

1

2

3 **Differential modulation of heat inducible genes across diverse**

4 **genotypes and molecular cloning of a sHSP from Pearl millet**

5 **[*Pennisetum glaucum* (L.) R. Br.]**

6

7 **Short Title: Cloning of small HSP from Pearl millet under heat**

8 **stress**

9

10 **MukeshSankar. S^{1*}, C. Tara Satyavathi², Sharmistha Barthakur³, S.P Singh¹,**

11 **Roshan Kumar⁴, K.V. Prabhu⁵, C. Bharadwaj¹,Soumya S.L.¹**

12

13

14 ¹Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi, India

15 ²Project Coordinator - Pearl Millet, ICAR-All India Coordinated Research Project on Pearl Millet,
16 Mandor, Jodhpur, India

17 ³ICAR-National Institute for Plant Biotechnology, New Delhi, India

18 ⁴National Institute of Plant Genome Research, New Delhi, India

19 ⁵Chairperson, Protection of Plant Varieties and Farmers' Rights Authority, Government of India, India

20

21 *Corresponding Author

22 Email: mukeshsankar@gmail.com (MSS)

24 Abstract

25 Environmental stresses negatively influence survival, biomass and grain yield of most crops. Towards
26 functionally clarifying the role of heat responsive genes in Pearl millet under high temperature stress, the
27 present study were carried out using semi quantitative RT- PCR for transcript expression profiling of *hsf* and
28 *hsp*s in 8 different inbred lines at seedling stage, which was earlier identified as thermo tolerant/susceptible
29 lines through initial screening for thermo tolerance using membrane stability index among 38 elite genotypes.
30 Transcript expression pattern suggested existence of differential response among different genotypes in
31 response to heat stress in the form of accumulation of heat shock responsive gene transcripts. Genotypes WGI
32 126, TT-1 and MS 841B responded positively towards high temperature stress for transcript accumulation for
33 both *Pgcp* 70 and *Pghsf* and also had better growth under heat stress, whereas PPMI 69 showed the least
34 responsiveness to transcript induction supporting the membrane stability index data for scoring
35 thermotolerance, suggesting the efficacy of transcript expression profiling as a molecular based screening
36 technique for identification of thermotolerant genes and genotypes at particular crop growth stages. As to
37 demonstrate this, a full length cDNA of *Pghsp* 16.97 was cloned from the thermotolerant cultivar, WGI 126 and
38 characterized for thermotolerance. The results of demonstration set forth the transcript profiling for heat tolerant
39 genes can be a very useful technique for high throughput screening of tolerant genotypes at molecular level
40 from large cultivar collections at seedling stage.

41

42

43

44

45 **Introduction**

46 Pearl Millet [*Pennisetum glaucum* (L.)] R.Br. is an annual warm season C₄ cereal crop, widely
47 cultivated in the semi-arid tropical (SAT) regions of Africa and the Indian subcontinent covering an area of 29
48 million ha, forms staple food and fodder for 90 million resource poor inhabitants [1]. India is the largest
49 producer of this crop among world grown over an area of 7.38 million ha with a production of 9.13 million tons
50 during 2018-19 [2]. Pearl millet is widely taken up as kharif crop with least input during the peak summer
51 periods with the onset of monsoon. High temperature spells beyond 42°C accompanied by moisture stress
52 during seedling stage of the crop especially during the germination and seedling establishment stages will affect
53 the adequate plant population. It continued to be a severe constraint to Pearl millet production under subsistence
54 farming conditions of the semi-arid regions of India and Sub Saharan Africa which ultimately reflects in crop
55 growth and development thereby its productivity in terms of quantity and quality will deteriorate [3]. This
56 situation demands more and more attention not only for the development of stress tolerant genotypes, but also
57 in identification and characterisation of genes responsive for tolerance.

58 Plants being sessile have the ability to dramatically alter their gene expressions in response to various
59 stress signals [4] through a series of morphological, physiological and molecular alterations that adversely affect
60 plant growth and productivity. Acquisition of thermotolerance is largely controlled through molecular
61 mechanisms based on the activation and regulation of specific stress-related genes. In response to heat stress,
62 Pearl millet produces an array of proteins which helps in alleviating the effects of stress. One such major protein
63 family are heat shock proteins (HSPs). HSPs/chaperones have been found to play a role in stress signal
64 transduction and gene activation [5]. Heat stress-response signal transduction pathways and defence
65 mechanisms, involving HSFs (Heat Shock Factors) and HSPs, are reported to be involved in the sensing of
66 Reactive Oxygen Species (ROS) [6]. HSP transcripts were shown to be helpful in diagnosing plant stress [7]
67 and considerable evidence for specific heat shock proteins involved in the development of thermotolerance in
68 Pearl millet was first reported by Howarth [8]. Based on their approximate molecular weights, five major

69 families of Hsps are recognized: Hsp100, Hsp90, Hsp70, Hsp60, and the small Hsp (sHsp) families [9]. Among
70 which HSP 90, 70 and sHSP were well studied in Pearl millet [10,11,12], suggested cytosolic Hsp70 and sHSPs
71 are widely associated with thermotolerance in germinating seedling [13] and maintenance of cell membrane
72 fluidity under high temperature stress [14] which were the two major indices [15,16] used for screening
73 seedling thermotolerance practically. HSP 70 functions as molecular chaperones for nascent proteins by proper
74 folding and prevention of their accumulations as aggregates, its transport to their final location and also plays a
75 pivotal role in disassembly of non-native protein aggregates and their subsequent refolding and recovery from
76 stress-induced protein damage [10]. Small heat shock proteins (sHsps) are diverse groups of proteins that are
77 conserved in both eukaryotes and prokaryotes with molecular weights in the range of 15–40 kD , whose
78 expression were limited in the absence of environmental stress, got up-regulated to over 200 fold upon
79 induction of heat stress [17]. It play a critical role in organismal defense during physiological stress as they
80 protect proteins from irreversible aggregation by an energy-independent process until suitable conditions
81 pertain for renewed cell activity, at which time protein release and refolding are mediated by ATP-dependent
82 chaperones such as Hsp70 [18]. A recent report concluded that there were some indications that small heat
83 shock proteins play an important role in membrane quality control and thereby potentially contribute to the
84 maintenance of membrane integrity especially under stress conditions [19].

