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ABSTRACT

Measuring naturalistic behaviors in laboratory settings is difficult, and this hinders progress
in understanding decision-making in response to ecologically-relevant stimuli. In the wild,
many animals manipulate their environment to create architectural constructions, which
represent a type of extended phenotype affecting survival and/or reproduction, and these
behaviors are excellent models of goal-directed decision-making. Here, we describe an
automated system for measuring bower construction in Lake Malawi cichlid fishes, whereby
males construct sand structures to attract mates through the accumulated actions of
thousands of individual sand manipulation decisions over the course of many days. The
system integrates two orthogonal methods, depth sensing and action recognition, to
simultaneously measure the developing bower structure and classify the sand manipulation
decisions through which it is constructed. We show that action recognition accurately (>85%)
classifies ten sand manipulation behaviors across three different species and distinguishes
between scooping and spitting events that occur during bower construction versus
feeding. Registration of depth and video data streams enables topographical mapping of
these behaviors onto a dynamic 3D sand surface. The hardware required for this setup is
inexpensive (<$250 per setup), allowing for the simultaneous recording from many
independent aquariums. We further show that bower construction behaviors are non-uniform
in time, non-uniform in space, and spatially repeatable across trials. We also quantify a unique
behavioral phenotype in interspecies hybrids, wherein males sequentially express both
phenotypes of behaviorally-divergent parental species. Our work demonstrates that
simultaneously tracking both structure and behavior provides an integrated picture of long-
term goal-directed decision-making in a naturalistic, dynamic, and social environment.
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1. INTRODUCTION

Natural behaviors are often expressed over long timescales. For example, many construction,
navigation, hunting/foraging, and social behaviors are executed over timescales ranging from
many hours to weeks and are critical for survival and reproduction in a wide range of invertebrate
and vertebrate species (Tucker 1981, Feng, Fergus et al. 2015, Russell, Morrison et al. 2017,
Mouritsen 2018). These behaviors may be expressed inflexibly according to fixed sets of rules,
or plastically in response to changing environmental and social stimuli. Understanding the
underlying logic of long-term behaviors and how they are encoded in the genome and the nervous
system will require accurately measuring them as they unfold over extended periods of time in
complex, naturalistic, dynamic, and often social environments.

Long-term natural behaviors are also often goal-directed, in which animals integrate external
stimuli, internal physiology, and previous experience to coordinate decisions and actions towards
a specific goal. For example, many species exhibit construction behaviors in which they
manipulate the environment to build extended phenotype structures such as burrows, dens,
tunnels, webs, nests, or bowers; and these structures are integral to survival and reproduction
(Dawkins 1982, Vollrath 1992, Collias and Collias 2014, Mouritsen 2018). Construction behaviors
are particularly excellent models of long-term goal-directed behaviors because the physical
structure itself provides a history of an animal’'s goal-directed decision-making and also
represents a measurable and dynamic external stimulus that continuously modulates decision-
making over long timescales. Thus, measuring both the developing structure and the underlying
behavioral decisions throughout construction can provide quantitative descriptions of long-term
goal-directed decision-making in dynamic environments.

Measuring construction behaviors and other complex natural behaviors in the lab is challenging.
Most existing tools for behavioral phenotyping are designed for paradigms in which single test
subjects are behaving in simple, static, and often unfamiliar environments with uniform
backgrounds over short timescales. In contrast, natural behaviors are often most faithfully
expressed over long timescales, in naturalistic environments, and through direct interaction with
the environment itself and/or with other individuals. Additionally, during construction behaviors,
the individual and/or structure is frequently partially or wholly occluded from view (e.g.
subterranean burrows or tunnels, or enclosed nests), making it difficult to measure the developing
structure and the underlying behavior. Because of these challenges, natural behaviors are
typically quantified through manual observation and scoring, which is labor intensive and limits
the potential scope and scale of experimental designs and research questions that can be
pursued. Thus, circumventing the need for manual scoring through automated approaches will
facilitate investigations of the biological mechanisms regulating natural behaviors.

In this paper we use automated approaches to measure long-term bower construction behaviors
in in Lake Malawi cichlids. Lake Malawi is the most species-rich freshwater lake on Earth, home
to an estimated 700-1,000 cichlid species that have rapidly evolved in the past 1-2 million years
(Kocher 2004). These species vary strongly in many complex traits, including behavior (Kocher
2004, Hulsey, Mims et al. 2010, Maan and Sefc 2013, Johnson, Moore et al. 2019). The high
degree of genetic similarity among species (average sequence divergence between species pairs
is 0.1-0.25%) (Loh, Bezault et al. 2013, Malinsky, Svardal et al. 2018) enables behaviorally
divergent species to be intercrossed in the laboratory to produce hybrids, making Lake Malawi
cichlids a powerful system for studying the genetic and neural basis of natural behavioral
variation.

About 200 Lake Malawi species exhibit long-term social bower construction behaviors, in which
males manipulate sand to construct large courtship structures, or bowers, during mating contexts
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Figure 1. The evolution of bower behaviors in Lake Malawi cichlids. Approximately 200 species of
Lake Malawi cichlids exhibit bower behaviors. In these species, sociosexual cues trigger reproductive
adult males to construct large courtship structures by manipulating sand with their mouths. The
geometric structure of the bower is species-specific. Castles (A,B), or mountain-like elevations, and pits
(C,D), or crater-like depressions, are two bower forms that have repeatedly evolved in many species.
Some pit-digging species construct pits alongside and partially underneath rocks (C). Photo credit to
Dr. Ad Koninas (A,C), Dr. Isabel Magalhaes, PhD (B) and Dr. Ryan York (D).

94  (York, Patil et al. 2015). Bower behaviors appear to be an example of convergent mating system
95 evolution, mirroring that of Ptilonorhynchidae birds, in which males congregate into leks and
96 construct elaborate bowers for courtship and mating, but not for raising offspring (McKaye,
97  Stauffer et al. 2001). Among bower constructing species in Lake Malawi, two major behavioral
98 phenotypes have repeatedly evolved: “pit-digging,” or construction of crater-like depressions, and
99  “castle-building,” or construction of volcano-like elevations (York, Patil et al. 2015) (Figure 1).
100 Both pits and castles are constructed over the course of many days by collecting mouthfuls of
101  sand and spitting the sand into new locations, ultimately giving rise to the final bower structures.
102
103  Bower construction behaviors are an excellent opportunity to understand the genetic and neural
104  basis of long-term goal-directed decision-making in a complex and continuously changing
105 environment. However, measuring bower construction in the laboratory is challenging. Bowers
106  are constructed over many days, requiring collection and analysis of large volumes of data.
107 Bowers are constructed in social environments in which multiple individuals can freely interact,
108  making individual tracking difficult. Sand manipulation results in a dynamic background, and the
109  subject male and stimulus females are largely camouflaged against the sand background from a
110  top-down view, both posing difficulties for traditional computer vision strategies. Lastly, scooping
111 and spitting sand during bower construction is behaviorally similar to scooping and spitting sand
112 during feeding, which is performed by both male and female fish over the course of the trial,
113  greatly increasing the difficulty of selectively measuring construction behaviors from video data.



https://doi.org/10.1101/2020.02.27.968511
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.02.27.968511; this version posted February 28, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.

5

114

115 Inthis paper, we integrate two orthogonal methods to automatically track both the bower structure
116  and the thousands of individual sand manipulation decisions made during construction for up to
117 weeks at a time, in multiple species and hybrid crosses, and in many home tank aquariums
118  simultaneously. We use low cost mini computers and video game depth sensors to capture
119 natural species differences in bower form, and we show that a neural network for action
120  recognition accurately classifies bower construction, feeding, and spawning behaviors across
121 hundreds of hours of video data. Through these approaches we gain new insights into bower
122  construction behaviors. We show that distinct behavioral and social contexts emerge over the full
123  course of bower construction, and we show that males (i) construct bowers across many days
124  through punctuated bursts of activity, (ii) construct bowers in spatially repeatable locations across
125  multiple trials, and (iii) exhibit shifts in spatial decision-making during the first days of construction.
126  Additionally, we show that pit-castle F1 hybrid males independently express both pit-digging and
127  castle-building behaviors in sequence.

128

129 2. RESULTS

130

131 2.1 Assay and recording system for measuring bower behaviors
132

133  Lake Malawi bower cichlids construct species-typical bowers in aquariums similar to those
134  observed in the field (York, Patil et al. 2018). However, because bowers are constructed over
135 many days through intermittent bouts of activity, we found that daily 2-3 hour video recordings
136  were insufficient for capturing the behaviors consistently. In order to measure bower behaviors
137  for many days and across many aquariums simultaneously, we collected 10 hours of video data
138  and 24 hours of depth sensing data for 10 days. We used small, inexpensive Raspberry Pi 3 (Pi)
139  computers that could easily be mounted above each tank, and each unit was connected to a small
140  touch screen, an external hard drive for data storage, and an ethernet cord for internet access
141  and interfacing with a common Google spreadsheet file (Figure 2 and Figure S1, S3, and S4).
142  For video recording, we connected each unit to a Raspberry Pi camera board that supports HD
143  quality compressed video with a high frame rate; and for depth sensing, we connected each unit
144  to a Microsoft Kinect depth sensor, which has previously been shown to measure distances of
145  natural substrates through shallow creeks (Mankoff and Russo 2013). By optimally positioning
146  the camera and Kinect, we were able to record video and depth data across the sand tray (Figure
147  2C, also see Figure S5). For each bower trial, a subject male was introduced to a 50-gallon
148  aquarium containing four adult reproductive females and a sand tray positioned directly beneath
149  the Raspberry Pi camera and Kinect depth sensor for top-down video recording and depth
150 sensing (Figure 2C and Figure S1).

151

152 3.2 Depth Data

153

154  3.2.1 System validation
155

156  The Kinect detects surface change during bower construction

157  To validate measurements of depth change, we analyzed the overall volume of sand moved in
158  “bower” trials (in which an experimenter visually identified bowers constructed by the male; n=29
159 total; pit-digger Copadichromis virginalis, CV, n=9; castle-builder Mchenga conophoros, MC, n=7;
160  pit-digger Tramitichromis intermedius, Tl, n=5; pit-castle MCxCV F1 hybrid, n=3; pit-castle
161  TIXMCF: hybrid, n=5) and control trials in which no bowers were constructed (n=9 total; CV, n=3;
162  MC, n=3; Tl, n=3) by subtracting the initial depth map from the final depth map (for visualization
163  of this calculation see Figure S5D; example data shown in Figure 3A-F). As a second control,
164  we also analyzed empty tank (no fish) trials to estimate the level of depth change that might be
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165  attributed to noise in our depth data.

166  Because males move large volumes of | | A Py betavior

167 sand during bower construction, we Day1 ===w===-= ®Day10

168 expected to observe larger depth &“ \ﬂ

169 change signals in bower trials -
170  compared to control trials. We found so00p = o .
171 that depth change differed strongly

172  between these three conditions, and B Castle-building behavior

173 was much greater in bower building
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178 (n=6 trials; 249.9 + 24.00 cms volume | ™~ ———— ot
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182 quality, thresholding, and
183  measurement across timescales is
184  described in the “Validation of Depth
185 Sensing System” section in the
186  Supplementary Materials and
187 Methods, and in Figures S5A-G.

188

189  3.2.2 Biological validation

190

191 Depth sensing captures natural
192  species differences in bower structures
193 We next tested whether our depth
194  sensing system could detect natural Figure 2. An automated recording system to measure
195 species differences in bower | bower behaviors in laboratory aquariums. Bowers are
196  structures. To do this, we compared constructed over the course of many days (A,B). Pit-

197  depth change in bower trials among digging involv9§ scgqping §and from acgncentrated

198  three species: two pit-digging species | "egion and ;pltt|ng it mtg dlspersgd Igcgtlops (A, o
199 (Copadichromis virginalis, n=9: rep.resentatlon qf a} quldachrom|s V|.rg|naI|s male digging
200  Tramitichromis intermedius, n=5) and a.plt). Castle—bglldmg |nvoI\_/e_s scooping sand from

201 one castle-building species (Mchenga dlspersed locations apd spitting it into a concentrated
202 conophoros, n=7). We calculated a region (B, representation of a Mchenga congphoros male
203 “Bower Index” to analyze the final building a castle). Tp measure bower behaviors, we

204 bower structure in each trial (Figure developed a behavioral assay and an automated

205 3G). Briefly, the Bower Index is a ratio recording system for standard laboratory aquatics facilities
206 of t.he net’ depth change in above (C). A reproductive adult male is introduced to a 50-gallon

207 threshold regions (change can be aquanum_tank containing a sand _tray and four_ _
o \ reproductive females. The recording system utilizes a
208 positive and negative) to the total . . o
509 volume chanae in above threshold Raspberry Pi 3 computer connected to a high-definition
. 9 ) - RGB camera and a Microsoft Kinect depth sensor for
210 regions (all change is considered

. X video recording and depth sensing, respectively. Data is
211 positive). The . BO"Yer Index is _thus @ | stored on an external hard drive and uploaded to Dropbox.
212  measure of directional (elevation vs.

