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ABSTRACT 20 
Measuring naturalistic behaviors in laboratory settings is difficult, and this hinders progress 21 

in understanding decision-making in response to ecologically-relevant stimuli. In the wild, 22 

many animals manipulate their environment to create architectural constructions, which 23 

represent a type of extended phenotype affecting survival and/or reproduction, and these 24 

behaviors are excellent models of goal-directed decision-making. Here, we describe an 25 

automated system for measuring bower construction in Lake Malawi cichlid fishes, whereby 26 

males construct sand structures to attract mates through the accumulated actions of 27 

thousands of individual sand manipulation decisions over the course of many days. The 28 

system integrates two orthogonal methods, depth sensing and action recognition, to 29 

simultaneously measure the developing bower structure and classify the sand manipulation 30 

decisions through which it is constructed. We show that action recognition accurately (>85%) 31 

classifies ten sand manipulation behaviors across three different species and distinguishes 32 

between scooping and spitting events that occur during bower construction versus 33 

feeding.  Registration of depth and video data streams enables topographical mapping of 34 

these behaviors onto a dynamic 3D sand surface. The hardware required for this setup is 35 

inexpensive (<$250 per setup), allowing for the simultaneous recording from many 36 

independent aquariums. We further show that bower construction behaviors are non-uniform 37 

in time, non-uniform in space, and spatially repeatable across trials. We also quantify a unique 38 

behavioral phenotype in interspecies hybrids, wherein males sequentially express both 39 

phenotypes of behaviorally-divergent parental species. Our work demonstrates that 40 

simultaneously tracking both structure and behavior provides an integrated picture of long-41 

term goal-directed decision-making in a naturalistic, dynamic, and social environment.  42 
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1. INTRODUCTION 43 
Natural behaviors are often expressed over long timescales. For example, many construction, 44 
navigation, hunting/foraging, and social behaviors are executed over timescales ranging from 45 
many hours to weeks and are critical for survival and reproduction in a wide range of invertebrate 46 
and vertebrate species (Tucker 1981, Feng, Fergus et al. 2015, Russell, Morrison et al. 2017, 47 
Mouritsen 2018). These behaviors may be expressed inflexibly according to fixed sets of rules, 48 
or plastically in response to changing environmental and social stimuli. Understanding the 49 
underlying logic of long-term behaviors and how they are encoded in the genome and the nervous 50 
system will require accurately measuring them as they unfold over extended periods of time in 51 
complex, naturalistic, dynamic, and often social environments.  52 
 53 
Long-term natural behaviors are also often goal-directed, in which animals integrate external 54 
stimuli, internal physiology, and previous experience to coordinate decisions and actions towards 55 
a specific goal. For example, many species exhibit construction behaviors in which they 56 
manipulate the environment to build extended phenotype structures such as burrows, dens, 57 
tunnels, webs, nests, or bowers; and these structures are integral to survival and reproduction 58 
(Dawkins 1982, Vollrath 1992, Collias and Collias 2014, Mouritsen 2018). Construction behaviors 59 
are particularly excellent models of long-term goal-directed behaviors because the physical 60 
structure itself provides a history of an animal’s goal-directed decision-making and also 61 
represents a measurable and dynamic external stimulus that continuously modulates decision-62 
making over long timescales. Thus, measuring both the developing structure and the underlying 63 
behavioral decisions throughout construction can provide quantitative descriptions of long-term 64 
goal-directed decision-making in dynamic environments.  65 
 66 
Measuring construction behaviors and other complex natural behaviors in the lab is challenging. 67 
Most existing tools for behavioral phenotyping are designed for paradigms in which single test 68 
subjects are behaving in simple, static, and often unfamiliar environments with uniform 69 
backgrounds over short timescales. In contrast, natural behaviors are often most faithfully 70 
expressed over long timescales, in naturalistic environments, and through direct interaction with 71 
the environment itself and/or with other individuals. Additionally, during construction behaviors, 72 
the individual and/or structure is frequently partially or wholly occluded from view (e.g. 73 
subterranean burrows or tunnels, or enclosed nests), making it difficult to measure the developing 74 
structure and the underlying behavior. Because of these challenges, natural behaviors are 75 
typically quantified through manual observation and scoring, which is labor intensive and limits 76 
the potential scope and scale of experimental designs and research questions that can be 77 
pursued. Thus, circumventing the need for manual scoring through automated approaches will 78 
facilitate investigations of the biological mechanisms regulating natural behaviors.  79 
 80 
In this paper we use automated approaches to measure long-term bower construction behaviors 81 
in in Lake Malawi cichlids. Lake Malawi is the most species-rich freshwater lake on Earth, home 82 
to an estimated 700-1,000 cichlid species that have rapidly evolved in the past 1-2 million years 83 
(Kocher 2004). These species vary strongly in many complex traits, including behavior (Kocher 84 
2004, Hulsey, Mims et al. 2010, Maan and Sefc 2013, Johnson, Moore et al. 2019). The high 85 
degree of genetic similarity among species (average sequence divergence between species pairs 86 
is 0.1-0.25%) (Loh, Bezault et al. 2013, Malinsky, Svardal et al. 2018) enables behaviorally 87 
divergent species to be intercrossed in the laboratory to produce hybrids, making Lake Malawi 88 
cichlids a powerful system for studying the genetic and neural basis of natural behavioral 89 
variation.  90 
 91 
About 200 Lake Malawi species exhibit long-term social bower construction behaviors, in which 92 
males manipulate sand to construct large courtship structures, or bowers, during mating contexts 93 
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(York, Patil et al. 2015). Bower behaviors appear to be an example of convergent mating system 94 
evolution, mirroring that of Ptilonorhynchidae birds, in which males congregate into leks and 95 
construct elaborate bowers for courtship and mating, but not for raising offspring (McKaye, 96 
Stauffer et al. 2001). Among bower constructing species in Lake Malawi, two major behavioral 97 
phenotypes have repeatedly evolved: “pit-digging,” or construction of crater-like depressions, and 98 
“castle-building,” or construction of volcano-like elevations (York, Patil et al. 2015) (Figure 1). 99 
Both pits and castles are constructed over the course of many days by collecting mouthfuls of 100 
sand and spitting the sand into new locations, ultimately giving rise to the final bower structures.  101 
 102 
Bower construction behaviors are an excellent opportunity to understand the genetic and neural 103 
basis of long-term goal-directed decision-making in a complex and continuously changing 104 
environment. However, measuring bower construction in the laboratory is challenging. Bowers 105 
are constructed over many days, requiring collection and analysis of large volumes of data. 106 
Bowers are constructed in social environments in which multiple individuals can freely interact, 107 
making individual tracking difficult. Sand manipulation results in a dynamic background, and the 108 
subject male and stimulus females are largely camouflaged against the sand background from a 109 
top-down view, both posing difficulties for traditional computer vision strategies. Lastly, scooping 110 
and spitting sand during bower construction is behaviorally similar to scooping and spitting sand 111 
during feeding, which is performed by both male and female fish over the course of the trial , 112 
greatly increasing the difficulty of selectively measuring construction behaviors from video data.   113 

 

Figure 1. The evolution of bower behaviors in Lake Malawi cichlids. Approximately 200 species of 
Lake Malawi cichlids exhibit bower behaviors. In these species, sociosexual cues trigger reproductive 
adult males to construct large courtship structures by manipulating sand with their mouths. The 
geometric structure of the bower is species-specific. Castles (A,B), or mountain-like elevations, and pits 
(C,D), or crater-like depressions, are two bower forms that have repeatedly evolved in many species. 
Some pit-digging species construct pits alongside and partially underneath rocks (C). Photo credit to 
Dr. Ad Konings (A,C), Dr. Isabel Magalhaes, PhD (B) and Dr. Ryan York (D).  
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 114 
In this paper, we integrate two orthogonal methods to automatically track both the bower structure 115 
and the thousands of individual sand manipulation decisions made during construction for up to 116 
weeks at a time, in multiple species and hybrid crosses, and in many home tank aquariums 117 
simultaneously. We use low cost mini computers and video game depth sensors to capture 118 
natural species differences in bower form, and we show that a neural network for action 119 
recognition accurately classifies bower construction, feeding, and spawning behaviors across 120 
hundreds of hours of video data. Through these approaches we gain new insights into bower 121 
construction behaviors. We show that distinct behavioral and social contexts emerge over the full 122 
course of bower construction, and we show that males (i) construct bowers across many days 123 
through punctuated bursts of activity, (ii) construct bowers in spatially repeatable locations across 124 
multiple trials, and (iii) exhibit shifts in spatial decision-making during the first days of construction. 125 
Additionally, we show that pit-castle F1 hybrid males independently express both pit-digging and 126 
castle-building behaviors in sequence.  127 
 128 
2. RESULTS 129 
 130 
2.1 Assay and recording system for measuring bower behaviors  131 
 132 
Lake Malawi bower cichlids construct species-typical bowers in aquariums similar to those 133 
observed in the field (York, Patil et al. 2018). However, because bowers are constructed over 134 
many days through intermittent bouts of activity, we found that daily 2-3 hour video recordings 135 
were insufficient for capturing the behaviors consistently. In order to measure bower behaviors 136 
for many days and across many aquariums simultaneously, we collected 10 hours of video data 137 
and 24 hours of depth sensing data for 10 days. We used small, inexpensive Raspberry Pi 3 (Pi) 138 
computers that could easily be mounted above each tank, and each unit was connected to a small 139 
touch screen, an external hard drive for data storage, and an ethernet cord for internet access 140 
and interfacing with a common Google spreadsheet file (Figure 2 and Figure S1, S3, and S4). 141 
For video recording, we connected each unit to a Raspberry Pi camera board that supports HD 142 
quality compressed video with a high frame rate; and for depth sensing, we connected each unit 143 
to a Microsoft Kinect depth sensor, which has previously been shown to measure distances of 144 
natural substrates through shallow creeks (Mankoff and Russo 2013). By optimally positioning 145 
the camera and Kinect, we were able to record video and depth data across the sand tray (Figure 146 
2C, also see Figure S5). For each bower trial, a subject male was introduced to a 50-gallon 147 
aquarium containing four adult reproductive females and a sand tray positioned directly beneath 148 
the Raspberry Pi camera and Kinect depth sensor for top-down video recording and depth 149 
sensing (Figure 2C and Figure S1).  150 
 151 
3.2 Depth Data 152 
 153 
3.2.1 System validation 154 
 155 
The Kinect detects surface change during bower construction 156 
To validate measurements of depth change, we analyzed the overall volume of sand moved in 157 
“bower” trials (in which an experimenter visually identified bowers constructed by the male; n=29 158 
total; pit-digger Copadichromis virginalis, CV, n=9; castle-builder Mchenga conophoros, MC, n=7; 159 
pit-digger Tramitichromis intermedius, TI, n=5; pit-castle MCxCV F1 hybrid, n=3; pit-castle 160 
TIxMCF1 hybrid, n=5) and control trials in which no bowers were constructed (n=9 total; CV, n=3; 161 
MC, n=3; TI, n=3) by subtracting the initial depth map from the final depth map (for visualization 162 
of this calculation see Figure S5D; example data shown in Figure 3A-F). As a second control, 163 
we also analyzed empty tank (no fish) trials to estimate the level of depth change that might be 164 
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attributed to noise in our depth data. 165 
Because males move large volumes of 166 
sand during bower construction, we 167 
expected to observe larger depth 168 
change signals in bower trials 169 
compared to control trials. We found 170 
that depth change differed strongly 171 
between these three conditions, and 172 
was much greater in bower building 173 
trials (n=29 trials; 1162.7 ± 98.25 cm3 174 
volume change) compared to control 175 
trials (n=9 trials; 414.5 ± 17.53 cm3 176 
volume change) and empty tank trials 177 
(n=6 trials; 249.9 ± 24.00 cm3 volume 178 
change; Kruskal-Wallis χ2 = 30.1, 179 
p=2.86x10-7; Figure S5). More 180 
information on validation of depth data 181 
quality, thresholding, and 182 
measurement across timescales is 183 
described in the “Validation of Depth 184 
Sensing System” section in the 185 
Supplementary Materials and 186 
Methods, and in Figures S5A-G.   187 
 188 
3.2.2 Biological validation 189 
 190 
Depth sensing captures natural 191 
species differences in bower structures 192 
We next tested whether our depth 193 
sensing system could detect natural 194 
species differences in bower 195 
structures. To do this, we compared 196 
depth change in bower trials among 197 
three species: two pit-digging species 198 
(Copadichromis virginalis, n=9; 199 
Tramitichromis intermedius, n=5) and 200 
one castle-building species (Mchenga 201 
conophoros, n=7). We calculated a 202 
“Bower Index” to analyze the final 203 
bower structure in each trial (Figure 204 
3G). Briefly, the Bower Index is a ratio 205 
of the net depth change in above 206 
threshold regions (change can be 207 
positive and negative) to the total 208 
volume change in above threshold 209 
regions (all change is considered 210 
positive). The Bower Index is thus a 211 
measure of directional (elevation vs. 212 
depression) bias in above threshold 213 
regions. This analysis revealed strong 214 
species differences in bower structures 215 

 

Figure 2. An automated recording system to measure 

bower behaviors in laboratory aquariums. Bowers are 

constructed over the course of many days (A,B). Pit-

digging involves scooping sand from a concentrated 

region and spitting it into dispersed locations (A, 

representation of a Copidachromis virginalis male digging 

a pit). Castle-building involves scooping sand from 

dispersed locations and spitting it into a concentrated 

region (B, representation of a Mchenga conophoros male 

building a castle). To measure bower behaviors, we 

developed a behavioral assay and an automated 

recording system for standard laboratory aquatics facilities 

(C). A reproductive adult male is introduced to a 50-gallon 

aquarium tank containing a sand tray and four 

reproductive females. The recording system utilizes a 

Raspberry Pi 3 computer connected to a high-definition 

RGB camera and a Microsoft Kinect depth sensor for 

video recording and depth sensing, respectively. Data is 

stored on an external hard drive and uploaded to Dropbox. 

