

1 **Dose-dependent phorbol 12-myristate-13-acetate-mediated monocyte-to-macrophage**
2 **differentiation induces unique proteomic signatures in THP-1 cells**

3

4 Sneha M. Pinto †‡*, Hera Kim †*, Yashwanth Subbannayya †, Miriam Giambelluca †,
5 Korbinian Bösl †° and Richard K. Kandasamy †§#

6

7 †Centre of Molecular Inflammation Research (CEMIR), and Department of Clinical and
8 Molecular Medicine (IKOM), Norwegian University of Science and Technology, N-7491
9 Trondheim, Norway

10 ‡Center for Systems Biology and Molecular Medicine, Yenepoya (Deemed to be University),
11 Mangalore, India

12 °Department of Infectious Diseases, Medical Clinic, St. Olavs Hospital, N-7491 Trondheim,
13 Norway

14 §Centre for Molecular Medicine Norway (NCMM), Nordic EMBL Partnership, University of
15 Oslo and Oslo University Hospital, N-0349 Oslo, Norway

16 ¶Program in Innate Immunity, Division of Infectious Diseases and Immunology, Department
17 of Medicine, University of Massachusetts Medical School, Worcester, MA, United States

18

19 # Correspondence: Richard K. Kandasamy (richard.k.kandasamy@ntnu.no)

20

21 * These authors contributed equally

22

23

24 Running title: Proteomics of PMA-mediated differentiation of THP-1 cells

25

26 **Abstract**

27 Macrophages are sentinels of the innate immune system, and the human monocytic cell line
28 THP-1 is one of the widely used *in vitro* models to study immune responses. Several monocyte-
29 to-macrophage differentiation protocols exist, with phorbol 12-myristate-13-acetate (PMA)
30 being the widely used and accepted method. However, the concentrations and duration of PMA
31 treatment vary widely in the published literature and their effect on protein expression is not
32 fully deciphered. In this study, we employed a dimethyl labeling-based quantitative proteomics
33 approach to determine the changes in the protein repertoire of macrophage-like cells
34 differentiated from THP-1 monocytes by three commonly used PMA-based differentiation
35 protocols. Our analysis shows that variations in PMA concentration and duration of rest post-
36 stimulation result in downstream differences in the protein expression and cellular processes.
37 We demonstrate that these differences result in altered gene expression of cytokines upon
38 stimulation with various TLR agonists. Together, these findings provide a valuable resource
39 that significantly expands the knowledge of protein expression dynamics with one of the most
40 common *in vitro* models for macrophages, which in turn has a profound impact on the immune
41 responses being studied.

42

43 **Keywords:** Monocyte, Macrophage, TLR signaling, innate immune signaling, pathway
44 analysis, functional networks, pathways, differentiation, quantitative proteomics.

45 **Introduction**

46 Macrophages and their precursors- monocytes, mediate innate immune responses and
47 inflammatory processes, and also contribute to adaptive immunity through antigen presentation
48 (1, 2). Monocytes in the blood circulation migrate to the site of infection/inflammation and
49 differentiate into macrophages for effective host defense, tissue remodeling, and repair (3).

50 Furthermore, macrophages exhibit a high level of plasticity, depending on their local
51 microenvironment, specialized functions and varied phenotype acquired (1, 4).

52 Several models are employed to study the mechanisms of immune-modulation in monocytes
53 and macrophages during inflammatory diseases. The most frequently used include primary
54 peripheral blood mononuclear cells (PBMCs) and monocyte cell lines. However, due to donor-
55 to-donor variations and technical disparities involved in handling of PBMCs *in vitro*, the
56 human leukemia monocytic cell line, THP-1, is widely accepted and used as a
57 monocyte/macrophage model (5, 6). Several studies have indicated that THP-1 cells can be
58 differentiated into macrophage-like cells using phorbol-12-myristate-13- acetate (PMA),
59 which markedly resembles PBMC monocyte-derived macrophages (MDMs) in cytokine
60 production, metabolic and morphological properties, including differential expression of
61 macrophage surface markers such as *CD14*, *CD11b (ITGAM)* and scavenger receptors- *CD163*,
62 *MSRI*, and *SCARB2* (5, 7-10). Nonetheless, depending on the parameters of the differentiation
63 protocol employed, such as the concentration (ranging from 5 to 400 ng/mL), and duration of
64 incubation (1 to 5 days) with PMA; the degree of differentiation and the functional changes
65 may vary significantly (5, 11-15).

66 At the molecular level, multiple proteins including growth factors, antigenic markers,
67 chemokine-receptors, cytokines, and cell adhesion molecules, are known to govern and reflect
68 underlying monocyte-macrophage differentiation processes (16-20). However, the effect of
69 various differentiation protocols on the cellular proteome and intracellular signaling networks

70 during monocyte-to-macrophage differentiation remains poorly understood. Hence, it is crucial
71 to determine the most suitable differentiation conditions when using these cells as model
72 system, as this can significantly impact their response to various innate immune stimuli.
73 Quantitative high-resolution mass spectrometry-based proteomic approaches have been widely
74 employed to investigate the proteomes of monocytes and macrophages as well as altered
75 cellular proteomes and complex cellular/biological mechanisms in several biological
76 conditions (21-23). However, to date, no studies have directly compared the proteome changes
77 of the PMA-mediated differentiation process.

78 In the present study, we evaluate the effect of three PMA-based differentiation protocols on
79 the changes in the proteome profiles upon THP-1 differentiation using stable isotope dimethyl
80 labeling quantitative proteomics. We demonstrate that various differentiation conditions such
81 as concentration and incubation time, prior to any stimuli, are critical consideration factors for
82 heterogeneity of the cell culture. The results from this study will enable immunologists to make
83 informed decisions on differentiation protocols that result in the desired proteotypes for custom
84 experiments.

85 **Material and methods**

86 **Cell culture and differentiation**

87 Human THP-1 monocytic cells (ATCC) were cultured in RPMI 1640 (Sigma-Aldrich) medium
88 containing 10% heat-activated fetal calf serum (FCS), 2 mM L-glutamine, 100 nM
89 penicillin/streptomycin (Thermo Fisher Scientific) and 50 μ M β -mercaptoethanol (Sigma-
90 Aldrich). The cells were maintained in a humidified 37°C, 5% CO₂ incubator. THP-1 cells
91 were differentiated into resting macrophages by resuspending the cells in growth medium
92 containing 5 or 50 ng/ml phorbol-12-myristate-13-acetate (PMA; Sigma-Aldrich) and cultured
93 for indicated time periods. The process of differentiation was enhanced by removing the PMA-
94 containing media and adding fresh, complete RPMI 1640 media to the cells. The treatment
95 conditions included the following. **Condition A:** 50 ng/ml PMA for 72 hours followed by 48
96 hours rest (5 days); **Condition B:** 50 ng/ml PMA overnight (16 hours) followed by 48 hours
97 rest (Condition B); and **Condition C:** 5 ng/ml PMA for 48 hours followed by 3 hours rest (5,
98 11-14).

99 **Phase-contrast microscopy**

100 THP-1 cells were seeded at a density of 0.2 x 10⁶ cells/ml in cell culture Cellvis glass-bottom
101 plates and treated with PMA and rested at indicated concentrations and duration. The
102 morphological characteristics of undifferentiated and differentiated THP-1 cells were captured
103 by EVOS FL Auto Cell Imaging System 2 (Thermo Fisher Scientific) using a 40x objective
104 lens and were processed by ImageJ software (W.S. Rasband, National Institutes of Health,
105 Bethesda, MD).

106 **Flow cytometry**

107 THP-1 cells were plated in 12-well culture plates (Corning Costar) as described above. The
108 cells were washed three times with 1X PBS and detached from plates using Accutase (A6964;
109 Sigma-Aldrich) incubation for 15 minutes at 37°C. The detached cells were collected on ice

110 and then centrifuged (settings). Human TruSatin FcX™, FcR Blocking Reagent (1 µg IgG/10⁶
111 cells in 100 µl staining volume; BioLegend, #422301) was applied to decrease the non-specific
112 binding for 10 minutes on ice. Cells were subsequently stained with Brilliant Violet 785™ anti-
113 human CD14 Antibody (1:1000; BioLegend, #301840), APC anti-human CD86 Antibody
114 (1:1000; BioLegend, #305412), and PE anti-human CD11b Antibody (1:1000; BioLegend,
115 #301306) for 30 minutes in the dark. The cells were then fixed and permeabilized with 1%
116 paraformaldehyde (PFA). Flow cytometry data were acquired on a BD LSRII flow cytometer
117 (BD Biosciences) with FACS Diva software (BD) and analyzed using FlowJo software
118 (FlowJo, LLC).

119 **Cell lysis and sample preparation for mass spectrometry**

120 The cells for proteomic analysis were cultured, as described above. After the indicated time
121 points of PMA incubation followed by resting, the media was discarded, and the cells were
122 washed thrice with ice cold PBS. The cells were lysed, and harvested using SDS lysis buffer
123 (2% SDS in 50 mM TEABC) tubes and sonicated using a probe sonicator (Branson Digital
124 Sonifier) on ice for 5-10 minutes (20% amplitude, 10 cycles). The lysates were heated at 95°C
125 for 10 minutes, allowed to cool to room temperature, and centrifuged at 12,000 rpm for 10
126 minutes. The protein concentration in the lysates were estimated by the Bicinchoninic acid
127 (BCA) assay (Pierce, Waltham, MA). 200 µg proteins from each condition were reduced and
128 alkylated with dithiothreitol (DTT) at 60°C for 20 minutes and 20 mM iodoacetamide (IAA)
129 at room temperature for 10 minutes in the dark, respectively. The protein samples were then
130 subjected to acetone precipitation with five volumes of chilled acetone at -20°C for 6 hours.
131 Protein pellets were obtained by centrifugation at 12,000 rpm for 15 minutes at 4 °C and
132 subjected to trypsin digestion with sequencing grade trypsin (1:20) (Sigma Aldrich) overnight
133 at 37 °C.

134 **Dimethyl-labeling of tryptic peptides**

135 The tryptic peptides obtained from Condition A, B and C were subjected to reductive
136 dimethylation with 4% (vol/vol) formaldehyde (CH_2O) (Light), (CD_2O) (Medium) or ($^{13}\text{CD}_2\text{O}$)
137 (Heavy) labels respectively. Following this, 4 μl of 0.6 M sodium cyanoborohydride
138 (NaBH_3CN) was added to the samples to be labeled with light and intermediate labels and 4 μl
139 of 0.6 M sodium cyanoborodeuteride (NaBD_3CN) to the sample to be heavy labeled
140 respectively. The mixture was incubated for 1 hour at room temperature. The reaction was
141 quenched with 16 μl of 1% ammonia. Finally, 8 μl formic acid was added, and the three
142 differentially labeled samples were pooled and desalted using C_{18} StageTip, evaporated to
143 dryness under vacuum, and subjected to Stage-tip based Strong-cation exchange (SCX)
144 fractionation as described previously (24).

145 **Mass spectrometry analysis**

146 Mass spectrometric analyses of the SCX fractions were carried out using a Q Exactive HF
147 Hybrid Quadrupole-Orbitrap mass spectrometer (Thermo Fisher Scientific, Bremen, Germany)
148 coupled to Easy-nLC1200 nano-flow UHPLC (Thermo Scientific, Odense, Denmark). The
149 data were acquired for each of the samples in biological quadruplicates. Briefly, tryptic
150 peptides obtained from StageTip-based SCX fractionation were reconstituted in 0.1% formic
151 acid and loaded on a nanoViper 2 cm (3 μm C_{18} Aq) trap column (Thermo Fisher Scientific).
152 Peptide separation was carried out using EASY-Spray C_{18} analytical column (50 cm, 75 μm
153 PepMap C_{18} , 2 μm C_{18} Aq) (ES801, Thermo Fisher Scientific) set at 40°C. Peptide separation
154 was carried out at a flow rate of 250 nl/min using a binary solvent system containing solvent
155 A: 0.1% formic acid and solvent B: 0.1% formic acid in 80% acetonitrile. A linear gradient of
156 5-30% solvent B over 150 minutes, followed by a linear gradient of 30-95% solvent B for 5
157 minutes, was employed to resolve the peptides. The column was re-equilibrated to 5% solvent
158 B for an additional 20 minutes. The total run time was 180 minutes. Data were acquired in
159 positive mode using a data-dependent acquisition method wherein MS1 survey scans were

160 carried out in 350-1650 m/z range in Orbitrap mass analyzer at a mass resolution of 120,000
161 mass resolution at 200 m/z. Peptide charge state was set to 2-6, and dynamic exclusion was set
162 to 30 s along with an exclusion width of \pm 20 ppm. MS/MS fragmentation was carried out for
163 the most intense precursor ions selected at top speed data-dependent mode with the maximum
164 cycle time of 3 seconds HCD fragmentation mode was employed with a collision energy of 30%
165 and detected at a mass resolution 15,000 at m/z 200. Internal calibration was carried out using
166 a lock mass option (m/z 445.1200025) from ambient air.