; . . The system is remotely controlled by custom Python
213  depression) bias in above threshold Y Y Y y

s . . scripts and a Google documents spreadsheet.
214  regions. This analysis revealed strong
215  species differences in bower structures
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Figure 3. Depth sensing reveals natural species differences in bower construction at multiple
timescales. Depth sensing allows visualization and analysis of bower construction across multiple
species and timescales. Representative 3D reconstructions show pits constructed by Copadichromis
virginalis (CV, n=9; A,B), pits constructed by Tramitichromis intermedius (TI, n=5; C,D), and castles by
Mchenga conophoros (MC, n=7; E,F; all z-axes amplified for visual effect). The Bower Index, a measure
of the directional bias in bower construction, revealed strong species differences in the final bower
structures (whole trial change, e.g. A-F). MC exhibited a positive bias (extreme depth change regions
tended to be elevated) and differed strongly from both Tl and CV, which exhibited negative biases and
did not differ significantly from each other (G). Strong species differences in structural development
were also present when depth data was analyzed at daily (H) and hourly (I, 2-hour bins) timescales,
mirroring the direction of differences observed for whole trial change. Each point represents the
observed Bower Index for a single time bin for within one trial. Different individuals are separated into
columns along the x-axis, grouped by species. The color of each point reflects the Bower Index for that
216 time bin (-1, purple, pure pit-like depth change; 1, yellow, pure castle-like depth change).
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217  (One-way ANOVA, p=5.42x10-11), with all pit-digging individuals exhibiting a negative Bower Index
218  (14/14), and all castle-building individuals exhibiting a positive Bower Index (7/7). Post-hoc
219  Tukey’s HSD tests revealed that pit-digging species did not differ significantly from each other
220 (CV vs. Tl, Tukey’s HSD, p=0.98; Fig. 4G), but the castle-builder Mchenga conophoros differed
221 strongly from both pit-digging species (MC vs. Tl, Tukey’s HSD, p=1.68x10-9; MC vs. CV, Tukey’s
222 HSD, p=1.16x10-10). Strong species differences in structural development were also present when
223 depth data was analyzed at daily (24-hour bins; One-way ANOVA, p=4.95x10-s; H) and hourly (2-
224 hour bins; One-way ANOVA, p=1.62x10-11; |) timescales, mirroring the same pattern of differences
225 among species that was observed at the whole trial level (Figure 3H,]I).

226

227 3.3 Video data

228

229

230 Automated identification of sand change from video data

231  To investigate bower construction on more acute time scales, we created tools to track sand
232 change events from video data across whole trials. We took advantage of the multi-color sand
233  (composed of black and white grains) in our setup: each time a fish contacts the sand it causes
234 an enduring spatial rearrangement of the black and white grains of sand, changing the
235  corresponding pixel color value from top-down video. In contrast, a fish swimming over the sand
236 (and any shadows it casts) only causes transient changes in pixel values (Figure 4A-F), after
237  which each pixel returns to its original value (i.e. the same value before the fish swam by). We
238  found that a Hidden Markov Model (HMM) could identify enduring sand rearrangements while
239  simultaneously ignoring transient changes caused by swimming fish (Figure 4G,H and S5), and
240  further that groups of spatially and temporally concentrated “clusters” of sand change pixels could
241  be identified using density-based clustering (Figure 41, S6, S7, and S8). This approach allowed
242  us to map the times and spatial locations of thousands of fish-mediated sand manipulations on
243 each day of each bower trial. Manual review confirmed that the vast majority of predicted sand
244  change clusters (>90%, 13,288/14,234 analyzed events) were true sand change events caused
245 Dy fish behaviors, with the remaining portion including reflections of events in the glass, shadows
246 caused by stationary or slow-moving fish, or in rare cases small bits of food, feces, or other debris
247  settling on the sand surface.

248

249  Automatic classification of cichlid behaviors with action recognition

250 Because bowers are constructed through thousands of spatial decisions over many days,
251  manually scoring full trials would be impractically labor intensive, and we therefore aimed to
252  automatically identify bower construction behaviors from video data. However, scooping and
253  spitting sand during bower construction represents only a subset of behaviors that cause sand
254  change in our paradigm. For example, feeding behaviors are performed by both males and
255 females and also involve scooping and spitting sand, and are expressed frequently throughout
256 trials. Quivering and spawning behaviors, in which a male rapidly circles and displays for a gravid
257 female, are less frequent but also cause large amounts of sand change. We therefore aimed to
258  automatically separate bower construction events from other behaviors that cause sand change.
259  We first evaluated several methods for distinguishing bower scoops and spits from each other
260 and from other types of events, including analysis of spatial properties of sand change clusters
261  (e.g. cluster size, see Figure S10), and feature extraction from short video clips generated for
262  events. While these methods revealed differences between behavioral categories, our preliminary
263  analyses suggested they were insufficient for accurately classifying behaviors. We then turned to
264  a deep learning approach and assessed whether 3D ResNets, which have been recently shown
265 to accurately classify human actions from video data (Qiu, Yao et al. 2017), could accurately
266  distinguish fish behaviors that cause sand change in our paradigm.

267
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Figure 4. Automated detection of sand change from video data. The sand in this behavioral
paradigm is composed of black and white grains (e.g. as seen in panel A), and therefore sand
manipulation events during bower construction cause permanent rearrangement of the black and white
grains at specific locations. We aimed to detect these events by processing whole video frames (A,
with turquoise box indicating an example region of interest) sampled once per second, and tracking the
values of individual pixels throughout whole trials. Fish swimming over sand cause transient changes
in pixel values (e.g. B-F, black arrows indicate an example location of a fish swimming over the sand;
the bottom row depicts a zoomed in 20x20 pixel view of a location that the fish swims over, sampled
from representative frames across four seconds). In contrast, sand manipulation behaviors cause
enduring changes in pixel values (e.g. B-F, turquoise arrow indicate an example location of a fish
scooping sand; the middle row contains a zoomed in 20x20 pixel view of a location where the fish
scoops sand). We used a custom Hidden Markov Model to identify all enduring state changes for each
pixel throughout entire videos (G, green line indicates HMM-predicted state, orange line indicates
natural variance in pixel value, and blue lines indicate transient fluctuations beyond the pixel’s typical
range of values likely caused by fish swimming or shadows). Because fish swim over the sand
frequently, a large number of transient changes are ignored (e.g. pixel value fluctuations indicated by
blue arrows in panel H), while enduring changes are identified (e.g. pixel value change indicated by
green arrow in Panel H). Density-based clustering identifies high-density spatiotemporal clusters of
HMM+ pixels, or putative sand change events, for further analysis (turquoise pixels represent one sand
change cluster, I; region of interest and boxes correspond to A-F).

To create a training set for the 3D ResNet, we generated short cropped video clips centered
spatially and temporally around each sand change event from a subset of seven behavioral trials,
representing seven individuals, three species, and one pit-castle hybrid cross. A trained observer
manually annotated a randomly sampled subset of 14,234 video clips (~2,000 per trial). Each clip
was classified into one of ten categories (bower scoop, bower spit, bower multiple, feed scoop,
feed spit, feed multiple, drop sand, quivering, fish other, and other; for operating definitions used
for all behaviors see Supplementary Materials subsection “Behavioral definitions”). Feeding was
the most frequently observed behavior, accounting for nearly half of all clips (46.9%, 6,672/14,234
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276  annotated clips; feeding scoops, 15.2%; feeding spits, 11.5%; multiple feeding events, 20.2%).
277 Bower construction behaviors were the next most prevalent (19.5%; bower scoops, 9.4%; bower
278  spits, 8.1%; multiple bower construction events, 1.9%). Quivering and spawning events were the
279  least frequently observed, accounting for just 2.6% of all clips. The remainder of sand change
280 events were annotated as either sand dropping behavior (5.6%), “other” behaviors (e.g. brushing
281  the sand surface with the fins or the body; 18.8%), or shadows/reflections (6.6%).

282

283 A 3D ResNet was then trained on 80% (~11,200 clips) of the data, and the remaining 20% of the
284  data was used for testing (~2,800 clips). To place the ResNet predictions in the context of human
285 performance, we also measured the accuracy of a previously naive human observer that
286  underwent 12 hours of training and then manually annotated a test set of 3,052 clips from three
287  trials and all ten behavior categories. The 3D ResNet achieved ~77% accuracy on the test set,
288  which was comparable to a newly trained human observer (~80% accuracy, 2,456/3,052 clips).
289  Confidence for 3D ResNet predictions on the test set ranged from 22.1-100%, and confidence
290 tended to be greater for correct predictions (mean confidence 92.93+0.279%) than for incorrect
291  predictions (mean confidence 78.28+0.074%) (Figure S11). We found an imbalance in the
292  distribution of incorrect predictions across categories (Figure 5A). For some categories, such as
293 “build multiple”, “feed multiple”, and “fish other”, video clips could contain behaviors that also fit
294  into other categories. For example, a “feed multiple” clip by definition contains multiple feeding
295  scoop and/or feeding spit events, a “bower multiple” clip contains multiple bower scoops and/or
296  bower spits, and a “fish other” clip may contain a bower scoop and a fin swipe (or some other
297  combination of behaviors). We found that erroneous “within building” category predictions for build
298  multiple, “within feeding” predictions for feed multiple, and “fish other” predictions accounted for

299  ~82% of all incorrect predictions. We further found that setting a confidence threshold of 90%
300 excluded most (~62%) incorrect predictions but included most (70%) correct predictions, including
301 ~86% of correct bower scoop predictions and ~88% of correct bower spit predictions. 69% of all

302 predictions were above the 90% confidence threshold, and overall accuracy for these high-
303 confidence predictions was ~87% (Figure S11).

304

305 Spatial and temporal mapping of behavioral events

306

307 Because all behavioral predictions were linked to individual sand change clusters, each event
308 was associated with a unique timestamp and pixel coordinate location within video data.
309 Temporally mapping behavioral events revealed that behaviors were expressed non-uniformly in
310 time (Figure 5B). Similarly, spatially mapping behavioral events revealed distinct patterns for
311 each category, including strikingly different spatial patterns between construction behaviors
312  versus feeding behaviors (Figure 5C).

313

314 3.4 Combined video and depth data
315

316  3.4.1 System validation

317

318  Registration links behavioral events to depth data through time

319  We next spatially and temporally aligned video and depth data for the same seven trials used to
320 train the CNN. We used RGB images collected with the Kinect for spatial registration of video and
321 depth data, and we used time stamps assigned by the Raspberry Pi for temporal alignment. We
322  found that most (~56%) of CNN-predicted events could be linked to sand surface height at the
323  corresponding time and location. We also found a large proportion (~44%) of events could not be
324 linked to surface height, which was not surprising because the video FOV included the glass walls
325  outside the sand tray, and ~10% of the sand surface was not captured by the Kinect. We observed
326  a bias in the types of events that could not be linked to depth change values, with just five
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A
Predicted (3D ResNet)
Category Bower | Feed Bower Fegd Bower | Feed |Quiver/| Shadow/ Other Sand Number | Percent | Accuracy
scoop | scoop | spit spit | mult | mult | spawn | Reflect drop
Bower scoop 187 25 1 0 2 1 0 0 26 2 244 8.9% 76.6%
Feed scoop 23 303 0 3 0 48 0 1 28 0 406 14.8% 74.6%
Bower spit 1 0 194 5 6 1 1 0 10 2 220 8.0% 88.2%
Actual Feed spit 1 6 15 225 0 38 2 1 27 26 341 12.4% 66.0%
(Human) | Bower mult 8 9 0 29 1 1 0 7 0 55 2.0% 52.7%
Feed mult 16 73 4 22 2 402 0 0 17 1 537 19.5% 74.9%
Quiver/spawn 0 0 0 1 0 56 0 15 1 73 2.7% 76.7%
Shadow/Reflect 0 0 1 1 0 1 0 169 1" 1 184 6.7% 91.8%
Other 26 26 4 10 10 1 8 9 388 20 512 18.6% 75.8%
Sand drop 1 0 1 12 0 1 0 2 14 149 180 6.5% 82.8%
Total 2752
Correct | 2102
B Dpay 1 2 3 4 5 6 7 8 9 10
Shadow/Refl 1
Other
Sand drop
Bower mult
Bower spit
Bower scoop |
Feed mult | 11
Feed spit
Feed scoop | ‘ | |
Quiver/spawn [
C Day 1 2 3 4 6 7 8 9 10

Bower scoop |+

Bower spit

Feed scoop

Feed spit |

Figure 5. Deep learning and prediction accuracy of cichlid behaviors. A confusion matrix for
predictions on the test dataset shows that predictions made by the 3D ResNet tended to match human
annotations across all ten behavioral categories (A, emboldened diagonal values indicate the number
of agreements between human annotations and 3D ResNet predictions for each category). By applying
the 3D ResNet across full trials, bower construction, feeding, and spawning behaviors can be
temporally mapped over long timescales, spanning >100 hours of video data (B). Spatially mapping 3D
ResNet-predicted bower construction and feeding behaviors reveals distinct spatial distributions among
behaviors that are often indistinguishable to untrained human observers (C).

