studying homolog-resolved 3D genome organiza-
tion. The model is data-driven and all of its parameters can be derived from haploid Hi-C data.
Eliminating the uncertainty in model parameters ensures the quantitative accuracy of predicted
genome structures. We found that the simulated polymer configurations reproduce a wide range of
experimental results independent from the input Hi-C data, including chromosome radial positions,
A/B compartmentalization and inter-homolog distances. These agreements are particularly note-
worthy given the model’s simplicity. When designing its energy function, we attempted to reduce
the number of parameters based on biologically motivated hypotheses to improve the model’s inter-
pretability. This hypothesis-driven nature makes the model well-suited for mechanistic exploration
of genome organization as well.

A key insight from our study is that inter-chromosomal interactions must be separately modeled
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Figure 6: Contribution of configurational entropy to the interior localization of the inactive X-
chromosome. (a) Probability distribution of the radial position for the active (orange) and inactive
(red) X-chromosome. (b) Average inter-chromosomal contact energy between the X chromosomes
and the rest of the genome as a function of chromosome radial position. The shaded areas represent
the standard deviation in the contact energy estimated from the simulated structural ensemble. (c)
Dependence of the radial position for the two X chromosomes as a function of temperature. R, is
the radius of the nucleus used in polymer simulations.

from intra-chromosomal ones. This separate treatment is partially motivated by the observation
that the average intra-chromosomal contact frequency between A compartments is weaker than
that between B compartments, while the opposite trend is observed for inter-chromosomal contacts
(Fig. S6). Higher contact frequency leads to a stronger interaction energy between A compartments
from different chromosomes, resulting in their interior localization. Since B compartments within
the same chromosome are more condensed compared to A compartments due to the formation
of heterochromatin, their higher intra-chromosomal interaction energy is indeed reasonable. On
the other hand, inter-chromosomal contacts between B compartments is mostly driven by their
interaction with lamin proteins and co-localization to the nuclear envelope. These “accidental”,
indirect interactions are potentially weaker than the specific contacts between A compartments from
different chromosomes that are of biological significance.??

Additionally, we found that the inactive X-chromosome is located more interior than the active
one (Fig. 6a). This seemingly surprising result is indeed consistent with the observation by

Cremer and coworkers. ®3 Using multi-color whole-chromosome painting and quantitative 3D image

reconstruction, they found that a significant portion of both chromosomes are located near the
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nuclear rim while the inactive one extends further into the nuclear center. The authors postulated
that its more interior localization could potentially be driven by the specific interaction between the
inactive X chromosome and the perinucleolus compartment. Alternatively, our polymer simulations
suggest that the more compacted conformation of the inactive X-chromosome could contribute to
its interior localization as well. First, we note that, as shown in Fig. 6b, there is a favorable and
comparable energetic gain for both X chromosomes to move inward due to their increased contact
with the rest of the genome. This energetic driving force, however, is inevitably counterbalanced
by the penalty arising from a loss of the configurational entropy. As chromosomes move inward,
they become more compact and the set of configurations they can adopt becomes more limited.
The entropic penalty would be more significant for the active chromosome given its more expanded
conformations, preventing it from occupying more interior locations. We further verified this
entropy-driven mechanism by examining the dependence of the radial positions of the two X
chromosomes on temperature. At higher temperature, the impact of configurational entropy is
expected to be stronger and the mechanism would predict a larger difference in the radial positions.
Our simulations shown in Fig. 6¢ are in excellent agreement with such a prediction.

Its combined utility for structural reconstruction and mechanistic exploration renders the mod-
eling framework presented here useful for studying genome organization. In the meantime, we

C21,63

emphasize that the framework is general and additional experimental data other than Hi- can

be further incorporated to improve model accuracy. It would be particularly interesting to integrate
the Hi-C based model with results obtained from super-resolution imaging>>%+%7 to characterize

single-cell genome structures.

Methods

Data Processing

Hi-C Contact Maps: Data were downloaded from the Gene Expression Omnibus database using

SRAtoolkit version 2.9.0 and the SRAdb R/Bioconductor package. The GM12878 data were
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downloaded from the series number GSE63525. Only samples generated using in situ Hi-C
protocol were considered for further analysis. A catalog of phased SNPs was downloaded from the
thousand genome project database for the individual NA12878.