167 **Data analysis**

168 Protein identification and quantification were performed using Proteome Discoverer Version
169 2.3 with the following parameters: carbamidomethyl of cysteine as a fixed modification, and
170 oxidation of methionine, deamidation of asparagine and glutamine, acetylation (protein N
171 terminus), quantitation labels Dimethyl, Dimethyl:2H4 and Dimethyl:2H(6)13C(2) on N-
172 terminal and/or lysine were set as variable modifications. Trypsin as specified as proteolytic
173 enzyme with maximum of 2 missed cleavages allowed. The searches were conducted using the
174 SequestHT node against the Uniprot-Trembl Human database (v2017-10-25), including
175 common contaminants. Mass accuracy was set to 10 ppm for precursor ions and 0.02 Da for
176 MS/MS data. Identifications were filtered at a 1% false-discovery rate (FDR), accepting a
177 minimum peptide length of 7 amino acids. Quantification of identified proteins referred to the
178 razor and unique peptides and required a minimum ratio count of 2. Dimethyl-based relative
179 ratios were extracted for each protein/condition using the Minora Feature Detector node and
180 were used for downstream analyses.

181 **Bioinformatics analysis**

182 Protein abundances across multiple replicates were scaled, log-transformed, normalized using
183 the cyclic loess method, and analyzed for differential expression in limma v3.38.3 (25) in
184 R/Bioconductor (v3.5.2, <https://www.r-project.org/>; v3.8 <https://bioconductor.org>). The

185 treatment conditions were used for contrasting . Proteins expressed with a log2-fold change
186 ≥ 2 were considered as differentially expressed. Volcano plots were drawn using the
187 EnhancedVolcano R package (v 1.0.1) and proteins with $-\log_{10}$ (p-value) ≥ 1.25 were
188 considered to be significant. Heatmaps of expression data and *k*-means clustering was carried
189 out in Morpheus using Euclidean complete linkage
190 (<https://software.broadinstitute.org/morpheus/>). Significant clusters of genes that were
191 overexpressed in conditions A, B, and C were extracted, and enriched biological processes
192 were identified using Enrichr (<https://amp.pharm.mssm.edu/Enrichr/>). Hypergeometric
193 enrichment-based pathway analysis was carried out using ReactomePA (1.28.0) in R (v3.6.0,
194 <https://www.r-project.org/>)/Bioconductor (v3.9 <https://bioconductor.org>) with clusterProfiler
195 3.12.0 (26). Genesets with a minimum of 15 genes were considered for the analysis. The plot
196 was visualized using the ggplot2 package (v3.2.1) ([https://cran.r-
197 project.org/web/packages/ggplot2](https://cran.r-project.org/web/packages/ggplot2)). Significantly changing clusters for each condition from the
198 *k*-means clustering analysis were subjected to network analysis using STRING in Cytoscape
199 (version 3.7.1). The network properties were calculated using NetworkAnalyzer and visualized
200 in Cytoscape using betweenness centrality and degree parameters. The entire networks were
201 further subjected to clustering to identify significant sub-clusters using the MCODE app
202 (v1.5.1) (27) in Cytoscape. The parameters used for clustering included degree cutoff of 2,
203 node score cutoff of 0.2, *k*-core of 2, and Max. Depth of 100. Kinome trees were drawn using
204 KinMap (28) (<http://kinhub.org/kinmap>). Gene lists for functions such as phagocytosis,
205 reactive oxygen species, and inflammasome complex were obtained from the Molecular
206 Signatures Database (MSigDB, v7.0, <https://www.gsea-msigdb.org/gsea/msigdb>) (29). Protein
207 kinase and phosphatase lists were obtained from previous studies (30-33)

208 **Western blot analysis**

209 Protein samples were run on pre-cast NuPAGE™ Bis-Tris gels (Invitrogen) with 1 x MOPS
210 buffer (Invitrogen) and transferred on nitrocellulose membranes, using the iBlot®2 Gel
211 Transfer Device (Invitrogen). Membranes were washed in Tris Buffered Saline with 0.1%
212 Tween-X100 (TBS-T) and blocked with TBS-T containing 5% bovine serum albumin (BSA,
213 Sigma-Aldrich). Membranes were incubated with primary antibodies at 4°C overnight. The
214 following primary antibodies were used: GAPDH (1:5000; ab8245; Abcam), anti-IRF3
215 (1:1000; D83B9; cat#4302S; Abcam), anti-TBK1 (1:1000; cat#3504; Cell Signaling
216 Technology), anti- IL1B (1:1000; cat#12242; Cell Signaling Technology) and SQSTM1
217 (1:1000; cat#PM045; MBL). Membranes were washed in TBS-T and incubated with secondary
218 antibodies (HRP-conjugated, DAKO) for 1 hour at room temperature in TBS-T containing 1%
219 milk or BSA, developed with SuperSignal West Femto Substrate (Thermo Scientific) and
220 captured with LI-COR Odyssey system (LI-COR Biosciences, Lincoln, NE, USA).

221 **RNA isolation and quantitative real-time PCR (qPCR) analysis**

222 Undifferentiated THP-1 and PMA-differentiated cells (2×10^5 cells) in biological duplicates
223 per condition were stimulated with TLR agonists- CL075 (TLR8; tlrl-c75; Invivogen, 5 μ g/ml),
224 CpG2006 (TLR9; tlrl-2006; Invivogen, 10 μ M), Flagellin (TLR5; tlrl-stfla; Invivogen, 100
225 ng/ml), FSL1 (TLR2/6; tlrl-fsl; Invivogen, 100 ng/ml), LPS 0111:B4 (TLR4; tlrl-3pelps;
226 Invivogen, 200 ng/ml), LPS K12 (TLR4; tlrl-eklps; Invivogen, 200 ng/ml), Pam3CSK4
227 (TLR1/2; tlrl-pms; Invivogen, 200 ng/ml), Poly (I:C) (TLR3; vac-pic; Invivogen, 10 μ g /ml),
228 R837 (TLR7; tlrl-imqs; Invivogen, 10 μ g/ml), and R848 (TLR7/8; tlrl-r848; Invivogen, 100
229 ng/ml) for 4 hours. Post stimulation, total RNA was isolated using RNeasy Mini columns,
230 followed by DNase digestion (Qiagen), according to the manufacturer's protocol. The purity
231 and concentrations of RNA were determined using NanoDrop 1000 (Thermo Scientific).
232 cDNA was prepared with High-Capacity RNA-to-cDNA™ (Applied Biosystems).
233 Quantitative real-time PCR (qPCR) analysis was performed on StepOne Plus Real-Time PCR

234 cycler (Thermo Fisher Scientific) using PerfeCTa qPCR FastMix UNG (Quantabio) and FAM
235 Taqman Gene Expression Assays: *IL6* Hs00985639_m1, *IL1B* Hs00174097_m1, *TNF*
236 Hs01113624_g1, *TBP* Hs00427620_m1, *IL8* Hs00174103_m1 (Life Technologies) in 96-well
237 format in technical duplicates. Relative expression compared to the unstimulated control
238 samples and TBP as a house keeping gene was calculated in R 3.3.2 as described previously
239 (25).

240 **Data availability**

241 Mass spectrometry-derived data have been deposited to the ProteomeXchange Consortium
242 (<http://proteomecentral.proteomexchange.org>) via the PRIDE partner repository (26) with the
243 dataset identifier: PXD015872.

244 **Results**

245 **PMA differentiation induces changes in morphology and expression of cell surface**
246 **markers in THP-1 cells**

247 We aimed to investigate the effects of various concentrations and duration of incubation with
248 PMA on the differentiation of THP-1 monocytic cells to macrophage-like cells. We chose three
249 commonly used differentiation protocols for the analysis based on previous studies (7, 12, 27).
250 Light microscopy analysis revealed changes in PMA induced morphology, including increased
251 cellular adhesion and spread morphology. In concordance with the results observed by Starr *et*
252 *al.* (28), the changes in cell morphology were dependent on the concentration and the duration
253 of incubation, with cells treated with PMA and rested for two days showing a significant
254 increase in cytoplasmic volume with increased adherence (**Figure 1A**). The differentiation was
255 more pronounced in Condition A in comparison with the conditions B and C. Additionally,
256 flow cytometry analyses indicated an increase in side scatter (SSC), in condition A with respect
257 to conditions B and C. The cells treated with PMA but not rested (Condition C) closely
258 resembled the undifferentiated THP-1 cells in regard to these properties (**Figure 1B**). In
259 addition to the morphological changes, the differential expression of cell surface markers CD86,
260 CD11b (ITGAM), and CD14 were also monitored. CD86, a cell surface glycoprotein expressed
261 on all antigen-presenting cells, was found to be expressed to a similar extent in all the three
262 protocols tested. In concordance with earlier reports, the expressions of CD11b and CD14 were
263 found to be lower in Condition C in comparison to the other two conditions tested. We also
264 observed an effect on the expression based on the duration of incubation and period of rest.
265 The expression of both CD11b and CD14 was comparable in conditions A and B with the
266 highest surface expression observed in condition A (**Figure 1C**). Our data, therefore, confirm
267 the previous findings that the degree of differentiation induced by PMA treatment varies
268 depending on the concentration and period of rest post-PMA treatment.

269 **Quantitative proteomic analysis reveals diverse proteome expression profiles in response**
270 **to varying differentiation protocols**

271 To evaluate the proteome-wide expression changes upon PMA treatment, we performed
272 quantitative proteomic analysis using a stable isotope dimethyl labeling approach (**Figure 2A**).
273 From four independent biological replicates, 5,277 proteins were identified, of which 5,006
274 proteins were quantified in at least one replicate. A total of 3,623 proteins were identified and
275 quantified in all four replicates providing a global view of changes in protein expression upon
276 PMA treatment (**Supplementary Table 1**). Principal component analysis (PCA) revealed
277 distinct clustering of each treatment condition with the biological replicates grouped (**Figure**
278 **2B**). The highest variance was observed in all replicates of condition C and can likely be
279 explained by the fact that the morphological phenotype observed was much closer to the
280 monocytic cell type rather than the macrophage-like phenotype.

281 Next, we applied a log2 (fold-change) and adjusted p-value cutoff of 2 and < 0.05 resulting in
282 the identification of 324, 415 and 413 proteins upregulated and 299, 321 and 338 proteins
283 downregulated in condition B with respect to condition A (B/A), condition C with respect to
284 condition A (C/A) and condition B (C/B), respectively (**Figure 2 C-E, Supplementary Figure**
285 **1A**). The segregation of condition A from condition B and C was mainly driven by differential
286 expression of several proteins involved in vesicle-mediated transport (KIF13B, KIF2C, KIFC1,
287 STX18), cell cycle regulation and mitosis (RRM1 and RRM2), DNA polymerase complex
288 subunits- POLD1 and POLD2, topoisomerase TOP2A, TACC3, and PRKACB. Interestingly,
289 proteins involved in innate immune response such as TBK1, IRF3, IL1B, scavenger receptor
290 SCARB1, and mitochondrial translation initiation factor MTIF3 were significantly
291 differentially expressed in condition B in comparison to conditions A and C. On the contrary,
292 members of the aldehyde dehydrogenase family such as ALDH1L2, ALDH2, members of
293 serine/threonine-protein kinase C (PRKCA, PRKCB, PRKCD), proteins involved in amino

294 acid metabolism-GOT1, PSAT1, ASNS among others were found to be significantly
295 upregulated in condition C in comparison to conditions A and B. It has been previously shown
296 that PMA-mediated differentiation increases the expression of PKC isoenzymes albeit to a
297 varied extent (29). The results from the MS analysis were further confirmed by validating the
298 expression dynamics of select proteins using immunoblot analysis. Consistent with MS results,
299 the expression of IRF3, TBK1, IL1B, and SQSTM1 were upregulated in cells differentiated for
300 3 and 5 days (**Supplementary Figure 1B**).