The system is remotely controlled by custom Python 

scripts and a Google documents spreadsheet.  

 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 28, 2020. ; https://doi.org/10.1101/2020.02.27.968511doi: bioRxiv preprint 

https://doi.org/10.1101/2020.02.27.968511
http://creativecommons.org/licenses/by-nd/4.0/


7 
 

  216 

 

Figure 3. Depth sensing reveals natural species differences in bower construction at multiple 
timescales. Depth sensing allows visualization and analysis of bower construction across multiple 
species and timescales. Representative 3D reconstructions show pits constructed by Copadichromis 
virginalis (CV, n=9; A,B), pits constructed by Tramitichromis intermedius (TI, n=5; C,D), and castles by 
Mchenga conophoros (MC, n=7; E,F; all z-axes amplified for visual effect). The Bower Index, a measure 
of the directional bias in bower construction, revealed strong species differences in the final bower 
structures (whole trial change, e.g. A-F). MC exhibited a positive bias (extreme depth change regions 
tended to be elevated) and differed strongly from both TI and CV, which exhibited negative biases and 
did not differ significantly from each other (G). Strong species differences in structural development 
were also present when depth data was analyzed at daily (H) and hourly (I, 2-hour bins) timescales, 
mirroring the direction of differences observed for whole trial change. Each point represents the 
observed Bower Index for a single time bin for within one trial. Different individuals are separated into 
columns along the x-axis, grouped by species. The color of each point reflects the Bower Index for that 
time bin (-1, purple, pure pit-like depth change; 1, yellow, pure castle-like depth change). 
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(One-way ANOVA, p=5.42x10-11), with all pit-digging individuals exhibiting a negative Bower Index  217 
(14/14), and all castle-building individuals exhibiting a positive Bower Index (7/7). Post-hoc 218 
Tukey’s HSD tests revealed that pit-digging species did not differ significantly from each other 219 
(CV vs. TI, Tukey’s HSD, p=0.98; Fig. 4G), but the castle-builder Mchenga conophoros differed 220 
strongly from both pit-digging species (MC vs. TI, Tukey’s HSD, p=1.68x10-9; MC vs. CV, Tukey’s 221 
HSD, p=1.16x10-10). Strong species differences in structural development were also present when 222 
depth data was analyzed at daily (24-hour bins; One-way ANOVA, p=4.95x10-8; H) and hourly (2-223 
hour bins; One-way ANOVA, p=1.62x10-11; I) timescales, mirroring the same pattern of differences 224 
among species that was observed at the whole trial level (Figure 3H,I). 225 
 226 
3.3 Video data 227 
 228 
3.3.1 System validation 229 
Automated identification of sand change from video data 230 
To investigate bower construction on more acute time scales, we created tools to track sand 231 
change events from video data across whole trials. We took advantage of the multi-color sand 232 
(composed of black and white grains) in our setup: each time a fish contacts the sand it causes 233 
an enduring spatial rearrangement of the black and white grains of sand, changing the 234 
corresponding pixel color value from top-down video. In contrast, a fish swimming over the sand 235 
(and any shadows it casts) only causes transient changes in pixel values (Figure 4A-F), after 236 
which each pixel returns to its original value (i.e. the same value before the fish swam by). We 237 
found that a Hidden Markov Model (HMM) could identify enduring sand rearrangements while 238 
simultaneously ignoring transient changes caused by swimming fish (Figure 4G,H and S5), and 239 
further that groups of spatially and temporally concentrated “clusters” of sand change pixels could 240 
be identified using density-based clustering (Figure 4I, S6, S7, and S8). This approach allowed 241 
us to map the times and spatial locations of thousands of fish-mediated sand manipulations on 242 
each day of each bower trial. Manual review confirmed that the vast majority of predicted sand 243 
change clusters (>90%, 13,288/14,234 analyzed events) were true sand change events caused 244 
by fish behaviors, with the remaining portion including reflections of events in the glass, shadows 245 
caused by stationary or slow-moving fish, or in rare cases small bits of food, feces, or other debris 246 
settling on the sand surface. 247 
 248 
Automatic classification of cichlid behaviors with action recognition 249 
Because bowers are constructed through thousands of spatial decisions over many days, 250 
manually scoring full trials would be impractically labor intensive, and we therefore aimed to 251 
automatically identify bower construction behaviors from video data. However, scooping and 252 
spitting sand during bower construction represents only a subset of behaviors that cause sand 253 
change in our paradigm. For example, feeding behaviors are performed by both males and 254 
females and also involve scooping and spitting sand, and are expressed frequently throughout 255 
trials. Quivering and spawning behaviors, in which a male rapidly circles and displays for a gravid 256 
female, are less frequent but also cause large amounts of sand change. We therefore aimed to 257 
automatically separate bower construction events from other behaviors that cause sand change. 258 
We first evaluated several methods for distinguishing bower scoops and spits from each other 259 
and from other types of events, including analysis of spatial properties of sand change clusters 260 
(e.g. cluster size, see Figure S10), and feature extraction from short video clips generated for 261 
events. While these methods revealed differences between behavioral categories, our preliminary 262 
analyses suggested they were insufficient for accurately classifying behaviors. We then turned to 263 
a deep learning approach and assessed whether 3D ResNets, which have been recently shown 264 
to accurately classify human actions from video data (Qiu, Yao et al. 2017), could accurately 265 
distinguish fish behaviors that cause sand change in our paradigm.  266 
 267 
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To create a training set for the 3D ResNet, we generated short cropped video clips centered 268 
spatially and temporally around each sand change event from a subset of seven behavioral trials, 269 
representing seven individuals, three species, and one pit-castle hybrid cross. A trained observer 270 
manually annotated a randomly sampled subset of 14,234 video clips (~2,000 per trial). Each clip 271 
was classified into one of ten categories (bower scoop, bower spit, bower multiple, feed scoop, 272 
feed spit, feed multiple, drop sand, quivering, fish other, and other; for operating definitions used 273 
for all behaviors see Supplementary Materials subsection “Behavioral definitions”). Feeding was 274 
the most frequently observed behavior, accounting for nearly half of all clips (46.9%, 6,672/14,234 275 

 

Figure 4. Automated detection of sand change from video data. The sand in this behavioral 
paradigm is composed of black and white grains (e.g. as seen in panel A), and therefore sand 
manipulation events during bower construction cause permanent rearrangement of the black and white 
grains at specific locations. We aimed to detect these events by processing whole video frames (A, 
with turquoise box indicating an example region of interest) sampled once per second, and tracking the 
values of individual pixels throughout whole trials. Fish swimming over sand cause transient changes 
in pixel values (e.g. B-F, black arrows indicate an example location of a fish swimming over the sand; 
the bottom row depicts a zoomed in 20x20 pixel view of a location that the fish swims over, sampled 
from representative frames across four seconds). In contrast, sand manipulation behaviors cause 
enduring changes in pixel values (e.g. B-F, turquoise arrow indicate an example location of a fish 
scooping sand; the middle row contains a zoomed in 20x20 pixel view of a location where the fish 
scoops sand). We used a custom Hidden Markov Model to identify all enduring state changes for each 
pixel throughout entire videos (G, green line indicates HMM-predicted state, orange line indicates 
natural variance in pixel value, and blue lines indicate transient fluctuations beyond the pixel’s typical 
range of values likely caused by fish swimming or shadows). Because fish swim over the sand 
frequently, a large number of transient changes are ignored (e.g. pixel value fluctuations indicated by 
blue arrows in panel H), while enduring changes are identified (e.g. pixel value change indicated by 
green arrow in Panel H). Density-based clustering identifies high-density spatiotemporal clusters of 
HMM+ pixels, or putative sand change events, for further analysis (turquoise pixels represent one sand 
change cluster, I; region of interest and boxes correspond to A-F). 
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annotated clips; feeding scoops, 15.2%; feeding spits, 11.5%; multiple feeding events, 20.2%). 276 
Bower construction behaviors were the next most prevalent (19.5%; bower scoops, 9.4%; bower 277 
spits, 8.1%; multiple bower construction events, 1.9%). Quivering and spawning events were the 278 
least frequently observed, accounting for just 2.6% of all clips. The remainder of sand change 279 
events were annotated as either sand dropping behavior (5.6%), “other” behaviors (e.g. brushing 280 
the sand surface with the fins or the body; 18.8%), or shadows/reflections (6.6%).  281 
 282 
A 3D ResNet was then trained on 80% (~11,200 clips) of the data, and the remaining 20% of the 283 
data was used for testing (~2,800 clips). To place the ResNet predictions in the context of human 284 
performance, we also measured the accuracy of a previously naive human observer that 285 
underwent 12 hours of training and then manually annotated a test set of 3,052 clips from three 286 
trials and all ten behavior categories. The 3D ResNet achieved ~77% accuracy on the test set, 287 
which was comparable to a newly trained human observer (~80% accuracy, 2,456/3,052 clips). 288 
Confidence for 3D ResNet predictions on the test set ranged from 22.1-100%, and confidence 289 
tended to be greater for correct predictions (mean confidence 92.93±0.279%) than for incorrect 290 
predictions (mean confidence 78.28±0.074%) (Figure S11). We found an imbalance in the 291 
distribution of incorrect predictions across categories (Figure 5A). For some categories, such as 292 
“build multiple”, “feed multiple”, and “fish other”, video clips could contain behaviors that also fit 293 
into other categories. For example, a “feed multiple” clip by definition contains multiple feeding 294 
scoop and/or feeding spit events, a “bower multiple” clip contains multiple bower scoops and/or 295 
bower spits, and a “fish other” clip may contain a bower scoop and a fin swipe (or some other 296 
combination of behaviors). We found that erroneous “within building” category predictions for build 297 
multiple, “within feeding” predictions for feed multiple, and “fish other” predictions accounted for 298 
~82% of all incorrect predictions. We further found that setting a confidence threshold of 90% 299 
excluded most (~62%) incorrect predictions but included most (70%) correct predictions, including 300 
~86% of correct bower scoop predictions and ~88% of correct bower spit predictions. 69% of all 301 
predictions were above the 90% confidence threshold, and overall accuracy for these high-302 
confidence predictions was ~87% (Figure S11).  303 
 304 
Spatial and temporal mapping of behavioral events 305 
 306 
Because all behavioral predictions were linked to individual sand change clusters, each event 307 
was associated with a unique timestamp and pixel coordinate location within video data. 308 
Temporally mapping behavioral events revealed that behaviors were expressed non-uniformly in 309 
time (Figure 5B). Similarly, spatially mapping behavioral events revealed distinct patterns for 310 
each category, including strikingly different spatial patterns between construction behaviors 311 
versus feeding behaviors (Figure 5C).   312 
 313 
3.4 Combined video and depth data 314 
 315 
3.4.1 System validation 316 
 317 
Registration links behavioral events to depth data through time 318 
We next spatially and temporally aligned video and depth data for the same seven trials used to 319 
train the CNN. We used RGB images collected with the Kinect for spatial registration of video and 320 
depth data, and we used time stamps assigned by the Raspberry Pi for temporal alignment. We 321 
found that most (~56%) of CNN-predicted events could be linked to sand surface height at the 322 
corresponding time and location. We also found a large proportion (~44%) of events could not be 323 
linked to surface height, which was not surprising because the video FOV included the glass walls 324 
outside the sand tray, and ~10% of the sand surface was not captured by the Kinect. We observed 325 
a bias in the types of events that could not be linked to depth change values, with just five 326 
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  327 

 

Figure 5. Deep learning and prediction accuracy of cichlid behaviors. A confusion matrix for 
predictions on the test dataset shows that predictions made by the 3D ResNet tended to match human 
annotations across all ten behavioral categories (A, emboldened diagonal values indicate the number 
of agreements between human annotations and 3D ResNet predictions for each category). By applying 
the 3D ResNet across full trials, bower construction, feeding, and spawning behaviors can be 
temporally mapped over long timescales, spanning >100 hours of video data (B). Spatially mapping 3D 
ResNet-predicted bower construction and feeding behaviors reveals distinct spatial distributions among 
behaviors that are often indistinguishable to untrained human observers (C).  
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categories accounting for ~87% of these predictions (shadow/reflections: 31.9%, other: 21.3%, 328 
feed multiple: 14.2%, feed scoop: 12.7%, and feed spit: 6.4%). This was not surprising, as fish 329 
frequently feed along the periphery against the glass walls, and “shadow/reflections” includes 330 
reflections of events in the glass. In contrast, bower scoops and spits represented a small minority 331 
of these events (bower scoop: 3.4%, bower spit: 4.1%), supporting high quality depth data in 332 
regions where the males constructed bowers.  333 
 334 