Hi-C reads for GM 12878 were mapped to the human reference genome version hgl9 where
heterozygous SNPs for NA 12878 were masked with N’s. For reads whose alignment to the reference
genome overlapped with a SNP, the read was assigned to either the maternal allele if the sequence
of the read matched with the sequence of the maternal allele or to the paternal allele if the sequence
of the read matched the sequence of the paternal allele. A sequence fragment was considered a
valid read pair if one read mapped to a restriction fragment different to the corresponding read pair.
HiC-Pro%® was used for both the mapping step and to generate a list of valid Hi-C contacts. In
order to build allele-specific contact maps, valid contacts where at least one read overlapped with
SNPs were considered.

Three genome-wide contact maps of 1 megabase resolution were generated: (1) a matrix built
with contacts for which at least one read overlapped with a SNP and contained the maternal allele,
(2) amatrix built with valid contacts for which at least one read overlapped with a SNP and contained
the paternal allele and (3) a matrix built with all valid contacts ignoring information of the alleles.
The three raw genome-wide contact maps were then balanced using the Iterative Correction and
Eigenvector decomposition (ICE) method. ©°
Compartment Profile: To assign compartment labels to each 1 megabase bin in the genome,
the balanced haploid contact map X = x;;, with i rows and j columns, were transformed into a
normalized matrix by dividing each element of the matrix by the expected interaction frequency
given the distance from the diagonal k = i — j. The expected interaction frequency (i.e. the
normalization factor) was defined as the mean of the x;; values with the same value of k. A
correlation matrix was generated by estimating the pairwise correlation coefficients between all
pairs of rows of the normalized matrix. Then, an eigenvector decomposition was performed on
the correlation matrix and the sign of the first eigenvector was used to assign compartment labels.

Since the sign of the eigenvector is arbitrary in an eigenvector decomposition, gene expression
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data and GC content were used to flip the sign of the eigenvectors when necessary so that positive
eigenvectors always corresponded to open (A) chromatin and negative eigenvectors corresponded
to closed (B) chromatin. For the central chromosome regions with missing Hi-C data, we assigned
2Mb segments outside the boundary and up to 7Mb segments next to but within the boundary as
type C. This assignment allows the estimation of centromere contact frequency and interaction
strength using neighboring contacts. All other genomic loci with missing Hi-C data were assigned
as type N, and no explicit interactions were included for them in the polymer model.

Single-Cell Data: Reconstructed single-cell genome structures at the 20kb resolution for the
GM12878 cell line® were directly downloaded using the Gene Expression Omnibus (GEO) ac-
cession number GSE117109. The radial position of each chromosome was then determined as
the center of mass coordinate of all its genomic loci. A 46 X 46 dimensional distance map can be

calculated from the radial positions to directly compare with results from our polymer simulations.

Energy function of the whole genome model

Here we provide more detailed mathematical expressions for each term of the diploid genome

model energy function (Eq. 1).

U(r) = Z [tbond(Fii+1) + tangie(Fii+1, Fir1i+2) + ue(ri)] + Z usc(rij) (2)
i j>i

defines the connectivity of the polymer with bonding (upona) and angular (uangle) potentials. u(r;)
corresponds to a boundary potential applied to each bead i to mimic the confinement effect by the
nuclear envelop. The radii of the spherical boundary R, was chosen to achieve a volume fraction
of 0.1. uy(r;;) is a soft-core potential between non-bonded pairs (i, j) formed by beads both from
the same and different chromosomes. It accounts for the excluded volume effect while allowing
polymer chains to cross over each other with a finite probability. Parameters used in these potentials

can be found from our previous work. >
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Uinra(r) = Z Z u(rlj’ Tll, TJI) = Z Z [a'ideal(|i —Jjh+ a’intra(T,'I, T]I) f(rij) 3)

ijel I ijel
describes the type-specific intra-chromosomal potential for each chromosome /. We further split the
potential into an ideal term, @igea1(|i — j|), that is only a function of the sequence separation between
two genomic loci 7, j and another term, aimra(Tl.’ , TJ.I ), that depends explicitly on the compartment
types Tl.l and TJ? . f(r;;) measures the probability of contact formation for two loci separated by a