85 The transcription of these genes were under control of a master regulatory proteins called heat shock
86 transcription factors (Hsfs) which acts as transcriptional activators for heat shock [20]. It has a major role in
87 coordination of regulatory functions in different stages of response to periodical heat stress such as triggering,
88 maintenance, and recovery. Induction of many heat-inducible genes is attributed to the conserved heat-shock
89 element (HSE) in the promoter. HSE consists of alternating units of pentameric nucleotides (5'-nGAAn-3') that
90 serve as the binding site for heat shock factor (HSF). In response to heat stress, HSF is converted from a
91 monomeric to trimeric form in the nucleus and was targeted towards concern HSP gene where it has a high
92 affinity of binding to HSEs. It is believed that interaction of HSF with HSP70 or sHSPs results in the activation
93 of transcription of these genes. There are several report which corroborated the overexpression of these protein

94 coding gene enhanced the thermotolerance among plants such as Pearl millet HSP 70 and 90 [10], Rice HSP 70,
95 overexpression of SIHsfA3 in *Arabidopsis* plants, isolated from cultivated tomato *etc* [21].

96 However the picture of molecular mechanism of thermo-tolerance is highly complex consists of poorly
97 understood, various interlinking gene networks [22]. Hence it became a felt need to draw the detailed aspects of
98 the correlated gene expression activities and identifying those genes or gene product which have maximum
99 potency in imparting thermo-tolerance among genotypes at various crop growth stages, for which gene based
100 genotype screening come to be inevitable. The above said facts more significant as the threat of climate change
101 and global warming become a matter of reality as according to the report of the United States Environment
102 Protection Agency, the global average temperature has risen by about 1.4°F in the past century and is expected
103 to increase by 2°F to 11.5°F by 2100 [23]. Rising temperatures may lead to altered geographical distribution
104 and growing season of agricultural crops by allowing the threshold temperature for the start of the season and
105 crop maturity to reach earlier [24]. There is a constant need for the identification, isolation and characterisation
106 of increasing number of stress induced genes unravelling their functions for enhancing agricultural productivity.

107 A major challenge in conventional breeding for heat tolerance is the identification of reliable and
108 effective screening methods to facilitate detection of heat-tolerant plants and the genes responsible for thermo-
109 tolerance. In present study, we performed semi quantitative RT- PCR (Reverse Transcription Polymerase Chain
110 Reaction) for expression profiling of *Pennisetum glaucum* heat shock factor (*Pghsf*) and *Pennisetum glaucum*
111 *chloroplast localized HSP 70* (*Pgcp70*) transcripts in different cultivar at seedling stage, screened for
112 thermotolerance. The correlated expression pattern of *Pghsf* and *Pgcp70* were also studied which revealed the
113 initiator role of *Pghsf* and early response role of *Pgcp70* towards high temperature stress. We also carried out
114 isolation and characterization of full length transcript of *PgHSP16.97*, a gene encoding alpha-crystalline sHSP
115 shows specific expression patterns during water and high temperature stress. This paper give validation on the
116 effectiveness of RT-PCR based screening methods for the identification and utilisation of thermotolerance
117 genes from superior heat tolerant genotypes for bridging supra-optimal temperature tolerance with high
118 productivity in Pearl millet.

119 **Material and methods**

120 **Plant material**

121 Eight elite Pearl millet inbred lines (6 thermotolerant and 2 thermosusceptible), earlier screened for
122 thermotolerance (Table 1) using the physiological parameter, Membrane Stability Index [25,26,27] were
123 collected from the Pearl millet breeding unit of Indian Agricultural Research institute, New Delhi (IARI) and
124 selections made from International Crop Research Institute for Semi-arid Tropics, Hyderabad (ICRISAT) and
125 Central Arid Zone Research Institute, Jodhpur (CAZRI) were used for expression studies.

126 **Table 1. Details of genotypes used for transcript expression studies for heat tolerance in Pearl millet**

Sl. No.	Genotype	Pedigree, salient characteristics and breeding use	Seed Source	Mean MSI (%)
1	TT 1	Selection from line no. 868 suited for arid regions of Jodhpur	CAZRI	67.99
2	TT 6	Selection from line no. 873 suited for arid regions of Jodhpur	CAZRI	70.65
3	MS 841 B	DM resistant selection from residual variability in 5141B; seed parent of Pusa 23, Pusa 322 & Pusa 605	IARI-ICRISAT	71.21
4	PPMI 301	Derivative of a cross between four elite restorers having bold ear head; Male parent of Pusa 322	IARI	67.29
5	D 23	DM resistant derivative of K-560-230; Male parent of Pusa 23	IARI	65.84
6	WGI 126	Pearl y white, bold grained inbred with sturdy stem and broad leaf	IARI	67.65
7	MS 411 B	Extra early male sterile line developed from 263 B through selection.	IARI	56.38
8	PPMI 69	Derivative of PPMI 43; Male parent of Pusa 605	IARI	52.53

127

128 **Temperature treatment**

129 Seeds were grown in a pot containing autoclaved soilrite were kept under constant light/dark regime
130 with 16 hrs (hours) light and 8 hrs darkness at 25°C in culture room were used for expression studies. Heat
131 stress was imposed on 7 and 10 day old seedlings in a growth chamber at 42°C for 2hrs and 6hrs respectively
132 before tissue harvest. For comparison, seedlings grown at regular temperature in culture room were used as
133 control (Fig 1).

134 **Fig 1:**Response of Pearl millet seedling to control (regular growth condition) and severe stages of the heat stress (42°C)
135 used for expression analysis (A: Control 25°C, B: 42°C for 2Hrs & C: 42°C for 6Hrs)

136 **Sample collection**

137 Aerial portion of seedlings were harvested after heat treatment given in growth chamber. The samples
138 were also collected from plants raised in culture room, kept under controlled conditions. Leaf samples were
139 harvested using sterile scissors, wrapped in aluminum foil, labeled and then immediately transferred to liquid
140 nitrogen. The samples were then taken for storage in -80°C freezer kept in lab, National Institute for Plant
141 Biotechnology, New Delhi.

142 **Isolation and quantification of total RNA**

143 Total RNA was isolated by Triazol method (Invitrogen, Carlsbad, CA, USA) followed by quantification
144 using Nano Drop spectrophotometer (ND 1000, Thermo Scientific, USA) as well as by Agarose Gel
145 Electrophoresis. DNase treatment (Invitrogen, USA) was carried out to remove any contaminating DNA
146 followed by RT-PCR.

147 **RT-PCR expression analysis of target genes**

148 Coding sequences for two candidate genes of Pearl millet *Pgcp70* (acc. no. EF495353.1) and *Pghsf*
149 (acc. no. EU492460.1) were downloaded from NCBI (<http://www.ncbi.nlm.nih.gov>) public database. For Semi
150 quantitative RT-PCR expression analysis, primers were designed to specifically amplify the selected mRNA
151 sequence of the above genes maintaining stringency and specificity. The details of the primers with its melting
152 temperatures (Tm) are shown in Table 2.

