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Abstract

Motivation: Quantitative structure-activity relationship (QSAR) analysis is
commonly used in drug discovery. Collaborations among pharmaceutical institutions
can lead to a better performance in QSAR prediction, however, intellectual property
and related financial interests remain substantially hindering inter-institutional
collaborations in QSAR modeling for drug discovery.

Results: For the first time, we verified the feasibility of applying the horizontal
federated learning (HFL), which is a recently developed collaborative and
privacy-preserving learning framework to perform QSAR analysis. A prototype
platform of federated-learning-based QSAR modeling for collaborative drug
discovery, i.e, FL-QSAR, is presented accordingly. We first compared the HFL
framework with a classic privacy-preserving computation framework, i.e., secure
multiparty computation (MPC) to indicate its difference from various perspective.

Then we compared FL-QSAR with the public collaboration in terms of QSAR
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modeling. Our extensive experiments demonstrated that (1) collaboration by
FL-QSAR outperforms a single client using only its private data, and (2) collaboration
by FL-QSAR achieves almost the same performance as that of collaboration via
cleartext learning algorithms using all shared information. Taking together, our results
indicate that FL-QSAR under the HFL framework provides an efficient solution to
break the barriers between pharmaceutical institutions in QSAR modeling, therefore
promote the development of collaborative and privacy-preserving drug discovery with
extendable ability to other privacy-related biomedical areas.

Availability and implementation: The source codes of the federated learning
simulation and FL-QSAR are available on the GitHub:

https://github.com/bm?2-lab/FL-QSAR

Contact: gyang@cse.ust.hk; qgiliu@tongji.edu.cn

1 Introduction

During the drug discovery process, predicting and prioritizing the properties of large
numbers of compounds is an essential step in the early stage of drug discovery
(Vamathevan, et al., 2019). In the pharmaceutical industry, QSAR is a commonly
used in-silico technique to predict and investigate various properties of compounds,
such as the compound affinity towards a target and the absorption, distribution,
metabolism and excretion (ADME), etc, which can substantially reduce the

experimental work needed here (Ma, et al., 2015).
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Machine learning (ML) approaches provide powerful tools that can promote the
data-driven decision making, speed up the process and reduce failure rates with
abundant, high-quality data in drug discovery and development (Cohen, et al., 2018;
Cruz-Roa, et al., 2017; Ding, et al., 2018; Rahman, et al., 2017; Wang and Gu, 2018).
Generally speaking, increasing the training data can improve the performance of ML
approaches. In the pharmaceutical industry, generating more data generally means
more time and money costs (Ma, et al., 2020), however, the structure of the lead
compounds in the development pipelines will not be exposed before marketing, which
prevents the compound data sharing from one institute to each other. Therefore,
although collaboration and data sharing between individual entities is expected to
serve as a good strategy to save cost and promote drug discovery, such forms of
collaboration have been limited by concerns on compound intellectual property and
other related financial interests (Hie, et al., 2018).

Modern cryptography has provided partial solutions to this issue. Secure
multiparty computation (MPC) is an increasing popular while classical encryption
method that allow multiple entities to compute over their private datasets without
revealing any information about pharmacological data (Aho, 1987; Yao, 1982). A
quick while thorough survey indicates that MPC has been applied for genomic
diagnosis (Jagadeesh, et al., 2017), Drug-target interaction (DTI) prediction (Hie, et
al., 2018; Ma, et al., 2020) and genome-wide association study (GWAS) (Cho, et al.,
2018). In the MPC framework, all participants must submit their data securely to the

third party with encryptions (Bogdanov, et al., 2008). However, participants may not
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want to share data with the third party, even though the data is encrypted. Meanwhile,
other ethic and political issues remain under the MPC framework since countries
around the world are strengthening laws to protect data privacy and security by
prohibition of certain data transition across countries or organizations, even though
the data is encrypted. Such regulations includes the GDPR implemented by the
European Union (Voigt and Von dem Bussche, 2017) and CCPA enacted by
California, U.S. (de la Torre, 2018) et ¢. Therefore, the traditional MPC framework
remains facing the challenges under the constantly emerging new data laws and
regulations.