3.4.2 Biological validation 335 
 336 

Agreement between action recognition and depth sensing 337 
Using registered video and depth data, we tested how 3D ResNet-predicted scoop and spit events 338 
mapped onto bower structures identified from depth data (Figure 6). Because pits are excavated 339 
by scooping sand, we predicted that a greater number of scoops compared to spits would occur 340 
within the most extreme depth change regions of interest (bower ROIs) in pit-diggers, and that 341 

 

Figure 6. CNN-predicted behavioral events predict bower structures. RGB images collected with 
the Kinect (first row, A-C) were registered to RGB frames collected with the Raspberry Pi Camera to 
spatially align video and depth data. Daily depth change data (second row, A-C) was analyzed to 
identify above-threshold regions (third row, A-C). In pit-diggers (A, B), a greater proportion of CNN-
predicted bower scoops versus bower spits mapped onto extreme height change regions (overlap of 
third and fourth rows), whereas in castle-builders the reverse was true: a greater proportion of bower 
spits versus bower scoops mapped onto extreme height change regions. In pit-diggers, the number of 
bower scoops per hour was strongly and positively correlated with the total volume change in that hour 
(e.g. see representative regression plots for individual trials in A, B), whereas in castle-builders the 
number of bower spits per hour was strongly and positively correlated with the total volume change in 
that hour (regression plot, C).  
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the opposite pattern would be observed in castle-builders. To test this, we compared the number 342 
of scoops and spits observed inside and outside the bower ROI for each of the five parental trials 343 
analyzed by the 3D ResNet (n=1 CV, n=2 TI, n=2 MC). Indeed, in pit-diggers we observed ~15x 344 
more CNN-predicted scoops versus spits within daily bower ROIs and this pattern was highly 345 
significant within each subject (CV: 273 scoops vs. 20 spits, χ2=311.35, p<2.2x10-16; TI subject 1: 346 
339 scoops vs. 16 spits, χ2=127.2, p<2.2x10-16; TI subject 2: 602 scoops vs. 60 spits, χ2=377.28, 347 
p<2.2x10-16). This pattern was flipped in castle-builders, with ~5.5x more CNN-predicted spits 348 
versus scoops occurring within daily bower ROIs (MC subject 1: 242 scoops vs. 2,208 spits, 349 
χ2=5554.2, p<2.2x10-16; MC subject 2: 260 scoops vs. 462 spits, χ2=208.92, p<2.2x10-16).  350 
 351 
We also investigated whether the temporal distribution of CNN-predicted events was associated 352 
with the temporal development of the bower structure. In pit-diggers, we found that the number of 353 
hourly bower scoops was strongly and positively correlated with the hourly volume change in 354 
depressed regions (R2=0.597, p<0.00001); whereas in castle-builders, the number of hourly 355 
bower spits was strongly and positively correlated with the hourly volume change in elevated 356 
regions (R2=0.690, p<0.00001, representative trials shown in Figure 6). Taken together, these 357 
data demonstrate agreement between two orthogonal data streams, and show that behaviors 358 
identified through action recognition are predictive of the spatial, geometric, and temporal 359 
development of the bower structure measured through depth sensing.  360 
 361 
3.5 New biological insights 362 
 363 
Bower behaviors are spatially repeatable 364 
We used depth data to test a new biological dimension of bower building behavior: do males 365 
construct their bowers in the same spatial location across trials? To do this, we tracked seven 366 
subject males across multiple trials, between which the male was temporarily removed, the bower 367 
was abolished, the sand surface was smoothed, and the male was reintroduced (e.g. see Figure 368 
7A-E, first and second columns representing first and second trials, respectively). For each 369 
repeatability subject, we calculated the spatial overlap of above-threshold regions between trials 370 
(e.g. see Figure 7A-E, third column). We found that the observed spatial overlap between trials 371 
was significantly greater than the overlap expected by chance (Figure 7F; 23.4±4.30% overlap 372 
between repeatability trials versus 2.5±0.64% overlap expected by chance; paired t-test, 373 
p=0.000264; n=14, pooled by species/cross). The direction of this effect was the same within 374 
each species and each cross (Supplementary Table 1). Despite small sample sizes, this effect 375 
was also significant within CV alone as revealed by a paired t-test (n=5 pairs of repeatability trials, 376 
p=0.0228).  377 
 378 
Spatially repeatable bower construction could be driven by a spatial memory of the bower location 379 
maintained across trials, or by tank-specific factors that might cause some locations within each 380 
tank to be generally more preferable for bower construction. To investigate these two possibilities, 381 
we compared pairs of repeatability trials with pairs of trials in which different subjects of the same 382 
species were tested in the same tank. First, we found that overlap between different males of the 383 
same species tested in the same tank was greater than expected by chance (10.3±3.04% spatial 384 
overlap observed versus 3.4±1.67% expected by chance), supporting that some locations within 385 
each tank were generally more preferable for bower construction, across subjects. However, in 386 
7/7 cases, we found that spatial repeatability was also stronger within subjects than between 387 
species-matched subjects tested in the same tank (Figure 7G; p=0.0045; pooled by 388 
species/cross: CV, n=3; MC, n=1; TIxMCF1, n=2; MCxCVF1, n=1), consistent with the idea that 389 
spatial memory also plays a role in bower (re)construction. Despite small sample sizes, this effect 390 
was also significant within CV only (n=3, paired t-test, p=0.0035). 391 
 392 
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Bowers structures develop non-uniformly in space 393 
 394 
The spatial repeatability of bower construction raises the question as to what rules guide male 395 
decision-making before a structure is present, and later after a visually salient structure has begun 396 
to develop. One possibility is that males construct bowers in a spatially uniform manner over the 397 
full course of construction—within each punctuated burst of activity, the bower structure develops 398 
proportionately and spatially uniformly toward its final form. A second possibility is that the bower 399 

 

Figure 7. Bower construction is spatially repeatable. Bower construction behaviors are spatially 
repeatable. Analyzed males represented three species (top-down depth sensing data; Copadichromis 
virginalis, n=5, A; Tramitichromis intermedius, n=2, B; Mchenga conophoros, n=4, C) and two pit-castle 
F1 hybrid crosses (TIxMC F1, n=2, D; MCxCV F1, n=1, E). Following Trial 1 (A-E, first column), males 
were temporarily removed, the sand tray was reset, and males were reintroduced to the same tank for 
repeatability trials (A-E, Trial 2, second column). Spatial overlap was calculated as the ratio of shared 
above-threshold (A-E third column, bright yellow) and below threshold (A-E third column, dark blue) 
regions, relative to the total above and below threshold regions in either trial. Spatial overlap of above-
threshold regions between trials was significantly greater than overlap expected between randomly 
distributed regions of the same size (F). Overlap between trials for individual males was greater than 
overlap between trials for different males of the same species tested in the same tank (G).  
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arises in a spatially non-uniform manner, with different regions of the bower developing 400 
disproportionately relative to one another.  401 
 402 
To investigate these models, we developed a Spatial Uniformity Index (SUI) to measure the 403 
disparity between the actual structural change observed on each day of bower construction, and 404 
the structural change expected under the assumption of perfect spatial uniformity (1=perfectly 405 
uniform, 0=zero spatial uniformity) based on the daily volume of sand moved. In other words, if 406 
20% of total volume change occurs on the first day of construction, and the final bower structure 407 
develops to 20% of its final height, then the SUI for the first day will equal 1. Analysis of the SUI 408 
across all above-threshold days for all bower trials (n=29 total; CV, n=9; TI, n=5; MC, n=7; MCxCV 409 
F1, n=3; TIxMC F1, n=5) provided two new insights into bower construction (Figure 8). First, linear 410 
mixed-effects regression with SUI as the outcome variable; species, day, and the interaction 411 
between species and day as fixed effects; and subject as a random effect revealed that the SUI 412 
was much closer to 0 than 1 in all three species (regression estimate of mean for CV=0.19±0.036, 413 
TI=0.12±0.051, MC=0.12±0.037) and both hybrid crosses (regression estimate of mean for 414 

 

Figure 8. Spatial patterns shift over the course of bower construction. Analysis of spatial 
uniformity revealed an overall trend of low uniformity (closer to 0 than 1, A) in all species and hybrid 
crosses over the course of bower construction. Uniformity was lowest on the first day of bower 
construction and significantly increased by nearly threefold on the second day (A; Tukey’s p=0.018), 
before gradually tapering off by the fifth day (A; linear mixed-effects mean and standard error estimates 
indicated by black line and gray band, respectively). Shifts in uniformity from Day 1 to Day 2 are shown 
for representative subjects from each species and hybrid cross (Analysis of top-down depth sensing 
data, B). The left column shows the final structure in above threshold regions for each trial. The second 
and third columns show spatial patterns of non-uniformity on Days 1 and 2, respectively, or the disparity 
between the actual structural change and the structural change expected under the assumption of 
perfect spatial uniformity (red indicates regions in which height increased more than expected, blue 
indicates regions in which height decreased more than expected). Units for all heatmaps are cm, and 
pixels are marked on the x and y axes of plots in (B). 
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MCxCV=0.19±0.063, TIxMC=0.17±0.046). The model further revealed a significant effect of day  415 

 

Figure 9. Distinct behavioral and social contexts across whole trials. Patterns of covariation among 

3D ResNet-predicted behavioral events support strong shifts among three behavioral contexts across 

whole trials, corresponding to feeding, bower construction, and spawning behaviors (A, Pearson’s R 

values shown for each pairwise correlation). A Faster R-CNN detected and counted fish above the sand 

tray from whole video frames, with green outlines indicated predicted fish (B-E; 1, 2, 3, and 4 fish 

detected, respectively). Analysis of the number of fish present above the sand tray during 3D ResNet-

predicted behavioral events revealed strong differences in fish count across behavioral categories (E; 

p<2.2x10-16). Fish counts were lowest during bower construction, greater during feeding, and greatest 