327
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categories accounting for ~87% of these predictions (shadow/reflections: 31.9%, other: 21.3%,
feed multiple: 14.2%, feed scoop: 12.7%, and feed spit: 6.4%). This was not surprising, as fish
frequently feed along the periphery against the glass walls, and “shadow/reflections” includes
reflections of events in the glass. In contrast, bower scoops and spits represented a small minority
of these events (bower scoop: 3.4%, bower spit: 4.1%), supporting high quality depth data in
regions where the males constructed bowers.

Volume change (cm?)
d o0 0 o
283388

1
s )
s =
& B

Number of bower scoops

Number of bower scoops

Absolute volume change in
depressed regions (cm?)

Volume change (cm?)

Number of bower spits

Absolute volume change in
depressed regions (cm?)

Absolute volume change in
elevated regions (cm?)

Figure 6. CNN-predicted behavioral events predict bower structures. RGB images collected with
the Kinect (first row, A-C) were registered to RGB frames collected with the Raspberry Pi Camera to
spatially align video and depth data. Daily depth change data (second row, A-C) was analyzed to
identify above-threshold regions (third row, A-C). In pit-diggers (A, B), a greater proportion of CNN-
predicted bower scoops versus bower spits mapped onto extreme height change regions (overlap of
third and fourth rows), whereas in castle-builders the reverse was true: a greater proportion of bower
spits versus bower scoops mapped onto extreme height change regions. In pit-diggers, the number of
bower scoops per hour was strongly and positively correlated with the total volume change in that hour
(e.g. see representative regression plots for individual trials in A, B), whereas in castle-builders the
number of bower spits per hour was strongly and positively correlated with the total volume change in
that hour (regression plot, C).

Agreement between action recognition and depth sensing

Using registered video and depth data, we tested how 3D ResNet-predicted scoop and spit events
mapped onto bower structures identified from depth data (Figure 6). Because pits are excavated
by scooping sand, we predicted that a greater number of scoops compared to spits would occur
within the most extreme depth change regions of interest (bower ROISs) in pit-diggers, and that
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342  the opposite pattern would be observed in castle-builders. To test this, we compared the number
343  of scoops and spits observed inside and outside the bower ROI for each of the five parental trials
344  analyzed by the 3D ResNet (n=1 CV, n=2 Tl, n=2 MC). Indeed, in pit-diggers we observed ~15x
345 more CNN-predicted scoops versus spits within daily bower ROIs and this pattern was highly
346  significant within each subject (CV: 273 scoops vs. 20 spits, x2=311.35, p<2.2x10-16; Tl subject 1:
347 339 scoops vs. 16 spits, x2=127.2, p<2.2x10-16; Tl subject 2: 602 scoops vs. 60 spits, x2=377.28,
348  p<2.2x10-16). This pattern was flipped in castle-builders, with ~5.5x more CNN-predicted spits
349  versus scoops occurring within daily bower ROIs (MC subject 1: 242 scoops vs. 2,208 spits,
350 x2=5554.2, p<2.2x10-16; MC subject 2: 260 scoops vs. 462 spits, x2=208.92, p<2.2x10-16).

351

352  We also investigated whether the temporal distribution of CNN-predicted events was associated
353  with the temporal development of the bower structure. In pit-diggers, we found that the number of
354  hourly bower scoops was strongly and positively correlated with the hourly volume change in
355  depressed regions (R2=0.597, p<0.00001); whereas in castle-builders, the number of hourly
356  bower spits was strongly and positively correlated with the hourly volume change in elevated
357 regions (R2=0.690, p<0.00001, representative trials shown in Figure 6). Taken together, these
358 data demonstrate agreement between two orthogonal data streams, and show that behaviors
359 identified through action recognition are predictive of the spatial, geometric, and temporal
360 development of the bower structure measured through depth sensing.

361

362 3.5 New biological insights

363

364  Bower behaviors are spatially repeatable

365 We used depth data to test a new biological dimension of bower building behavior: do males
366  construct their bowers in the same spatial location across trials? To do this, we tracked seven
367  subject males across multiple trials, between which the male was temporarily removed, the bower
368 was abolished, the sand surface was smoothed, and the male was reintroduced (e.g. see Figure
369 7A-E, first and second columns representing first and second trials, respectively). For each
370 repeatability subject, we calculated the spatial overlap of above-threshold regions between trials
371 (e.g. see Figure 7A-E, third column). We found that the observed spatial overlap between trials
372  was significantly greater than the overlap expected by chance (Figure 7F; 23.4+4.30% overlap
373  between repeatability trials versus 2.5+0.64% overlap expected by chance; paired t-test,
374  p=0.000264; n=14, pooled by species/cross). The direction of this effect was the same within
375 each species and each cross (Supplementary Table 1). Despite small sample sizes, this effect
376  was also significant within CV alone as revealed by a paired t-test (n=5 pairs of repeatability trials,
377 p=0.0228).

378

379  Spatially repeatable bower construction could be driven by a spatial memory of the bower location
380 maintained across trials, or by tank-specific factors that might cause some locations within each
381 tankto be generally more preferable for bower construction. To investigate these two possibilities,
382  we compared pairs of repeatability trials with pairs of trials in which different subjects of the same
383  species were tested in the same tank. First, we found that overlap between different males of the
384  same species tested in the same tank was greater than expected by chance (10.3+3.04% spatial
385 overlap observed versus 3.4+1.67% expected by chance), supporting that some locations within
386  each tank were generally more preferable for bower construction, across subjects. However, in
387  7I7 cases, we found that spatial repeatability was also stronger within subjects than between
388  species-matched subjects tested in the same tank (Figure 7G; p=0.0045; pooled by
389  species/cross: CV, n=3; MC, n=1; TIXMCF1, n=2; MCxCVF1, n=1), consistent with the idea that
390 spatial memory also plays a role in bower (re)construction. Despite small sample sizes, this effect
391  was also significant within CV only (n=3, paired t-test, p=0.0035).

392
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Figure 7. Bower construction is spatially repeatable. Bower construction behaviors are spatially
repeatable. Analyzed males represented three species (top-down depth sensing data; Copadichromis
virginalis, n=5, A; Tramitichromis intermedius, n=2, B; Mchenga conophoros, n=4, C) and two pit-castle
F1 hybrid crosses (TIXMC F1, n=2, D; MCXCV F1, n=1, E). Following Trial 1 (A-E, first column), males
were temporarily removed, the sand tray was reset, and males were reintroduced to the same tank for
repeatability trials (A-E, Trial 2, second column). Spatial overlap was calculated as the ratio of shared
above-threshold (A-E third column, bright yellow) and below threshold (A-E third column, dark blue)
regions, relative to the total above and below threshold regions in either trial. Spatial overlap of above-
threshold regions between trials was significantly greater than overlap expected between randomly
distributed regions of the same size (F). Overlap between trials for individual males was greater than
overlap between trials for different males of the same species tested in the same tank (G).

393  Bowers structures develop non-uniformly in space

394

395  The spatial repeatability of bower construction raises the question as to what rules guide male
396  decision-making before a structure is present, and later after a visually salient structure has begun
397 to develop. One possibility is that males construct bowers in a spatially uniform manner over the
398  full course of construction—within each punctuated burst of activity, the bower structure develops
399  proportionately and spatially uniformly toward its final form. A second possibility is that the bower
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Figure 8. Spatial patterns shift over the course of bower construction. Analysis of spatial
uniformity revealed an overall trend of low uniformity (closer to 0 than 1, A) in all species and hybrid
crosses over the course of bower construction. Uniformity was lowest on the first day of bower
construction and significantly increased by nearly threefold on the second day (A; Tukey’s p=0.018),
before gradually tapering off by the fifth day (A; linear mixed-effects mean and standard error estimates
indicated by black line and gray band, respectively). Shifts in uniformity from Day 1 to Day 2 are shown
for representative subjects from each species and hybrid cross (Analysis of top-down depth sensing
data, B). The left column shows the final structure in above threshold regions for each trial. The second
and third columns show spatial patterns of non-uniformity on Days 1 and 2, respectively, or the disparity
between the actual structural change and the structural change expected under the assumption of
perfect spatial uniformity (red indicates regions in which height increased more than expected, blue
indicates regions in which height decreased more than expected). Units for all heatmaps are cm, and
pixels are marked on the x and v axes of plots in (B).

400 arises in a spatially non-uniform manner, with different regions of the bower developing
401  disproportionately relative to one another.

402

403  To investigate these models, we developed a Spatial Uniformity Index (SUI) to measure the
404  disparity between the actual structural change observed on each day of bower construction, and
405 the structural change expected under the assumption of perfect spatial uniformity (1=perfectly
406  uniform, O=zero spatial uniformity) based on the daily volume of sand moved. In other words, if
407  20% of total volume change occurs on the first day of construction, and the final bower structure
408 develops to 20% of its final height, then the SUI for the first day will equal 1. Analysis of the SUI
409 across all above-threshold days for all bower trials (n=29 total; CV, n=9; Tl, n=5; MC, n=7; MCxCV
410  F1,n=3; TIXMC F1, n=5) provided two new insights into bower construction (Figure 8). First, linear
411  mixed-effects regression with SUI as the outcome variable; species, day, and the interaction
412  between species and day as fixed effects; and subject as a random effect revealed that the SUI
413  was much closer to 0 than 1 in all three species (regression estimate of mean for CvV=0.19+0.036,
414  TI=0.12+0.051, MC=0.12+0.037) and both hybrid crosses (regression estimate of mean for
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Figure 9. Distinct behavioral and social contexts across whole trials. Patterns of covariation among
3D ResNet-predicted behavioral events support strong shifts among three behavioral contexts across
whole trials, corresponding to feeding, bower construction, and spawning behaviors (A, Pearson’s R
values shown for each pairwise correlation). A Faster R-CNN detected and counted fish above the sand
tray from whole video frames, with green outlines indicated predicted fish (B-E; 1, 2, 3, and 4 fish
detected, respectively). Analysis of the number of fish present above the sand tray during 3D ResNet-
predicted behavioral events revealed strong differences in fish count across behavioral categories (E;
415 p<2.2x10-16). Fish counts were lowest during bower construction, greater during feeding, and greatest
during spawning, supporting dynamic and intertwined behavioral and social contexts across whole trials.
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416  (Satterthwaite’s method, F=5.47, Tukey’s p=0.00057), but not of species (Satterthwaite’s method,
417  F=0.74, Tukey’s p=0.57), or the interaction between species and day (Satterthwaite’s method,
418 F=0.72, Tukey’s p=0.77) on spatial uniformity. Spatial uniformity was especially low on the first
419  day of bower construction (regression estimate for Day 1, 0.082+0.0300) and was nearly three
420 times more uniform on the second day (regression estimate for Day 2, 0.24+0.0314), a shift that
421  gradually tapered off (Day 3: 0.20+0.0346; Day 4: 0.15+0.0350; Day 5: 0.11+0.0487). Post-hoc
422  analysis of pairwise differences among days revealed the increase in spatial uniformity from Day
423  1to Day 2 to be significant (t=-4.313, Tukey’s p=0.0004), and from Day 1 to Day 3 to be significant
424  (t=-2.938, Tukey’'s p=0.034), but no other pairwise differences between days were significant.
425  Although our calculation accounted for differences in volume change from day to day, we were
426  still concerned that the shift in SUI could be an unexpected byproduct of less sand being moved
427  on the first day of bower construction compared to other days. To directly test this, we added
428  daily volume change directly as a fixed effect to the same model. This model showed that daily
429  volume of sand moved was not associated with SUI (Satterthwaite’s method, F=0.12, Tukey’s
430 p=0.73), and that SUI was strongly associated with day even when directly controlling for daily
431  volume change in the model (Satterthwaite’s method, F=5.42, Tukey's p=0.00075). Taken
432  together, these data support a significant shift in spatial decision-making patterns during the early
433  stages of bower construction, perhaps corresponding to the transition from constructing on a flat
434  sand surface to constructing when a structure is present.