Federated learning (FL) is a recently proposed collaborative paradigm to enable
the data owners collaboratively train a model while any data owner does not expose
its data to others (Kairouz, et al., 2019). FL was first proposed by Google (Konecny,
et al., 2016; Konecny, et al., 2016; McMahan, et al., 2016), and then extended by
Yang et al (Yang, et al., 2019). FL can be categorized into horizontal federated
learning (HFL), vertical federated learning(VFL) and federated transfer learning(FTL)
(Yang, et al., 2019) . HFL is applicable to the scenarios that data sets share the same
feature space but differ in samples. VFL applies to the scenarios that data sets share
the same sample space but differ in feature space. FTL is introduced in the scenarios
that the two data sets differ not only in samples but also in feature space with only a
small portion of the feature space and sample space overlapped (Yang, et al., 2019)
(Fig. 1). In the pharmaceutical industry, the most common scenario is that different

institutions often have the same type of data, i.e., the lead compounds in their
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pipelines, which can be encoded with the same feature representations. The difference
is that the compounds held by different institutions are different. Compared to VFL
and FTL, HFL is obviously more suitable for the collaborations among
pharmaceutical industry. Essentially, HFL is based on the traditional MPC framework
with advantages that it passes encrypted model parameters to the server instead of
encrypted raw pharmacological data, which provides a workable solution to the facing
issues aforementioned.

In this study, we verified the feasibility of applying HFL to collaborative drug
discovery, with the commonly faced QSAR modeling as a demonstration study. To
the best of our knowledge, this is the first study to apply FL framework for
collaborative drug discovery compared to traditional MPC ones. In our study, we
simulated the scenario that parties have their private data, respectively, and trained a
routine ML model with and without HFL. Comprehensive experiments indicated that
in most cases, collaboration via HFL achieves almost the same performance as that of
collaboration via the corresponding cleartext algorithm and significantly outperforms
a single client via the corresponding cleartext algorithm. The FL-QSAR platform,
which is designed as a prototype system for QSAR modeling under HFL is presented,
served as a pioneer study to call for more attention and devoting in this area. To sum
up, for the first time, our study demonstrated the effectiveness of applying HFL in
QSAR modeling and proposed a prototype framework FL-QSAR with extendable
ability. The FL framework and FL-QSAR developed in our study can be applied or

extended to various drug-related learning problems involving collaboration and
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privacy-preserving, promoting the development of collaborative drug discovery and

privacy-related computing in pharmaceutical community.

(a) Horizontal federated learning
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Fig. 1. Categorization of Federated Learning. (a) Horizontal federated learning. (b) Vertical

federated learning. (c) Federated transfer learning. The term x, donates the n; feature of the

feature descriptions of the sample, y is the sample label and » donates sample ID.

2 Methods

2.1 Traditional Secure MPC

Secure MPC is a designed protocol that allows multiple parties to compute a function

on encrypted data and access only their own data and data that all parties agree to

reveal. In secure MPC, the data owner encrypts its data by splitting it using random

masks into » random shares that can be combined to reconstruct the original data.

These n shares are then distributed between n parties. This process is called secret

sharing (Ben-Or and Wigderson, 1988). We use a concrete example to better illustrate

the secret sharing concept. Suppose that an integer x is the private data and Q is a big

random integer. Then this client sends a random integer a between -Q and Q to party

S1 and (x — a mod Q) to party Sz respectively, a and (x — a mod Q) are called the two

shares of x respectively. Then the parties can compute functions on the data by
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operating on the secret shares and they can decrypt the final result by communicating
the resulting shares among each other (Ma, et al., 2020).
2.2 Horizonal federated learning applied in FL-QSAR
We then introduced the HFL framework applied in FL-QSAR, as an alternative
strategy for collaborative and privacy-preserving QSAR modeling compared to MPC.
The formal description of HFL is given as follows:
Define N data owners {Fi1, ...Fn}. All of them would like to train a model by
consolidating their respective data {D1, ...Dn}. A conventional method, such as using
the traditional MPC, is to put their data together and use D=D1 U ... U Dy to train
a model. A FL system is a process in which the data owners collaboratively train a
model and no data owner Fi expose its data Dito others. HFL is applicable when data
sets share the same feature space while different samples. We denote the features
space of the sample as X, the label space of the sample as Y and the sample ID space
as I, all of whom constitute the complete training dataset (/, X, Y). HFL can be
represented as:
Xi=X, Yi=Y,1li # [,VDi,Dj,i # j (1)