during spawning, supporting dynamic and intertwined behavioral and social contexts across whole trials.  
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(Satterthwaite’s method, F=5.47, Tukey’s p=0.00057), but not of species (Satterthwaite’s method, 416 
F=0.74, Tukey’s p=0.57), or the interaction between species and day (Satterthwaite’s method, 417 
F=0.72, Tukey’s p=0.77) on spatial uniformity. Spatial uniformity was especially low on the first 418 
day of bower construction (regression estimate for Day 1, 0.082±0.0300) and was nearly three 419 
times more uniform on the second day (regression estimate for Day 2, 0.24±0.0314), a shift that 420 
gradually tapered off (Day 3: 0.20±0.0346; Day 4: 0.15±0.0350; Day 5: 0.11±0.0487). Post-hoc 421 
analysis of pairwise differences among days revealed the increase in spatial uniformity from Day 422 
1 to Day 2 to be significant (t=-4.313, Tukey’s p=0.0004), and from Day 1 to Day 3 to be significant 423 
(t=-2.938, Tukey’s p=0.034), but no other pairwise differences between days were significant. 424 
Although our calculation accounted for differences in volume change from day to day, we were 425 
still concerned that the shift in SUI could be an unexpected byproduct of less sand being moved 426 
on the first day of bower construction compared to  other days. To directly test this, we added 427 
daily volume change directly as a fixed effect to the same model. This model showed that daily 428 
volume of sand moved was not associated with SUI (Satterthwaite’s method, F=0.12, Tukey’s 429 
p=0.73), and that SUI was strongly associated with day even when directly controlling for daily 430 
volume change in the model (Satterthwaite’s method, F=5.42, Tukey’s p=0.00075). Taken 431 
together, these data support a significant shift in spatial decision-making patterns during the early 432 
stages of bower construction, perhaps corresponding to the transition from constructing on a flat 433 
sand surface to constructing when a structure is present.  434 
 435 
Strong shifts in behavioral and social contexts across full trials 436 
 437 
We also investigated behavioral and social contexts across whole trials (Figure 9A). First, we 438 
investigated whether different behaviors covaried strongly with one another through time. This 439 
analysis showed a clear pattern of distinct behavioral contexts through time, driven by three 440 
behavioral clusters. One cluster was driven by strong covariation among feeding behaviors and 441 
sand dropping behavior, a second cluster was driven by strong covariation among bower 442 
construction behaviors and “other” behaviors, and spawning/quivering behaviors covaried weakly 443 
with both feeding and bower construction behaviors. Taken together, these data support that 444 
feeding, bower construction, and mating contexts occur distinctly through time. Pairwise 445 
Pearson’s R values and corresponding p-values are shown in Supplementary Table 2.  446 
 447 
We next used object recognition to count fish in order to test whether the social dynamics among 448 
males and females differed between these behavioral contexts. To do this, we trained Faster-449 
RCNN networks to identify and count fish using ~1800 manually annotated frames with an 450 
accuracy of ~95% (Figure 9B). Linear mix-effects regression with fish count as the outcome 451 
variable, behavior as a fixed effect, and day nested within individual nested within species as a 452 
random effect, revealed that the number of fish present above the sand tray differed strongly 453 
across behavioral contexts (F=2285.9, p<2.2x10-16) (Figure 9C). The fewest fish were present 454 
during bower behaviors (average fish count regression estimates for build scoop=0.99±0.118, 455 
build spit=0.88±0.118, build multiple=0.87±0.118); a greater number tended to be present during 456 
feeding behaviors (feed scoop=1.24±0.118, feed spit=1.27±0.118, feed multiple=1.21±0.118); 457 
and the greatest number of fish, on average, were present during spawning behaviors 458 
(1.93±0.118). Post-hoc pairwise comparisons revealed significant differences between all 459 
behaviors with the exception of bower spit versus bower multiple events (t=-0.396, p=0.997). 460 
Taken together, these data support strong shifts in behavioral and social contexts across full trials, 461 
driven by distinct periods of feeding, bower construction, and spawning.  462 
 463 
Sequential expression of parental behaviors in pit-castle F1 hybrids 464 
We also intercrossed pit and castle species and investigated expression of parental behaviors in 465 
pit-castle F1 hybrid offspring (Figure 10). We have previously observed in one pit-castle F1 hybrid 466 
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cross (Mchenga conophoros dam 467 
x Copadichromis virginalis sire, 468 
MCxCV) that males appear to 469 
express both parental behaviors in 470 
sequence, first digging a pit and 471 
then building a castle; however this 472 
transition has not previously been 473 
quantified. We aimed to measure 474 
this transition in two “reciprocal” 475 
pit-castle hybrid crosses: MCxCV, 476 
and a second cross, 477 
Tramitichromis intermedius dam x 478 
Copadichromis virginalis sire 479 
(TIxMC), which has not been 480 
previously recorded (MCxCV, n=3; 481 
and Tramitichromis intermedius 482 
dam x Mchenga conophoros sire, 483 
n=5). Analysis of the Bower Index 484 
from day to day revealed a 485 
trajectory in which F1 hybrid males 486 
transitioned from a pit-like Bower 487 
Index on Day 1 (MCxCV, -488 
0.85±0.075; TIxMC, n=5, -489 
0.58±0.194) to a castle-like Bower 490 
Index by Day 5 (MCxCV, 491 
0.44±0.155; TIxMC, n=5, 492 
0.40±0.289). A linear mixed-493 
effects model with Bower Index as 494 
the outcome variable; cross, day, 495 
and the interaction between cross 496 
and day as fixed effects; and 497 
subject as a random effect, 498 
revealed a strong effect of day 499 
(F=14.30, p=2.8x10-6) but not of 500 
cross (F=0.024, p=0.88) or the 501 
interaction between cross and day 502 
(F=1.11, p=0.37) on the Bower 503 
Index. Post-hoc analysis showed 504 
that the transition from Day 1 to 505 
Day 5 was significant in both 506 
crosses (Day 1 vs. Day 5: MCxCV, 507 
t=-4.44, Tukey’s p=0.0038; TIxMC, 508 
t=-4.565, Tukey’s p=0.0041). 509 

Taken together, these data show a strong and similar transition from pit-biased to castle-biased 510 
behavior in both F1 crosses.  511 
 512 
To place this transition in the context of parental behavior, we performed simple one-way t-tests 513 
to assess whether the F1 Bower Index was greater compared to pit-diggers, or less compared to 514 
castle-builders across days. Because we found no evidence for any behavioral difference 515 
between crosses, F1 subjects were pooled for comparison with parental species. The Day 1 Bower 516 
Index in pit-castle F1  hybrids (n=8) did not differ significantly from the Day 1 Bower Index in either 517 