301 Monocyte-to-macrophage differentiation is reportedly associated with changes in the
302 expression of cell surface proteins, and this phenomenon has been utilized to distinguish
303 macrophage subtypes by their pattern of cell surface receptor expression (7, 30). Our analysis
304 revealed increased expression of known macrophage cell-surface markers such as TFRC
305 (CD71), FCGR1B, scavenger receptors- CD163, MSR1, and SCARB2 mainly in conditions A
306 and B. Notably, CD163, a member of the scavenger receptor cysteine-rich (SRCR) superfamily
307 class B, has been previously reported to be highly expressed in macrophages with low
308 expression reported in monocytes, dendritic cells and Langerhans cells (31, 32). On the
309 contrary, the expression of CD68 and CD14 in agreement with previous studies were
310 downregulated in condition B, suggesting a phenotype closer to macrophages. Interestingly,
311 the expression of CD36 and ITGAM (CD11b) was upregulated in condition A with respect to
312 conditions B and C, whereas that of CD68 was downregulated in both conditions A and B with
313 respect to condition C (**Supplementary Figure 1C, Table 1**). Comparison with the known
314 macrophage differentiation markers (GO:0030225) revealed significant induction of CSF1R,
315 TLR2, APP, RB1, CASP8, FADD, MMP9 and ICAM1 in conditions A and B with the
316 exception of transcription factor PU.1 (SPI1) and PRKCA that were significantly up in
317 condition C and CDC42 that was expressed to similar extent in all three protocols tested.

318 **Cluster analysis reveals differentiation protocol-specific regulation of cellular processes**
319 **and signaling pathways**

320 To gain further insights into specific expression profiles, we performed unsupervised
321 hierarchical clustering of proteins quantified, which revealed a high correlation between
322 biological replicates. Using Euclidean average and k-means clustering, the differentially
323 expressed genes were segregated into 10 major clusters (**Figure 3A, Supplementary Table 2**).
324 Cluster 1, 7, and 10 included proteins upregulated in conditions B, A, and C, respectively.
325 Cluster 3 includes 290 proteins that were expressed to a similar extent in conditions B and C
326 but downregulated in condition A. On the contrary; Cluster 6 included 458 proteins that were
327 expressed to a similar extent in conditions A and B but downregulated in condition C and
328 cluster 9 comprised of proteins overexpressed in conditions A and C with respect to condition
329 B, but with an overall increased expression observed in all replicates of condition C. Clusters
330 2, 4 and 5 showed similar expression of proteins across all three protocols tested with varying
331 expression across replicates. Altogether, our analysis demonstrates the existence of common
332 and differentiation-protocol-specific proteome signatures.

333 Gene ontology analysis of the differentiation protocol-specific clusters (clusters 1, 7, and 10)
334 revealed significant enrichment of several biological processes (adjusted p-value < 0.05)
335 (**Figure 3B, Supplementary Table 3-5**). Across the three differentiation conditions, several
336 metabolic processes were enriched. Processes indicative of differentiation, such as cell
337 migration and mitotic nuclear envelope assembly, were also enriched. While immune response-
338 regulating cell surface receptor signaling pathway was observed to be primarily enriched in
339 condition B, the process of leukocyte mediated immunity was found to be enriched in
340 conditions A and C (**Supplementary Figure 2**). Regulation of translation and gene expression
341 were among the significantly enriched processes in Cluster 3 and 6, whereas in the case of
342 Cluster 9, which included proteins expressed to a similar extent in conditions A and C but

343 downregulated in condition B, we observed enrichment of carbohydrate and fatty acid
344 metabolic processes. (**Supplementary Figure 2**). The findings described above are consistent
345 with the morphological changes observed with processes indicative of differentiation, such as
346 cell migration, gene expression, ribosome biogenesis as well as that of immune cell function
347 which were largely enriched in conditions A and B respectively.

348 **Pathway enrichment and network analysis reveals kinases as key regulatory hubs of the**
349 **PMA mediated differentiation processes**

350 We next aimed to delineate the signaling pathways affected during monocyte-to-macrophage
351 differentiation. Pathway enrichment analysis using the Reactome database revealed
352 differentiation protocols specific enrichment of signaling pathways such as VEGF signaling
353 pathway (enriched in conditions A and B), metabolism of nucleotides and porphyrins (enriched
354 in condition A), Fc epsilon R1 signaling (enriched in condition B), activation of NADPH
355 oxidases by RhoGTPases, and glycosphingolipid metabolism (enriched specifically in
356 condition C) (**Figure 4A, Supplementary Table 6**). Interestingly, cell surface signaling
357 mediated by ephrins, integrin, semaphorin, and syndecan interactions were significantly
358 enriched in condition A with respect to condition C with no apparent differences observed with
359 condition B. On the contrary, signaling pathways involved in clearing infections and immune
360 responses were significantly enriched in condition B. Apoptotic pathways were found to be
361 downregulated, whereas transamination and amino acid synthesis were upregulated in
362 condition C.

363 Network analyses of k-means clusters upregulated in each condition (**Supplementary Figure**
364 **3-5, Supplementary Table 7**) enabled identification of distinct hub proteins. Interestingly,
365 several kinases involved in cellular processes namely cell proliferation, differentiation and
366 regulation of microtubule dynamics such as MAPK1, CDK1, and PRKACB were found to have
367 a high degree of betweenness centrality and exist as key regulatory hubs in the network for

368 condition A. Other key regulatory hubs included DUT, FN1 a glycoprotein involved in cell
369 adhesion and migration processes and SEC13, a core component of the COPII-coated vesicles
370 and nuclear core complex . While proteins involved in innate immune response such as ISG15,
371 IL1B, LYN, COPS5, TBK1, MRPL3, and KRAS were found to be critical regulatory hubs in
372 condition B, enzymes involved in amino acid metabolism such as GOT1, PSAT1, AARS, CBS,
373 IMPDH1; subunit of RNA polymerase II (POLR21), plasma membrane-associated Rho
374 GTPase RAC1 and PRKCD were found to critical regulatory proteins in condition C.
375 Interestingly, a previous study exploring the role of kinases in monocyte-macrophage
376 differentiation observed a pronounced decrease in the expression of regulatory kinases such as
377 CDK1 involved in cell cycle entry and checkpoint in PMA-differentiated THP-1 macrophage-
378 like cells (22). It is well known that PMA activates protein kinase C (PKC) and promotes
379 leukocyte adhesion and migration, and therefore identifying PRKCD as one of the regulatory
380 hubs is indicative of the monocyte-to-macrophage differentiation process.
381 Further investigation on the effect of PMA differentiation protocols on the extent of expression
382 of other protein kinases as well as phosphatases revealed increased expression of several
383 kinases belonging to diverse classes (**Figure 4B**). Notably, protein tyrosine kinases such as
384 CSF1R and PTK2 was overexpressed in condition A, FGR, a member of the c-Src family
385 tyrosine kinases known to be induced by PMA (33-35) in condition B, and BTK2 in condition
386 C, respectively. Interestingly, increased expression of several kinases was observed in
387 condition C including members of the protein kinase C family-PRKCB, PRKCD which are
388 known markers of immune cell differentiation and inflammation, MAP kinase-interacting
389 serine/threonine-protein kinase 1 (MKNK1), MAPK14 and WNK1, a known regulator of ion
390 transport proteins involved in the differentiation and migration of endometrial stromal cells (36)
391 and glioma cells (37). Among the protein phosphatases, 80 were identified and quantified in
392 our dataset, with a vast majority expressed to a similar extent in all conditions tested. Of note,

393 phosphatases belonging to the HP2 family namely: prostatic acid phosphatase ACPP and acid
394 phosphatase 2 (ACP2), were significantly dysregulated in expression with ACPP over 20-fold
395 overexpressed in condition C with similar level of expression observed in conditions A and B.
396 On the contrary, ACP2, a lysosomal acid phosphatase was overexpressed 2-fold higher in
397 condition A compared to both condition B and C. Among the dual specificity protein
398 phosphatases (DUSPs), SSH3, a member of the slingshot family was upregulated in condition
399 C. SSH3 is known to specifically dephosphorylate and activate Cofilin, one of the key
400 regulators of actin filament dynamics and remodeling (38). Of the 16 protein tyrosine
401 phosphatases (PTPs) identified, the expression of PTPN7, PTPRC were high in condition C
402 whereas PTPN12, PTPN23, PTPN2, PTPRA, PTPRK, and PTPRU were overexpressed in
403 condition A. Interestingly, PTPRE and to a smaller extent, PTPN6 demonstrated increased
404 expression in condition B. Collectively, the protein kinases and phosphatases identified in this
405 study indicate their differential capacity in the regulation of microtubule stability, actin
406 cytoskeleton reorganization and autophagy in macrophages which in turn are required for their
407 functional responses including phagocytosis, antigen presentation, DAMP and PAMP
408 mediated immune signaling.

409 **PMA-induced monocyte-to macrophage differentiation modulates the expression**
410 **dynamics proteins involved in innate immune signaling**

411 Several previous studies have used THP-1 cells as a model for the immune modulation
412 approach; therefore, we assessed the impact of differentiation protocols on the expression of
413 proteins involved in innate immune signaling. Analysis of the expression profile of proteins
414 involved in Toll-like receptor (TLR) signaling pathways identified several known downstream
415 effector proteins (**Figure 5A, Supplementary Table 8**). A majority were expressed at similar
416 levels in all three conditions, suggesting that the effect of following secondary inflammatory
417 stimuli would be mostly independent of PMA stimulation. Among the TLR receptors, we

418 identified only TLR2 with over 2-fold expression in conditions A and B. TLR4 co-receptors,
419 namely CD14 and CD180, were found to be expressed relatively lower extent in conditions A
420 and B. CD14 also known as monocyte marker is downregulated upon differentiation. The other
421 signaling regulators and adaptor proteins such as CNPY3 and UN93B1 and CD36 were in
422 general upregulated in condition A in comparison to conditions B and C.

423 Signaling mediated by TLRs requires the assembly of the Myddosome complex. Although we
424 identified Myd88 (39), quantitation was obtained in only conditions A and B. The other
425 components including IRAK1, IRAK4 and TRAF6 were overexpressed in condition B with
426 slightly increased expression in condition A compared to condition C. Of the transcription
427 factors essential for mediating TLR activity, we observed increased expression in mostly
428 conditions A and B with JUNB, highly expressed in condition B. RelB, a member of NF- κ B
429 family, was identified in only conditions A and B (40, 41). The expression of Interferon
430 regulatory transcription factors also varied across the conditions tested with over 4-fold
431 expression IRF3 expression in condition B in comparison to conditions A and C whereas IRF5,
432 a key regulator of antiviral immune response, was 2-fold overexpressed in condition C with
433 respect to conditions A and B. This indicates that using condition C to study TLR signaling
434 and/or non-canonical NF- κ B signaling pathway may likely alter the outcome of the experiment,
435 and the subsequent phenotype will mostly be dependent on the PMA stimulation. The
436 expression of kinases belonging to the MAPK family, as described in the earlier section, was
437 generally higher in conditions A and B with the exception of MKNK1, MAP2K1, and
438 MAPK14 which were observed to be upregulated in condition C (**Figure 5A**). Our results are
439 in concordance with a previous report suggesting rewiring of MAPK signaling cascade upon
440 THP1 differentiation (22). We also identified 5 proteins known to be a part of the
441 inflammasome complex that were expressed at similar levels except for NLRP3 that was found
442 to be expressed only in condition B (**Supplementary Figure 6**). We also observed differential

443 expression of proteins known to be involved in the process of phagocytosis and oxidative stress
444 such as FGR, LYN, and pro-inflammatory cytokine IL1B among others which were selectively
445 upregulated in condition B. However, neutrophil cytosolic factors NCF2 and NCF4-regulatory
446 components of the superoxide-producing phagocyte NADPH-oxidase, PYCARD, ITGAL,
447 protein kinase C delta (PRKCD), PTPRC, were found to be upregulated in condition C
448 (**Supplementary Figure 6**). Taken together, our analysis provides insights on the differential
449 expression of immune signaling mediators, transcription factors and effectors that can
450 determine the outcome of the signaling responses following the type of differentiation protocol
451 employed.