153 **Table 2. Details of primers used for transcript expression profiling and full length cloning**

Gene	Primer Sequence		Product size	Tm
<i>Pg cp70</i>	F	5' ACAGGGAAAGAAGCAGGACATGACA 3'	184 bp	50.0°C
	R	5' AGCTCCTTGAGTTGCTTCTCGGTT 3'		

<i>Pghsf</i>	F	5' ATATCTCGCCTCCCTCAGGGTGATA 3'	145 bp	48.0°C
	R	5' GTATGAAGGCAACACACCACGCAA 3'		
Rice actin	F	5' AGCGAGTCTTCATAGGGCGATTGT 3'	200 bp	60.0°C
	R	5' TAGCTCTGGGTTCGAGTGGCATT 3'		
<i>Pghsp 17.0</i>	F	5' AGTTTCAGCAATGTCGCTGGT 3'	560 bp	53.0°C
	R	5' ACAAGCACGACTCGTAGCATC 3'		

154

155 Reverse transcription-polymerase chain reaction (RT-PCR) was carried out in two steps as per the
156 protocol. Synthesis of cDNA was conducted using the Thermo, VersoTMcDNA-kit, USA (Thermo Fisher
157 Scientific Inc, USA) according to the supplier's instructions using oligo (dT)₁₅ as primer. For expression
158 analysis, cDNA pool (2µL) was used as a template, to amplify the corresponding heat responsive gene
159 transcript by PCR using PCR master mix (PromegaCorporation,USA) as per manufactures instruction. Thirty
160 cycles of PCR (with 4 min of initial denaturation at 94°C, 94°C for 45 sec, 48-60°C (Tm optimized for the
161 individual genes) for 45 sec, 72°C for 1 min) amplification, with a final extension at 72°C for 10 min was
162 performed.

163 The RT-PCR products were loaded on a 1.2% agarose gel and the stained DNA products were
164 photographed using Alfa Imager gel documentation system HP (Proteinsimple, USA). House-keeping gene,
165 Actin, was used in all expression studies and treated as reference gene (internal constitutive control) to show
166 equal loading and to ensure the integrity of c-DNA, which showed equal expression in all genotypes under
167 various degree of heat stress. The transcript level of each test targets were averaged for triplicate reactions. The
168 gene expression data were normalized by subtracting the mean expression level from reference gene. The
169 relative fold change in expression in treatments (T) was compared with those from regular growth stage (C) was
170 done by expression value of control as calibrator for respective genotype using Alfa Imager Software tools by
171 keeping the density of bands in control as unity.

172 **Isolation and cloning of a full length Pg HSP**

173 Based on transcript expression profiling studies, the best thermotolerant genotype was used to isolate a
174 full length cDNA of one small heat shock protein *Pghsp17.0* (Acc. No. X94191.1). Primers were designed
175 (Table.2) to carried out RT-PCR as described above and the fragment obtained was purified and sequenced.
176 After sequencing and confirming the isolated amplicon as *Pghsp17* and the purified cDNA was cloned onto
177 pGEM-T vector (Promega, USA) through TA cloning and transformed into *E.coli*-XL1 blue competent cells.
178 Based on blue white screening, ampicillin resistance putative recombinants were selected for further analysis by
179 colony PCR. Positive clones were inoculated overnight in LB (Luria–Bertani Agar) and the plasmid was
180 isolated. Restriction digestion of plasmid DNA with ECoRI in Takara RE kit (Clontech Bio Inc, Japan) was
181 done to further confirm successful cloning of *Pghsp17.0 gene* from Pearl millet cultivar WGI 126.

182 **DNA sequencing and data analysis**

183 Full length c-DNA fragment were isolated and sequenced at the Xcelris Labs Ltd, Ahmedabad, India.
184 Analysis of the c-DNA sequences was performed using the BLASTn program [28]. The conceptual translation
185 of nucleotide sequence was made using the Expasy translate tool. (<http://web.expasy.org/translate/>). Multiple
186 sequence alignments were carried out using the CLUSTALW software package [29] and thus phylogenetic
187 analyses were performed with all full-length *HSP 17.0* protein sequences publicly available for
188 *Pennisetum glaucum*, *Zea mays*, *Oryza sativa*, *Triticum aestivum*, *Sorghum bicolor* and *Hordeum vulgare* using the
189 CLUSTALW program in MEGA 5.2 software and created phylogenetic tree by neighbour joining method after
190 bootstrapping for 500 times using previously aligned amino acid sequences.

191 **Homology modeling and structure analysis**

192 Three dimensional structure of *Pg HSP 17.0* was deduced by Modeller v9.11 [30], was subjected to
193 backbone conformation evaluation by investigating psi/phi Ramachandran plot using Procheck[31]. The final
194 model and the template were subjected to superimposition for structural comparison using STRAP interface
195 (<http://www.bioinformatics.org/strap/>).

196 **Results**

197 **Relative transcript expression profiling of Hsp and Hsf under high temperature**
198 **stress**

199 The cDNA were synthesized from mRNA isolated from heat stress (42°C) exposed *Pennisetum glaucum*
200 seedlings of six tolerant and two sensitive genotypes. Further these c-DNA were used for expressions profiling
201 studies of two high temperature responsive genes namely *Pgcp70* and *Pghsf* by semi quantitative end point RT-
202 PCR. The expression pattern were analyzed based on visual analysis of gel and their densitometric semi
203 quantitative quantification using alpha imager software and were used to understand their correlated expression
204 pattern under high temperature stress.

205 Transcript expression profiling for *Pgcp70* showed differential expression pattern under regular and
206 high temperature stresses during the time course of experiment among different Pearl millet genotypes (Fig
207 2A). Even though *Pgcp70* got expressed under regular growth, the expression level of *Pgcp70* got increased
208 very significantly upon heat stress. The genotypes showed a significant variability for transcript accumulation
209 upon heat stress in which, the level was up-regulated in thermotolerant lines, while in susceptible genotype
210 (PPMI 69), the gene got down regulated by 38% and in MS 411B the expression was comparatively less. The
211 expression profiling of *Pgcp70* suggested the HSP 70 was highly induced at early stage of heat exposure (for 2
212 hrs) whose transcript level was slightly increased as heat stress progressed for long duration of 6 hrs on 7 day
213 old seedlings. Even though we observed constant induction of HSP 70 during heat stress on 10th day old
214 seedling, the result suggested that heat stress during early phase (for 2 hrs) leads to up-regulation of *Pgcp70*
215 transcript in all genotypes while its level diminished with continuous exposure to heat stress (6 hrs) over a
216 period. Also transcript accumulation shows slight increase from 7th day to 10th day old seedling, shows plant
217 tend to increase tolerance to high temperature with growth and development and continued exposure. Among
218 thermotolerant genotypes WGI 126, TT 1, TT 6 etc were shown to respond positively to heat stress by showing

219 a relatively elevated level of high temperature induction of *Pgcp70* RNA levels whereas genotype PPMI 69 and
220 MS 411B showed the least induction. The results (Fig 2B) revealed that WGI 126 showed elevated expression of
221 *Pgcp70* ($\bar{X}_{WGI\ 126} \sim 98\%$) under high temperature particularly 2hrs of heat stress at 10DAS as compared to
222 control plants. The genotype wise high temperature tolerance expression pattern of stress inducible gene
223 *Pgcp70* can be categorised as WGI 126>TT 1>TT 6>MS 841 B>PPMI 301>D 23>MS 411 B>PPMI 69.