 
Figure 10. Interspecies pit-castle F1 hybrid males 
sequentially express pit-digging then castle-building. 
Analysis of the Daily Bower Index through time shows that pit-
castle F1 hybrids (turquoise boxes) transition from a pit-like 
behavioral phenotype on Day 1 to a castle-like behavioral 
phenotype on Day 5 (A; the first dark blue box represents CV on 
each day, the second dark blue box represents TI, the first 
turquoise box represents MCxCV F1 hybrids, the second 
turquoise box represents TIxMC F1 hybrids, and the yellow box 
represents MC). The Bower Index significantly increased from 
Day 1 to Day 5 in both F1 crosses (MCxCV, p=0.0038; TIxMC, 
p=0.0041). Plots of above-threshold depth change illustrate the 
development of pit-like regions on Day 1, with a gradual shift to 
more castle-like development by Day 5 (B, first column; each row 
represents a different trial and F1 subject).  
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pit-digging species (vs. CV, n=9, p=0.40; vs. TI, n=5, p=0.19), but was significantly less than 518 
castle-builders (vs. MC, n=7, p=0.038). By Day 2, the F1 bower index was greater than pit-digging 519 
CV (p=0.038), indistinguishable from pit-digging TI (p=0.43), and still significantly less than castle-520 
building MC (p=0.012). By Day 3 the pattern had fully reversed, with the F1 Bower Index 521 
significantly greater than both pit-digging species (vs. CV, p=3.7x10-5; vs. TI, p=0.0033) but no 522 
longer distinguishable from castle-builders (vs. MC, p=0.097), and this pattern persisted through 523 
Day 5. Taken together, these data support sequenced expression of parentally-biased behaviors 524 
in F1 hybrid males. 525 
 526 
Discussion 527 
 528 
Construction behaviors are excellent natural models of long-term goal-directed decision-making 529 
in dynamic environments, but it is difficult to simultaneously measure a developing structure and 530 
an animal’s behavioral decisions over long timescales. However, new tools are providing entry 531 
points for automated measurements of natural behaviors in the lab. For example, static poses 532 
and positions of animals are being tracked through time in increasingly complex environments 533 
(Dell, Bender et al. 2014, Robie, Seagraves et al. 2017, Hughey, Hein et al. 2018). Depth sensing, 534 
radio-frequency identification (RFID) tagging, and additional cameras have been used in 535 
conjunction with standard video data to track animals in complex social environments in which 536 
occlusions regularly occur (Ardekani, Biyani et al. 2013, Weissbrod, Shapiro et al. 2013, Hong, 537 
Kennedy et al. 2015, Macfarlane, Howland et al. 2015, Wiltschko, Johnson et al. 2015). Software 538 
tools such as DeepLabCut and idTracker.ai also enable pose estimation and positional tracking 539 
from video data in which animals are behaving in complex environments (Perez-Escudero, 540 
Vicente-Page et al. 2014, Mathis, Mamidanna et al. 2018, Nath, Mathis et al. 2019, Romero-541 
Ferrero, Bergomi et al. 2019). However, it remains unclear whether these methods will be 542 
sufficient for reliably detecting and measuring all types of natural behaviors, such as long-term 543 
behaviors involving complex interactions between pairs or groups of individuals, or between 544 
individuals and their environments. Alternative strategies may be needed depending on the 545 
behavior of interest and the experimental design.  546 
 547 
In this study, our primary goal was to automatically measure both developing bower structures 548 
and behavioral decisions in naturalistic social environments for extended time periods. We found 549 
that a low-cost depth sensor was sufficient for tracking the structural development of bowers over 550 
the course of many days, and for capturing natural species differences in bower structure in 551 
aquarium tanks that mirror species differences in the wild (York, Patil et al. 2015). Depth sensors 552 
have previously been used in behavioral studies, but as tools for animal tracking (Hong, Kennedy 553 
et al. 2015, Wiltschko, Johnson et al. 2015). In contrast, we used depth sensing to track the 554 
development of an underwater extended phenotype structure in 3D through time. Depth sensors 555 
may also be useful for measuring the development of other extended phenotype structures 556 
through time such as underwater or above-ground nests, and for tracking activity patterns in 557 
animals that construct subterranean structures, e.g. by measuring the volume of substrate that is 558 
displaced above ground over time (Theraulaz, Bonabeau et al. 1998, Khuong, Gautrais et al. 559 
2016, DiRienzo and Dornhaus 2017, Genise 2017, Metz, Bedford et al. 2017).  560 
 561 
In addition to measuring the bower structure, we also tracked behavioral decision-making on 562 
much shorter timescales using action recognition. To our knowledge, this is the first time action 563 
recognition has been used to identify and measure complex behaviors in non-human animals. 564 
Previous machine learning strategies have classified animal behaviors through analysis of 565 
positional tracking and/or pose estimation data (Anderson and Perona 2014, Hong, Kennedy et 566 
al. 2015, Robie, Seagraves et al. 2017). In contrast, we rooted our approach in the identification 567 
of sand change events from video data, and in doing so we were able to identify tens of thousands 568 
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of behavioral decisions per trial without tracking or pose estimation. Similar approaches using 569 
analysis of background changes at different timescales may be useful for identifying and 570 
measuring other construction and/or navigation behaviors defined in part by physical contact 571 
and/or interaction with their environments. Similarly, action recognition may be an effective 572 
alternative for identifying and measuring a wide variety of natural behaviors in different systems 573 
and experimental designs, either in the absence of or in conjunction with positional tracking and/or 574 
pose estimation data.  575 
 576 
We showed that a 3D ResNet classified video clips of sand change into ten categories with 577 
accuracy comparable to a human observer. Remarkably, the model distinguished bower scoops 578 
from feeding scoops, and bower spits from feeding spits, despite these behaviors being frequently 579 
indistinguishable to an untrained observer. The high prediction accuracy for these behaviors 580 
suggests that action recognition may be a powerful tool for studying the evolution of both 581 
bower/nest construction behaviors and feeding behaviors in other sand-dwelling cichlid and 582 
teleost species. Similarly, high prediction accuracy for quivering, a conserved and stereotyped 583 
sexual behavior expressed by many teleosts, suggests that action recognition may be useful for 584 
tracking social and mating behaviors broadly across many species, and potentially in other 585 
systems in which animals exhibit complex stereotyped behavioral sequences (e.g. courtship 586 
behavioral sequences, or aggressive displays). In combination with action recognition, we also 587 
applied a Faster-RCNN for object recognition to identify and count fish across behavioral contexts. 588 
Notably, both methods achieved high accuracy across three species and one hybrid cross after 589 
analyzing relatively small training sets of top down clips/frames, suggesting these are likely 590 
adaptable to many other cichlid (and potentially teleost) species and behavioral paradigms 591 
utilizing a top-down FOV. Integrating action recognition, object detection, positional tracking, and 592 
pose estimation may allow for rich quantitative descriptions of long-term behaviors in many natural 593 
systems.    594 
 595 
A major strength of our system is the integration of two orthogonal methods to simultaneously 596 
measure a developing extended phenotype and the underlying behavioral decisions throughout 597 
construction, and the ability to spatially and temporally align these two data streams to quantify 598 
relationships between structure and goal-directed decision-making. By analyzing the combined 599 
data, we show natural species differences in the relationships between behavior and structure: 600 
pit-digging species perform far more scoops in bower regions, and the number of scoops predicts 601 
the volume of structural change in these regions; while castle-builders perform far more spits in 602 
bower regions, and the number of spits predicts the degree of depth change in these regions. By 603 
linking thousands of individual behavioral decisions to a dynamic 3D surface, future studies can 604 
dissect the organizing principles through which the developing bower structure modulates 605 
decision-making over long timescales. 606 
 607 
These methods allowed us to gain new insights into bower construction behaviors that would 608 
have been difficult or impossible to achieve through manual analysis. By analyzing depth change 609 
through time, we showed that the ultimate bower structure arises through punctuated bursts of 610 
activity, typically spanning only a small proportion of daylight hours. This is consistent with field 611 
observations in which males leave their bowers for extended periods of time to feed (McKaye 612 
1983). We further show that males construct bowers in a spatially non-uniform manner, exhibiting 613 
shifts in spatial patterns of construction over the first three days of building. We also show that 614 
males construct bowers in spatially repeatable locations across multiple trials, consistent with 615 
observations and studies in the field, in which bower have been experimentally manipulated or 616 
destroyed by turbulence from storms, and males reconstruct their bowers with spatial fidelity 617 
although not typically in the exact same spatial location (Kirchshofer 1953, Fryer and Iles 1972, 618 
McKaye, Louda et al. 1990). Taken together, these data support a role for spatial memory in 619 
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bower construction, but suggest that a simple, constant, and uniform spatial decision-making 620 
program based solely on spatial location is not sufficient for explaining the full trajectory of 621 
construction. One possibility is that spatial location drives the male’s decisions about where to 622 
initiate construction on a flat sand surface, and as the bower becomes visually salient, physical 623 
features of the structure play a more dominant role in modulating decision-making.  624 
 625 
We also use depth sensing to demonstrate the sequential expression of pit-digging and castle-626 
building behavior in two pit-castle F1 hybrid crosses. The two crosses were made in reciprocal 627 
directions (castle-building sire versus pit-digging sire), suggesting that this behavioral sequence 628 
is expressed regardless of the sire’s behavioral phenotype. In a previous study, York et al. found 629 
a large set of genes exhibiting imbalanced expression of parental alleles in the brain during pit-630 
digging versus castle-building in MCxCV F1 hybrids, such that the pit-digging (CV) parent alleles 631 
were upregulated during pit-digging, and the castle-building (MC) parent alleles were upregulated 632 
during castle-building (York, Patil et al. 2018). Identifying the neuronal populations in which these 633 
parental alleles are expressed, and understanding the causal relationships between neural 634 
circuits, context-dependent allele-specific expression, and bower construction behavior are 635 
important targets for future study.  636 
 637 
Integrating action recognition and object recognition also allowed us to gain new insights into 638 
behavioral and social dynamics across whole trials. Clear behavioral contexts emerged from 639 
temporal analysis of action recognition data, corresponding to feeding, constructing, and 640 
spawning contexts. The weak correlations between bower construction and spawning behaviors 641 
were surprising to us, given that these are both courtship behaviors. This temporal uncoupling 642 
suggests that bower construction and spawning behaviors are triggered by at least partially 643 
independent mechanisms, perhaps by differences in visual/chemosensory cues emitted by gravid 644 
females and/or differences in the male’s hormonal and neuromodulatory state during spawning. 645 
To gain deeper insight into these behavioral contexts, we used object recognition to measure the 646 
number of fish present over the sand tray during different categories of behavioral events. We 647 
found that social dynamics varied strongly across feeding, construction, and spawning contexts. 648 
The number of fish present over the sand tray was lowest during construction behaviors, greater 649 
and highly variable during feeding behaviors, and greatest (~2) during spawning behaviors. This 650 
is consistent with spawning occurring in a spatially exclusive manner between the subject male 651 
and a single gravid female. The low fish counts during bower construction behaviors are 652 
consistent with males aggressively chasing away both male and female conspecifics while 653 
constructing and establishing territory prior to spawning, a phenomenon we have previously 654 
observed but not quantified in both stock tanks and behavior tanks. An alternative explanation is 655 
that females actively avoid the bower during construction. Future analyses of male-female 656 
chasing and other aggression behaviors can reconcile these models.  657 
 658 
There are several limitations to these experiments that can offer guidance for future development 659 
of this paradigm as well as other systems. First, in this study we sacrificed temporal resolution for 660 
improved spatial resolution of depth data. Depth sensing with high temporal resolution can be 661 
used as a powerful tool for tracking animals against visually complex backgrounds, across 3D 662 
trajectories, and/or through occlusions (Anderson and Perona 2014, Dell, Bender et al. 2014, 663 
Hong, Kennedy et al. 2015, Wiltschko, Johnson et al. 2015), and thus may be critical for the 664 
success of other paradigms. Although sacrificing temporal resolution allowed us to recover a large 665 
amount of depth data, the version of the Kinect still yielded a significant degree of data loss. Many 666 
new depth sensors with improved time-of-flight technology have been released (including the 667 
Kinect v2), but these require USB 3.0 which is not a feature of the Raspberry Pi used in this study 668 
(Raspberry Pi 3 Model B+). However, Raspberry Pi has recently released the Raspberry Pi 4, 669 
which includes USB 3.0 among other upgrades, opening the door to higher quality depth data and 670 
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improved temporal resolution at relatively low cost. Another limitation is the practical challenge of 671 
remotely controlling a large set of computers and storing, transferring, and analyzing large 672 
volumes of video and depth data. For our project, this required planning with information 673 
technology professionals at our institution and a Business Dropbox Account for data storage, as 674 
well as computer science expertise for developing analysis pipelines. However, these hurdles will 675 
likely become less prohibitive as performance specifications improve on low-cost computer 676 
systems and more open source and user-friendly computational tools are made publicly available. 677 
A final limitation is that our system currently analyzes all video and most depth data after it is 678 
collected. Further improvements are needed to enable real-time processing of data, which may 679 
be necessary for some projects. 680 
 681 
Despite these limitations, these experiments are a significant step for computational ethology, 682 
overcoming several major challenges facing the automated measurement of natural long-term 683 
behaviors in the lab. Our recording system enables automated phenotyping of naturally evolved 684 
construction behaviors in multiple wild-derived species, in naturalistic social environments, over 685 
extended time periods. Bower construction behaviors are expressed by more than 200 cichlid 686 
species spanning multiple lakes, and an even larger number of species feed in the sand. Our 687 
system thus lays a foundation for studying the biological basis of vertebrate behavioral evolution 688 
on large comparative scales in the lab. The system is also effective for behaviorally phenotyping 689 
interspecies hybrids and will thus be useful for investigating the transition between two species-690 
divergent behaviors in F1 hybrids, and for genetic mapping of behavioral variation in F2 hybrids. 691 
The ability to phenotype many behaviors, and to track thousands of spatial decisions over 692 
extended time periods also makes this system particularly promising for future neural recording 693 
experiments.  694 
 695 
Conclusions 696 
 697 
We have designed, developed, and implemented a behavioral paradigm and recording system 698 
for automatically phenotyping construction behaviors in naturalistic social environments in 699 
cichlids. By integrating depth sensing and action recognition, we track developing bower 700 
structures and decision-making trajectories in multiple species and hybrid crosses over weeklong 701 
periods in many tanks simultaneously. This system will help accelerate comparative behavioral 702 
genetics and neuroscience experiments in one of the most powerful vertebrate systems for 703 
studying natural behavioral evolution.  704 
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 712 
3. METHODS 713 
 714 
2.1 Animals and husbandry 715 
 716 
Subjects 717 
 718 
Lake Malawi bower-building species (Copadichromis virginalis, Tramitichromis intermedius, 719 
Mchenga conophoros) derived from wild-caught stock populations, as well as genetically hybrid 720 
individuals derived from these species (described below), were housed in social communities (20-721 
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30 individuals) in 190 liter glass aquaria (90.2 cm long x 44.8 cm wide x 41.9 cm tall) into adulthood 722 
(>180 days). Aquaria were maintained under conditions reflective of the Lake Malawi 723 
environment: pH=8.2, 26.7ºC water, and a 12 h:12 h light:dark cycle with 60-minute transitional 724 
dim light periods. For all behavioral experiments, a single reproductive adult male and four 725 
reproductive adult stimulus females of the same species or hybrid background were introduced 726 
into designated home tanks (as described above) equipped with additional LED strip lighting (10 727 
h:14 h light:dark cycle synced with full lights on), and a custom-designed hollow acrylic case (43.1 728 
cm long x 43.1 cm wide x 10.2 cm tall, with a 35.6 cm diameter circular opening) surrounding a 729 
circular plastic tray (35.6 cm diameter x 6.4 cm deep, and elevated 3.8 cm above the aquarium 730 
bottom) filled with sand (Carib Sea; ACS00222). Sand trays were positioned approximately 58 731 
cm directly below a Microsoft XBox Kinect depth sensor and Raspberry Pi video camera; and 732 
approximately 30 cm directly below a custom-designed transparent acrylic tank cover (38.1 cm 733 
long x 38.1 cm wide x 4.4 cm tall) that contacted the water surface to eliminate rippling for top-734 
down depth sensing and video recordings (described below). In both stock and behavioral tanks, 735 
fish were fed twice daily with dried spirulina flakes (Pentair Aquatic Eco-Systems). 736 
 737 
In vitro hybridization 738 
 739 
Reproductively active males and females were visually identified based on abdominal distension 740 
(females), nuptial coloration (males), and expression of classic courtship behaviors (e.g. 741 
chasing/leading and quivering). Two separate pit-castle hybrid crosses were generated in the 742 
reciprocal direction: Tramitichromis intermedius (female) x Mchenga conophoros (male); and 743 
Mchenga conophoros (female) x Copadichromis virginalis (male). To cross-fertilize, a petri dish 744 
was filled with water from the home tank, and eggs were collected into the dish by applying gentle 745 
pressure between the pectoral region and the anal pore of the female. Eggs remained fully 746 
submerged while the male’s sperm was extracted into the same dish by applying gentle pressure 747 
to both sides of the abdomen. The mixture was immediately and gently agitated and then eggs 748 
were gently rinsed twice with fresh aquarium water to reduce polyspermy. Eggs were then 749 
transferred into a beaker containing a fresh oxygen tube, fresh aquarium water, and a drop of 750 
methylene blue to minimize risk of fungal infection. Water replacement was performed at least 751 
once daily until hatching (approximately 5-6 days post-fertilization).  752 
 753 
Behavioral trials 754 
 755 
For each behavioral trial, a single reproductive adult subject male was introduced to a designated 756 
behavioral tank containing four reproductive adult stimulus females and a full sand tray as 757 
described above (under "Animals and husbandry"). Upon introduction, an automated recording 758 
protocol (described in detail below) was initiated, collecting RGB video and depth data during full 759 
light hours (08:00 to 18:00 EST) for 7-10 days. Subjects and stimulus females were allowed to 760 
freely interact throughout the entirety of the recording trial and followed the same feeding 761 
schedule described above (under "Animals and husbandry").  762 
 763 
2.2 Recording and monitoring system 764 
 765 
Hardware 766 
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The automated recording system consisted of a Raspberry Pi 3 Model B (RASPBERRYPI3-767 
MODB-1GB; Raspberry Pi Foundation) connected to the following: (1) a 7" touchscreen display 768 
(RASPBERRYPI-DISPLAY; Raspberry Pi Foundation) secured in an adjustable mount case 769 
(Smarticase); (2) an Xbox 360® Kinect™ Sensor (Microsoft); (3) a Raspberry Pi camera v2 (RPI 770 
8MP CAMERA BOARD; Raspberry Pi Foundation); and (4) a 1 TB external hard drive 771 
(WDBUZG0010BBK-WESN; Western Digital).  772 
 773 
Code 774 
We wrote custom Python scripts for all aspects of the project. All code is publicly available on 775 
github at www.github.com/ptmcgrat/Kinect2. A general outline of the code is available in the 776 
Supplementary Materials. 777 
 778 
Depth sensing 779 
We used a Microsoft Xbox Kinect depth sensor to measure the topology of the sand surface 780 
through water. The Kinect is a low-cost, close-range, high-resolution depth sensor containing an 781 
IR laser and refractor that emits a known structured light pattern, and an IR camera that detects 782 
the emitted IR light across surfaces within the FOV. The Kinect then uses a pattern recognition 783 
algorithm to compute distance of surfaces across the FOV, which can be stored into 640x480 784 
numpy array files (.npy). Kinect depth sensing was controlled through a custom Python script (the 785 
CollectData function within the CichlidBowerTracker.py script, see Supplementary Materials and 786 
Methods) that was initiated at the beginning of each behavioral trial. Because continuous depth 787 
data was both unnecessary and impractical (due to the large volume of high frame rate 788 
uncompressed depth data), CollectData combined depth data collected continuously at ~10 Hz 789 
into a single frame every 5 minutes. The code also specifies collection of a single RGB snapshot 790 
every 5 minutes, for later registration between depth data and video data. All depth data was 791 
stored on an external hard drive for later processing.  792 
 793 
Video recording 794 
The same CichlidBowerTracker.py script controlled daily collection of 10 hours of 1296x972 RGB 795 
video through a Raspberry Pi v2 camera (Raspberry Pi Foundation), data during full lights on 796 
hours (08:00-18:00 EST). The large volume of video data collected per day was enabled by 797 
instantaneous compression into .h264 format by the Raspberry Pi. Compressed video data was 798 
stored on an external hard drive for later processing.  799 
 800 
Google Controller spreadsheet 801 
A Google Controller spreadsheet was created to remotely control each tank’s Raspberry Pi 802 
recording system, provide real-time visual updates of bower activity every five minutes, and 803 
logging behavioral trial information into a master datasheet. The Controller sheet served as a 804 
master graphical user interface for the recording system, with a “Command” column monitored 805 
by each Raspberry Pi. The Commands included “New” to initiate a new trial, “Restart” to resume 806 
an existing trial, “Rewrite” to overwrite an existing trial, “Stop” to stop a trial, “UploadData” to 807 
upload data from a completed trial to Dropbox, and “LocalDelete” to clear data from the local 808 
storage drive following upload. A more detailed description of Google Controller setup and 809 
functionality is provided in the Supplement (subsection “Controller Spreadsheet”). 810 
 811 
2.3 Data processing and analysis pipeline 812 
 813 
Data upload 814 
Following completion of each trial, data was copied from the local external hard drive to a 815 
laboratory Dropbox account through the Google Controller spreadsheet by upload through 816 
rclone, a cloud storage sync program (https://rclone.org/). The directory for each trial contained 817 
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all videos, RGB frames, and depth frames recorded for the trial. Due to the large volume of 818 
data, uploading for all data collected in a recording round (~10 trials, ~4TB of data) typically 819 
required 24-28 hours. For later trials, upload time was reduced to ~3-5 hours by first 820 
compressing depth data into .tar files. 821 
 822 
Depth Analysis 823 
Analysis of Kinect depth data for each trial was performed using the DepthAnalysis function 824 
within the DataAnalyzer module of the CichlidBowerTracker.py script. Depth analysis included 825 
the following: (i) conversion of raw depth data to “millimeters from Kinect”, (ii) smoothing depth 826 
data by applying a Savitsky-Golay filter to spatial and temporal dimensions of raw depth data 827 
using the savgol function in Python, (iii) frame-to-frame subtraction (and visualization) of 828 
smoothed data at whole trial, daily, and hourly timescales, (iv) identification of above-threshold 829 
depth change (whole trial: ±1.0 cm, daily: ±0.5 cm, hourly: ±0.18 cm) regions at each of these 830 
timescales, (v) identification of the single highest change region (bower ROI) at each of these 831 
timescales, and (vi) calculation of several indices of structural change at these timescales: pixel 832 
size of above-threshold depressed (pit-like) and elevated (castle-like) regions; volume of above-833 
threshold depressed (pit-like) and elevated (castle-like) regions; and four calculations of the 834 
“Bower Index” (the net volume change divided by the absolute volume change): the overall 835 
Bower Index for all depth change, and three for above-threshold change only using sequentially 836 
increasing depth thresholds (Trial: 1.0 cm, 3.0 cm, 5.0 cm; Day: 0.4 cm, 0.8 cm, 1.2 cm; 2-hour: 837 
0.2, 0.4, 0.8). The final Bower Index used for analyses was the average of these four 838 
calculations.  839 
 840 
Video Analysis 841 
Analysis of sand change in video data for each trial was performed using a custom 842 
VideoProcessor.py script. VideoProcessor.py includes the following: (i) a Hidden Markov Model 843 
(HMM) algorithm to detect changes in pixel values through time, and (ii) a density-based 844 
clustering algorithm to identify clusters of HMM+ pixels, or putative sand change events. Briefly, 845 
for each video, the value of each pixel was analyzed through time, and a custom HMM algorithm 846 
was used to predict enduring changes in pixel values using the ‘hmmlearn’ package for Python. 847 
This script simultaneously ignored short-term changes that could be caused by fish swimming. 848 
To improve computational efficiency, pixel values were sampled at a rate of 1 value per 30 frames 849 
(equivalent to once per second). This analysis generated a 3D sparse matrix in which “0” 850 
represented no change and “1” represented HMM-predicted change. Because some of the HMM-851 
predicted changes could be caused by noise (e.g. variance in pixel value caused by the camera 852 
sensor) we used density-based spatial clustering of applications with noise (DBSCAN) within the 853 
Python package ‘sci-kit learn’ to identify clusters of HMM+ change in the presence of noise. 854 
DBSCAN parameters were set based on observed size of sand change events and from a k-dist 855 
graph (see Supplementary Methods subsection “Density-based clustering for identification of 856 
putative sand change events”). DBSCAN analyzed each HMM+ pixel change point in time and 857 
space, and used a KD-tree to determine if the neighboring region contained a minimum number 858 
of HMM+ points. This enabled us to identify spatiotemporal clusters of HMM+ pixels, representing 859 
putative sand change events.  860 