452 The response of activated macrophages by various stimuli involves the secretion of cytokines
453 such as IL-1 β , IL-6, IL-8, and TNF- α as a significant component of the innate immune response
454 (42). We, therefore, studied the functional properties, cytokine gene expression in
455 undifferentiated (monocytic), and differentially differentiated THP1 cells (macrophage-like)
456 and compared the dissimilarity and similarity of expression trends among conditions. To assess
457 the changes in the cytokine mRNA expression levels, cells were treated with various TLR
458 ligands: CL075-TLR7/8, CpG2006-TLR9, Flagellin-TLR5, FSL1-TLR2/6, LPS 0111:B4, and
459 LPS K12 – TLR4, Pam3CSK4-TLR2/1, Poly I:C-TLR3, R837-TLR7, and R848-TLR7/8
460 (**Figure 5B**). Monocytes are the first cells that encounter pathogens and promptly adapt to the
461 environmental situations by regulating the expression of genes activated by the inflammasome,
462 such as IL-1 β (43). As anticipated, the TLR2 ligand Pam3CSK4 stimulated undifferentiated
463 cells showed significant cytokine induction of *IL1 β* mRNA. Interestingly, it also induced a high
464 level of *IL6* and *IL8*. On the other hand, the average cytokine expression appeared to increase
465 in PMA differentiated cells with respect to the undifferentiated cells, except when it was
466 simulated with CpG2006, Flagellin, and R848. Expression of cytokines upon stimulation with
467 FSL1, LPS 0111: B4, LPS K12, and Pam3CSK4 did not significantly vary among the different

468 differentiation conditions except for *IL6* mRNA which was markedly downregulated upon
469 CpG2006, Flagellin and R848 stimulation in condition A. Overall, the most robust upregulation,
470 especially with respect to *IL6* and *TNF- α* expression levels were observed in condition B
471 (**Figure 5B**). Together these experiments indicate that depending on the context of the
472 experimental question, careful consideration of the differentiation protocols selection must be
473 made to avoid undesired outcomes.

474 **Discussion**

475 Human monocytic THP-1 cells are extensively used as a model system to study
476 monocyte/macrophage functions. However, to be used as an *in vitro* model mimicking human
477 macrophages, THP-1 cells have to be differentiated, and several protocols have been tested (7,
478 9, 29, 44). Among these, PMA is most often employed to induce differentiation, with almost
479 similar phenotypes reported in terms of cell morphology, expression of macrophage surface
480 markers, and cytokine production (28, 45). However, the amount and duration of incubation
481 with PMA vary widely across the literature. Additionally, studies demonstrate altered
482 sensitivity, as well as undesirable gene regulation in PMA-differentiated macrophages that may
483 contribute to their differential response to secondary stimuli (12, 28). Although this may likely
484 be the case, one inherent limitation of most of these studies is that their focus has primarily
485 been on characterizing either the transcriptional profile or surface receptor expression (11, 30).
486 Since the effect of any stimuli is a global response, it is imperative to study the impact of
487 differentiation at the global proteome level.

488 To illustrate changes in the proteome expression dynamics during differentiation of THP-1
489 cells into macrophage-like cells, we performed a global quantitative proteomic analysis by
490 comparing three established and widely employed PMA-mediated differentiation protocols.
491 Our analysis indicates that in the course of monocyte to macrophage differentiation, the
492 proteome profiles across the three tested protocols display common and differentiation-
493 protocol-specific regulation with the expression of known macrophage differentiation markers
494 significantly induced in two of the three conditions. We also delineated the biological and
495 cellular processes that are impacted to a considerable extent depending on the type of treatment
496 conditions. Importantly, regulation of immune signaling response, protein transport, and
497 regulation of cell migration, all indicative of macrophage function were significantly enriched
498 in conditions A and B. These treatment conditions include the use of a higher concentration of

499 PMA, followed by a period of rest appeared to correlate well with macrophage-like phenotype,
500 unlike what was suggested previously (12).
501 GM-CSF-mediated differentiation of primary human monocytes to macrophages upregulates
502 the macrophage-specific surface markers/receptors, antigen-presenting function, phagocytosis,
503 anti-microbial activity, lipid metabolism and production of growth factors and pro-
504 inflammatory cytokines as evidenced by the global transcriptome analysis of GM-CSF-induced
505 macrophages (46). We too observed a similar trend with treatment condition B showing a better
506 representation of proteins involved in innate immune signaling while cathepsins- proteases
507 involved in innate immune responses and protein kinases involved in the processes of cell
508 proliferation and differentiation (47, 48) were found to be significantly induced in condition A.
509 The increased expression of *IL1B* upon PMA differentiation has been reported earlier at the
510 transcriptome level (11). Although we did not examine the phagocytic activity of differentiated
511 macrophages in this study, we provide evidence of differential expression of proteins involved
512 in the process of phagocytosis across the three tested protocols. Importantly, proteins including
513 kinases, members of Rho GTPase family and adaptors involved in the formation of
514 lamellopodia and actin cytoskeleton reorganization among others were found to be upregulated
515 in conditions A and B (49). On the contrary, regulatory components of the superoxide-
516 producing phagocyte NADPH-oxidase were upregulated in condition C. Our analysis also
517 resulted in the identification of several integrins, known to be involved in the processes of cell
518 adhesion and cell surface receptor-mediated signaling required to maintain homeostasis as well
519 as host defense and inflammation (50). Although the extent of expression of integrins were
520 almost similar, differential induction of CD49c (ITGA3) and ITGB1 (CD29) (50), were
521 observed in condition A with respect to others. ITGAL (CD11a), a pan-leukocyte marker was
522 found to be upregulated in condition C compared to the other two tested protocols indicating

523 that the differential expression may likely contribute to differences in the initiation of primary
524 immune response (50).

525 Our analysis further highlights differentiation protocol-specific subsets with several protein
526 kinases serving as central hubs in mediating the differentiation process. This is of vital
527 importance as cellular signaling is largely governed by the regulation of expression of kinases
528 and phosphatases in a cell type-specific manner or upon cell activation (51-53). One of the
529 major findings of this study is the differential expression of key regulatory kinases implicated
530 in cell cycle regulation including cyclin-dependent kinases, NEK family of serine-threonine
531 kinases as well as cAMP/PKA-induced signaling that are collectively responsible for
532 enrichment of signaling pathways involved in differentiation, maturation, and regulation of
533 actin cytoskeleton dynamics (54, 55). Interestingly, a pronounced decrease in the expression
534 of vital regulatory kinases in cell cycle entry and checkpoint including the cyclin-dependent
535 kinases has been reported in a previous study exploring the role of kinases in monocyte-
536 macrophage differentiation (22). Similarly, the members of protein kinase C family of serine-
537 and threonine kinases are known to phosphorylate a wide range of proteins involved in cell
538 maintenance and also serve as receptors for phorbol esters (56). We observed several members
539 of this family to be significantly overexpressed in condition C with respect to the other
540 conditions. The observed effect may be attributed to these cells being in a transition state and
541 therefore, do not demarcate as monocyte/macrophage populations. Results from previous
542 studies also indicate that the monocyte to macrophage differentiation is accompanied by
543 extensive rewiring of the MAPK-signaling cascades (22). This was partly observed in our
544 analysis as well with MAPK1 identified as a key regulatory hub in condition A. As reported
545 earlier, we too observed a moderate increase in the expression of MAP2K3, MAP3K2 and
546 MAP3K7 in conditions A and B in comparison to condition C, thereby confirming that these
547 two protocols induced the differentiation to macrophage-like cells (22).

548 Cytokine responses induced in monocytes and macrophages are known to vary depending on
549 the stimulus and the type of differentiated macrophage studied. Overall, we observed an
550 increase transcriptional response of pro-inflammatory cytokines upon stimulation with TLR
551 ligands except for R848- a TLR8 agonist and CPG2006, a TLR9 agonist, which showed an
552 overall decrease in the expression of cytokine mRNA expression especially *IL6* mRNA in
553 condition A and C respectively. Between the three different protocols, no apparent differences
554 in the induction of cytokines were observed in the case of flagellin (TLR5 agonist), poly I:C
555 (TLR3 agonist), and LPS (TLR4 agonist). The consensus on the induction of *TNF α* by LPS in
556 monocytes and macrophages remains unclear as some studies report higher induction in
557 monocytes, whereas others report the same in macrophages, and these differences may likely
558 be attributed to the differentiation protocols and purity and type of the ligands. Using rough
559 and smooth LPS, we demonstrate an increased induction of all pro-inflammatory cytokines in
560 all the three protocols tested with sustained increased expression observed in condition B. We
561 also noted that the more differentiated macrophage-like cells had higher *TNF α* inducible
562 responses to the TLR2 agonist Pam3CSK4. On the contrary, the induction of *IL1 β* by
563 Pam3CSK4 was downregulated with respect to undifferentiated monocytes in all the three
564 protocols tested. Taken together, our findings suggest that TLR ligands induce comparable
565 levels of cytokine gene expression across the protocols tested with condition B.
566 In conclusion, conditions A and B were found to express the most number of macrophage
567 markers, and desirable characteristics such as increased expression of cell surface receptors
568 and differentiation markers, increased expression of proteins involved in innate immune
569 signaling, and overall similar responses to TLR ligands. This suggests that the extended
570 duration of rest post PMA treatment may not directly contribute to significant alterations in the
571 proteome expression. Although both expressed a distinct set of proteins, a vast majority of
572 cellular processes, including metabolic responses, were mostly unaffected, suggesting that

573 metabolic reprogramming effects observed during secondary stimuli would be independent of
574 the PMA response. This suggests that of the tested conditions, condition B is the most optimal
575 differentiation protocol to studying innate immune signaling. Minor deviations in the protocols
576 can have unintended effects on the overall experimental setup and subsequently on the results.
577 Therefore, validation of the model solely by means of morphological or cell surface expression
578 of select markers may not suffice and should be supplemented with orthogonal experiments
579 that provide a more significant overview of the cellular state. The present datasets, in particular,
580 the quantitative differences in the proteome repertoire of molecules involved in innate immune
581 signaling, represent a valuable resource to understand and modulate the functionality of
582 monocyte-derived macrophages.

583 **Acknowledgments**

584 LC-MS data acquisition was performed at the Proteomics and Modomics Experimental Core
585 Facility (PROMEC), Norwegian University of Science and Technology (NTNU). PROMEC is
586 funded by the Faculty of Medicine and Health Sciences at NTNU and the Central Norway
587 Regional Health Authority. Data storage and handling are supported under the NIRD/Notur
588 project NN9036K. We thank Lars Hagen, Animesh Sharma, and Aditya Kumar Sharma for
589 their technical assistance and Geir Slupphaug for his continued support.

590 **Funding**

591 This research was funded by the Research Council of Norway (FRIMEDBIO “Young Research
592 Talent” Grant 263168 to R.K.K.; and Centres of Excellence Funding Scheme Project
593 223255/F50 to CEMIR), Onsager fellowship from NTNU (to R.K.K.), and Regional Health
594 Authority of Central Norway (90414000 to KB).