distance of r; j.38

Uier®) = Y " 003, TLT) = 37 D amed @ T £ () “

1J ieljeJ 1J iel,jel
is similarly defined but for interactions between genomic loci from different chromosomes.
To capture the distinction between active and inactive X-chromosomes, we applied an additional

potential

Uxitr) = > wrij) = D axilli= jNf(r) (5)

i,jeXi i,jeXi
to pairs of genomic segments from the inactive X-chromosome. This potential is motivated by
the observation that the average contact frequency as a function of genomic separation is much
larger for the X chromosome than autosomes (Fig. S7a). Further splitting the contact frequencies
into contributions from the two homologs suggests that the difference between X chromosome and
autosomes seen in haploid Hi-C is mostly caused by condensation of the inactive X-chromosome
(Fig. S7b). It is, therefore, reasonable to assume the active X-chromosome shares the same ideal
potential as other autosomes and only apply the correction term to the inactive copy.
Finally, to more accurately reproduce inter-chromosomal contacts, we introduced an additional

potential

Uy =" 3 vt =D D e T TH (). 6)

LJ i€l jeJ LJ i€l jeJ

specmc
mter

(r) is only applied to type A and B beads. It helps to capture specific interactions en-

coded in the DNA sequence while retaining the simple representation of chromosomes using A/B

21


https://doi.org/10.1101/2020.02.27.968735
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.02.27.968735; this version posted February 28, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

compartments. Since haploid Hi-C data do not report contact frequency between homologous

chromosomes, this potential was not defined for those pairs.

1J

For most of the parameters introduced in Egs. 3-6, {@intra> @inter> @xi» @y,

}, a corresponding
constraint based on haploid Hi-C data can be defined. Values of these parameters can then be
fine tuned with an iterative algorithm to ensure that ensemble averages calculated using simulated
genome structures match with Hi-C constraints.?”3® Detailed mathematical expressions for the
constraints are provided in the SI.

All parameters for type N were set as zero due to the lack of corresponding Hi-C data. The
interaction energy between centromeres was approximated with values derived for pericentromeric
regions. To ensure the accuracy of this approximation, we only designated segments close to
pericentromeric regions as type C in the polymer model (see Data Processing: Compartment Pro-
file). Finally, for haploid Hi-C, the contact frequency between homologous chromosomes are not
measured explicitly but grouped together with intra-chromosomal contacts. We, therefore, approxi-

mated interactions between homologous chromosomes using the energy derived from heterologous

pairs (see SI for details).

Details for molecular dynamics simulations

We carried out polymer simulations using the molecular dynamics package LAMMPS 7 in reduced
units. Simulations were maintained at a constant temperature of 7 = 1.0 via the Langevin dynamics
with a damping coefficient of v = 10.0 and a time step of df = 0.01. The initial configuration
for these simulations was generated as follows. We first placed the chromosomes consecutively on

a cubic lattice with a length of %

\/_
introduced to ensure the volume fraction of the genome as 0.1. We then relaxed the genome

, where R = 19.70 is the radii of the spherical confinement

structure with a 100,000-step-long simulation under the homopolymer potential U(r) (Eq. 2). The
end configuration of this simulation was used as the starting structure for all subsequent simulations.
We note, however, that all the results present in the manuscript correspond to equilibrium averages

and are independent of the initial configuration.
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Parameters in the energy function were determined through an iterative algorithm introduced by
us. 2”38 We started the first iteration of molecular dynamics simulations from the equilibrated con-
figuration generated above. All subsequent simulations were initialized with the end configurations
from the previous iteration. During each iteration, four independent 20-million-time-step-long
simulations were carried out and genome conformations were recorded at every 2000 timesteps to
calculate the ensemble averages. Parameters in Eq. 2-6 were then updated to minimize the differ-
ence between the simulated ( fiSim) and experimental ( ]ie"p) constraints whose detailed expressions
=g

of less 5% in the last round of iteration. With the parameterized energy function, we then performed

are provided in the SI. The simulation error defined as € = 3, /3 17 reaches a value

four independent 40-million-time-step-long simulations and recorded genome conformations at ev-
ery 2000 timesteps for data analysis. Similar optimization procedures were carried out for the three

perturbations presented in Fig. 5.
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