 861 
2.4 Machine Learning 862 
 863 
Deep learning of cichlid behaviors 864 
For each cluster of putative sand change pixels identified by density-based clustering, a four 865 
second (120 frame) 200x200 pixel RGB video clip was generated, centered spatially and 866 
temporally around the sand change event. A trained observer manually classified 14,234 video 867 
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clips randomly selected from representative days across seven trials, spanning seven subjects, 868 
three species, and one hybrid cross. Each clip was classified into one of the following ten 869 
categories: bower scoop, bower spit, bower multiple event, feeding scoop, feeding spit, feeding 870 
multiple event, spawning, drop sand, other-fish, and other-no fish. The operating definition for 871 
each behavioral category is provided in the Supplementary Material (subsection “Behavioral 872 
definitions for manual annotation”). We used 80% of manually annotated clips for training an18-873 
layer 3D ResNet, and the remaining 20% of clips were used for testing. Briefly, 3D ResNets are 874 
3D convolutional neural networks (CNNs) that incorporate features of Residual Networks 875 
(ResNets), in which signals are bypassed across convolutional layers during training. This 876 
approach allows 3D ResNets to be deeper and more accurate than traditional 3D CNNs for 877 
action classification tasks (Qiu, Yao et al. 2017). For training, testing, and prediction we used 878 
the 18-layer architecture described in (Qiu, Yao et al. 2017) (https://github.com/kenshohara/3D-879 
ResNets-PyTorch). Prior to training and testing, each video clip was first converted to 120 RGB 880 
images in .jpeg format using ffmpeg, and during training images were randomly cropped at 881 
multiple scales and resized to 112x112 pixels per image, and then randomly flipped at a rate of 882 
0.5 for data augmentation. Each channel was then normalized based on the mean value for that 883 
channel across all videos. For training, stochastic gradient descent was used to optimize the 884 
parameters of the neural network. Specifically, the learning rate was set to 0.1 (and set to 885 
decrease after 10 consecutive epochs of no change in loss), momentum was set to 0.9, 886 
dampening was set to 0.9, weight decay was set to 1.0x10-4. The network was trained for 100 887 
epochs with a batch size of 8 per epoch.   888 
 889 
Deep learning for fish detection and counting 890 
To detect and count fish we used a Faster region-based convolutional neural network (Faster-891 
RCNN). Faster-RCNNs are two-step neural networks for fast and accurate object detection. In 892 
the first step, a pretrained convolutional neural network (CNN; in these experiments a ResNet50 893 
trained on the COCO dataset, http://cocodataset.org). extracts features from the raw image, and 894 
then these features are fed into a Region Proposal Network (RPN) which identifies ROIs that may 895 
contain objects of our interest. In the second step, these ROIs are analyzed by a convolutional 896 
neural network which classifies objects of interest and generates bounding boxes using linear 897 
regression. Our dataset consisted of 1842 manually annotated frames sampled from seven trials. 898 
Fish in each frame were annotated using labelImg (https://github.com/tzutalin/labelImg) and the 899 
annotations were stored as .xml files. We used Tensorflow models 900 
(https://github.com/tensorflow/models) to preprocess data. 80% of the dataset was used as a 901 
training set (n= 1473) and the remaining images were used as the test set (n= 369). Manual 902 
annotations were then used to train both RPN, CNN classifier and bounding box regressor.  903 
 904 
2.5 Statistics 905 
All statistics were performed using Python 3 (version 3.6 or later) and R (version 3.4.4 or later).  906 
 907 
Depth change by condition 908 
Sand displacement between conditions was compared using the with whole trial depth change as 909 
the outcome variable and condition (empty tank trials vs. “no bower” control trials vs. bower trials) 910 
as the predictor variable. We tested the assumption of heterogeneity of variance using the Fligner-911 
Killeen test, which revealed unequal variance among groups. Based on this, we tested differences 912 
between groups using the Kruskal-Wallis H test (non-parametric one-way ANOVA on ranks). 913 
Post-hoc pairwise Wilcoxon Rank Sum Tests were performed to assess pairwise significance 914 
among groups.  915 
 916 
Depth change thresholds 917 
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To identify depth change thresholds, we quantified whole trial, daily, and hourly depth change 918 
across a large and representative sample of control (n=22) and bower (n=27) trials. To filter out 919 
signals due to noise, we set a minimum size threshold of 1,000 contiguous pixels (~10 cm3) using 920 
remove_small_objects within the morphology module in the scikit-image library for Python (for 921 
example usage see DepthProcessor.py code at 922 
https://github.com/ptmcgrat/Kinect2/blob/master/Modules/Analysis/DepthProcessor.py). We then 923 
incrementally applied depth change thresholds in 0.1 mm steps to identify the maximum values 924 
that could be expected in the absence of bower construction. These thresholds turned out to be 925 
1.8 mm for hourly change, 5.0 mm for daily change, and 10.0 mm for whole trial change.  926 
 927 
Bower Index by species 928 
The Bower Index was calculated as the sum of above threshold depth change (directional; 929 
positive and negative changes cancel out) divided by the sum of total depth change (absolute 930 
value; change in either direction is considered positive) at each timescale. To account for variation 931 
in building intensity between individuals, we applied stepped increases in the depth threshold at 932 
each timescale, and we averaged together the bower indices calculated using each threshold. 933 
Bower indices were compared between species (MC vs. CV vs. TI) using one-way ANOVA and 934 
significance of pairwise comparisons were analyzed with post-hoc Tukey’s HSD tests.    935 
 936 
Spatial repeatability 937 
To measure spatial repeatability we analyzed all above threshold pixels in each paired trial. The 938 
percentage of spatial overlap was calculated as the proportion of these pixels that was above 939 
threshold in the same direction in both trials. To determine whether spatial overlap was greater 940 
than overlap expected by chance, we calculated the expected overlap for depressed regions and 941 
elevated regions independently (pits can be dug within the sand tray region, but not in the acrylic 942 
platform, whereas castles can be built within the sand tray region or on the acrylic platform). To 943 
determine the overlap expected by chance for depressed regions, we calculated the proportion 944 
of the sand tray that these regions occupied in each paired trial, and multiplied those proportions 945 
together. To calculate the overlap expected by chance for elevated regions, we calculated the 946 
proportion of the sand tray and platform that these regions occupied in each paired trial, and 947 
multiplied those proportions together. The total expected spatial overlap was calculated as the 948 
sum of these two numbers. We used paired t-tests to analyze whether the degree of spatial 949 
overlap observed in repeatability trials and control paired trials was greater than expected by 950 
chance. To test whether spatial repeatability was greater within subjects than between subjects, 951 
we analyzed males that were tested in the same tank as other males of the same species (n=7 952 
total; CV, n=3; MC, n=1; TIxMCF1, n=2; MCxCVF1, n=1). For each subject, we took the average 953 
spatial overlap with other males of the same species, and compared it to the actual spatial overlap 954 
observed between repeatability trials using a paired t-test.  955 
 956 
Spatial uniformity 957 
To calculate the Spatial Uniformity Index, we first measured the whole trial volume change as the 958 
sum of daily above-threshold volume changes. We then defined the whole trial region of interest 959 
as the union of all daily above-threshold regions. We defined the final structure as the whole trial 960 
depth change within the whole trial region of interest. To estimate expected volume change, we 961 
first calculated an expected change ratio as the ratio of daily above-threshold volume change to 962 
whole trial volume change. To calculate the expected volume change on each above-threshold 963 
day, we multipled the final structure by the expected change ratio for that day. By taking the 964 
difference between the expected depth change map and the actual depth change map, we were 965 
able to quantify how structural developments diverged from spatial uniformity with a Spatial 966 
Uniformity Index (SUI):  967 
 968 
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Spatial Uniformity Index = 1 −
|𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝑣𝑜𝑙𝑢𝑚𝑒 𝑐ℎ𝑎𝑛𝑔𝑒−𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑 𝑣𝑜𝑙𝑢𝑚𝑒 𝑐ℎ𝑎𝑛𝑔𝑒|

𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑 𝑣𝑜𝑙𝑢𝑚𝑒 𝑐ℎ𝑎𝑛𝑔𝑒
 969 

  970 
For primary analyses of spatial uniformity we used a linear mixed-effects regression model with 971 
SUI as the outcome variable; species, day, and the interaction between species and day as fixed 972 
effects; and subject as a random effect. Thus the model was as follows: 973 
 974 

SUI ~ species + day + species*day + (subject) 975 
 976 

We performed an additional analysis to test whether accounting for daily volume change would 977 
significantly alter our results. Thus, we included daily volume change as an additional fixed 978 
effect in the model:  979 
 980 

SUI ~ species + day + volume + species*day + (subject) 981 
 982 
For all linear mixed effects models, we calculated estimates for fixed effects by maximum 983 
likelihood estimation using the ‘lme4’ package in R and calculated significance for fixed effects 984 
using Satterthwaite approximation through the ‘lmerTest’ package and the ‘anova’ function in R. 985 
Estimates of pairwise differences between levels for each fixed effect were calculated using 986 
estimated marginal means (least squared means), and the significance of these differences were 987 
determined using Satterthwaite approximation corrected for multiple comparison families with 988 
Tukey’s adjustment, using the ‘emmeans’ and ‘multcomp’ packages in R.  989 
 990 
Behavioral correlation analysis 991 
 992 
To quantify patterns of temporal covariance among different behavioral categories and total depth 993 
change, we performed correlation analyses on all seven trials that were analyzed by the 3D 994 
ResNet. Each trial was divided into 60-minute time bins. Within each 60-minute bin, the number 995 
of events was calculated for each category, as well as the total absolute volume change from 996 
depth data, and times bins in which no behavior from any category were expressed were excluded 997 
from analysis. Pairwise behavior-behavior and behavior-depth change correlations were then 998 
performed across all bins and trials (pooled).   999 
 1000 
Fish counts across behavioral contexts 1001 
 1002 
To count fish across different behavioral contexts we extracted whole frames from four second 1003 
time periods associated with 3D ResNet-predicted behavioral events. We predicted fish locations 1004 
as well as the total fish count in each frame. We then calculated the average fish count for each 1005 
event. To analyze differences in number of fish present in frames associated with different 1006 
behavioral contexts, we used a linear mixed-effects model with fish count as the outcome variable, 1007 
behavior as a fixed effect, and day nested within subject nested within species as a random effect. 1008 
Thus the model was as follows:  1009 
 1010 

count ~ behavior + (species/subject/day) 1011 
 1012 
Estimates of counts by behavior, differences in count between behaviors, and the significance of 1013 
these differences were calculated using the same methods as described above under “Spatial 1014 
Uniformity”.  1015 
 1016 
F1 behavior through time 1017 
 1018 
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To analyze the Bower Index in pit-castle F1 hybrids through time, we used a linear mixed-effects 1019 
model with Bower Index as the outcome variable; cross, day, and the interaction between cross 1020 
and day as fixed effects; and subject as a random effect:  1021 
 1022 