595

596 **Abbreviations**

597	BCA	Bicinchoninic Acid
598	DTT	Dithiothreitol
599	FACS	Fluorescence-Activated Cell Sorting
600	GO	Gene Ontology
601	HCD	Higher-energy Collisional Dissociation
602	IAA	Iodoacetamide
603	MS/MS	Tandem mass spectrometry
604	PCA	Principal Component Analysis
605	PMA	Phorbol-12-myristate-13-acetate
606	SCX	Strong Cation Exchange
607	TLR	Toll-Like Receptor
608	UHPLC	Ultra-High-Performance Liquid Chromatography

609 **Figure legends**

610 **Figure 1: Changes in cell morphology and surface receptor expression are dependent on**
611 **PMA- mediated differentiation conditions**

612 (A). Representative bright-field images (Scale bar:100 μ m) (B) Representative forward and
613 side light scatter plot (C) Representative flow cytometric analysis of THP-1 cells stained using
614 anti- CD86, CD11b or -CD14 of THP-1 cells differentiated with varying concentration of PMA
615 (Condition A: 50ng/ml PMA 72h, +48h rest, Condition B: 50ng/ml PMA overnight, + 48h rest
616 and Condition C: 5 ng/ml PMA 48h, +3h rest). Data is representative of at least three
617 independent experiments

618 **Figure 2: Quantitative proteomic analysis of PMA-induced changes**

619 (A) The experimental strategy employed for comparative proteome analysis in response to
620 varying PMA-mediated differentiation protocols. Dimethyl labeling-based quantitative
621 proteomic approach was employed to identify and quantify the proteome changes in Condition
622 A (Light), Condition B (Medium), and Condition C (Heavy).The data were acquired in
623 biological quadruplicates and only proteins identified and quantified in all 4 replicates were
624 considered for further analysis.

625 (B) Principal component analysis (PCA) reveals that the three treatment conditions for
626 monocyte-to macrophage differentiation of THP-1 cells segregate from each on the basis of
627 concentration and duration of PMA treatment. All replicates of a given condition cluster
628 together suggesting minimal biological variability.

629 (C-E) Volcano plot displaying differential expressed proteins between (A) Condition A vs. B
630 (B) Condition C vs. A and (C) Condition C vs. B. The vertical axis (y-axis) corresponds to the
631 mean expression value of log 10 (q-value), and the horizontal axis (x-axis) displays the log 2-
632 fold change value. The red dots represent overexpressed proteins, and the green dots represent

633 proteins with downregulated expression. Positive x-values represent overexpression, and
634 negative x-values represent down-regulation.

635 **Figure 3: Protein expression dynamics analysis upon PMA induced monocyte to**
636 **macrophage differentiation**

637 (A) Protein expression patterns in response to differentiation protocols A, B, and C were
638 analyzed. Log2 transformed, z-score normalized and scaled expression of proteins identified
639 and quantified in all replicated were plotted, and k-means clustering was carried out. K-means
640 clusters 1, 7 and 9 which showed overexpressed proteins exclusive to conditions A, B, and C,
641 have been highlighted.

642 (B) The proteins exclusive to each condition were subjected to Gene Ontology (GO) analysis
643 using Enrichr to understand their function. Selected significantly enriched GO terms
644 (biological processes) (p-value ≤ 0.005) have been highlighted.

645 **Figure 4: Gene ontology analysis of proteins upon PMA induced monocyte to macrophage**
646 **differentiation**

647 (A) Gene Ontology analysis of upregulated and downregulated proteins in conditions A, B, and
648 C using ReactomePA.

649 (B). Kinome trees showing differential regulation of protein kinases in response to
650 differentiation conditions A, B, and C. The phylogenetic kinase relationship (Manning et al.,
651 2002) were generated using KinMap. Protein kinases identified and quantified in our study are
652 indicated as gray and black circles, respectively.

653 **Figure 5: Expression dynamics of genes involved in innate immune signaling in response**
654 **to PMA**

655 (A) Heatmap showing the proteome fold change of the subset of genes involved in innate
656 immune signaling. Scale indicates the level of expression (Log2-expression values, z-
657 transformed, scaled).

658 (B) Dynamic expression pattern to assess the expression levels of pro-inflammatory cytokine
659 mRNA induced by TLR agonists: CL075-TLR7/8, CpG2006-TLR9, Flagellin-TLR5, FSL1-
660 TLR2/6, LPS 0111:B4, and LPS K12 – TLR4, Pam3CSK4-TLR2/1, Poly I:C-TLR3, R837-
661 TLR7, and R848-TLR7/8. Heatmap depicts Log10 fold change of normalized gene expression
662 for pairwise comparisons of mRNA levels.

663

664 **References:**

- 665 1. Taylor, P. R., and S. Gordon. 2003. Monocyte heterogeneity and innate immunity.
666 *Immunity* 19: 2-4.
- 667 2. Gordon, S. 1998. The role of the macrophage in immune regulation. *Res Immunol* 149:
668 685-688.
- 669 3. Gordon, S. 1986. Biology of the macrophage. *J Cell Sci Suppl* 4: 267-286.
- 670 4. Gordon, S., and P. R. Taylor. 2005. Monocyte and macrophage heterogeneity. *Nat Rev
671 Immunol* 5: 953-964.
- 672 5. Auwerx, J. 1991. The human leukemia cell line, THP-1: a multifaceted model for the
673 study of monocyte-macrophage differentiation. *Experientia* 47: 22-31.
- 674 6. Chanput, W., J. J. Mes, and H. J. Wijchers. 2014. THP-1 cell line: an in vitro cell model
675 for immune modulation approach. *Int Immunopharmacol* 23: 37-45.
- 676 7. Daigneault, M., J. A. Preston, H. M. Marriott, M. K. Whyte, and D. H. Dockrell. 2010.
677 The identification of markers of macrophage differentiation in PMA-stimulated THP-
678 1 cells and monocyte-derived macrophages. *PLoS One* 5: e8668.
- 679 8. Qin, Z. 2012. The use of THP-1 cells as a model for mimicking the function and
680 regulation of monocytes and macrophages in the vasculature. *Atherosclerosis* 221: 2-
681 11.
- 682 9. Tsuchiya, S., Y. Kobayashi, Y. Goto, H. Okumura, S. Nakae, T. Konno, and K. Tada.
683 1982. Induction of maturation in cultured human monocytic leukemia cells by a phorbol
684 diester. *Cancer Res* 42: 1530-1536.
- 685 10. Cavaillon, J. M. 1994. Cytokines and macrophages. *Biomed Pharmacother* 48: 445-
686 453.
- 687 11. Kohro, T., T. Tanaka, T. Murakami, Y. Wada, H. Aburatani, T. Hamakubo, and T.
688 Kodama. 2004. A comparison of differences in the gene expression profiles of phorbol

689 12-myristate 13-acetate differentiated THP-1 cells and human monocyte-derived
690 macrophage. *J Atheroscler Thromb* 11: 88-97.

691 12. Park, E. K., H. S. Jung, H. I. Yang, M. C. Yoo, C. Kim, and K. S. Kim. 2007. Optimized
692 THP-1 differentiation is required for the detection of responses to weak stimuli.
693 *Inflamm Res* 56: 45-50.

694 13. Valle, E., and D. G. Guiney. 2005. Characterization of *Salmonella*-induced cell death
695 in human macrophage-like THP-1 cells. *Infect Immun* 73: 2835-2840.

696 14. Aldo, P. B., V. Craveiro, S. Guller, and G. Mor. 2013. Effect of culture conditions on
697 the phenotype of THP-1 monocyte cell line. *Am J Reprod Immunol* 70: 80-86.

698 15. Tedesco, S., F. De Majo, J. Kim, A. Trenti, L. Trevisi, G. P. Fadini, C. Bolego, P. W.
699 Zandstra, A. Cignarella, and L. Vitiello. 2018. Convenience versus Biological
700 Significance: Are PMA-Differentiated THP-1 Cells a Reliable Substitute for Blood-
701 Derived Macrophages When Studying in Vitro Polarization? *Front Pharmacol* 9: 71.

702 16. Weber, C., K. U. Belge, P. von Hundelshausen, G. Draude, B. Steppich, M. Mack, M.
703 Frankenberger, K. S. Weber, and H. W. Ziegler-Heitbrock. 2000. Differential
704 chemokine receptor expression and function in human monocyte subpopulations. *J
705 Leukoc Biol* 67: 699-704.

706 17. Passlick, B., D. Flieger, and H. W. Ziegler-Heitbrock. 1989. Identification and
707 characterization of a novel monocyte subpopulation in human peripheral blood. *Blood*
708 74: 2527-2534.

709 18. Ziegler-Heitbrock, H. W., G. Fingerle, M. Strobel, W. Schraut, F. Stelter, C. Schutt, B.
710 Passlick, and A. Pforte. 1993. The novel subset of CD14+/CD16+ blood monocytes
711 exhibits features of tissue macrophages. *Eur J Immunol* 23: 2053-2058.

712 19. Zeng, C., W. Wang, X. Yu, L. Yang, S. Chen, and Y. Li. 2015. Pathways related to
713 PMA-differentiated THP1 human monocytic leukemia cells revealed by RNA-Seq. *Sci
714 China Life Sci* 58: 1282-1287.

715 20. Abe, T., M. Ohno, T. Sato, M. Murakami, M. Kajiki, and R. Kodaira. 1991.
716 "Differentiation Induction" culture of human leukemic myeloid cells stimulates high
717 production of macrophage differentiation inducing factor. *Cytotechnology* 5: 75-93.

718 21. Court, M., G. Petre, M. E. Atifi, and A. Millet. 2017. Proteomic Signature Reveals
719 Modulation of Human Macrophage Polarization and Functions Under Differing
720 Environmental Oxygen Conditions. *Mol Cell Proteomics* 16: 2153-2168.

721 22. Richter, E., K. Ventz, M. Harms, J. Mostertz, and F. Hochgrafe. 2016. Induction of
722 Macrophage Function in Human THP-1 Cells Is Associated with Rewiring of MAPK
723 Signaling and Activation of MAP3K7 (TAK1) Protein Kinase. *Front Cell Dev Biol* 4:
724 21.

725 23. Kalxdorf, M., S. Gade, H. C. Eberl, and M. Bantscheff. 2017. Monitoring Cell-surface
726 N-Glycoproteome Dynamics by Quantitative Proteomics Reveals Mechanistic Insights
727 into Macrophage Differentiation. *Mol Cell Proteomics* 16: 770-785.

728 24. Kulak, N. A., G. Pichler, I. Paron, N. Nagaraj, and M. Mann. 2014. Minimal,
729 encapsulated proteomic-sample processing applied to copy-number estimation in
730 eukaryotic cells. *Nat Methods* 11: 319-324.

731 25. Livak, K. J., and T. D. Schmittgen. 2001. Analysis of relative gene expression data
732 using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. *Methods* 25:
733 402-408.

734 26. Vizcaino, J. A., A. Csordas, N. del-Toro, J. A. Dianes, J. Griss, I. Lavidas, G. Mayer,
735 Y. Perez-Riverol, F. Reisinger, T. Ternent, Q. W. Xu, R. Wang, and H. Hermjakob.

736 2016. 2016 update of the PRIDE database and its related tools. *Nucleic Acids Res* 44:
737 D447-456.

738 27. Yurchenko, M., A. Skjesol, L. Ryan, G. M. Richard, R. K. Kandasamy, N. Wang, C.
739 Terhorst, H. Husebye, and T. Espevik. 2018. SLAMF1 is required for TLR4-mediated
740 TRAM-TRIF-dependent signaling in human macrophages. *J Cell Biol* 217: 1411-1429.

741 28. Starr, T., T. J. Bauler, P. Malik-Kale, and O. Steele-Mortimer. 2018. The phorbol 12-
742 myristate-13-acetate differentiation protocol is critical to the interaction of THP-1
743 macrophages with *Salmonella Typhimurium*. *PLoS One* 13: e0193601.

744 29. Schwende, H., E. Fitzke, P. Ambs, and P. Dieter. 1996. Differences in the state of
745 differentiation of THP-1 cells induced by phorbol ester and 1,25-dihydroxyvitamin D3.
746 *J Leukoc Biol* 59: 555-561.

747 30. Forrester, M. A., H. J. Wassall, L. S. Hall, H. Cao, H. M. Wilson, R. N. Barker, and M.
748 A. Vickers. 2018. Similarities and differences in surface receptor expression by THP-1
749 monocytes and differentiated macrophages polarized using seven different conditioning
750 regimens. *Cell Immunol* 332: 58-76.