A HFL system commonly assumes honest participants and security against an
honest-but-curious server. An honest client means the client will not send fake or
false data to the server. An honest-but-curious server means the server will not send
fake or false data to clients, but is curious about information of clients and will mine

sensitive information from the data (Yang, et al., 2019).
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As shown in Fig. 2, in HFL system, participants with the same data structure
learn a ML model collaboratively with the help of a server. To train a model to predict
QSAR with HFL, our training process of such a system can be divided into the
following four steps (Yang, et al., 2019):

» Step 1: Each participant trains its model on its own data, encrypts model
parameters with secure MPC techniques, and sends encrypted results to server;
* Step 2: Server performs secure aggregation without obtaining information from any
participant;
» Step 3: Server sends back the aggregated results to participants;
* Step 4: Participants update their models with the decrypted parameters.

In our implementation of FL-QSAR, we use the Crypten, which is a ML
framework built on PyTorch (Paszke, et al., 2019) by applying secure MPC as its
cryptographic part, to implement encryption of model parameters and their operations
in secure aggregation.

It should be noted that traditional MPC allows the encrypted parameters to
compute in a secure manner, and a solution is needed to aggregate these parameters to
form the parameters in a federated learning model. One of the most common solutions
to aggregation for FL is the Federated Averaging algorithm (McMahan, et al., 2016)
(Algorithm S1). In our study, the basic idea of the algorithm is to average the
parameters w and b of the neural network models applied in FL-QSAR for

aggregating different clients.
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Fig. 2. The workflow of HFL. Each client trains its model on its private data, encrypts model

parameter, and sends them to the server. The server performs secure aggregation and sends back

the aggregated results to clients. At last, clients update their models with the decrypted

parameters.

Algorithm S1 Federated Averaging. The K clients are indexed by k, T is total

communication rounds, M is the number of local epochs, and # is the learning rate.

Server executes:
initialize wo
foreachround¢t=1,2,...,Tdo

St «— (random set of M clients)
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for each client i € S; in parallel do
wt,, « ClientUpdate(i, wr)
Werl <— ZII\c/I:l %Mgﬂ
ClientUpdate(i, w):
for local stepj=1,...,Kdo
w—w—nVfiw;z) forz ~ P;

return w to server

2.3 Benchmark data collection and federated learning simulation for
FL-QSAR
In our study, we simulated the scenarios of two clients, three clients and four clients
with and without HFL, respectively, to demonstrate the effectiveness of FL-QSAR in
QSAR modeling. We take the simulation for 3 clients with and without HFL as an
illustration example to demonstrate the process of simulation (Fig. 3). We use 15
benchmark datasets public available in Kaggle competition (Ma, et al., 2015) to
validate our study. Each dataset is curated for a type of ADME assays or a target, and
the detailed description of the datasets are listed in Table 1. Since the performance of
the HIVPROT dataset in 15 datasets is extremely outrageous and unstable, it is
excluded in the subsequent analysis. We randomly separated all available data into
subsets and distributed them to clients, which were then regarded as the private data.
Clients have the same amount of training data and testing data, with the chemical

structure descriptors (Ma, et al., 2015) as feature descriptions and bioactivities as the
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x stands for the number of clients.