224 Similar to the expression pattern for *Pgcp70*, *Pghsf* mRNA also showed differential expression pattern
225 among different Pearl millet genotypes (Fig 3A). Genotypes WGI 126, TT 1 and MS 841B showed elevated
226 level of transcript accumulation on exposure to heat stress and genotype PPMI 69 showed least accumulation of
227 transcript on exposure to heat stress which supported the MSI (Membrane Stability Index) studies conducted
228 earlier [25]. A comparative expression profiling study among thermotolerant genotype to find best
229 thermotolerant genotype using Alfa imager software (Fig 3B) showed higher level of transcript expression
230 (37%) for the genotype WGI 126, 2 hrs of heat stress on 10th day old seedling. Genotypes can be categorised as
231 per *Pghsf* transcript abundance during the expression profiling as WGI 126>TT 1>MS 841 B>PPMI 301>TT
232 6>D 23>MS 411 B>PPMI 69.

233 **Fig 2.** Semi quantitative real time expression profiling of heat responsive gene *Pgcp70* under heat stress of 42°C in 8
234 selected genotypes of Pearl millet at different growth stages against differential heat treatment. (Fig 2A: densiometric
235 expression pattern among genotypes, observed in 1.2% agarose gel along with Os-actin gene expression was used in Pearl
236 millet as endogenous control to normalise the expression. Fig 2B: Fold change expression level of transcript among
237 genotypes at different stress conditions)

238 **Fig 3.** Semi quantitative real time expression profiling of heat responsive gene *PgHSF* under heat stress of 42°C in 8
239 selected genotypes of Pearl millet at different growth stages against differential heat treatment (Fig 2A: densiometric
240 expression pattern among genotypes, observed in 1.2% agarose gel along with Os-actin gene expression was used in Pearl
241 millet as endogenous control to normalise the expression. Fig 2B: Fold change expression level of transcript among
242 genotypes at different stress conditions)

243 Comparative expression studies between two genes *Pghsf* and *Pgcp70* among genotypes (Fig 4) suggested, even
244 though *Pghsf* showed lower expression under induction of heat stress during initial phase (2hrs), its expression

245 got a steady increase (4.6% to 12.3% and 11.0% to 13.3% at 7 & 10D old seedling respectively) upon
246 prolonging the heat stress upto 6hrs. In contrast to *Pghsf*, *Pgcp70* had relatively faster response kinetics and
247 reached its peak expression at early stages of heat stress (2hrs) and its level diminished (21.5% to 14.2% and
248 28.2% to 15.4% at 7 and 10D old seedling respectively) after a prolonged treatment of 6hrs. The transcript
249 expression upon heat stress increased for corresponding differential heat treatment as the age of seedling
250 progressed, as the 10D old seedling shown to have more accumulation of transcript than that in 7D old seedling.

251 **Fig 4:**Co-Expression Pattern of *Pgcp 70* &*Pg HSF* of Pearl millet under differential heat stress

252 **Isolation and Cloning of full length cDNA of *Pg HSP 17.0* from Pearl millet**

253 A c-DNA of small heat shock protein family member of approximately 600bp was isolated from the
254 tolerant cultivar WGI 126 after exposing to high temperature stress at 42°C for 6 hrs by RT-PCR using *Pg HSP*
255 *17.0* specific primers. The fragment was excised from gel, purified and cloned in TA cloning vector, pGeMT
256 easy (Promega) and positive clones were selected by blue white screening (Fig 5). They were further confirmed
257 by colony PCR using *Pg HSP 17.0* specific primers. Positive colonies were inoculated in LB supplemented with
258 ampicillin overnight and plasmid DNA isolated. Restriction digestion was carried out with the enzyme EcoRI
259 which release the insert from the vector (Fig 6).

260 **Fig 5.**Selection of Recombinant pGM-T-*PgHSP17* *E. coli* cells by Blue white screening of colonies

261 **Fig 6.**Restriction analysis of non-recombinant (NR) and recombinant (R) cloned by EcoR I shows the upper band (3 Kb)
262 corresponds to vector DNA and lower band (560bp) corresponds to *PgHSP17* insert DNA

263 The cDNA inserts of these recombinant plasmids were sequenced completely. The sequence analysis of
264 RT-PCR product (Fig 7a) using BLAST program suggested the isolated fragment had one full length cDNA
265 with single ORF (Open reading frame) with a size of 560bp having close similarity with *Cenchrushsp 17.0*.
266 (Acc. No:X94191). The full-length cDNA of PgHsp17.0 have a size of 560bp which contained an open reading
267 frame of 459 and 28bp 5' and 73bp 3' untranslated regions (UTRs). The translation initiation region of this
268 open reading frame was situated within a sequence, CCATGG, which resembled the plant consensus initiation

269 sequence [32], but the consensus polyadenylation signal (AATAAA) was not found in the 3'UTR. In plants,
270 however, repeated AT-rich sequences are regarded as an alternative polyadenylation signals in nuclear genes of
271 higher plants [33].

272 **Fig 7.**Structural organization of the *PgHsp17.0* gene

273 **a.** The c-DNA nucleotide sequences, wherein the coding region (upper case letters), 5', 3' UTR regions (lower case
274 letters). Translation start site and termination codon are underlined, Polyadenylation signals (repeated “AT” rich sequence
275 given in bold).