BI ~ cross + day + cross*day + (subject) 1023 
 1024 

Associations between Bower Index and day, cross, and the day*cross interaction were calculated 1025 
as described above. Differences in count between behaviors, and the significance of these 1026 
differences were calculated using the same methods as described above under “Spatial 1027 
Uniformity”. Post-hoc comparison of the Bower Index across days in F1 hybrids with the Bower 1028 
Index across days in hybrids was performed using one-way tests.  1029 
 1030 
 1031 
 1032 
 1033 
 1034 
 1035 
 1036 
 1037 
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 1172 

Supplementary Methods and Materials 1173 

 1174 

System Design 1175 

Animal care guidelines required that testing over such extended time periods had to be done in 1176 
the home tank (as opposed to external testing arenas). In our facilities, home tanks are supported 1177 
on tank racks with built-in piping and support beams that partially occlude top-down fields of view 1178 
(FOVs) (e.g. see Supplementary Figure 1). Additionally, all tanks have a central support 1179 
crossbeam that partially occludes top-down FOVs. We found that a ~36 cm diameter sand tray 1180 
placed on one half of the home tank provided a sufficient volume of sand for males to construct 1181 
bowers, and was small enough to fit into an unobstructed top-down FOV (Supplementary Figure 1182 
3B). We designed a custom acrylic platform to surround the sand tray to prevent subjects from 1183 
spitting sand over the edge of the tray onto the bottom of the aquarium. Thus, in this design 1184 
subject males and females could freely enter and exit the sand tray region throughout the trial.  1185 
 1186 
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 1187 

Supplementary Figure 1. Photographs, schematic, and measurements of behavioral 1188 
paradigm. Photographs (A-B) and detailed dimensions of home tank setup for bower behavior 1189 
assays (C). The final design had to be compatible with several pre-existing physical constraints 1190 
such as tank rack support beams (gray metal beams visible just beneath acrylic in A, B), water 1191 
inflow lines (gray acrylic and blue rubber tubes above and below transparent acrylic top, visible in 1192 
A and B), and aquarium cross beams (black plastic cross beam visible in B). All electronic 1193 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 28, 2020. ; https://doi.org/10.1101/2020.02.27.968511doi: bioRxiv preprint 

https://doi.org/10.1101/2020.02.27.968511
http://creativecommons.org/licenses/by-nd/4.0/


34 
 

equipment was placed on top of a transparent acrylic shelf above the tank rack, with the Kinect 1194 
and Raspberry Pi camera (indicated with white arrows in A, B) aimed downwards for a top-down 1195 
view of the sand tray.  1196 

 1197 

 1198 

Supplementary Figure 2. Photographs of bower structures in the lab. Photographs of a 1199 
Copadichromis virginalis male and his pit (A) and of a Mchenga conophoros male and his castle 1200 
(B) in a modified behavioral tank setup.  1201 

 1202 

Controller Spreadsheet 1203 

To avoid the need for manual control of recording equipment above behavior tanks, we created 1204 
custom software to remotely control each unit using a single Google Spreadsheet: each 1205 
Raspberry Pi monitored one of the rows of the spreadsheet for commands (Record, Rewrite, 1206 
Stop, etc.) and executed accordingly (Supplementary Figure 3). The Pi also continuously 1207 
forwarded analyses of depth change over the previous hour, day, and whole trial to the Google 1208 
spreadsheet for remote visualization of bower activity (Supplementary Figure 4). This system thus 1209 
allows for real time monitoring of bower construction. 1210 

 1211 

To setup the Google spreadsheet, two different Python APIs were used to easily access Google 1212 
APIs: Gspread and PyDrive. Gspread is a module that specifically manages Google 1213 
Spreadsheets, while Pydrive manages files more generally in Google Drive. In our setup, PyDrive 1214 
was used to upload .jpeg files containing snapshots and summary images to Google Drive, and 1215 
Gspread was used to read and write directly to the Controller sheet. The latest documentation 1216 
and downloads for Gspread are available here: 1217 
(https://gspread.readthedocs.io/en/latest/index.html) and for Pydrive here: 1218 
(https://pythonhosted.org/PyDrive/#).  1219 

 1220 

A new Google account was created to house the Google Spreadsheet. We recommend for 1221 
several reasons. First, this limits the possible exposure of a personal Gmail account since different 1222 
authentication keys or tokens will need to be distributed to each system that requires access. 1223 
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Second, a new account may also be useful if an automated email system is implemented because 1224 
it can act as the originating email address that all Pi systems can access.  1225 

 1226 

All authentication for Google APIs goes through OAuth2, but these two modules require different 1227 
credentials. Gspread requires a Service Account Key, and Pydrive requires a client secret .json 1228 
file. The latest instructions on how to obtain these credentials and how to use them for 1229 
authentication can be found in these modules’ documentations, for (Gspread: 1230 
https://gspread.readthedocs.io/en/latest/oauth2.html, and for Pydrive: 1231 
https://gsuitedevs.github.io/PyDrive/docs/build/html/quickstart.html#authentication. 1232 

 1233 

After obtaining the appropriate credentials, each Pi needs to have both Gspread and Pydrive 1234 
downloaded and installed, the service account key for Gspread, the client secret .json file for 1235 
Pydrive, and an internet connection. This basic setup can easily be customized to fit other 1236 
experiments in several ways that include but not are limited to adding or changing the modules 1237 
used and changing the organization and information relayed to the Controller Spreadsheet. 1238 

 1239 

Automated Email System 1240 

An automated email system was setup to send summary updates of the current status for all Pi 1241 
systems at the beginning and end of each day, as well as real-time notifications of when 1242 
recordings were unexpectedly interrupted. The basic procedure of this python script is to first 1243 
check the Controller sheet for nonresponsive Pi systems or to check on the status of all the Pi 1244 
systems for a summary update. The information from this check is stored and then written into an 1245 
email which is sent through the Google account’s Gmail. To run this procedure, the Python script 1246 
was run continuously on a single Pi system with internet connection, the Service Account Key for 1247 
Gspread, and a .txt file containing the username, password, and email addresses of recipients. 1248 
The essential modules for the script were Gspread for reading into the Controller sheet and 1249 
smtplib for sending the email. More information about smtplib and an example of how to use this 1250 
module can be found here: https://docs.python.org/3/library/smtplib.html.  1251 

 1252 
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Supplementary Figure 3. Google Drive Controller spreadsheet for remote control of 1253 
Raspberry Pi systems. All Raspberry Pi systems were remotely controlled through a Google 1254 
Drive Spreadsheet. The master spreadsheet comprised multiple sub-sheets for organizing trial 1255 
information. The first sheet, “RaspberryPi” shown above, was used to remotely issue commands 1256 
to each Pi unit through a Command Column including Start, Stop, Restart, Rewrite, Upload (to 1257 
Dropbox), Delete, and Snapshots (shown in blue outlined box above). The current status of each 1258 
Pi was continuously updated in a separate “Status” column (all green cells reading “Running” 1259 
indicate actively recording trials). An “Error” column displayed errors encountered during 1260 
interruptions to help with troubleshooting and debugging. The “Ping” column registered pings from 1261 
each Pi released every five minutes, and could also be used to identify interruptions. The final 1262 
“Image” column updates every five minutes provides RGB and depth snapshots to enable live 1263 
monitoring of depth change across the whole trial, the previous day, and the previous hour.  1264 

 1265 

 1266 

Supplementary Figure 4. Example screenshot of live update of depth change in behavior 1267 
tank. Full view of .jpeg file generated every five minutes in the Image column of the Google 1268 
Controller spreadsheet. The file contains an RGB image captured by the Kinect (A), and RGB 1269 
image captured by the Raspberry Pi camera (B), the current depth across the sand surface (C), 1270 
the total depth change across the whole trial as well as the current duration of the trial (D), depth 1271 
change in the previous 24 hours (E), and depth change in the previous hour (F). Labels on x- and 1272 
y-axes indicate pixel dimensions.  1273 

 1274 

Depth Sensing System Validation 1275 

The Kinect measures the distance of the sand tray surface through water 1276 
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The Kinect depth sensor records both depth data and RGB data across the FOV. This sensor 1277 
was designed for detecting depth changes through air (i.e. Microsoft Xbox users playing video 1278 
games in their living rooms). In preliminary experiments, we tested how the ~27 cm of water 1279 
between the Kinect and the sand tray would interfere with its ability to measure distances of 1280 
surfaces along the bottom of aquarium tanks. We found that individual snapshots of the sand 1281 
surface contained a large amount of missing data, potentially due to reflection at the water surface 1282 
boundary and absorption by water. For example, in a sample set of raw snapshot frames, we 1283 
found that 40.0 ± 0.04% of pixels per frame contained missing data (Supplementary Fig. 2A). To 1284 
improve our measurements of the sand surface, we modified our protocol to collect five minutes 1285 
worth of snapshots in rapid succession (~10 fps) and average them into a single frame. Although 1286 
this reduced the temporal resolution of depth sensing, this limitation was reasonable because we 1287 
expected structural changes of interest to occur over the course of hours. Averaging drastically 1288 
reduced the number of NaN pixels in each frame (Supplementary Fig. 2B; proportion of NaN 1289 
values decreased to 20.6 ± 0.06%). We also applied spatial interpolation (see Methods) to 1290 
estimate values in small regions of missing data, which further reduced the proportion of NaN 1291 
pixels to 10.8% for the final analyzed dataset (Supplementary Fig. 2C). Thus, our pipeline 1292 
generated depth data across ~90% of the sand tray surface every five minutes, enabling analysis 1293 
of surface change through time.  1294 
   1295 
Thresholds improve signal-to-noise for measuring bower construction 1296 
We detected significant depth change signals in empty tanks and in control trials, presumably due 1297 
to noise and other behaviors that alter the sand surface, respectively. Based on these results, we 1298 
tested if thresholds could separate signals caused by bower construction from signals caused by 1299 
noise and other non-bower behaviors. We measured the maximum whole trial volume change 1300 
signals observed in empty tank and control trials (this turned out to be 1.0 cm), and then tested 1301 
whether volume change signals in bower trials exceeded this threshold. Indeed, we identified 1302 
greater depth change signals in every bower trial (29/29; Supplementary Fig. 2F), suggesting that 1303 
threshold could be used to filter out low magnitude depth change signals caused by noise and 1304 
other non-bower behaviors (Supplementary Fig. 2G).  1305 
 1306 
Measurement of bower activity on shorter timescales 1307 
We next tested whether bouts of bower activity within trials could be detected on shorter 1308 
timescales by analyzing depth change over 24-hour and 2-hour periods. We used a similar 1309 
approach to identify thresholds that separated depth change during bower trials from depth 1310 
change during control trials. Again, we found thresholds that separated daily and hourly depth 1311 
change in bower trials versus control trials. Overall, 160/264 (60.6%) of all days analyzed, and 1312 
538/3,168 (17.0%) of all 2-hour bins analyzed contained depth change exceeding these 1313 
thresholds (Supplementary Fig. 2H). Frame-to-frame subtraction of depth data in 5-minute 1314 
intervals further revealed sharp peaks in activity punctuated throughout whole trials (e.g. see 1315 
Supplementary Fig. 2I, representative castle-building MC trial).  1316 
 1317 
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 1318 
Supplementary Figure 5. Depth sensing detects height change across the sand surface at 1319 
different timescales. The Kinect collects top-down depth snapshots of the sand tray surface 1320 
through time (A-E), with yellow indicating distances closer to Kinect (elevated regions), and dark 1321 
blue indicating regions farther from the Kinect (depressed regions). Raw Kinect depth snapshots 1322 
of the sand tray surface contained ~40% missing data (white pixels; A). To improve depth data 1323 
quality, consecutive depth snapshots were collected and averaged together every five minutes, 1324 
reducing the proportion of missing data to ~20% (B). Data quality was further improved by spatially 1325 
interpolating data in small NaN “islands,” reducing the proportion of NaN pixels to ~10% (C). 1326 
Depth change over the course of the trial was calculated by subtracting the initial depth map from 1327 
the final depth map, with turquoise indicating no change (D). Thresholding enabled depth change 1328 
signals caused by bower construction to be separated from signals caused by noise and other 1329 
home tank activities (E). Before thresholding, total volume change differed strongly between 1330 
control conditions (Empty tank trials, and trials in which no bower was constructed) compared to 1331 
bower trials (F). Following thresholding, all bower trials exhibited above threshold volume change 1332 
while control trials did not (G,H). At shorter timescales, 60.6% of all 24-hour bins analyzed and 1333 
16.7% of all 2-hour bins analyzed contained above threshold depth change (H). Analysis of hourly 1334 
depth change over the course of whole trials revealed that structural change was driven by short 1335 
bursts of activity punctuated throughout trials (representative Mchenga conophoros trial, I). 1336 
 1337 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 28, 2020. ; https://doi.org/10.1101/2020.02.27.968511doi: bioRxiv preprint 

https://doi.org/10.1101/2020.02.27.968511
http://creativecommons.org/licenses/by-nd/4.0/