Table 1. Benchmark data sets tested in FL-QSAR

Data sets Data Description Number of Number of
type molecules feature
descriptors

3A4 ADME  CYP P450 3A4 inhibition —log(IC50) M 50000 9491

CB1 Target Binding to cannabinoid receptor 1 —log(IC50) M 11640 5877

DPP4 Target Inhibition of dipeptidyl peptidase 4 —log(IC50) M 8327 5203

HIVINT Target Inhibition of HIV integrase in a cell based assay 2421 4306
—log(IC50) M

HIVPROT Target Inhibition of HIV protease —log(IC50) M 4311 6274

LOGD ADME  LogD measured by HPLC method 50000 8921

METAB ADME  Percent remaining after 30 min microsomal 2092 4595
incubation

NK1 Target Inhibition of neurokininl (substance P) receptor 13482 5803
binding —log(IC50) M

0X1 Target Inhibition of orexin 1 receptor —log(Ki) M 7135 4730

0x2 Target Inhibition of orexin 2 receptor —log(Ki) M 14875 5790

PGP ADME  Transport by p-glycoprotein log(BA/AB) 8603 5135

PPB ADME  Human plasma protein binding 11622 5470

log(bound/unbound)
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RAT F ADME  Log(rat bioavailability) at 2 mg/kg 7821 5698

TDI ADME  Time dependent 3A4 inhibitions log(IC50 without 5559 5945
NADPH/IC50 with NADPH)

THROMBIN  Target human thrombin inhibition —log(IC50) M 6924 5552

Since the deep neural network has been extensively applied in QSAR modeling
and proven to outperform other traditional ML methods (Preuer, et al., 2018), in our
study, we just introduced a routine neural network for QSAR model and use
parameter setting of DNN recommended by previous study as our hyperparameters in
all experiments (Ma, et al., 2015). We consider chemical structure descriptors as the
feature descriptions here and the numerical bioactivities are taken as the labels in
FL-QSAR, therefore the whole QSAR modeling is taken as a regression problem. In
order to improve the numeric stability, logarithmic transformation is applied to
transform the features while Min-Max Normalization is performed to scale the labels.
The number of training epochs is set to 180 at most and early stopping is adopted to
prevent overfitting. In our experiments, we trained the neural networks ten times and
averaged their predicted scores as the final results. It should be noted that basically
the core ML model applied in FL-QSAR and model selection procedure are not our
focus here, and users can try other ML models with different parameter settings and

different compound feature descriptors in the future.
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Fig. 3. The simulation for 3 clients with and without HFL as a demonstration example

3 Result

3.1 Comparisons between HFL and MPC

We made a comprehensive comparison between HFL and MPC, as MPC was also
previously proposed for QSAR modeling (Ma, et al., 2020) (Table 2). First, HFL is a
framework developed based on MPC and MPC is used to implement the encryption of
model parameters as well as their operations in secure aggregation in the workflow of
HFL. Second, MPC combines encrypted raw data of all clients together to train a
model while HFL aggregates encrypted model parameters for all clients to train a

model. Third, in terms of prediction performance, MPC is just identical to the
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corresponding cleartext neural network since it essentially trains the model by
combining all the training data from individual client, while HFL is expected to be a
little bit lower, keep a tradeoff between model efficiency and data private-preserving.
Therefore, the upper-bound of the performance of FL-QSAR is the performance of
cleartext QSAR modeling by combining all the training data from individual client.
Taking together, HFL can solve the issues or concerns by facing the increasing
emerged data laws and regulations to prohibit data transmission, where MPC is not
able to, and at the same time, reach relatively the same performance as those of

combining individual client together for model training.

Table 2. A comprehensive comparison between MPC and HFL

MPC HFL

Framework relationship / Applying MPC for model

parameters encryption

Content passed to the server Encrypted raw data Encrypted model parameters

Performance compared to cleartext learning Identical Upper-bound

algorithms with data sharing

Applicable to data transmission regulations No Yes

3.2 Comparisons between public and HFL collaborations

In this section, we examined whether collaboration via HFL will cause the loss of the
prediction accuracy and to what degree it will cause when compared to the