435

436  Strong shifts in behavioral and social contexts across full trials

437

438  We also investigated behavioral and social contexts across whole trials (Figure 9A). First, we
439 investigated whether different behaviors covaried strongly with one another through time. This
440 analysis showed a clear pattern of distinct behavioral contexts through time, driven by three
441  behavioral clusters. One cluster was driven by strong covariation among feeding behaviors and
442  sand dropping behavior, a second cluster was driven by strong covariation among bower
443  construction behaviors and “other” behaviors, and spawning/quivering behaviors covaried weakly
444  with both feeding and bower construction behaviors. Taken together, these data support that
445  feeding, bower construction, and mating contexts occur distinctly through time. Pairwise
446  Pearson’s R values and corresponding p-values are shown in Supplementary Table 2.

447

448  We next used object recognition to count fish in order to test whether the social dynamics among
449 males and females differed between these behavioral contexts. To do this, we trained Faster-
450 RCNN networks to identify and count fish using ~1800 manually annotated frames with an
451  accuracy of ~95% (Figure 9B). Linear mix-effects regression with fish count as the outcome
452  variable, behavior as a fixed effect, and day nested within individual nested within species as a
453  random effect, revealed that the number of fish present above the sand tray differed strongly
454  across behavioral contexts (F=2285.9, p<2.2x10-16) (Figure 9C). The fewest fish were present
455  during bower behaviors (average fish count regression estimates for build scoop=0.99+0.118,
456  build spit=0.88+0.118, build multiple=0.87+0.118); a greater number tended to be present during
457  feeding behaviors (feed scoop=1.24+0.118, feed spit=1.27+0.118, feed multiple=1.21+0.118);
458 and the greatest number of fish, on average, were present during spawning behaviors
459  (1.93+0.118). Post-hoc pairwise comparisons revealed significant differences between all
460  behaviors with the exception of bower spit versus bower multiple events (t=-0.396, p=0.997).
461  Taken together, these data support strong shifts in behavioral and social contexts across full trials,
462  driven by distinct periods of feeding, bower construction, and spawning.

463

464  Sequential expression of parental behaviors in pit-castle Fi1 hybrids

465  We also intercrossed pit and castle species and investigated expression of parental behaviors in
466  pit-castle F1 hybrid offspring (Figure 10). We have previously observed in one pit-castle F1 hybrid
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Figure 10. Interspecies pit-castle Fi1 hybrid males
sequentially express pit-digging then castle-building.
Analysis of the Daily Bower Index through time shows that pit-
castle F1 hybrids (turquoise boxes) transition from a pit-like
behavioral phenotype on Day 1 to a castle-like behavioral
phenotype on Day 5 (A; the first dark blue box represents CV on
each day, the second dark blue box represents TI, the first
turquoise box represents MCxCV Fi hybrids, the second
turquoise box represents TIXMC F1 hybrids, and the yellow box
represents MC). The Bower Index significantly increased from
Day 1 to Day 5 in both F1 crosses (MCxCV, p=0.0038; TIXMC,
p=0.0041). Plots of above-threshold depth change illustrate the
development of pit-like regions on Day 1, with a gradual shift to
more castle-like development by Day 5 (B, first column; each row
represents a different trial and F1 subject).

509

18

cross (Mchenga conophoros dam
x Copadichromis virginalis sire,
MCxCV) that males appear to
express both parental behaviors in
sequence, first digging a pit and
then building a castle; however this
transition has not previously been
quantified. We aimed to measure
this transition in two “reciprocal’
pit-castle hybrid crosses: MCxCV,
and a second Cross,
Tramitichromis intermedius dam x
Copadichromis  virginalis  sire
(TIXMC), which has not been
previously recorded (MCxCV, n=3;
and Tramitichromis intermedius
dam x Mchenga conophoros sire,
n=5). Analysis of the Bower Index
from day to day revealed a
trajectory in which F1 hybrid males
transitioned from a pit-like Bower
Index on Day 1 (MCxCV, -
0.85+0.075; TIXMC, n=5, -
0.58+0.194) to a castle-like Bower

Index by Day 5 (MCxCV,
0.44+0.155; TIXMC, n=>5,
0.40+0.289). A linear mixed-

effects model with Bower Index as
the outcome variable; cross, day,
and the interaction between cross
and day as fixed effects; and
subject as a random effect,
revealed a strong effect of day
(F=14.30, p=2.8x10-6) but not of
cross (F=0.024, p=0.88) or the
interaction between cross and day
(F=1.11, p=0.37) on the Bower
Index. Post-hoc analysis showed
that the transition from Day 1 to
Day 5 was significant in both
crosses (Day 1 vs. Day 5: MCxCV,
t=-4.44, Tukey’s p=0.0038; TIXMC,
t=-4.565, Tukey's p=0.0041).

Taken together, these data show a strong and similar transition from pit-biased to castle-biased

behavior in both F1 crosses.

To place this transition in the context of parental behavior, we performed simple one-way t-tests
to assess whether the F1 Bower Index was greater compared to pit-diggers, or less compared to
castle-builders across days. Because we found no evidence for any behavioral difference
between crosses, F1 subjects were pooled for comparison with parental species. The Day 1 Bower
Index in pit-castle F1 hybrids (n=8) did not differ significantly from the Day 1 Bower Index in either
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518  pit-digging species (vs. CV, n=9, p=0.40; vs. Tl, n=5, p=0.19), but was significantly less than
519  castle-builders (vs. MC, n=7, p=0.038). By Day 2, the F1 bower index was greater than pit-digging
520 CV (p=0.038), indistinguishable from pit-digging Tl (p=0.43), and still significantly less than castle-
521  building MC (p=0.012). By Day 3 the pattern had fully reversed, with the F1 Bower Index
522  significantly greater than both pit-digging species (vs. CV, p=3.7x10-; vs. Tl, p=0.0033) but no
523  longer distinguishable from castle-builders (vs. MC, p=0.097), and this pattern persisted through
524  Day 5. Taken together, these data support sequenced expression of parentally-biased behaviors
525 in F1 hybrid males.

526

527 Discussion

528

529  Construction behaviors are excellent natural models of long-term goal-directed decision-making
530 in dynamic environments, but it is difficult to simultaneously measure a developing structure and
531 an animal’s behavioral decisions over long timescales. However, new tools are providing entry
532  points for automated measurements of natural behaviors in the lab. For example, static poses
533 and positions of animals are being tracked through time in increasingly complex environments
534  (Dell, Bender et al. 2014, Robie, Seagraves et al. 2017, Hughey, Hein et al. 2018). Depth sensing,
535 radio-frequency identification (RFID) tagging, and additional cameras have been used in
536  conjunction with standard video data to track animals in complex social environments in which
537  occlusions regularly occur (Ardekani, Biyani et al. 2013, Weissbrod, Shapiro et al. 2013, Hong,
538 Kennedy et al. 2015, Macfarlane, Howland et al. 2015, Wiltschko, Johnson et al. 2015). Software
539 tools such as DeepLabCut and idTracker.ai also enable pose estimation and positional tracking
540 from video data in which animals are behaving in complex environments (Perez-Escudero,
541 Vicente-Page et al. 2014, Mathis, Mamidanna et al. 2018, Nath, Mathis et al. 2019, Romero-
542 Ferrero, Bergomi et al. 2019). However, it remains unclear whether these methods will be
543  sufficient for reliably detecting and measuring all types of natural behaviors, such as long-term
544  behaviors involving complex interactions between pairs or groups of individuals, or between
545 individuals and their environments. Alternative strategies may be needed depending on the
546  behavior of interest and the experimental design.

547

548 In this study, our primary goal was to automatically measure both developing bower structures
549  and behavioral decisions in naturalistic social environments for extended time periods. We found
550 that a low-cost depth sensor was sufficient for tracking the structural development of bowers over
551 the course of many days, and for capturing natural species differences in bower structure in
552  aquarium tanks that mirror species differences in the wild (York, Patil et al. 2015). Depth sensors
553  have previously been used in behavioral studies, but as tools for animal tracking (Hong, Kennedy
554 et al. 2015, Wiltschko, Johnson et al. 2015). In contrast, we used depth sensing to track the
555  development of an underwater extended phenotype structure in 3D through time. Depth sensors
556 may also be useful for measuring the development of other extended phenotype structures
557 through time such as underwater or above-ground nests, and for tracking activity patterns in
558  animals that construct subterranean structures, e.g. by measuring the volume of substrate that is
559  displaced above ground over time (Theraulaz, Bonabeau et al. 1998, Khuong, Gautrais et al.
560 2016, DiRienzo and Dornhaus 2017, Genise 2017, Metz, Bedford et al. 2017).

561

562 In addition to measuring the bower structure, we also tracked behavioral decision-making on
563  much shorter timescales using action recognition. To our knowledge, this is the first time action
564  recognition has been used to identify and measure complex behaviors in hon-human animals.
565  Previous machine learning strategies have classified animal behaviors through analysis of
566  positional tracking and/or pose estimation data (Anderson and Perona 2014, Hong, Kennedy et
567 al. 2015, Robie, Seagraves et al. 2017). In contrast, we rooted our approach in the identification
568 of sand change events from video data, and in doing so we were able to identify tens of thousands
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569  of behavioral decisions per trial without tracking or pose estimation. Similar approaches using
570 analysis of background changes at different timescales may be useful for identifying and
571  measuring other construction and/or navigation behaviors defined in part by physical contact
572  and/or interaction with their environments. Similarly, action recognition may be an effective
573  alternative for identifying and measuring a wide variety of natural behaviors in different systems
574  and experimental designs, either in the absence of or in conjunction with positional tracking and/or
575  pose estimation data.

576

577 We showed that a 3D ResNet classified video clips of sand change into ten categories with
578 accuracy comparable to a human observer. Remarkably, the model distinguished bower scoops
579  from feeding scoops, and bower spits from feeding spits, despite these behaviors being frequently
580 indistinguishable to an untrained observer. The high prediction accuracy for these behaviors
581  suggests that action recognition may be a powerful tool for studying the evolution of both
582  bower/nest construction behaviors and feeding behaviors in other sand-dwelling cichlid and
583 teleost species. Similarly, high prediction accuracy for quivering, a conserved and stereotyped
584  sexual behavior expressed by many teleosts, suggests that action recognition may be useful for
585 tracking social and mating behaviors broadly across many species, and potentially in other
586  systems in which animals exhibit complex stereotyped behavioral sequences (e.g. courtship
587  behavioral sequences, or aggressive displays). In combination with action recognition, we also
588  applied a Faster-RCNN for object recognition to identify and count fish across behavioral contexts.
589  Notably, both methods achieved high accuracy across three species and one hybrid cross after
590 analyzing relatively small training sets of top down clips/frames, suggesting these are likely
591 adaptable to many other cichlid (and potentially teleost) species and behavioral paradigms
592  utilizing a top-down FOV. Integrating action recognition, object detection, positional tracking, and
593  pose estimation may allow for rich quantitative descriptions of long-term behaviors in many natural
594  systems.

595

596 A major strength of our system is the integration of two orthogonal methods to simultaneously
597 measure a developing extended phenotype and the underlying behavioral decisions throughout
598  construction, and the ability to spatially and temporally align these two data streams to quantify
599 relationships between structure and goal-directed decision-making. By analyzing the combined
600 data, we show natural species differences in the relationships between behavior and structure:
601  pit-digging species perform far more scoops in bower regions, and the number of scoops predicts
602  the volume of structural change in these regions; while castle-builders perform far more spits in
603  bower regions, and the number of spits predicts the degree of depth change in these regions. By
604 linking thousands of individual behavioral decisions to a dynamic 3D surface, future studies can
605 dissect the organizing principles through which the developing bower structure modulates
606  decision-making over long timescales.