276 **Structure of *Pg HSP 16.97* studied by *in silico* analysis**

277 The *PgHsp17.0* ORF encoded for a protein of 152 amino acids with an apparent molecular weight of
278 16.97 kDa and an estimated isoelectric point of 5.79. It has been named as *PgHSP16.97* following
279 convention. The homology search done using deduced amino acid sequence of *PgHSP16.97* against the
280 translated non-redundant nucleotide database clearly suggested, the *PgHSP16.97* was related to the other
281 eukaryotic sHsps and showed an overall 100–88% sequence identity with sHSPs of *Cenchrusamericanus* (Acc #
282 CAA63901.1), *Zea mays* (Acc # NP_001150783.1) *Setariaitalica* (Acc # XP_004968025.1), *Saccharum* hybrid
283 cultivar ROC22 (Acc # AFK73383.1). The presence of alpha-crystallin domain (ACD) found in alpha-
284 crystallin-type small heat shock proteins, and a similar domain found in p23 (a cochaperone for Hsp90) and in
285 other p23-like proteins confirmed that the isolated sequence belong to small heat shock protein gene family
286 ProtComp (<http://linux1.softberry.com/cgi-bin/programs/proloc/protcompl.pl>) analysis produced integral sub-
287 cellular localization prediction score of 9.9 for cytoplasmic location which indicated *Pg Hsp16.97* belongs to
288 class I sHSP. It also carried a nuclear localization sequence. The Pg HSP 16.97 (Fig 7b) monomer contains a
289 variable N-terminal domain (aa, 1-46), the conserved HSP20 or α -crystallin domain (aa 47-134), and a less
290 variable C-terminal extension (aa, 135-152). The organellar localised sHSPs have the necessary transit,
291 targeting, or signal located on N-terminal of protein which were absent in sequence indicating cytoplasmic
292 localisation. The schematic representation of protein structure with domains are given (Fig 7c).

293 **Fig 7.**Structural organization of the *PgHsp17.0* gene

294 **b.** Dduced amino acid sequence is placed beneath the c-DNA nucleotide sequences. Various functional domains in the
295 sequence have been significantly marked, such as Variable N-terminal domain (Blue font) with hydrophobic groups
296 represented by Bold letters, alpha crystalline domain (Brown font) and c terminal extension (green font) in which glutamic
297 acid residues (Bold green) and 'IXI' residues are represented.

298 **c.** Schematic representation of *PgHsp17.0* protein structure, including three motifs: the N-Terminal (Blue box), Alpha
299 crystalline domain (orange box), and the c-terminal extension (green box).

300 **Phylogenetic analysis**

301 A phylogenetic study was conducted using 7 cytosolic class I *HSP 17.0* full length protein sequences
302 from different cereals, along with *Pg HSP 16.97* by Clustal W for multiple sequence alignment (Fig 8) followed
303 by construction of phylogenetic trees using NJ method after 500 times bootstrapping using the MEGA 5.2
304 software (Fig.9). There is considerable diversity in *HSP 17.0* evolution in cereals, with a few conserved motifs
305 and regions such as IXI motifs, Consensus region I (P-X₁₄-GVL), Consensus region II (P-X₁₅-V-L), R residue at
306 position 114 at C-terminal and SXXFD motif at N-terminal which were the signature regions of cytosolic sHSP.
307 There are only a few highly conserved domains at N-terminus (21/46) observed during sequence alignment
308 among cereal class I sHSP. The *Pg HSP 16.97* is showing close similarity to Pg HSP 17.0 (X94191.1) and is
309 evolutionarily very close to *ZeaHSP 16.9* protein and is more divergent to that of sorghum.

310 **Fig 8.***PgHsp16.97* (this study), Accession numbers *PgHsp17* (X94191.1), *OsHsp* (AAB39856.1), *TaHSP16.9* (P12810.1),
311 *ZmHsp16.9* (ACG24656.1), *SbHSP16.9* (XP_002457411.1), *HvHSP16.9* (ADW78607.1); SC= start of carboxyl-terminal
312 domain in each alignment, which is the most conserved region of the alpha-crystallin/small heat shock protein (HSP)
313 family; *=conserved residue, := conserved residue with strongly similar property), . = conserved residue of weakly similar
314 property (ClustalW; www.ebi.ac.uk)

315 **Fig 9.**Phylogenetic tree of Cereal *HSP17* by *MEGA 5.2*

316 Homology modeling of *PgHSP16.97*

317 The PgHSP 16.97 and wheat HSP16.9 proteins share 80% similarity at their primary amino acid
318 sequence levels. The crystal structure of wheat HSP16.9 protein (PDB No: 1GME) was chosen as a template for
319 *PgHSP 16.97* model building using the program Modeller 9v11 [30]. Five models of 3D structures of
320 *PgHsp16.97* were generated at various refinement levels were generated and validated using the program
321 Procheck. The best model with a Procheck score of -0.09 was selected. The Accelrys Discovery Studio 3.5
322 Client program was used to depict the PgHsp16.97 molecular model (Fig 10a). Superimposition of the model
323 with the template and root mean square deviation (RMSD) calculation was done using the program STRAP
324 (<http://www.bioinformatics.org/strap/>) The RMSD value of the selected *Pghsp 16.97* model structure is 1.60A°
325 with respect to the template 1GME. The structural superimposition was done using STRAP interface observed
326 to have better level of model superimposition onto template which is shown in (Fig 10b).

327 **Fig : 10 Predicted 3D molecular model of PgHSP16.97** (A: Predicted 3D structure of PgHSP16.97 by modeller 9v11 &
328 B: Structural superimposition between model and template protein (1GME) given by STRAP (Blue: Template and Violet:
329 model)

330 Discussion

331 RT-PCR expression analysis of HSP and HSF genes

332 In this study, heat stress lead to induction of various thermotolerant genes in Pearl millet genotypes like
333 Hsfs and HSPs genes, which were evident from the up regulation of transcript level of heat responsive genes
334 such as *Pgc70* and *Pghsf* under high temperature stress supporting the earlier finding about the heat induced
335 HSPs [34,8,35]. It was also noticed that under normal growth condition (25°C), there was slight accumulation
336 of these transcript, as HSP 70 and its master regulator, hsf have critical role in seed germination and
337 development [36] and also could be attributed to the inherent thermotolerance in Pearl millet cultivars as shown

338 by membrane stability index results. This was correlating with another observation made in Pigeon pea which is
339 widely grown pulse crop in semi-arid regions [37]. The HSP 70 is major molecular chaperon found in all
340 eukaryotes and the gene *PgHsc70* in Pearl millet was characterised by Reddy *et al.*, [10] and it was found to be
341 the heat-shock inducible Hsp70 which is expressed at very low levels under normal conditions, but can be
342 induced rapidly by heat shock and other environmental stresses. The expression profile of *Pgcp70* also
343 generated the same result that *Pgcp70* produced in small quantity at normal condition got enhanced with heat
344 treatment. Large quantity of HSP 70 at early stage of heat exposure (2 hrs), indicates a major role in heat stress
345 during early phases of heat stress. Later on transcript level diminishes as stress is continued (6 hrs) which
346 indicates an immediate shock in genotype leads to higher and rapid induction of *Pgcp70* whose level diminishes
347 with continuous exposure to heat stress suggesting constant involvement of HSP in heat shock for a longer
348 duration as observed in previous studies [38,39]. It was also noticed that *Pgcp70* transcript accumulation shows
349 slight increase from 7th day to 10th day old seedling, shows that plants tend to increase tolerance to temperature
350 as plant develops.