751 31. Maniecki, M. B., A. Etzerodt, S. K. Moestrup, H. J. Moller, and J. H. Graversen. 2011.
752 Comparative assessment of the recognition of domain-specific CD163 monoclonal
753 antibodies in human monocytes explains wide discrepancy in reported levels of cellular
754 surface CD163 expression. *Immunobiology* 216: 882-890.

755 32. Buechler, C., M. Ritter, E. Orso, T. Langmann, J. Klucken, and G. Schmitz. 2000.
756 Regulation of scavenger receptor CD163 expression in human monocytes and
757 macrophages by pro- and antiinflammatory stimuli. *J Leukoc Biol* 67: 97-103.

758 33. Faulkner, L., M. Patel, P. M. Brickell, and D. R. Katz. 1997. The role of the Fgr tyrosine
759 kinase in the control of the adhesive properties of U937 monoblastoid cells and their
760 derivatives. *Immunology* 92: 519-526.

761 34. Faulkner, L., M. Patel, P. M. Brickell, and D. R. Katz. 1992. Regulation of c-fgr
762 messenger RNA levels in U937 cells treated with different modulating agents.
763 *Immunology* 76: 65-71.

764 35. Kefalas, P., T. R. Brown, D. R. Katz, and P. M. Brickell. 1995. Identification of a
765 phorbol ester responsive region in the myeloid-specific promoter of the c-fgr proto-
766 oncogene. *Biochem Biophys Res Commun* 209: 60-65.

767 36. Adams, N. R., Y. M. Vasquez, Q. Mo, W. Gibbons, E. Kovanci, and F. J. DeMayo.
768 2017. WNK lysine deficient protein kinase 1 regulates human endometrial stromal cell
769 decidualization, proliferation, and migration in part through mitogen-activated protein
770 kinase 7. *Biol Reprod* 97: 400-412.

771 37. Zhu, W., G. Begum, K. Pointer, P. A. Clark, S. S. Yang, S. H. Lin, K. T. Kahle, J. S.
772 Kuo, and D. Sun. 2014. WNK1-OSR1 kinase-mediated phospho-activation of Na⁺-K⁺-
773 2Cl⁻ cotransporter facilitates glioma migration. *Mol Cancer* 13: 31.

774 38. Niwa, R., K. Nagata-Ohashi, M. Takeichi, K. Mizuno, and T. Uemura. 2002. Control
775 of actin reorganization by Slingshot, a family of phosphatases that dephosphorylate
776 ADF/cofilin. *Cell* 108: 233-246.

777 39. Deguine, J., and G. M. Barton. 2014. MyD88: a central player in innate immune
778 signaling. *F1000Prime Rep* 6: 97.

779 40. Sun, S. C. 2011. Non-canonical NF-kappaB signaling pathway. *Cell Res* 21: 71-85.

780 41. Kawai, T., and S. Akira. 2007. Signaling to NF-kappaB by Toll-like receptors. *Trends
781 Mol Med* 13: 460-469.

782 42. Arango Duque, G., and A. Descoteaux. 2014. Macrophage cytokines: involvement in
783 immunity and infectious diseases. *Front Immunol* 5: 491.

784 43. Netea, M. G., A. Simon, F. van de Veerdonk, B. J. Kullberg, J. W. Van der Meer, and
785 L. A. Joosten. 2010. IL-1beta processing in host defense: beyond the inflammasomes.
786 *PLoS Pathog* 6: e1000661.

787 44. Chen, Q., and A. C. Ross. 2004. Retinoic acid regulates cell cycle progression and cell
788 differentiation in human monocytic THP-1 cells. *Exp Cell Res* 297: 68-81.

789 45. Lund, M. E., J. To, B. A. O'Brien, and S. Donnelly. 2016. The choice of phorbol 12-
790 myristate 13-acetate differentiation protocol influences the response of THP-1
791 macrophages to a pro-inflammatory stimulus. *J Immunol Methods* 430: 64-70.

792 46. Lehtonen, A., H. Ahlfors, V. Veckman, M. Miettinen, R. Lahesmaa, and I. Julkunen.
793 2007. Gene expression profiling during differentiation of human monocytes to
794 macrophages or dendritic cells. *J Leukoc Biol* 82: 710-720.

795 47. Liu, Y., H. Liu, H. Cao, B. Song, W. Zhang, and W. Zhang. 2015. PBK/TOPK mediates
796 promyelocyte proliferation via Nrf2-regulated cell cycle progression and apoptosis.
797 *Oncol Rep* 34: 3288-3296.

798 48. Abshire, M. Y., K. S. Thomas, K. A. Owen, and A. H. Bouton. 2011. Macrophage
799 motility requires distinct alpha5beta1/FAK and alpha4beta1/paxillin signaling events.
800 *J Leukoc Biol* 89: 251-257.

801 49. Afzal, T. A., L. A. Luong, D. Chen, C. Zhang, F. Yang, Q. Chen, W. An, E. Wilkes, K.
802 Yashiro, P. R. Cutillas, L. Zhang, and Q. Xiao. 2016. NCK Associated Protein 1
803 Modulated by miRNA-214 Determines Vascular Smooth Muscle Cell Migration,
804 Proliferation, and Neointima Hyperplasia. *J Am Heart Assoc* 5.

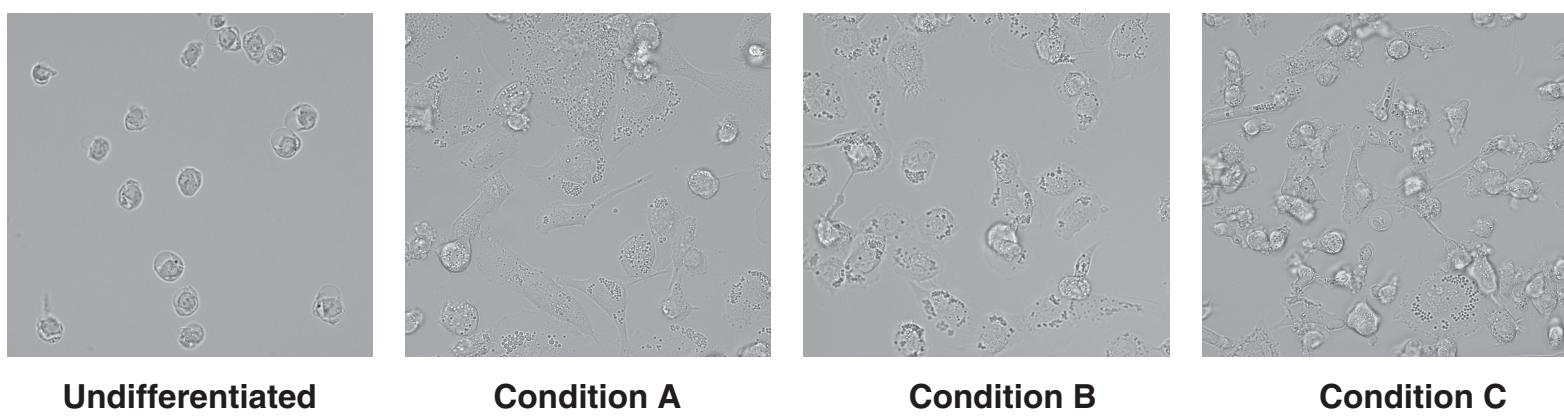
805 50. Ammon, C., S. P. Meyer, L. Schwarzfischer, S. W. Krause, R. Andreesen, and M.
806 Kreutz. 2000. Comparative analysis of integrin expression on monocyte-derived
807 macrophages and monocyte-derived dendritic cells. *Immunology* 100: 364-369.

808 51. Lang, R., and F. A. M. Raffi. 2019. Dual-Specificity Phosphatases in Immunity and
809 Infection: An Update. *Int J Mol Sci* 20.

810 52. Rieckmann, J. C., R. Geiger, D. Hornburg, T. Wolf, K. Kveler, D. Jarrossay, F. Sallusto,
811 S. S. Shen-Orr, A. Lanzavecchia, M. Mann, and F. Meissner. 2017. Social network
812 architecture of human immune cells unveiled by quantitative proteomics. *Nat Immunol*
813 18: 583-593.

814 53. Subbannayya, Y., S. M. Pinto, K. Bosl, T. S. K. Prasad, and R. K. Kandasamy. 2019.
815 Dynamics of Dual Specificity Phosphatases and Their Interplay with Protein Kinases
816 in Immune Signaling. *Int J Mol Sci* 20.

817 54. Chiba, S., Y. Amagai, Y. Homma, M. Fukuda, and K. Mizuno. 2013. NDR2-mediated
818 Rabin8 phosphorylation is crucial for ciliogenesis by switching binding specificity from
819 phosphatidylserine to Sec15. *EMBO J* 32: 874-885.

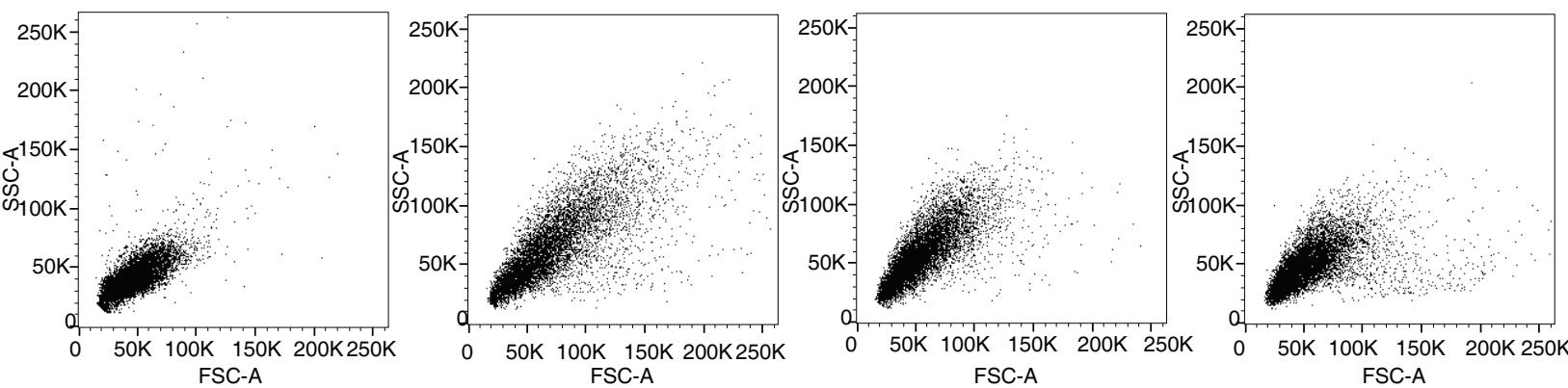

820 55. Yang, L., F. Dai, L. Tang, Y. Le, and W. Yao. 2017. Macrophage differentiation
821 induced by PMA is mediated by activation of RhoA/ROCK signaling. *J Toxicol Sci* 42:
822 763-771.

823 56. Castagna, M., Y. Takai, K. Kaibuchi, K. Sano, U. Kikkawa, and Y. Nishizuka. 1982.
824 Direct activation of calcium-activated, phospholipid-dependent protein kinase by
825 tumor-promoting phorbol esters. *J Biol Chem* 257: 7847-7851.