607

608 These methods allowed us to gain new insights into bower construction behaviors that would
609  have been difficult or impossible to achieve through manual analysis. By analyzing depth change
610 through time, we showed that the ultimate bower structure arises through punctuated bursts of
611  activity, typically spanning only a small proportion of daylight hours. This is consistent with field
612  observations in which males leave their bowers for extended periods of time to feed (McKaye
613  1983). We further show that males construct bowers in a spatially non-uniform manner, exhibiting
614  shifts in spatial patterns of construction over the first three days of building. We also show that
615 males construct bowers in spatially repeatable locations across multiple trials, consistent with
616  observations and studies in the field, in which bower have been experimentally manipulated or
617 destroyed by turbulence from storms, and males reconstruct their bowers with spatial fidelity
618  although not typically in the exact same spatial location (Kirchshofer 1953, Fryer and lles 1972,
619 McKaye, Louda et al. 1990). Taken together, these data support a role for spatial memory in
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620 bower construction, but suggest that a simple, constant, and uniform spatial decision-making
621  program based solely on spatial location is not sufficient for explaining the full trajectory of
622  construction. One possibility is that spatial location drives the male’s decisions about where to
623 initiate construction on a flat sand surface, and as the bower becomes visually salient, physical
624  features of the structure play a more dominant role in modulating decision-making.

625

626  We also use depth sensing to demonstrate the sequential expression of pit-digging and castle-
627  building behavior in two pit-castle F1 hybrid crosses. The two crosses were made in reciprocal
628  directions (castle-building sire versus pit-digging sire), suggesting that this behavioral sequence
629 is expressed regardless of the sire’s behavioral phenotype. In a previous study, York et al. found
630 a large set of genes exhibiting imbalanced expression of parental alleles in the brain during pit-
631  digging versus castle-building in MCxCV F1 hybrids, such that the pit-digging (CV) parent alleles
632  were upregulated during pit-digging, and the castle-building (MC) parent alleles were upregulated
633  during castle-building (York, Patil et al. 2018). Identifying the neuronal populations in which these
634 parental alleles are expressed, and understanding the causal relationships between neural
635  circuits, context-dependent allele-specific expression, and bower construction behavior are
636  important targets for future study.

637

638  Integrating action recognition and object recognition also allowed us to gain new insights into
639  behavioral and social dynamics across whole trials. Clear behavioral contexts emerged from
640 temporal analysis of action recognition data, corresponding to feeding, constructing, and
641  spawning contexts. The weak correlations between bower construction and spawning behaviors
642  were surprising to us, given that these are both courtship behaviors. This temporal uncoupling
643  suggests that bower construction and spawning behaviors are triggered by at least partially
644  independent mechanisms, perhaps by differences in visual/chemosensory cues emitted by gravid
645 females and/or differences in the male’s hormonal and neuromodulatory state during spawning.
646  To gain deeper insight into these behavioral contexts, we used object recognition to measure the
647 number of fish present over the sand tray during different categories of behavioral events. We
648  found that social dynamics varied strongly across feeding, construction, and spawning contexts.
649  The number of fish present over the sand tray was lowest during construction behaviors, greater
650 and highly variable during feeding behaviors, and greatest (~2) during spawning behaviors. This
651 is consistent with spawning occurring in a spatially exclusive manner between the subject male
652 and a single gravid female. The low fish counts during bower construction behaviors are
653  consistent with males aggressively chasing away both male and female conspecifics while
654  constructing and establishing territory prior to spawning, a phenomenon we have previously
655  observed but not quantified in both stock tanks and behavior tanks. An alternative explanation is
656 that females actively avoid the bower during construction. Future analyses of male-female
657 chasing and other aggression behaviors can reconcile these models.

658

659  There are several limitations to these experiments that can offer guidance for future development
660  of this paradigm as well as other systems. First, in this study we sacrificed temporal resolution for
661  improved spatial resolution of depth data. Depth sensing with high temporal resolution can be
662 used as a powerful tool for tracking animals against visually complex backgrounds, across 3D
663  trajectories, and/or through occlusions (Anderson and Perona 2014, Dell, Bender et al. 2014,
664  Hong, Kennedy et al. 2015, Wiltschko, Johnson et al. 2015), and thus may be critical for the
665  success of other paradigms. Although sacrificing temporal resolution allowed us to recover a large
666  amount of depth data, the version of the Kinect still yielded a significant degree of data loss. Many
667 new depth sensors with improved time-of-flight technology have been released (including the
668  Kinect v2), but these require USB 3.0 which is not a feature of the Raspberry Pi used in this study
669  (Raspberry Pi 3 Model B+). However, Raspberry Pi has recently released the Raspberry Pi 4,
670  which includes USB 3.0 among other upgrades, opening the door to higher quality depth data and
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671 improved temporal resolution at relatively low cost. Another limitation is the practical challenge of
672  remotely controlling a large set of computers and storing, transferring, and analyzing large
673  volumes of video and depth data. For our project, this required planning with information
674  technology professionals at our institution and a Business Dropbox Account for data storage, as
675  well as computer science expertise for developing analysis pipelines. However, these hurdles will
676  likely become less prohibitive as performance specifications improve on low-cost computer
677  systems and more open source and user-friendly computational tools are made publicly available.
678 A final limitation is that our system currently analyzes all video and most depth data after it is
679  collected. Further improvements are needed to enable real-time processing of data, which may
680 be necessary for some projects.

681

682  Despite these limitations, these experiments are a significant step for computational ethology,
683  overcoming several major challenges facing the automated measurement of natural long-term
684  behaviors in the lab. Our recording system enables automated phenotyping of naturally evolved
685  construction behaviors in multiple wild-derived species, in naturalistic social environments, over
686  extended time periods. Bower construction behaviors are expressed by more than 200 cichlid
687  species spanning multiple lakes, and an even larger number of species feed in the sand. Our
688  system thus lays a foundation for studying the biological basis of vertebrate behavioral evolution
689  on large comparative scales in the lab. The system is also effective for behaviorally phenotyping
690 interspecies hybrids and will thus be useful for investigating the transition between two species-
691  divergent behaviors in F1 hybrids, and for genetic mapping of behavioral variation in F2 hybrids.
692  The ability to phenotype many behaviors, and to track thousands of spatial decisions over
693  extended time periods also makes this system particularly promising for future neural recording
694  experiments.

695

696  Conclusions

697

698  We have designed, developed, and implemented a behavioral paradigm and recording system
699 for automatically phenotyping construction behaviors in naturalistic social environments in
700 cichlids. By integrating depth sensing and action recognition, we track developing bower
701  structures and decision-making trajectories in multiple species and hybrid crosses over weeklong
702  periods in many tanks simultaneously. This system will help accelerate comparative behavioral
703  genetics and neuroscience experiments in one of the most powerful vertebrate systems for
704  studying natural behavioral evolution.

705
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713 3. METHODS

714

715 2.1 Animals and husbandry

716

717  Subjects

718

719 Lake Malawi bower-building species (Copadichromis virginalis, Tramitichromis intermedius,
720  Mchenga conophoros) derived from wild-caught stock populations, as well as genetically hybrid
721  individuals derived from these species (described below), were housed in social communities (20-
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722 30 individuals) in 190 liter glass aquaria (90.2 cm long x 44.8 cm wide x 41.9 cm tall) into adulthood
723  (>180 days). Aguaria were maintained under conditions reflective of the Lake Malawi
724  environment: pH=8.2, 26.7°C water, and a 12 h:12 h light:dark cycle with 60-minute transitional
725 dim light periods. For all behavioral experiments, a single reproductive adult male and four
726  reproductive adult stimulus females of the same species or hybrid background were introduced
727  into designated home tanks (as described above) equipped with additional LED strip lighting (10
728  h:14 h light:dark cycle synced with full lights on), and a custom-designed hollow acrylic case (43.1
729 cmlong x 43.1 cm wide x 10.2 cm tall, with a 35.6 cm diameter circular opening) surrounding a
730  circular plastic tray (35.6 cm diameter x 6.4 cm deep, and elevated 3.8 cm above the aquarium
731  bottom) filled with sand (Carib Sea; ACS00222). Sand trays were positioned approximately 58
732 cm directly below a Microsoft XBox Kinect depth sensor and Raspberry Pi video camera; and
733  approximately 30 cm directly below a custom-designed transparent acrylic tank cover (38.1 cm
734  long x 38.1 cm wide x 4.4 cm tall) that contacted the water surface to eliminate rippling for top-
735  down depth sensing and video recordings (described below). In both stock and behavioral tanks,
736  fish were fed twice daily with dried spirulina flakes (Pentair Aquatic Eco-Systems).

737

738  In.vitro hybridization

739

740  Reproductively active males and females were visually identified based on abdominal distension
741  (females), nuptial coloration (males), and expression of classic courtship behaviors (e.g.
742  chasing/leading and quivering). Two separate pit-castle hybrid crosses were generated in the
743  reciprocal direction: Tramitichromis intermedius (female) x Mchenga conophoros (male); and
744  Mchenga conophoros (female) x Copadichromis virginalis (male). To cross-fertilize, a petri dish
745  was filled with water from the home tank, and eggs were collected into the dish by applying gentle
746  pressure between the pectoral region and the anal pore of the female. Eggs remained fully
747  submerged while the male’s sperm was extracted into the same dish by applying gentle pressure
748  to both sides of the abdomen. The mixture was immediately and gently agitated and then eggs
749  were gently rinsed twice with fresh aquarium water to reduce polyspermy. Eggs were then
750 transferred into a beaker containing a fresh oxygen tube, fresh aquarium water, and a drop of
751  methylene blue to minimize risk of fungal infection. Water replacement was performed at least
752  once daily until hatching (approximately 5-6 days post-fertilization).

753

754  Behavioral trials

755

756  For each behavioral trial, a single reproductive adult subject male was introduced to a designated
757  behavioral tank containing four reproductive adult stimulus females and a full sand tray as
758  described above (under "Animals and husbandry"). Upon introduction, an automated recording
759  protocol (described in detail below) was initiated, collecting RGB video and depth data during full
760  light hours (08:00 to 18:00 EST) for 7-10 days. Subjects and stimulus females were allowed to
761  freely interact throughout the entirety of the recording trial and followed the same feeding
762  schedule described above (under "Animals and husbandry").

763

764 2.2 Recording and manitoring system

765

766  Hardware
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767  The automated recording system consisted of a Raspberry Pi 3 Model B (RASPBERRYPI3-
768  MODB-1GB; Raspberry Pi Foundation) connected to the following: (1) a 7" touchscreen display
769 (RASPBERRYPI-DISPLAY; Raspberry Pi Foundation) secured in an adjustable mount case
770  (Smarticase); (2) an Xbox 360e Kinect™ Sensor (Microsoft); (3) a Raspberry Pi camera v2 (RPI
771  8MP CAMERA BOARD; Raspberry Pi Foundation); and (4) a 1 TB external hard drive
772  (WDBUZGO0010BBK-WESN; Western Digital).

773

774 Code

775  We wrote custom Python scripts for all aspects of the project. All code is publicly available on
776  github at www.github.com/ptmcgrat/Kinect2. A general outline of the code is available in the
777  Supplementary Materials.

778

779  Depth sensing

780 We used a Microsoft Xbox Kinect depth sensor to measure the topology of the sand surface
781  through water. The Kinect is a low-cost, close-range, high-resolution depth sensor containing an
782 IR laser and refractor that emits a known structured light pattern, and an IR camera that detects
783  the emitted IR light across surfaces within the FOV. The Kinect then uses a pattern recognition
784  algorithm to compute distance of surfaces across the FOV, which can be stored into 640x480
785  numpy array files (.npy). Kinect depth sensing was controlled through a custom Python script (the
786  CollectData function within the CichlidBowerTracker.py script, see Supplementary Materials and
787  Methods) that was initiated at the beginning of each behavioral trial. Because continuous depth
788 data was both unnecessary and impractical (due to the large volume of high frame rate
789  uncompressed depth data), CollectData combined depth data collected continuously at ~10 Hz
790 into a single frame every 5 minutes. The code also specifies collection of a single RGB snhapshot
791 every 5 minutes, for later registration between depth data and video data. All depth data was
792  stored on an external hard drive for later processing.

793

794  Video recording

795  The same CichlidBowerTracker.py script controlled daily collection of 10 hours of 1296x972 RGB
796  video through a Raspberry Pi v2 camera (Raspberry Pi Foundation), data during full lights on
797  hours (08:00-18:00 EST). The large volume of video data collected per day was enabled by
798 instantaneous compression into .h264 format by the Raspberry Pi. Compressed video data was
799  stored on an external hard drive for later processing.