351 When compared to the transcript level of *Pgcp70*, *Pghsf* were expressed at low levels. The low level of
352 the hsf transcript was enough to trigger the transcription of *Pgcp70* under heat stress. The transcript expression
353 of *HSF* gene in Pearl millet indicated, its stress regulation initiator role, which showed maximum increase in
354 transcript level in response to heat stress within 30 min of exposure and gradually come down as time
355 proceeded and this result was well matching with the previous study [40]. The expression profile of
356 *Pghsf* studied was nearly constant for long period of heat exposure for 2 hrs and 6 hrs and compared to
357 expression profile of *Pgcp70*, *Pghsf* transcript abundance was less under high temperature treatment in seedling
358 stage than *Pgcp70* suggesting a role in the initial stage rapid stress response in germinating seedling, all further
359 supported the above fact.

360 There was differential expression pattern for these two heat responsive genes among different
361 genotypes, in which WGI 126 have shown the positive response to heat stress by accumulating more transcript,

362 while PPMI 69 with low accumulation of transcript as expected from the MSI data [26] which suggest the
363 transcript expression profiling can be used for screening thermotolerant and susceptible lines in a large pool of
364 genotypes along with identifying the potential genes responsible for thermotolerance at various stages of crop
365 growth.

366 **Isolation and Cloning of full length cDNA of *Pg HSP* from Pearl millet**

367 Of the molecular chaperones, the sHSPs were diverse and found in both prokaryotes and eukaryotes,
368 usually undetectable in plant cells under normal physiological conditions, but were induced upon stress lead to
369 plant tolerance to stress, such as drought, salinity, reactive oxygen species, and low temperatures [41]. It is
370 believed that diversification and abundance of the sHsps in a plant reflect an adaptation of the plant to heat
371 stress [9]. Among the sHSPs, the HSP 20 type forms first line of defence against stress in the cell during heat
372 stress will bind to partially folded or denatured proteins, which prevents irreversible unfolding or incorrect
373 protein aggregation, or binds to unfolded proteins by an energy-independent process until suitable conditions
374 pertain for renewed cell activity and allows further refolding by Hsp70/Hsp100 complexes hence been referred
375 to as 'paramedics of the cell' [42]. A review concluded that there were some indications that small heat shock
376 proteins play an important role in membrane quality control and thereby potentially contribute to the
377 maintenance of membrane integrity especially under stress conditions [14]. Hence we have isolated and cloned
378 full length cDNA encoding for *HSP 17.0* from *P. glaucum* to understand the structural signature present on this
379 protein for its heat tolerance role. Nucleotide and deduced amino acid sequence analysis of the cDNA clone
380 revealed the presence of alpha-crystallin domain (ACD) found in alpha-crystallin-type small heat shock
381 proteins, and a similar domain found in p23 (a cochaperone for Hsp90) and in other p23-like proteins confirmed
382 that the isolated sequence belong to small heat shock protein gene family. Alpha-crystallin occurs as large
383 aggregates, comprising two types of related subunits (A and B) that are highly similar to the small (15-30kDa)
384 heat shock proteins (HSPs), particularly in their C-terminal halves. Alpha-crystallin has chaperone-like
385 properties including the ability to prevent the precipitation of denatured proteins and to increase cellular

386 tolerance to stress. The modeled structure revealed N-terminal arm of the PgHSP16.97 represents an extensive,
387 intrinsically unstructured domain rich in hydrophobic residues (53%) which will play key roles in protein–
388 protein interactions with denatured proteins and thus critical to substrate interactions. Structural disorder allows
389 the N-terminal arm to present a variable and flexible ensemble of clusters of hydrophobic residues that can
390 interact with diverse geometries of hydrophobic patches on unfolding proteins [43]. This ability to present
391 multiple binding site conformations makes PgHSP16.97 highly effective at interacting efficiently to protect a
392 wide range of critical cellular proteins. Also N-terminal regions are important for stabilizing the oligomer
393 through interlocking subunits by forming two disks intertwines to form pairs of knot-like structure, and the
394 hydrophobic contacts in these knots are buried inside the oligomer [44]. The C-terminal extension is variable in
395 length and its function in those cellular compartments enigmatic. The sequence information revealed the C-
396 terminal extension was rich in glutamic acid residues (E-), which were critical for its chaperonic activity [45].
397 Also there was Ile-X-Ile residue at C-terminal extension (β 10 strand) which has a role in oligomerisation of
398 heat shock proteins [46] by interacting with the hydrophobic pockets formed at β 4 and β 8 of ACD strands.
399 There were two consensus regions within C-terminal separated by a region with hydrophilic residues forms the
400 signature sequence for identification of cytosolic plant sHSP. The consensus region I (CR-I) consists of residues
401 (P-X₁₄.GVL) which is involved in multimerisation of PgHSP 17 subunits and Consensus region II (CR-II)
402 consists of residues (P-X₁₅.V-L) involved in solubility of protein complex. Arginine (R) conserved across the
403 cereal sHSP gene at position 114 is responsible for stabilization of dimer by formation of intermolecular salt
404 bridge with Glutamic acid at position 100 [44]. A phylogenetic study was conducted using HSP 17.0 full length
405 protein sequences belongs to C I sHSP family from seven different cereals, along with Pg HSP 16.97 using
406 Clustal W included in the MEGA 5.2 software (Fig.7). There is considerable diversity in HSP 17.0 evolution in
407 cereals particularly at N-terminus where the Pg HSP 16.97 is showing close similarity to Pg HSP 17.0
408 (X94191.1) and is evolutionarily very close to ZeaHSP 16.9 protein and is more divergent to that of sorghum.

409 **Conclusions**

410 Expression profiling becomes a powerful tool in identifying and classifying the genotypes carrying
411 novel genes based on their expression upon specific condition or growth stages. In this study, an attempt was
412 carried out to validate the powerfulness of expression pattern study as molecular screening techniques in
413 identifying thermotolerant lines based on the expression of HSPs or HSFs genes at seedling stage of Pearl millet
414 and bridging them together to fight against the unpredicted nature of abiotic stress. These results provide a
415 comprehensive molecular biology background for research on thermo-tolerance among crop plants, particularly
416 with respect to the structural and functional aspects of sHSPs. All of the genes undertaken in our research have
417 significance for breeding Pearl millet with increased thermotolerance.