39 
 

Code 1338 

All code for the recording system is available at https://github.com/ptmcgrat/kinect2 1339 

 1340 

Density-based clustering for identification of putative sand change events 1341 

A hidden Markov model was used to identify all instances of long-term change in pixel value in 1342 
each video, and this information was stored as a sparse matrix. From these raw HMM output 1343 
numpy arrays, we extracted all HMM state changes in a format of (timepoint, y_coordinate, 1344 
x_coordinate, and state_difference). To separate noise from potential sand manipulation events, 1345 
we use density-based spatial clustering of applications with noise (DBSCAN) in the Python 1346 
package sci-kit learn (Pedregosa, Varoquaux et al. 2011). DBSCAN analyzes the region 1347 
surrounding each HMM+ pixel in time and space, determines if the neighboring region contains a 1348 
minimal number of HMM+ pixels, expands on dense groups of points, and repeats. DBSCAN 1349 
parameters were based on estimation from a k-dist graph and observed pixel size of sand change 1350 
caused by spit and scoop events. A KD-tree was used to quickly and sparsely calculate pairwise 1351 
distances between sand change points. The clusters were annotated by three human observers 1352 
independently to assess the quality of events and build a training set for event classification.  1353 

 1354 

Pre-processing 1355 

The pre-processing workflow output includes cluster identity and coordinates in numpy format, 1356 
video clips centered spatially and temporally around each cluster for annotation, and histograms 1357 
and scatter plots to visualize clusters in the video. The workflow also provides options to plot and 1358 
visualize HMM data before clustering to help set parameters for pre-processing the data. For 1359 
example, we pre-processed HMM sand change data with the following methods (options included 1360 
in the script): 1361 

 1362 

1) We filtered out the n timepoints that contained the most HMM+ pixels in a second: to address 1363 
false-positive sand change signals caused by changes in indoor lighting, this parameter allows a 1364 
threshold to be set to exclude clusters associated with above-threshold amounts of total HMM+ 1365 
pixels 1366 

2) Thresholding on the magnitude of HMM state difference: some low magnitude changes result 1367 
from natural variance in pixel values produced by the camera. A threshold for this magnitude can 1368 
be identified using a histogram of all magnitude of all HMM+ pixel change magnitudes (e.g. see 1369 
distribution of pixel change magnitudes in Supplementary Figure 4). 1370 

3) Masking the tank region: the video can include outer tank walls, reflections, and regions outside 1371 
the tank entirely. A mask outlining the tank region can be manually drawn to exclude data in 1372 
regions that are not of interest.  1373 

 1374 
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 1375 

 1376 

 1377 

 1378 

 1379 

 1380 

 1381 

Supplementary Figure 6. Proportion of HMM+ pixels exhibiting different magnitudes of 1382 
pixel value change. Distribution of pixel value change magnitudes over the course of a full day 1383 
of video recording in a representative Mchenga conophoros trial.  1384 

     1385 

Parameters for density-based clustering 1386 

DBSCAN minPts and eps: 1387 

1) minPts: observers reviewed several hundred putative sand change events and estimated the 1388 
minimum size of a true sand change cluster to be 10 pixels x 10 pixels x 3 frames, and HMM+ 1389 
pixels change to cover at least 15% of the putative sand change region. Based on these estimates 1390 
we calculated the range for the minimum number of pixels in a sand change event to be between 1391 
50-250 pixels.   1392 

2) eps: For a given k we defined a function k-dist from the database D into the non-negative real 1393 
numbers, mapping each point to the distance from its k-th nearest neighbor. After sorting the 1394 
points in the database in descending order based on their k-dist values, the graph of this function 1395 
suggested a density distribution in the database. This graph is called the sorted k-dist graph, as 1396 
described in (Ester, Kriegel et al. 1996). We then fit a nearest neighbor tree to all points and use 1397 
the keighbors query to find the minPtsth nearest neighbor for each point, and the k-dist graphs for 1398 
minPts = 200. We found that most of the points were close to each other; and most points had at 1399 
least 200 points within 40 units.  1400 

 1401 
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 1402 

Supplementary Figure 7. HMM+ pixels sorted by distance from 200th nearest neighbor. This 1403 
plot was used to visualize the distribution of 200 th nearest neighbor distances across HMM+ 1404 
pixels.  1405 

 1406 

 1407 

 1408 

Supplementary Figure 8. Example K-dist graphs. 1409 

 1410 

We used the knee point of the first k-dist graph (at minPts = 200; Supplementary Figure 6) to 1411 
estimate the optimal values for eps to be 20-30. We then ran DBSCAN on a grid of parameters 1412 
and quantified the number of clusters labeled under each set of parameters. Three observers 1413 
then annotated three sets of clips corresponding to minPts and eps values (indicated by the red 1414 
outlines in Supplementary Figure 7). After comprehensive review, we decided the eps = 18 and 1415 
minPts = 170 best reflected true sand change clusters.  1416 

KD-tree radius = 300, leaf number = 1000 KD-tree radius = 22, leaf number = 190 

D
is

ta
n

ce
 f

ro
m

 2
00

th
 n

e
ar

es
t 

n
e

ig
h

b
o

r 

(2
00

n
n

-d
is

t)
  

Points in descending order of their 200nn-dist 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 28, 2020. ; https://doi.org/10.1101/2020.02.27.968511doi: bioRxiv preprint 

https://doi.org/10.1101/2020.02.27.968511
http://creativecommons.org/licenses/by-nd/4.0/


42 
 

 1417 

Supplementary Figure 9. Number of identified clusters under different values for minPts 1418 
and eps. This plot shows the number of identified clusters from segment of video data using 1419 
different values for minPts and eps. Red boxes indicate values at which trained observers 1420 
reviewed video clips of sand change clusters to identify optimal values for minPts and eps.  1421 

 1422 

Nearest Neighbor KD-tree treeR/neighborR and leaf size 1423 

1) treeR and neighborR are equivalent parameters for constructing KD-trees (Pedregosa, 1424 
Varoquaux et al. 2011). Within a radius around each point, all distances between this point and 1425 
other points are calculated. DBSCAN queries the distances within eps (eps=18 in our analysis) 1426 
for each point, so the treeR/neighborR ≥ eps. We set this parameter to 22 to prepare the distance 1427 
matrix for DBSCAN with eps <= 22.  1428 

2) leaf_size: this parameter is a threshold below which the calculation switches from traversing 1429 
tree to brute-force. For small data sets (N less than 30 or so), brute force algorithms can be more 1430 
efficient than a tree-based approach. Changing leaf_size will not affect the results of a query, but 1431 
can significantly impact the speed of a query and the memory required to store the constructed 1432 
tree as seen in (Pedregosa, Varoquaux et al. 2011) and here: 1433 

https://jakevdp.github.io/blog/2013/04/29/benchmarking-nearest-neighbor-1434 

searches-in-python/#Scaling-with-Leaf-Size. We set leaf_size above minPts 170 1435 

(leaf_size=190). 1436 

 1437 

“Timescale”: 1438 

Since DBSCAN uses one radius to search clusters in all dimensions, we scaled the time 1439 
dimension so that the temporal lengths of events were similar in magnitude to their spatial width, 1440 
such that events were, in general, roughly spherical in 3D. From watching the video we observed 1441 
that the duration of sand change events was < 5 seconds, and their spatial widths were < 60 1442 
pixels; so the time dimension (on frame/second) was scaled by 10x. 1443 
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 1444 

Behavioral definitions for manual annotation 1445 

Bower scoop: subject male collects sand into its mouth during bower construction. 1446 

Bower spit: subject male expels sand into its mouth during bower construction.  1447 

Bower spit: multiple bower scoops, multiple bower spits, and/or a bower scoop and bower spit are 1448 
expressed by the subject male within the same video clip. 1449 

Feeding scoop: fish collects sand into its mouth during feeding.  1450 

Feeding spit: fish expels sand into its mouth during feeding.  1451 

Feeding multiple: multiple feeding scoops and/or spits are expressed by a fish within the same 1452 
video clip. 1453 

Spawn/quiver: the subject male rapidly vibrates his body left to right while simultaneously circling, 1454 
often but not necessarily with a female in frame. The male’s body is typically arched left to right, 1455 
with his anal fin (egg spots) displayed directly in front of the female. When the female is present 1456 
she is often circling as well.   1457 

Sand dropping: A fish expels or releases sand from the mouth either while high in the water (after 1458 
which the sand sprinkles down through the water until it eventually lands), or release of sand upon 1459 
initiation of a rapid burst of swimming (typically chasing or being chased). A more rare subset of 1460 
sand dropping includes filtering sand through the operculum while swimming, typically during 1461 
feeding.  1462 

Other: Changes to the sand caused by any other fish activity not described above, often as a 1463 
result of swiping of the fin or rubbing of the ventral surface of the body along the sand during 1464 
performance of other behaviors. More rare cases included instances in which two fish both 1465 
perform behaviors in the same clip but the sand change was designated as a single cluster.  1466 

Shadow/reflection 1467 

Other changes that are not caused by fish manipulating or changing sand, most commonly 1468 
reflections of activity in the aquarium glass and shadows cast by a stationary or very slow-moving 1469 
fish, or in rare instances food, feces, or other debris settling on the sand surface.  1470 
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 1471 

Supplementary Figure 10. Cluster size by category. The relative pixel sizes (log) of clusters 1472 
assigned to different categories (e.g. feeding, scoops and spits during bower construction, and 1473 
quivering) were analyzed to determine their predictive value. We found significant differences in 1474 
the size of clusters across eight behavioral and two other categories (Kruskal-Wallis rank sum 1475 
test, χ=4223.4, p<2.0x10-16). The vast majority of pairwise comparisons were significant after 1476 
correcting for multiple comparisons (Dunn’s test, adjusted p<0.05 for 40/45 pairwise comparisons 1477 
between categories). However, the distributions of cluster size by category were highly 1478 
overlapping and therefore cluster size alone was not sufficient for linking sand change events to 1479 
different behaviors.  Abbreviations: b = multiple bower events, c = bower scoop, d = sand 1480 
dropping, f = feeding scoop, m = multiple feeding events, o = “other”, p = bower spit, s = 1481 
quiver/spawn, t = feeding spit, x = shadow/reflection.  1482 

 1483 

 1484 
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Supplementary Figure 11. Relationships between confidence and accuracy for predictions 1485 
by 3D ResNet for action recognition. The large majority of predictions (69%) were associated 1486 
with high confidence scores (90-100%; A). High confidence (>90%) predictions tended to be more 1487 
correct than low confidence predictions (B).  1488 

 1489 

Supplementary Figure 12. Example output following analysis of registered 3D ResNet-1490 
predicted behavioral events with depth sensing data across full trials. Visualization of 1491 
behavioral analyses of a representative Mchenga conophoros trial. Depth change by day as 1492 
measured by the Kinect across the full trial (first row). Spatial location of all 3D ResNet-predicted 1493 
bower scoop (pink) and bower spit (blue) events across the full trial (second row). Depth of all 1494 
behavioral events by day across the full trial (third row). Number of events across categories by 1495 
day (fourth row). Depth change at locations of all behavioral events by day (fifth row). Depth 1496 
change at locations of all behavioral events by category across days (sixth row). Pixel size of all 1497 
sand change clusters by day (seventh row). Pixel size of all behavioral events by category across 1498 
days (eighth row). Temporal distribution of all behavioral events by day (ninth row). Temporal 1499 
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distribution of all behavioral events by category across days (tenth row). Sand surface height at 1500 
location of each behavioral event across days (consecutive data columns within each plot), by 1501 
category (each consecutive plot represents a different behavioral category; eleventh row). 1502 

 1503 

 1504 

Supplementary Table 1. Actual and expected overlap by species and cross. Sample sizes 1505 
for each species and cross used for spatial repeatability analysis, with mean (± S.E.) observed 1506 
overlap and expected overlap between repeatability trials. These metrics are also shown for 1507 
analysis of all subjects pooled together (bottom row).  1508 

Video Figure 1. CNN-predicted behavioral events by species, category, and test subject. 1509 
Subset of high confidence (>90%) predictions for each behavioral category (rows) by subject 1510 
(columns), ordered from left to right by species and hybrid cross (CV, TI, MC, MCxCV F1 hybrid).  1511 
 1512 
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