collaboration via cleartext learning algorithms using all shared information. We used
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the coefficient of determination (R?) as the criterion to evaluate the performance for
this regression task of QSAR modeling. As shown in Fig. 4a, it indicated that the loss
of the prediction accuracy is increasing as the number of clients increases, and HFL
for 4 clients is more unstable as 2 outliers appeared. This is expected, since increasing
the number of clients will not increase the whole training data, while it increases the
model instability because the errors occurred in every single client will influence the
final aggregation results in QSAR modeling. Nevertheless, in most cases, HFL can
achieve almost the same performance as collaboration via cleartext learning
algorithms using all shared information. This can be seen in Fig. 4a that the loss for
all scenarios are nearly zero. More details can be found in the Supplementary Table 1.
3.3 Comparison between HFL collaborations and a single client using
private data
We also compared the prediction performance between a single client and that of HFL
for 2 clients, 3 clients and 4 clients respectively. We found that collaboration by HFL
achieved a significant improvement in R? and outperformed a single client using its
private data (Fig. 4b-4d). This result demonstrated the effectiveness of HFL.
Collaboration by HFL gained a substantially performance improvement than that of
one client by using only its private data. More details can be found in the

Supplementary Table 1.
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Fig. 4. The prediction performance of HFL. The term ‘all” means that collaboration via cleartext
learning algorithms using all shared information. The term ‘#_cli_FL’ means that collaboration of
n clients via HFL and so on. The term ‘n_cli_p’ means that the py client of # clients and so on. (a)
The loss of prediction accuracy of FL over all. (b) The improvement of HFL for 2 clients over a
single client. (¢) The improvement of HFL for 3 clients over a single client. (d) The improvement
of HFL for 4 clients over a single client.

3.4 Implementation of FL-QSAR as a prototype for collective QSAR

modeling

In this study, we proposed the FL-QSAR prototype under a HFL framework for
collective QSAR modeling. FL-QSAR is designed as an user-friendly prototype for
predicting QSAR under HFL with pyTorch implementation. Users just need to specify

the training data, test data and the client number, and then the model training,
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prediction and the final performance reports for each individual client as well as their
collaborated one via HFL will be showed in the results files. FL-QSAR aims to help
users with a better understanding of the workflow and the underline mechanism of
applying HFL for QSAR modeling. FL-QSAR can be easily extended to apply other
ML models for solving various drug-related learning tasks. Taking together,
FL-QSAR is expected to provide great promotion for the development of
collaborative drug discovery and privacy-related computing in pharmaceutical

community.

4 Discussion

Several =~ frameworks  are  presented for  FL, such as  FATE
(https://github.com/Federated AI/FATE), PySyft (Ryffel, et al., 2018), PaddleFL
(https://github.com/PaddlePaddle/PaddleFL), etc. To the best of our knowledge,
FATE is the only industrial-grade framework while other frameworks are more of
theoretical value. Recently, OpenMined, which belongs to PySyft's development
community, and the PyTorch partner, have announced a plan to develop a combined
platform by integrating PyTorch, PySyft and CrypTen to accelerate
privacy-preserving ML. However, a FL-based collective drug discovery platform is
still lacking and FL-QSAR is served as a pioneer and prototype study to inspire the
related community to further investigating FL for pharmaceutical applications.
Besides HFL, VFL and FTL are also expected to have potential utilities in

collaborative drug discovery. For example, different pharmaceutical companies may
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have their unique assay for leads discovery, therefore the distinct in-house data for the
same compound in the development pipelines in different company can be generated.
Integrating this information together from different institutes for the same set of
compounds by VFL and FTL will accelerate the drug discovery procedure
substantially, which is waiting to be explored in the future.

Another future improvement is that Federated Averaging Algorithm may be
improved by aggregating parameters with a client-oriented way. Weighted average of
parameters based on the training performance contributed by individual client may be
an improvement direction of the Federated Averaging Algorithm, and this can be
regarded as a fair way to evaluate the contribution of individual client. HFL may also
be attacked by a malicious participant training a GAN (Hitaj, et al.). A malicious
participant has the ability to reconstruct the training data of a given label. Therefore,
how to guide the participants to make their own contributions properly and evaluate
or reward their contributions fairly is important while challenging, waiting to be
further explored.

In summary, biomedical community is expected to be beneficial from FL.
Bio-medical data such as disease symptoms, gene sequences are very sensitive,
private, and difficult to collect. If bio-medical data are collected together, the
performance of ML models trained on the large scale bio-medical dataset are expected
to be significantly improved, however, the collaborative and privacy-preserving
learning framework applied here are needed to be carefully designed and investigated

to address the facing challenges.
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