418 **Acknowledgments**

419 This study was a part of M.Sc thesis and was supported by the DBT funded project on “Molecular cloning and
420 functional characterization of *annexin* family genes from Pearl millet (*Pennisetum glaucum*) under abiotic stress”. The
421 First author (MSS) wishes to thank ICAR-IARI, New Delhi for providing the facilities for the study and the JRF provided
422 by ICAR, India.

423 **Author Contributions**

424 Conceptualization and designing the experiments: CTS & SB.

425 Performed the experiments: MSS

426 Contributed reagents/materials/analysis tools: SPS, RK & SSL

427 Analyzed the data: SSL.

428 Wrote the original draft: MSS, CTS, SB

429 Review & editing: CB & SPS

430 Project administration: SB, CTS & KVP

431 **References**

- 432 1. Gulia SK, Wilson JP, Carter J, Singh BP. Progress in grain Pearl millet research and market development. In:
433 Janick J, Whipkey A, editors. Issues in new crops and new uses. ASHS Press, Alexandria, VA;2007. pp. 196–203.
- 434 2. Indiastat. Agricultural production. Indiastat, Datanet India Pvt. Ltd., New Delhi, India. 2020. (accessed 02
435 February 2020). Available from: <http://www.indiastat.com/searchresult.aspx>
- 436 3. Yadav AK. Heat Tolerance in Pearl millet: Screening, Genetic Inheritance and G×E Interaction Studies for Heat
437 Tolerance and Related Traits. LAP LAMBERT Academic Publishing, Germany; 2012.
- 438 4. Bartels D, Sunkar R. Drought and salt tolerance in plants. *Crit Rev Plant Sci.* 2005;24(1): 23-58.
- 439 5. Nollen EA, Morimoto RI. Chaperoning signaling pathways: molecular chaperones as stress-sensing 'heat shock'
440 proteins. *J Cell Sci.* 2002; 115 (14): 2809-2816.
- 441 6. Pnueli L, Liang H, Rozenberg M, Mittler R. Growth suppression, altered stomatal responses, and augmented
442 induction of heat shock proteins in cytosolic ascorbate peroxidase (Apx1)-deficient *Arabidopsis* plants. *Plant J.*
443 2003; 34(2):187–203.
- 444 7. Valiullina RN, Ryabovol VV, Khokhlova LP. Changes in the expression of heat-shock protein genes depending on
445 different heat resistance of plants. *Dokl Biol Sci.* 2008;422(1):352-354.
- 446 8. Howarth CJ. Molecular responses of plants to an increased incidence of heat shock. *Plant Cell Environ.* 1991;
447 14(8): 831–841.
- 448 9. Al-Whaibi MH. "Plant heat-shock proteins: A mini review." *J King Saud Univ Sci.* 2010; 23:139-150.
- 449 10. Reddy PS, Mishra R, Chakradhar T, Malik S, Kaul T, Sopory SK, Reddy MK. Molecular cloning and
450 characterization of gene encoding cytoplasmic HSC 70 from *Pennisetum glaucum* may play a protective role
451 against abiotic stresses. *Mol Gen Genomics.* 2010; 283: 243-254.

452 11. Reddy PS, Thirulogachander V, Vasihnavi CS, Aakrati A, Sopory SK, Reddy MK. Molecular characterization and
453 expression of a gene encoding cytosolic Hsp90 from *Pennisetum glaucum* and its role in abiotic stress
454 adaptation. *Gene*. 2011; 474: 29-38.

455 12. Cavan GP, Skot KP, Stevens MJ, Howarth CJ. Sequence announcements. *Plant Mol Biol*. 1996;30:1075-1076.

456 13. Su P, Li H. Arabidopsis stromal 70-kD heat shock proteins are essential for plant development and important for
457 thermo-tolerance of germinating seeds. *Plant Physiol*. 2008; 146: 1231-1241.

458 14. Nakamoto H, Vigh L. The small heat shock proteins and their clients. *Cell Mol. Life Sci*. 2007; 64(3): 294-306.

459 15. Yadav AK, Narwal MS, Rajesh Kumar, Arya RK. Study of Genetic Architecture for Maturity Traits in Relation to
460 Supra-optimal Temperature Tolerance in Pearl Millet (*Pennisetum glaucum* (L.) R.Br.). *Int. J. Plt. Breed. and*

461 Gen. 2012;6: 115-128.

462 16. Howarth CJ, Pollock CJ, Peacock JM. Development of laboratory-based methods for assessing seedling
463 thermotolerance in Pearl millet. *New Phytol*. 1997; 137: 129-139.

464 17. Wahid A, Gelani S, Ashraf M, Foolad MR. Heat tolerance in plants: An overview. *Environ. Exp. Bot*. 2007;
465 61:199-223.

466 18. Sun Y, MacRae TH. Small heat shock proteins: molecular structure and chaperone function. *Cell Mol Life Sci*.
467 2005; 62(21): 2460-2476.

468 19. Savić JA, Dragićević I, Pantelić D, Oljača J, Momčilović I. Expression of small heat shock proteins and heat
469 tolerance in potato (*Solanum tuberosum* L.). *Arch BiolSci Belgrade*. 2012; 64(1): 135-144.

470 20. Hu W, Hu G, Han B. Genome-wide survey and expression profiling of heat shock proteins and heat shock factors
471 revealed overlapped and stress specific response under abiotic stresses in rice. *Plant Sci*. 2009; 176(4): 583-590.

472 21. Goswami A, Banerjee R, Raha S. Mechanisms of plant adaptation/memory in rice seedlings under arsenic and
473 heat stress: expression of heat-shock protein gene HSP70. *AoB PLANTS*. 2010; plq023,
474 doi:10.1093/aobpla/plq023

475 22. Shinozaki K, Yamaguchi-Shinozaki K, Seki M. Regulatory network of gene expression in the drought and cold
476 stress responses. *CurrOpin Plant Biol.* 2003; 6:410–417.

477 23. USEPA (01.15.19) Climate Change Science Overview. Accessed August 10, 2019.

478 24. Porter JR, Semenov MA. Crop responses to climatic variation. *Philos T R Soc B.*2005; 360:2021-2035.

479 25. MukeshSankar S, Tara Satyavathi C, Madan Pal, Bharadwaj C, Singh SP,Barthakur S. Genetic variability and
480 association studies in Pearl millet for grain yield and high temperature stress tolerance. *IJDARD.* 2013; 28(2): 59-
481 65.