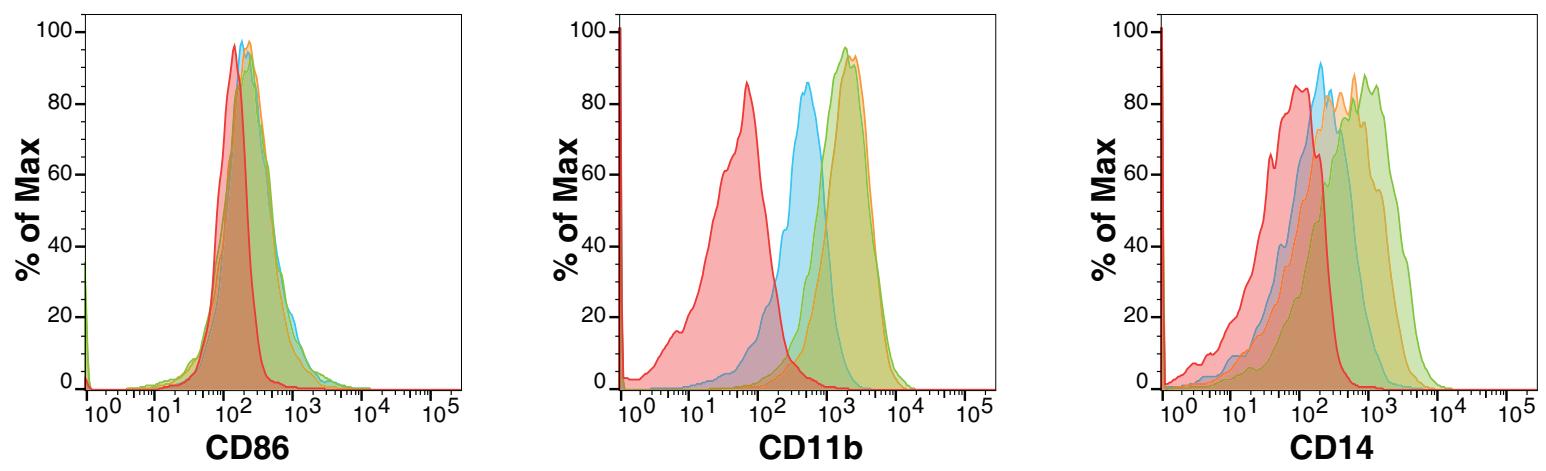
826

Figure 1

A


Undifferentiated

Condition A


Condition B

Condition C

B

C

■ Undifferentiated

■ Condition A

■ Condition B

■ Condition C

Figure 2

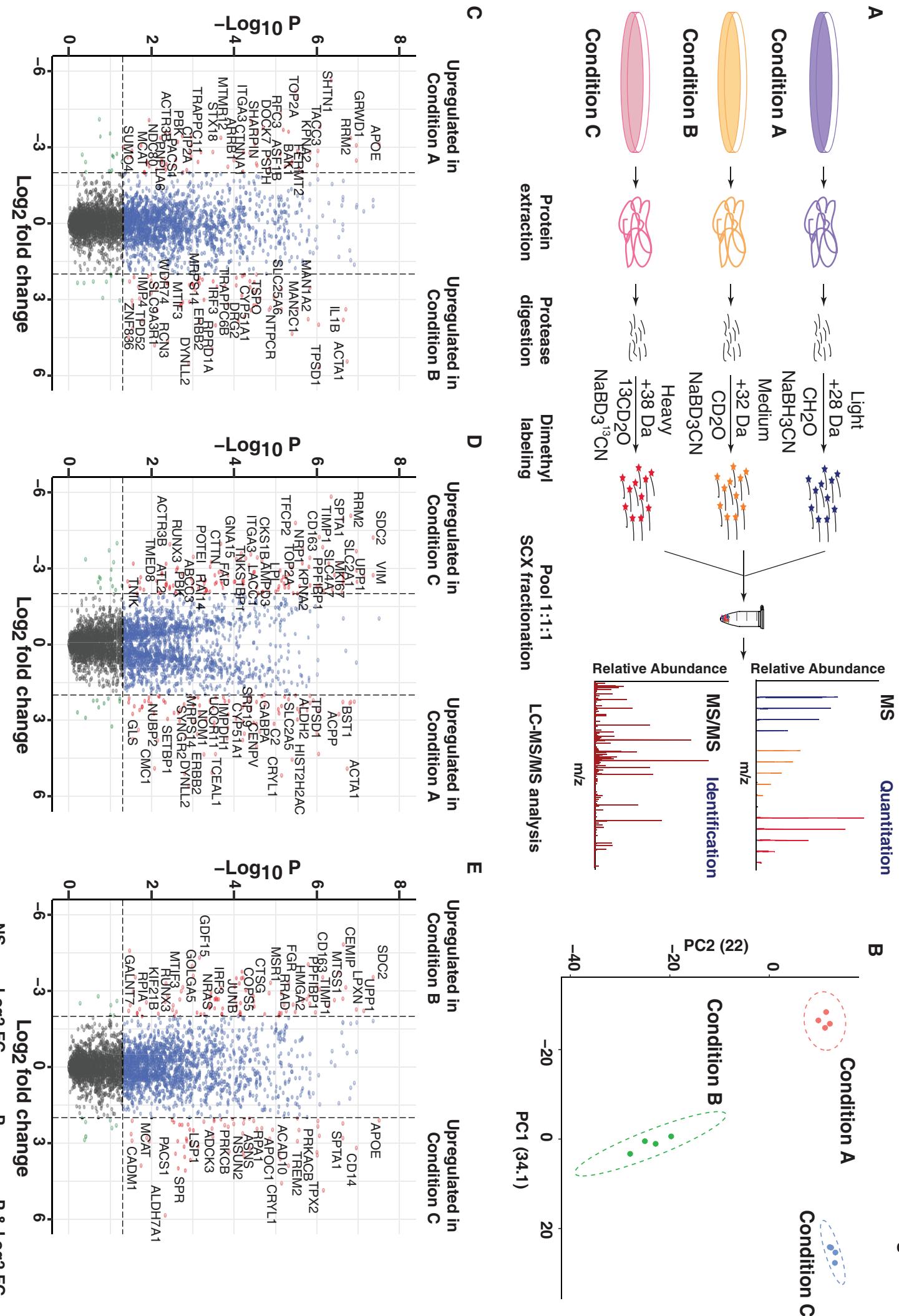