800

801

802 A Google Controller spreadsheet was created to remotely control each tank’s Raspberry Pi
803  recording system, provide real-time visual updates of bower activity every five minutes, and
804  logging behavioral trial information into a master datasheet. The Controller sheet served as a
805 master graphical user interface for the recording system, with a “Command” column monitored
806 by each Raspberry Pi. The Commands included “New” to initiate a new trial, “Restart” to resume
807 an existing trial, “Rewrite” to overwrite an existing trial, “Stop” to stop a trial, “UploadData” to
808 upload data from a completed trial to Dropbox, and “LocalDelete” to clear data from the local
809 storage drive following upload. A more detailed description of Google Controller setup and
810 functionality is provided in the Supplement (subsection “Controller Spreadsheet”).

811

312 ) - . | lvsis pipel;
813

814  Data upload

815 Following completion of each trial, data was copied from the local external hard drive to a

816 laboratory Dropbox account through the Google Controller spreadsheet by upload through

817  rclone, a cloud storage sync program (https://rclone.org/). The directory for each trial contained
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818 all videos, RGB frames, and depth frames recorded for the trial. Due to the large volume of

819 data, uploading for all data collected in a recording round (~10 trials, ~4TB of data) typically

820 required 24-28 hours. For later trials, upload time was reduced to ~3-5 hours by first

821 compressing depth data into .tar files.

822

823

824  Analysis of Kinect depth data for each trial was performed using the DepthAnalysis function

825  within the DataAnalyzer module of the CichlidBowerTracker.py script. Depth analysis included
826  the following: (i) conversion of raw depth data to “millimeters from Kinect’, (ii) smoothing depth
827 data by applying a Savitsky-Golay filter to spatial and temporal dimensions of raw depth data
828  using the savgol function in Python, (iii) frame-to-frame subtraction (and visualization) of

829  smoothed data at whole trial, daily, and hourly timescales, (iv) identification of above-threshold
830 depth change (whole trial: 1.0 cm, daily: £0.5 cm, hourly: £0.18 cm) regions at each of these
831 timescales, (v) identification of the single highest change region (bower ROI) at each of these
832 timescales, and (vi) calculation of several indices of structural change at these timescales: pixel
833  size of above-threshold depressed (pit-like) and elevated (castle-like) regions; volume of above-
834  threshold depressed (pit-like) and elevated (castle-like) regions; and four calculations of the

835  “Bower Index” (the net volume change divided by the absolute volume change): the overall

836  Bower Index for all depth change, and three for above-threshold change only using sequentially
837 increasing depth thresholds (Trial: 1.0 cm, 3.0 cm, 5.0 cm; Day: 0.4 cm, 0.8 cm, 1.2 cm; 2-hour:
838 0.2,0.4,0.8). The final Bower Index used for analyses was the average of these four

839  calculations.

840

841  Video Analysis

842  Analysis of sand change in video data for each trial was performed using a custom
843  VideoProcessor.py script. VideoProcessor.py includes the following: (i) a Hidden Markov Model
844  (HMM) algorithm to detect changes in pixel values through time, and (ii) a density-based
845  clustering algorithm to identify clusters of HMM+ pixels, or putative sand change events. Briefly,
846  for each video, the value of each pixel was analyzed through time, and a custom HMM algorithm
847  was used to predict enduring changes in pixel values using the ‘hmmlearn’ package for Python.
848  This script simultaneously ignored short-term changes that could be caused by fish swimming.
849  Toimprove computational efficiency, pixel values were sampled at a rate of 1 value per 30 frames
850  (equivalent to once per second). This analysis generated a 3D sparse matrix in which “0”
851 represented no change and “1” represented HMM-predicted change. Because some of the HMM-
852  predicted changes could be caused by noise (e.g. variance in pixel value caused by the camera
853  sensor) we used density-based spatial clustering of applications with noise (DBSCAN) within the
854  Python package ‘sci-kit learn’ to identify clusters of HMM+ change in the presence of noise.
855 DBSCAN parameters were set based on observed size of sand change events and from a k-dist
856 graph (see Supplementary Methods subsection “Density-based clustering for identification of
857  putative sand change events”). DBSCAN analyzed each HMM+ pixel change point in time and
858  space, and used a KD-tree to determine if the neighboring region contained a minimum number
859  of HMM+ points. This enabled us to identify spatiotemporal clusters of HMM+ pixels, representing
860  putative sand change events.

861

862 2.4 Machine | earning

863

864

865  For each cluster of putative sand change pixels identified by density-based clustering, a four
866  second (120 frame) 200x200 pixel RGB video clip was generated, centered spatially and

867  temporally around the sand change event. A trained observer manually classified 14,234 video
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868 clips randomly selected from representative days across seven trials, spanning seven subjects,
869 three species, and one hybrid cross. Each clip was classified into one of the following ten

870  categories: bower scoop, bower spit, bower multiple event, feeding scoop, feeding spit, feeding
871  multiple event, spawning, drop sand, other-fish, and other-no fish. The operating definition for
872  each behavioral category is provided in the Supplementary Material (subsection “Behavioral

873  definitions for manual annotation”). We used 80% of manually annotated clips for training an18-
874  layer 3D ResNet, and the remaining 20% of clips were used for testing. Briefly, 3D ResNets are
875 3D convolutional neural networks (CNNSs) that incorporate features of Residual Networks

876  (ResNets), in which signals are bypassed across convolutional layers during training. This

877  approach allows 3D ResNets to be deeper and more accurate than traditional 3D CNNs for

878  action classification tasks (Qiu, Yao et al. 2017). For training, testing, and prediction we used
879  the 18-layer architecture described in (Qiu, Yao et al. 2017) (https://github.com/kenshohara/3D-
880 ResNets-PyTarch). Prior to training and testing, each video clip was first converted to 120 RGB
881 images in .jpeg format using ffmpeg, and during training images were randomly cropped at

882  multiple scales and resized to 112x112 pixels per image, and then randomly flipped at a rate of
883 0.5 for data augmentation. Each channel was then normalized based on the mean value for that
884  channel across all videos. For training, stochastic gradient descent was used to optimize the

885  parameters of the neural network. Specifically, the learning rate was set to 0.1 (and set to

886  decrease after 10 consecutive epochs of no change in loss), momentum was set to 0.9,

887  dampening was set to 0.9, weight decay was set to 1.0x10-4. The network was trained for 100
888  epochs with a batch size of 8 per epoch.

889

890

891 To detect and count fish we used a Faster region-based convolutional neural network (Faster-
892 RCNN). Faster-RCNNs are two-step neural networks for fast and accurate object detection. In
893  the first step, a pretrained convolutional neural network (CNN; in these experiments a ResNet50
894  trained on the COCO dataset, http://cocodataset.org). extracts features from the raw image, and
895  then these features are fed into a Region Proposal Network (RPN) which identifies ROIs that may
896  contain objects of our interest. In the second step, these ROIs are analyzed by a convolutional
897  neural network which classifies objects of interest and generates bounding boxes using linear
898  regression. Our dataset consisted of 1842 manually annotated frames sampled from seven trials.

899  Fish in each frame were annotated using labellmg (https://github.com/tzutalin/labellmg) and the

900 annotations were  stored as xml files. We used Tensorflow  models
901  (https://github.com/tensorflow/maodels) to preprocess data. 80% of the dataset was used as a
902 training set (n= 1473) and the remaining images were used as the test set (n= 369). Manual
903 annotations were then used to train both RPN, CNN classifier and bounding box regressor.

904

905 2.5 Statistics

906  All statistics were performed using Python 3 (version 3.6 or later) and R (version 3.4.4 or later).
907

908 Depth change by condition

909  Sand displacement between conditions was compared using the with whole trial depth change as
910 the outcome variable and condition (empty tank trials vs. “no bower” control trials vs. bower trials)
911  asthe predictor variable. We tested the assumption of heterogeneity of variance using the Fligner-
912  Killeen test, which revealed unequal variance among groups. Based on this, we tested differences
913  between groups using the Kruskal-Wallis H test (non-parametric one-way ANOVA on ranks).
914  Post-hoc pairwise Wilcoxon Rank Sum Tests were performed to assess pairwise significance
915 among groups.

916

917  Depth change thresholds
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918 To identify depth change thresholds, we quantified whole trial, daily, and hourly depth change
919 across a large and representative sample of control (n=22) and bower (n=27) trials. To filter out
920  signals due to noise, we set a minimum size threshold of 1,000 contiguous pixels (~10 cms) using
921  remove_small_objects within the morphology module in the scikit-image library for Python (for
922  example usage see DepthProcessor.py code at
923  https://github.com/ptmcgrat/Kinect2/blob/master/Modules/Analysis/DepthProcessor.py). We then
924  incrementally applied depth change thresholds in 0.1 mm steps to identify the maximum values
925 that could be expected in the absence of bower construction. These thresholds turned out to be
926 1.8 mm for hourly change, 5.0 mm for daily change, and 10.0 mm for whole trial change.

927

928 Bower Index by species

929 The Bower Index was calculated as the sum of above threshold depth change (directional;
930 positive and negative changes cancel out) divided by the sum of total depth change (absolute
931 value; change in either direction is considered positive) at each timescale. To account for variation
932 in building intensity between individuals, we applied stepped increases in the depth threshold at
933  each timescale, and we averaged together the bower indices calculated using each threshold.
934 Bower indices were compared between species (MC vs. CV vs. Tl) using one-way ANOVA and
935  significance of pairwise comparisons were analyzed with post-hoc Tukey’s HSD tests.

936

937  Spatial repeatability

938 To measure spatial repeatability we analyzed all above threshold pixels in each paired trial. The
939 percentage of spatial overlap was calculated as the proportion of these pixels that was above
940 threshold in the same direction in both trials. To determine whether spatial overlap was greater
941 than overlap expected by chance, we calculated the expected overlap for depressed regions and
942  elevated regions independently (pits can be dug within the sand tray region, but not in the acrylic
943  platform, whereas castles can be built within the sand tray region or on the acrylic platform). To
944  determine the overlap expected by chance for depressed regions, we calculated the proportion
945  of the sand tray that these regions occupied in each paired trial, and multiplied those proportions
946  together. To calculate the overlap expected by chance for elevated regions, we calculated the
947  proportion of the sand tray and platform that these regions occupied in each paired trial, and
948  multiplied those proportions together. The total expected spatial overlap was calculated as the
949  sum of these two numbers. We used paired t-tests to analyze whether the degree of spatial
950 overlap observed in repeatability trials and control paired trials was greater than expected by
951 chance. To test whether spatial repeatability was greater within subjects than between subjects,
952  we analyzed males that were tested in the same tank as other males of the same species (n=7
953 total; CV, n=3; MC, n=1; TIXMCF1, n=2; MCxCVF1, n=1). For each subject, we took the average
954  spatial overlap with other males of the same species, and compared it to the actual spatial overlap
955  observed between repeatability trials using a paired t-test.

956

957

958  To calculate the Spatial Uniformity Index, we first measured the whole trial volume change as the
959  sum of daily above-threshold volume changes. We then defined the whole trial region of interest
960 as the union of all daily above-threshold regions. We defined the final structure as the whole trial
961 depth change within the whole trial region of interest. To estimate expected volume change, we
962 first calculated an expected change ratio as the ratio of daily above-threshold volume change to
963  whole trial volume change. To calculate the expected volume change on each above-threshold
964 day, we multipled the final structure by the expected change ratio for that day. By taking the
965  difference between the expected depth change map and the actual depth change map, we were
966 able to quantify how structural developments diverged from spatial uniformity with a Spatial
967  Uniformity Index (SUI):

968
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|Expected volume change—0Observed volume change|

969 Spatial Uniformity Index =1 —

970
971  For primary analyses of spatial uniformity we used a linear mixed-effects regression model with
972  SUI as the outcome variable; species, day, and the interaction between species and day as fixed
973  effects; and subject as a random effect. Thus the model was as follows:
974
975 SUI ~ species + day + species*day + (subject)
976
977  We performed an additional analysis to test whether accounting for daily volume change would
978  significantly alter our results. Thus, we included daily volume change as an additional fixed
979  effect in the model:
980
981 SUI ~ species + day + volume + species*day + (subject)
982
983 For all linear mixed effects models, we calculated estimates for fixed effects by maximum
984 likelihood estimation using the ‘lme4’ package in R and calculated significance for fixed effects
985  using Satterthwaite approximation through the ‘ImerTest’ package and the ‘anova’ function in R.
986  Estimates of pairwise differences between levels for each fixed effect were calculated using
987 estimated marginal means (least squared means), and the significance of these differences were
988 determined using Satterthwaite approximation corrected for multiple comparison families with
989  Tukey’s adjustment, using the ‘emmeans’ and ‘multcomp’ packages in R.
990
991  Behavioral correlation analysis
992
993  To quantify patterns of temporal covariance among different behavioral categories and total depth
994  change, we performed correlation analyses on all seven trials that were analyzed by the 3D
995 ResNet. Each trial was divided into 60-minute time bins. Within each 60-minute bin, the number
996 of events was calculated for each category, as well as the total absolute volume change from
997  depth data, and times bins in which no behavior from any category were expressed were excluded
998 from analysis. Pairwise behavior-behavior and behavior-depth change correlations were then
999 performed across all bins and trials (pooled).
1000
1001  Fish counts across behavioral contexts
1002
1003  To count fish across different behavioral contexts we extracted whole frames from four second
1004 time periods associated with 3D ResNet-predicted behavioral events. We predicted fish locations
1005 as well as the total fish count in each frame. We then calculated the average fish count for each
1006 event. To analyze differences in number of fish present in frames associated with different
1007 behavioral contexts, we used a linear mixed-effects model with fish count as the outcome variable,
1008 behavior as a fixed effect, and day nested within subject nested within species as a random effect.
1009  Thus the model was as follows:
1010
1011 count ~ behavior + (species/subject/day)
1012
1013 Estimates of counts by behavior, differences in count between behaviors, and the significance of
1014  these differences were calculated using the same methods as described above under “Spatial
1015  Uniformity”.
1016

1017  Fibehavior through time
1018

Observed volume change
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1019 To analyze the Bower Index in pit-castle F1 hybrids through time, we used a linear mixed-effects
1020 model with Bower Index as the outcome variable; cross, day, and the interaction between cross
1021  and day as fixed effects; and subject as a random effect:

1022

1023 Bl ~ cross + day + cross*day + (subject)

1024

1025  Associations between Bower Index and day, cross, and the day*cross interaction were calculated
1026 as described above. Differences in count between behaviors, and the significance of these
1027  differences were calculated using the same methods as described above under “Spatial
1028  Uniformity”. Post-hoc comparison of the Bower Index across days in F1 hybrids with the Bower
1029 Index across days in hybrids was performed using one-way tests.
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Supplementary Methods and Materials

System Design

Animal care guidelines required that testing over such extended time periods had to be done in
the home tank (as opposed to external testing arenas). In our facilities, home tanks are supported
on tank racks with built-in piping and support beams that partially occlude top-down fields of view
(FOVs) (e.g. see Supplementary Figure 1). Additionally, all tanks have a central support
crossbeam that partially occludes top-down FOVs. We found that a ~36 cm diameter sand tray
placed on one half of the home tank provided a sufficient volume of sand for males to construct
bowers, and was small enough to fit into an unobstructed top-down FOV (Supplementary Figure
3B). We designed a custom acrylic platform to surround the sand tray to prevent subjects from
spitting sand over the edge of the tray onto the bottom of the aquarium. Thus, in this design
subject males and females could freely enter and exit the sand tray region throughout the trial.
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1188  Supplementary Figure 1. Photographs, schematic, and measurements of behavioral
1189 paradigm. Photographs (A-B) and detailed dimensions of home tank setup for bower behavior
1190 assays (C). The final design had to be compatible with several pre-existing physical constraints
1191  such as tank rack support beams (gray metal beams visible just beneath acrylic in A, B), water
1192  inflow lines (gray acrylic and blue rubber tubes above and below transparent acrylic top, visible in
1193 A and B), and aquarium cross beams (black plastic cross beam visible in B). All electronic
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1194  equipment was placed on top of a transparent acrylic shelf above the tank rack, with the Kinect
1195 and Raspberry Pi camera (indicated with white arrows in A, B) aimed downwards for a top-down
1196  view of the sand tray.

1197

1198

1199 Supplementary Figure 2. Photographs of bower structures in the lab. Photographs of a
1200  Copadichromis virginalis male and his pit (A) and of a Mchenga conophoros male and his castle
1201  (B) in a modified behavioral tank setup.

1202
1203  Controller Spreadsheet

1204  To avoid the need for manual control of recording equipment above behavior tanks, we created
1205 custom software to remotely control each unit using a single Google Spreadsheet: each
1206  Raspberry Pi monitored one of the rows of the spreadsheet for commands (Record, Rewrite,
1207  Stop, etc.) and executed accordingly (Supplementary Figure 3). The Pi also continuously
1208 forwarded analyses of depth change over the previous hour, day, and whole trial to the Google
1209  spreadsheet for remote visualization of bower activity (Supplementary Figure 4). This system thus
1210  allows for real time monitoring of bower construction.

1211

1212 To setup the Google spreadsheet, two different Python APIs were used to easily access Google
1213  APIs: Gspread and PyDrive. Gspread is a module that specifically manages Google
1214  Spreadsheets, while Pydrive manages files more generally in Google Drive. In our setup, PyDrive
1215  was used to upload .jpeg files containing snapshots and summary images to Google Drive, and
1216  Gspread was used to read and write directly to the Controller sheet. The latest documentation
1217 and downloads for Gspread are available here:

1218  (https://gspread.readthedocs.io/en/latest/index.html) and for Pydrive here:
1219  (https://pythonhosted.org/PyDrive/#).

1220

1221 A new Google account was created to house the Google Spreadsheet. We recommend for
1222 several reasons. First, this limits the possible exposure of a personal Gmail account since different
1223  authentication keys or tokens will need to be distributed to each system that requires access.
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1224  Second, a new account may also be useful if an automated email system is implemented because
1225 it can act as the originating email address that all Pi systems can access.

1226

1227  All authentication for Google APIs goes through OAuth2, but these two modules require different
1228 credentials. Gspread requires a Service Account Key, and Pydrive requires a client secret .json
1229 file. The latest instructions on how to obtain these credentials and how to use them for
1230 authentication can be found in these modules’ documentations, for (Gspread:
1231  https://gspread.readthedocs.io/en/latest/oauth2.html, and for Pydrive:
1732 . : : : : ) . L

1233

1234  After obtaining the appropriate credentials, each Pi needs to have both Gspread and Pydrive
1235 downloaded and installed, the service account key for Gspread, the client secret .json file for
1236  Pydrive, and an internet connection. This basic setup can easily be customized to fit other
1237  experiments in several ways that include but not are limited to adding or changing the modules
1238  used and changing the organization and information relayed to the Controller Spreadsheet.

1239
1240 Automated Email System

1241  An automated email system was setup to send summary updates of the current status for all Pi
1242  systems at the beginning and end of each day, as well as real-time notifications of when
1243  recordings were unexpectedly interrupted. The basic procedure of this python script is to first
1244  check the Controller sheet for nonresponsive Pi systems or to check on the status of all the Pi
1245  systems for a summary update. The information from this check is stored and then written into an
1246  email which is sent through the Google account’s Gmail. To run this procedure, the Python script
1247  was run continuously on a single Pi system with internet connection, the Service Account Key for
1248  Gspread, and a .txt file containing the username, password, and email addresses of recipients.
1249  The essential modules for the script were Gspread for reading into the Controller sheet and
1250  smtplib for sending the email. More information about smtplib and an example of how to use this

1251  module can be found here: https://docs.python.org/3/library/smtplib.html.
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1253  Supplementary Figure 3. Google Drive Controller spreadsheet for remote control of
1254  Raspberry Pi systems. All Raspberry Pi systems were remotely controlled through a Google
1255  Drive Spreadsheet. The master spreadsheet comprised multiple sub-sheets for organizing trial
1256  information. The first sheet, “RaspberryPi” shown above, was used to remotely issue commands
1257  to each Pi unit through a Command Column including Start, Stop, Restart, Rewrite, Upload (to
1258  Dropbox), Delete, and Snapshots (shown in blue outlined box above). The current status of each
1259  Pi was continuously updated in a separate “Status” column (all green cells reading “Running”
1260 indicate actively recording trials). An “Error’ column displayed errors encountered during
1261 interruptions to help with troubleshooting and debugging. The “Ping” column registered pings from
1262  each Pi released every five minutes, and could also be used to identify interruptions. The final
1263  “Image” column updates every five minutes provides RGB and depth snapshots to enable live
1264  monitoring of depth change across the whole trial, the previous day, and the previous hour.

1265
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1267  Supplementary Figure 4. Example screenshot of live update of depth change in behavior
1268  tank. Full view of .jpeg file generated every five minutes in the Image column of the Google
1269  Controller spreadsheet. The file contains an RGB image captured by the Kinect (A), and RGB
1270  image captured by the Raspberry Pi camera (B), the current depth across the sand surface (C),
1271  the total depth change across the whole trial as well as the current duration of the trial (D), depth
1272 change in the previous 24 hours (E), and depth change in the previous hour (F). Labels on x- and
1273  y-axes indicate pixel dimensions.

1274
1275  Depth Sensing System Validation

1276  The Kinect measures the distance of the sand tray surface through water
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1277  The Kinect depth sensor records both depth data and RGB data across the FOV. This sensor
1278  was designed for detecting depth changes through air (i.e. Microsoft Xbox users playing video
1279  games in their living rooms). In preliminary experiments, we tested how the ~27 cm of water
1280 between the Kinect and the sand tray would interfere with its ability to measure distances of
1281  surfaces along the bottom of aquarium tanks. We found that individual snhapshots of the sand
1282  surface contained a large amount of missing data, potentially due to reflection at the water surface
1283  boundary and absorption by water. For example, in a sample set of raw snapshot frames, we
1284  found that 40.0 + 0.04% of pixels per frame contained missing data (Supplementary Fig. 2A). To
1285 improve our measurements of the sand surface, we modified our protocol to collect five minutes
1286  worth of snapshots in rapid succession (~10 fps) and average them into a single frame. Although
1287  this reduced the temporal resolution of depth sensing, this limitation was reasonable because we
1288  expected structural changes of interest to occur over the course of hours. Averaging drastically
1289  reduced the number of NaN pixels in each frame (Supplementary Fig. 2B; proportion of NaN
1290 values decreased to 20.6 + 0.06%). We also applied spatial interpolation (see Methods) to
1291  estimate values in small regions of missing data, which further reduced the proportion of NaN
1292  pixels to 10.8% for the final analyzed dataset (Supplementary Fig. 2C). Thus, our pipeline
1293  generated depth data across ~90% of the sand tray surface every five minutes, enabling analysis
1294  of surface change through time.

1295

1296  Thresholds improve signal-to-noise for measuring bower construction

1297  We detected significant depth change signals in empty tanks and in control trials, presumably due
1298  to noise and other behaviors that alter the sand surface, respectively. Based on these results, we
1299 tested if thresholds could separate signals caused by bower construction from signals caused by
1300 noise and other non-bower behaviors. We measured the maximum whole trial volume change
1301  signals observed in empty tank and control trials (this turned out to be 1.0 cm), and then tested
1302  whether volume change signals in bower trials exceeded this threshold. Indeed, we identified
1303  greater depth change signals in every bower trial (29/29; Supplementary Fig. 2F), suggesting that
1304  threshold could be used to filter out low magnitude depth change signals caused by noise and
1305  other non-bower behaviors (Supplementary Fig. 2G).

1306

1307  Measurement of bower activity on shorter timescales

1308 We next tested whether bouts of bower activity within trials could be detected on shorter
1309 timescales by analyzing depth change over 24-hour and 2-hour periods. We used a similar
1310 approach to identify thresholds that separated depth change during bower trials from depth
1311  change during control trials. Again, we found thresholds that separated daily and hourly depth
1312  change in bower trials versus control trials. Overall, 160/264 (60.6%) of all days analyzed, and
1313 538/3,168 (17.0%) of all 2-hour bins analyzed contained depth change exceeding these
1314  thresholds (Supplementary Fig. 2H). Frame-to-frame subtraction of depth data in 5-minute
1315 intervals further revealed sharp peaks in activity punctuated throughout whole trials (e.g. see
1316  Supplementary Fig. 21, representative castle-building MC trial).