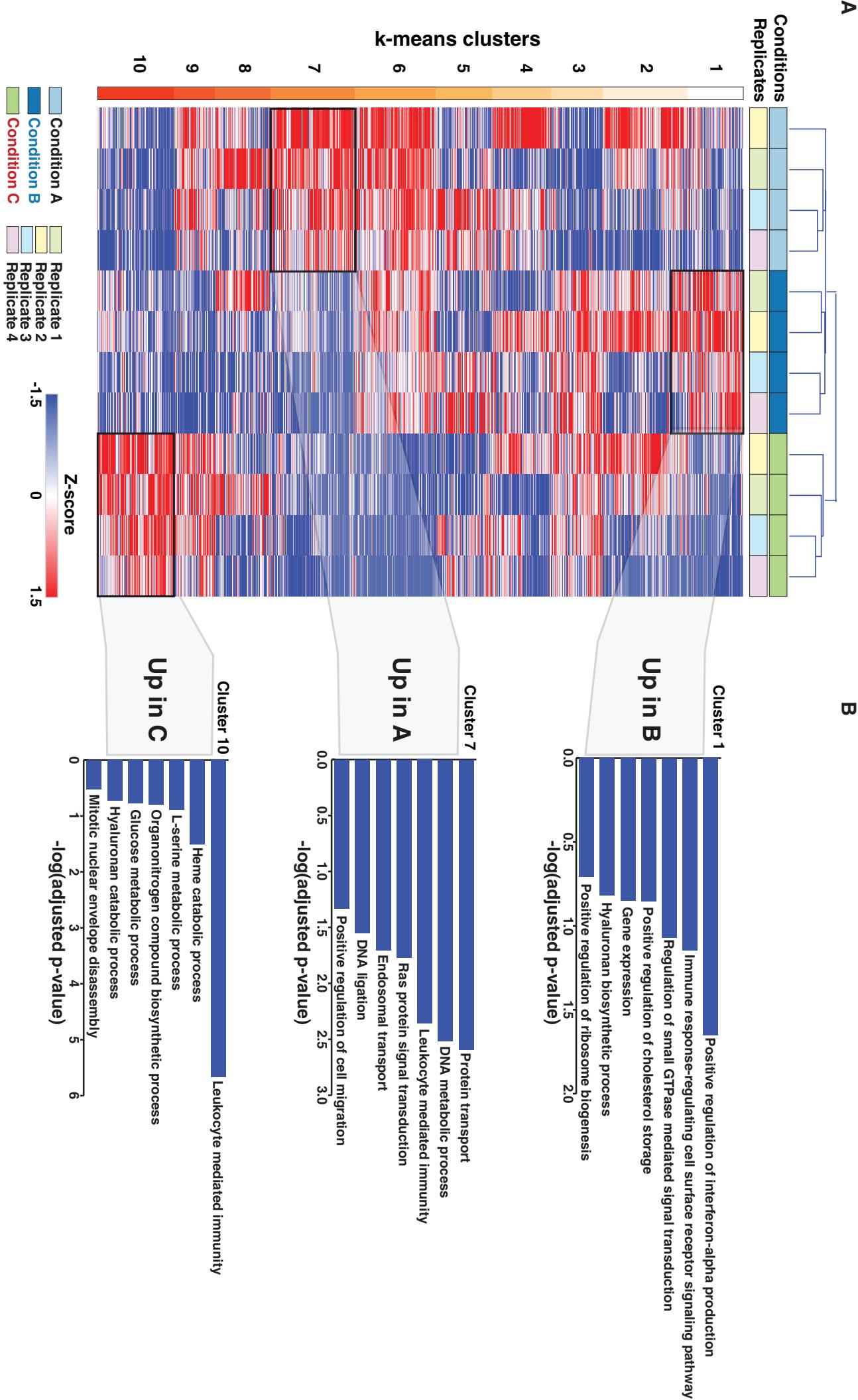
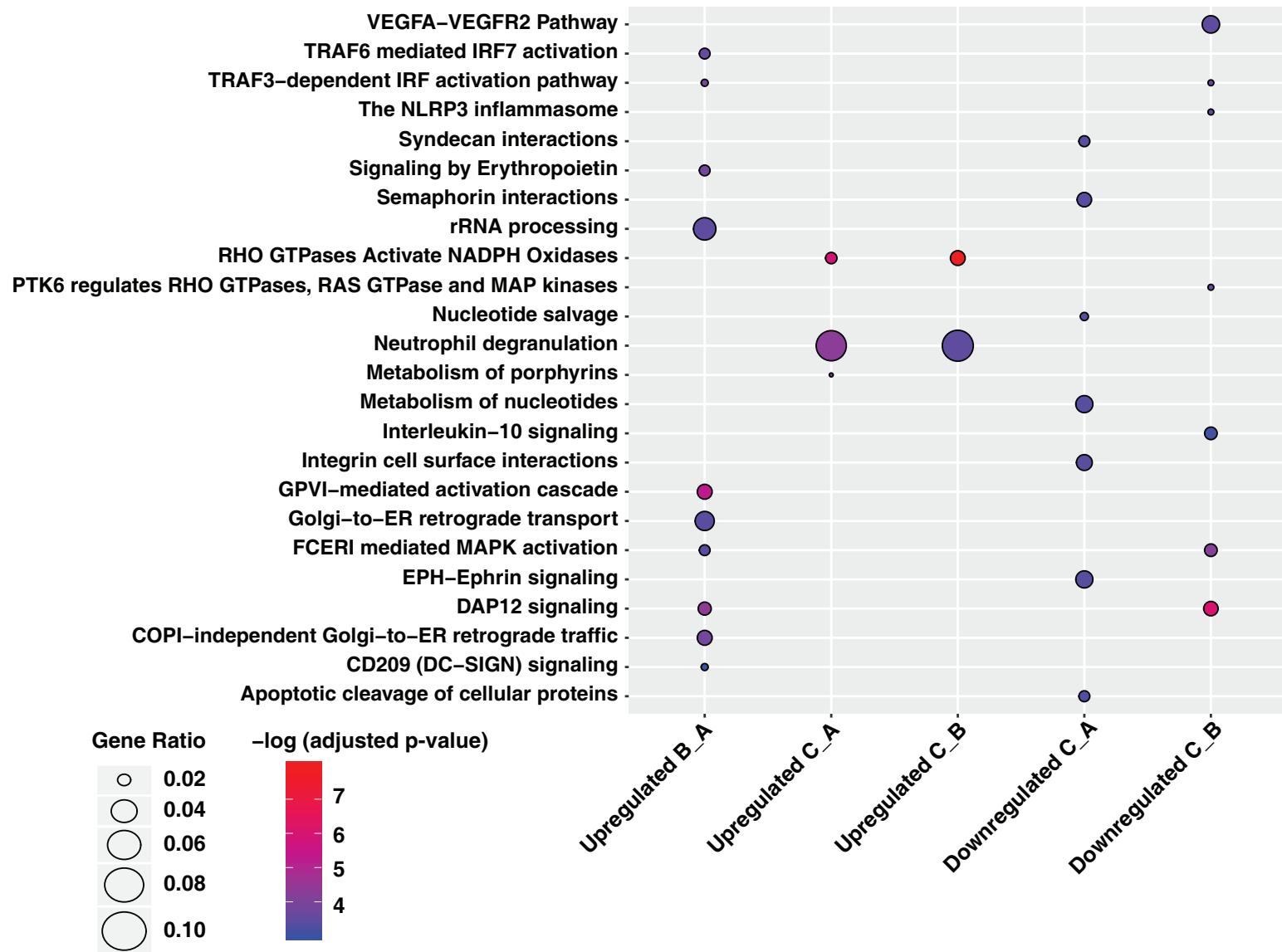
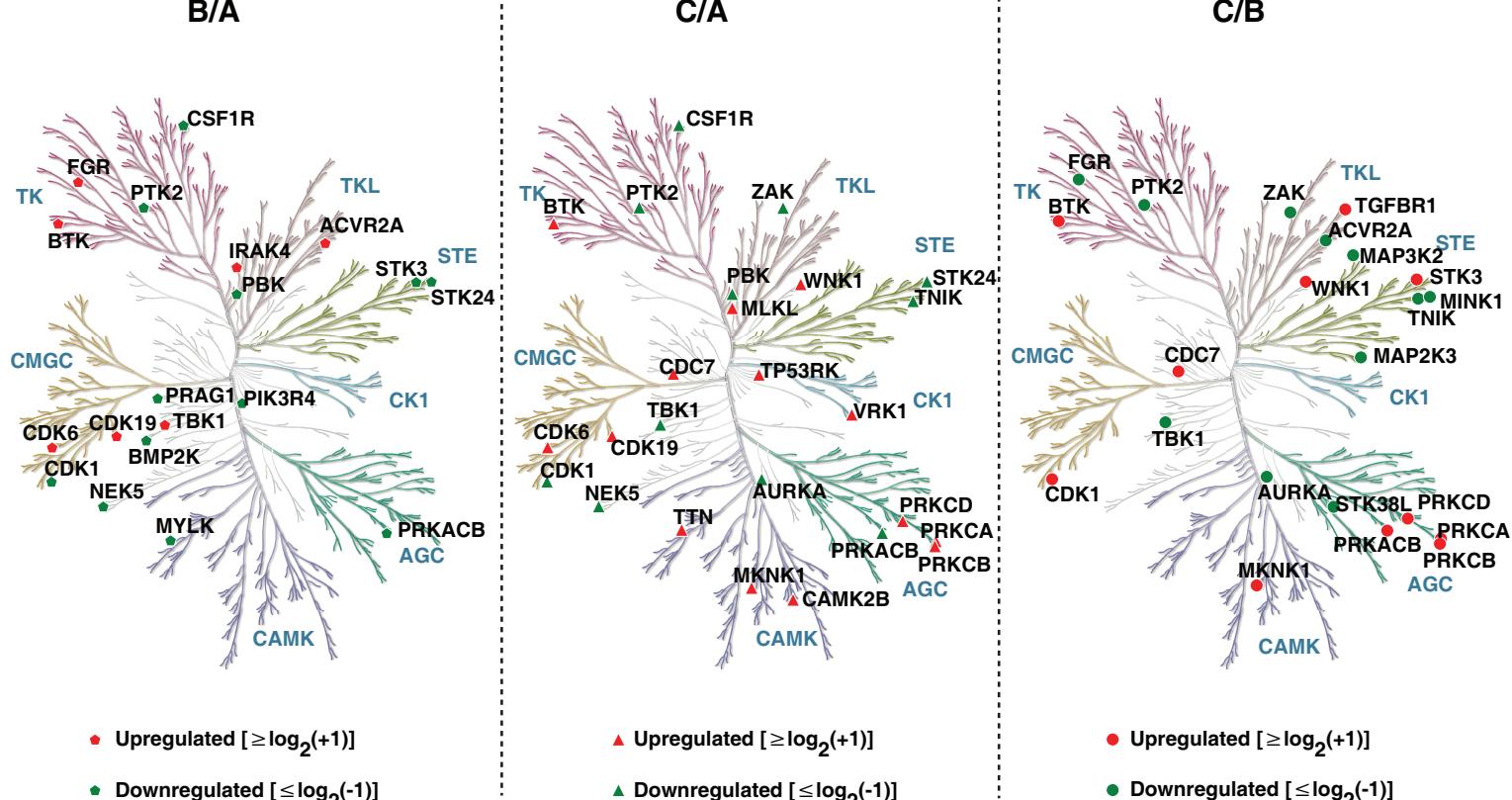
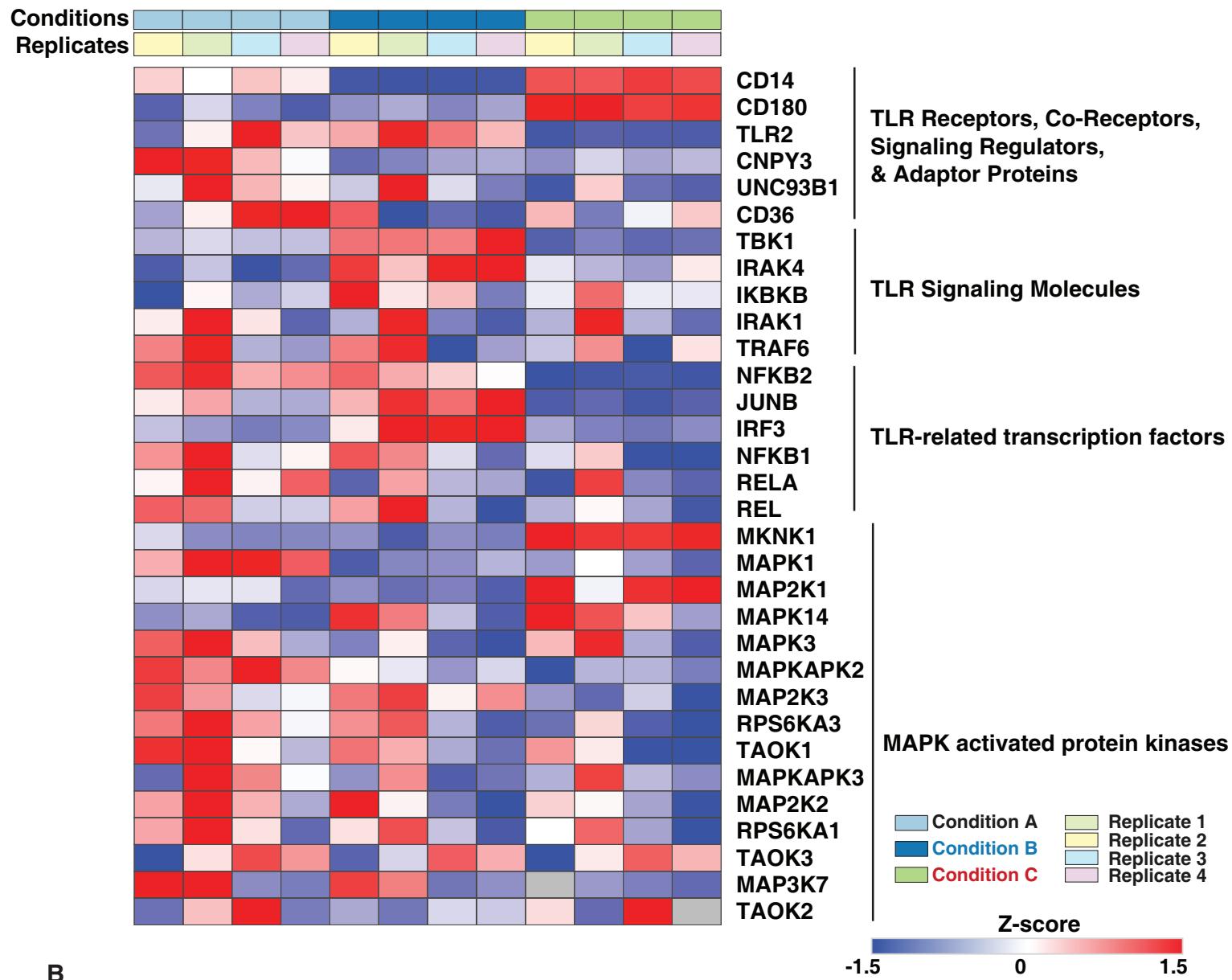
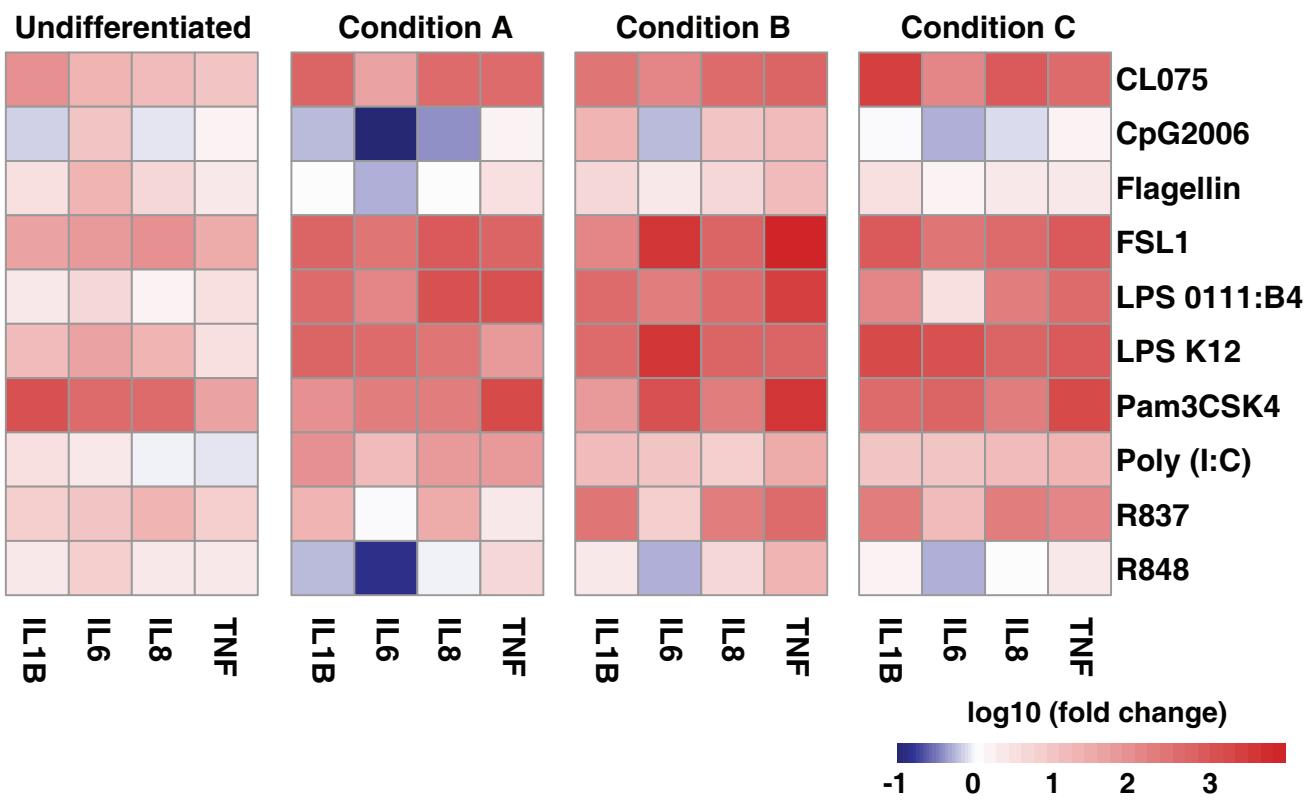




Figure 3





Figure 4

A

B

A**TLR signaling****Figure 5****B**