1317
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1318
1319  Supplementary Figure 5. Depth sensing detects height change across the sand surface at

1320 different timescales. The Kinect collects top-down depth snapshots of the sand tray surface
1321 through time (A-E), with yellow indicating distances closer to Kinect (elevated regions), and dark
1322 blue indicating regions farther from the Kinect (depressed regions). Raw Kinect depth snapshots
1323  of the sand tray surface contained ~40% missing data (white pixels; A). To improve depth data
1324  quality, consecutive depth snapshots were collected and averaged together every five minutes,
1325  reducing the proportion of missing data to ~20% (B). Data quality was further improved by spatially
1326  interpolating data in small NaN “islands,” reducing the proportion of NaN pixels to ~10% (C).
1327  Depth change over the course of the trial was calculated by subtracting the initial depth map from
1328 the final depth map, with turquoise indicating no change (D). Thresholding enabled depth change
1329  signals caused by bower construction to be separated from signals caused by noise and other
1330 home tank activities (E). Before thresholding, total volume change differed strongly between
1331  control conditions (Empty tank trials, and trials in which no bower was constructed) compared to
1332 bower trials (F). Following thresholding, all bower trials exhibited above threshold volume change
1333  while control trials did not (G,H). At shorter timescales, 60.6% of all 24-hour bins analyzed and
1334  16.7% of all 2-hour bins analyzed contained above threshold depth change (H). Analysis of hourly
1335  depth change over the course of whole trials revealed that structural change was driven by short
1336  bursts of activity punctuated throughout trials (representative Mchenga conophoros trial, I).

1337
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1338 Code

1339  All code for the recording system is available at https://github.com/ptmcgrat/kinect2

1340
1341  Density-based clustering for identification of putative sand change events

1342 A hidden Markov model was used to identify all instances of long-term change in pixel value in
1343  each video, and this information was stored as a sparse matrix. From these raw HMM output
1344  numpy arrays, we extracted all HMM state changes in a format of (timepoint, y_coordinate,
1345  x_coordinate, and state_difference). To separate noise from potential sand manipulation events,
1346  we use density-based spatial clustering of applications with noise (DBSCAN) in the Python
1347 package sci-kit learn (Pedregosa, Varoquaux et al. 2011). DBSCAN analyzes the region
1348  surrounding each HMM+ pixel in time and space, determines if the neighboring region contains a
1349  minimal number of HMM+ pixels, expands on dense groups of points, and repeats. DBSCAN
1350 parameters were based on estimation from a k-dist graph and observed pixel size of sand change
1351  caused by spit and scoop events. A KD-tree was used to quickly and sparsely calculate pairwise
1352  distances between sand change points. The clusters were annotated by three human observers
1353  independently to assess the quality of events and build a training set for event classification.

1354
1355  Pre-processing

1356  The pre-processing workflow output includes cluster identity and coordinates in numpy format,
1357  video clips centered spatially and temporally around each cluster for annotation, and histograms
1358  and scatter plots to visualize clusters in the video. The workflow also provides options to plot and
1359  visualize HMM data before clustering to help set parameters for pre-processing the data. For
1360 example, we pre-processed HMM sand change data with the following methods (options included
1361  in the script):

1362

1363 1) We filtered out the n timepoints that contained the most HMM+ pixels in a second: to address
1364  false-positive sand change signals caused by changes in indoor lighting, this parameter allows a
1365 threshold to be set to exclude clusters associated with above-threshold amounts of total HMM+
1366  pixels

1367  2) Thresholding on the magnitude of HMM state difference: some low magnitude changes result
1368  from natural variance in pixel values produced by the camera. A threshold for this magnitude can
1369  be identified using a histogram of all magnitude of all HMM+ pixel change magnitudes (e.g. see
1370  distribution of pixel change magnitudes in Supplementary Figure 4).

1371  3) Masking the tank region: the video can include outer tank walls, reflections, and regions outside
1372 the tank entirely. A mask outlining the tank region can be manually drawn to exclude data in
1373  regions that are not of interest.

1374
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1382  Supplementary Figure 6. Proportion of HMM+ pixels exhibiting different magnitudes of
1383  pixel value change. Distribution of pixel value change magnitudes over the course of a full day
1384  of video recording in a representative Mchenga conophoros trial.

1385

1386  Parameters for density-based clustering
1387 DBSCAN minPts and eps:

1388 1) minPts: observers reviewed several hundred putative sand change events and estimated the
1389  minimum size of a true sand change cluster to be 10 pixels x 10 pixels x 3 frames, and HMM+
1390 pixels change to cover at least 15% of the putative sand change region. Based on these estimates
1391  we calculated the range for the minimum number of pixels in a sand change event to be between
1392  50-250 pixels.

1393  2) eps: For a given k we defined a function k-dist from the database D into the non-negative real
1394 numbers, mapping each point to the distance from its k-th nearest neighbor. After sorting the
1395 points in the database in descending order based on their k-dist values, the graph of this function
1396  suggested a density distribution in the database. This graph is called the sorted k-dist graph, as
1397 described in (Ester, Kriegel et al. 1996). We then fit a nearest neighbor tree to all points and use
1398  the keighbors query to find the minPtst nearest neighbor for each point, and the k-dist graphs for
1399 minPts = 200. We found that most of the points were close to each other; and most points had at
1400 least 200 points within 40 units.

1401
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1402

1403  Supplementary Figure 7. HMM+ pixels sorted by distance from 200w nearest neighbor. This
1404  plot was used to visualize the distribution of 200t nearest neighbor distances across HMM+
1405  pixels.

1406
1407

KD-tree radius = 22, leaf number = 190 KD-tree radius = 300, leaf number = 1000

1408

1409  Supplementary Figure 8. Example K-dist graphs.
1410

1411  We used the knee point of the first k-dist graph (at minPts = 200; Supplementary Figure 6) to
1412  estimate the optimal values for eps to be 20-30. We then ran DBSCAN on a grid of parameters
1413  and quantified the number of clusters labeled under each set of parameters. Three observers
1414  then annotated three sets of clips corresponding to minPts and eps values (indicated by the red
1415  outlines in Supplementary Figure 7). After comprehensive review, we decided the eps = 18 and
1416  minPts = 170 best reflected true sand change clusters.
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1418  Supplementary Figure 9. Number of identified clusters under different values for minPts
1419 and eps. This plot shows the number of identified clusters from segment of video data using
1420 different values for minPts and eps. Red boxes indicate values at which trained observers
1421  reviewed video clips of sand change clusters to identify optimal values for minPts and eps.

1422
1423  Nearest Neighbor KD-tree treeR/neighborR and leaf size

1424 1) treeR and neighborR are equivalent parameters for constructing KD-trees (Pedregosa,
1425  Varoquaux et al. 2011). Within a radius around each point, all distances between this point and
1426  other points are calculated. DBSCAN queries the distances within eps (eps=18 in our analysis)
1427  for each point, so the treeR/neighborR = eps. We set this parameter to 22 to prepare the distance
1428  matrix for DBSCAN with eps <= 22.

1429  2) leaf size: this parameter is a threshold below which the calculation switches from traversing
1430 tree to brute-force. For small data sets (N less than 30 or so), brute force algorithms can be more
1431  efficient than a tree-based approach. Changing leaf_size will not affect the results of a query, but
1432 can significantly impact the speed of a query and the memory required to store the constructed
1433 tree as  seen in (Pedregosa, Varoquaux et al. 2011) and here:

1434  https://jakevdp.github.io/blog/2013/04/29/benchmarking-nearest-neighbor-

1435  searches-in-python/#Scaling-with-Leaf-Size. We set leaf size above minPts 170
1436  (leaf_size=190).

1437
1438  “Ti

1439  Since DBSCAN uses one radius to search clusters in all dimensions, we scaled the time
1440 dimension so that the temporal lengths of events were similar in magnitude to their spatial width,
1441  such that events were, in general, roughly spherical in 3D. From watching the video we observed
1442  that the duration of sand change events was < 5 seconds, and their spatial widths were < 60
1443  pixels; so the time dimension (on frame/second) was scaled by 10x.
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1444

1445  Behavioral definitions for manual annotation

1446  Bower scoop: subject male collects sand into its mouth during bower construction.
1447  Bower spit: subject male expels sand into its mouth during bower construction.

1448  Bower spit: multiple bower scoops, multiple bower spits, and/or a bower scoop and bower spit are
1449  expressed by the subject male within the same video clip.

1450 Feeding scoop: fish collects sand into its mouth during feeding.
1451  Eeeding spit: fish expels sand into its mouth during feeding.

1452  Feeding multiple: multiple feeding scoops and/or spits are expressed by a fish within the same
1453  video clip.

1454  Spawn/quiver: the subject male rapidly vibrates his body left to right while simultaneously circling,
1455  often but not necessarily with a female in frame. The male’s body is typically arched left to right,
1456  with his anal fin (egg spots) displayed directly in front of the female. When the female is present
1457  she is often circling as well.

1458  Sand dropping: A fish expels or releases sand from the mouth either while high in the water (after
1459  which the sand sprinkles down through the water until it eventually lands), or release of sand upon
1460 initiation of a rapid burst of swimming (typically chasing or being chased). A more rare subset of
1461  sand dropping includes filtering sand through the operculum while swimming, typically during
1462  feeding.

1463  Other: Changes to the sand caused by any other fish activity not described above, often as a
1464  result of swiping of the fin or rubbing of the ventral surface of the body along the sand during
1465 performance of other behaviors. More rare cases included instances in which two fish both
1466  perform behaviors in the same clip but the sand change was designated as a single cluster.

1467  Shadow/reflection

1468  Other changes that are not caused by fish manipulating or changing sand, most commonly
1469 reflections of activity in the aquarium glass and shadows cast by a stationary or very slow-moving
1470  fish, or in rare instances food, feces, or other debris settling on the sand surface.
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1472  Supplementary Figure 10. Cluster size by category. The relative pixel sizes (log) of clusters
1473  assigned to different categories (e.g. feeding, scoops and spits during bower construction, and
1474  quivering) were analyzed to determine their predictive value. We found significant differences in
1475  the size of clusters across eight behavioral and two other categories (Kruskal-Wallis rank sum
1476  test, x=4223.4, p<2.0x10-16). The vast majority of pairwise comparisons were significant after
1477  correcting for multiple comparisons (Dunn'’s test, adjusted p<0.05 for 40/45 pairwise comparisons
1478  between categories). However, the distributions of cluster size by category were highly
1479  overlapping and therefore cluster size alone was not sufficient for linking sand change events to
1480  different behaviors. Abbreviations: b = multiple bower events, ¢ = bower scoop, d = sand
1481  dropping, f = feeding scoop, m = multiple feeding events, o = “other”, p = bower spit, s =
1482  quiver/spawn, t = feeding spit, x = shadow/reflection.
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1485  Supplementary Figure 11. Relationships between confidence and accuracy for predictions
1486 by 3D ResNet for action recognition. The large majority of predictions (69%) were associated
1487  with high confidence scores (90-100%; A). High confidence (>90%) predictions tended to be more

1488  correct than low confidence predlctlons (B)
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1490 Supplementary Figure 12. Example output following analysis of registered 3D ResNet-
1491 predicted behavioral events with depth sensing data across full trials. Visualization of
1492  behavioral analyses of a representative Mchenga conophoros trial. Depth change by day as
1493  measured by the Kinect across the full trial (first row). Spatial location of all 3D ResNet-predicted
1494  bower scoop (pink) and bower spit (blue) events across the full trial (second row). Depth of all
1495  behavioral events by day across the full trial (third row). Number of events across categories by
1496  day (fourth row). Depth change at locations of all behavioral events by day (fifth row). Depth
1497  change at locations of all behavioral events by category across days (sixth row). Pixel size of all
1498 sand change clusters by day (seventh row). Pixel size of all behavioral events by category across
1499  days (eighth row). Temporal distribution of all behavioral events by day (ninth row). Temporal
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distribution of all behavioral events by category across days (tenth row). Sand surface height at
location of each behavioral event across days (consecutive data columns within each plot), by
category (each consecutive plot represents a different behavioral category; eleventh row).

Species/ N Actual overlap % Expected overlap %
cross (mean * SE) (mean t SE)
cv 5 25.9+6.32 143+0.76
T 2 29.8 +17.40 2.03+0.78
MC 4 14.3 £+ 6.86 3.27+£1.65
MCXCVF4 1 514 6.39
TIXMCF+ 2 14.7 + 2.51 1.93+1.05
Pooled 14 23.4+4.30 25+0.64

Supplementary Table 1. Actual and expected overlap by species and cross. Sample sizes
for each species and cross used for spatial repeatability analysis, with mean (+ S.E.) observed
overlap and expected overlap between repeatability trials. These metrics are also shown for
analysis of all subjects pooled together (bottom row).

Video Figure 1. CNN-predicted behavioral events by species, category, and test subject.
Subset of high confidence (>90%) predictions for each behavioral category (rows) by subject
(columns), ordered from left to right by species and hybrid cross (CV, TI, MC, MCxCV F1 hybrid).
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