482 26. MukeshSankar S, Tara Satyavathi C, Madan Pal, Bharadwaj C, Singh SP,Barthakur S. Genetic diversity analysis
483 for high temperature stress tolerance in Pearl millet [*Pennisetum glaucum* (L.) R. Br]. *Indian J. Plant Physiol.*
484 2014; 19(4): 324-329.

485 27. Donald James, Tarafdar A, Biswas K, Sathyavathi CT, Padaria JC, Kumar PA. Development and characterization
486 of a high temperature stress responsive subtractive cDNA library in Pearl Millet (*Pennisetum glaucum* L.R. Br.).
487 *Indian JExp Biol.* 2015; 53: 543-550.

488 28. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. *J Mol Biol.* 1990;
489 215(3): 403-410.

490 29. Thompson JD, Higgins DG, Gibson TJ. CLUSTAL W: improving the sensitivity of progressive multiple sequence
491 alignment through sequence weighting, position-specific gap penalties and weight matrix choice. *Nucl. Acids
492 Res.*1994; 22 (22):4673-4680.doi: 10.1093/nar/22.22.4673.

493 30. Sali A, Blundell TL. Comparative protein modelling by satisfaction of spatial restraints. *J Mol Biol.* 1993;
494 234(3):779–815.

495 31. Laskowski RA, Rullmann JAC, MacArthur MW, Kaptein R, Thornton JM. AQUA and PROCHECK-NMR:
496 Programs for checking the quality of protein structures solved by NMR. *J Biomol NMR.*1996; 8: 477-496.

497 32. Joshi JP. An inspection of the domain between putative TATA box and translation start site in 79 plant genes.
498 Nucleic Acids Res. 1987a; 15:6643-6653.

499 33. Joshi JP. Putative polyadenylation signals in nuclear genes of higher plants: a compilation and analysis. Nucleic
500 Acids Res. 1987b; 15:9627–9640.

501 34. Sivaramakrishnan S, Patell VZ, Soman P. Heat shock proteins of sorghum [*Sorghum bicolor* (L.) Moench] and
502 Pearl millet [*Pennisetum glaucum*(L.)R. Br.] cultivars with differing heat tolerance at seedling establishment stage.
503 JExp Bot. 1990; 41:249–254.

504 35. Mishra RN, Reddy PS, Nair S, Markandeya G, Reddy AR, Sopory SK. Isolation and characterization of expressed
505 sequence tags (ESTs) from subtracted cDNA libraries of *Pennisetum glaucum* seedlings. Plant Mol Biol. 2007;
506 64:713–732.

507 36. Ye SF, Yu SW, Shu LB, Wu JH, Wu AZ, Luo LJ. Expression profile analysis of 9 heat shock protein genes
508 throughout the life cycle and under abiotic stress in rice. Chin. Sci. Bull. 2012; 57: 336–343.

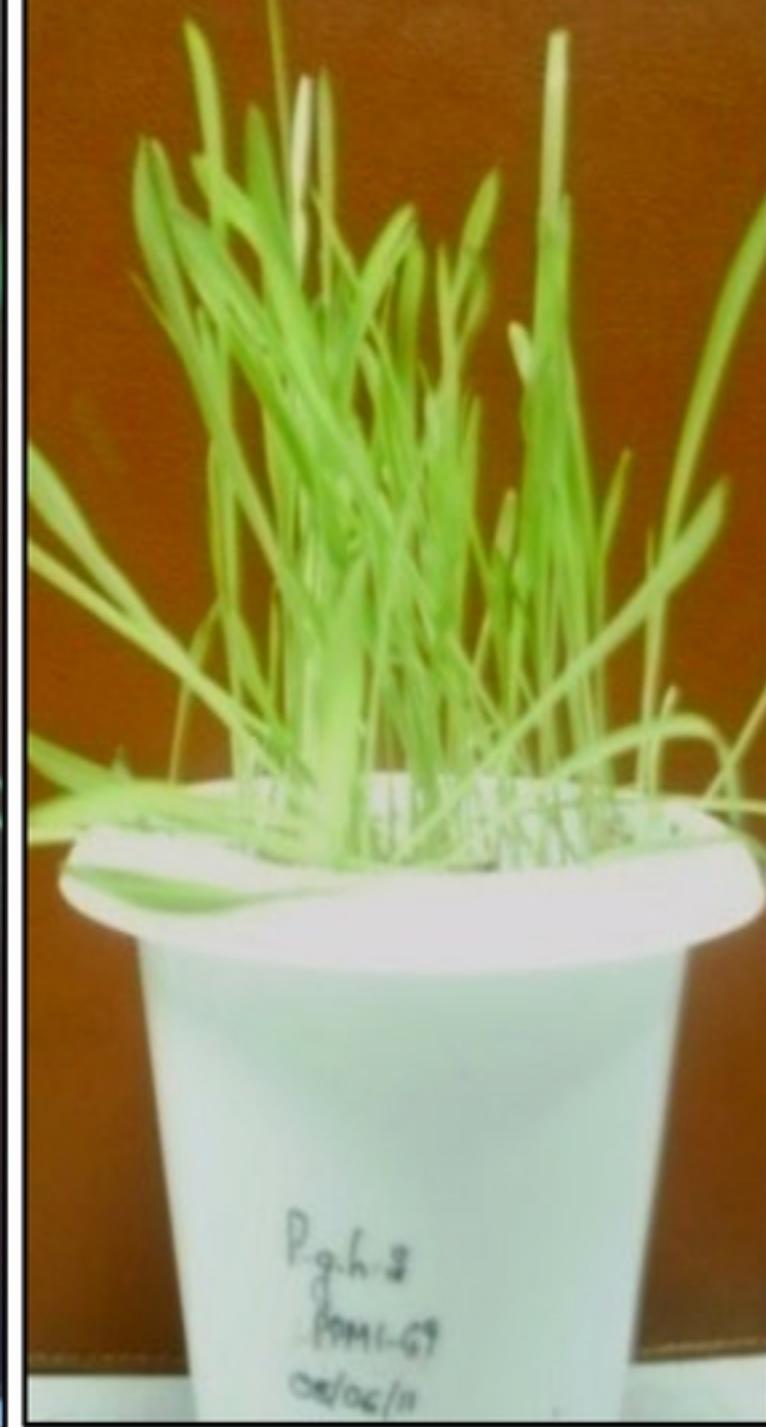
509 37. Sri Devi V, Satyanarayana NV, Madhava Rao KV. Induction of Heat Shock Proteins and Acquisition of
510 Thermotolerance in Germinating Pigeonpea Seeds. Biol Plantarum. 1999; 42(4): 589-597.

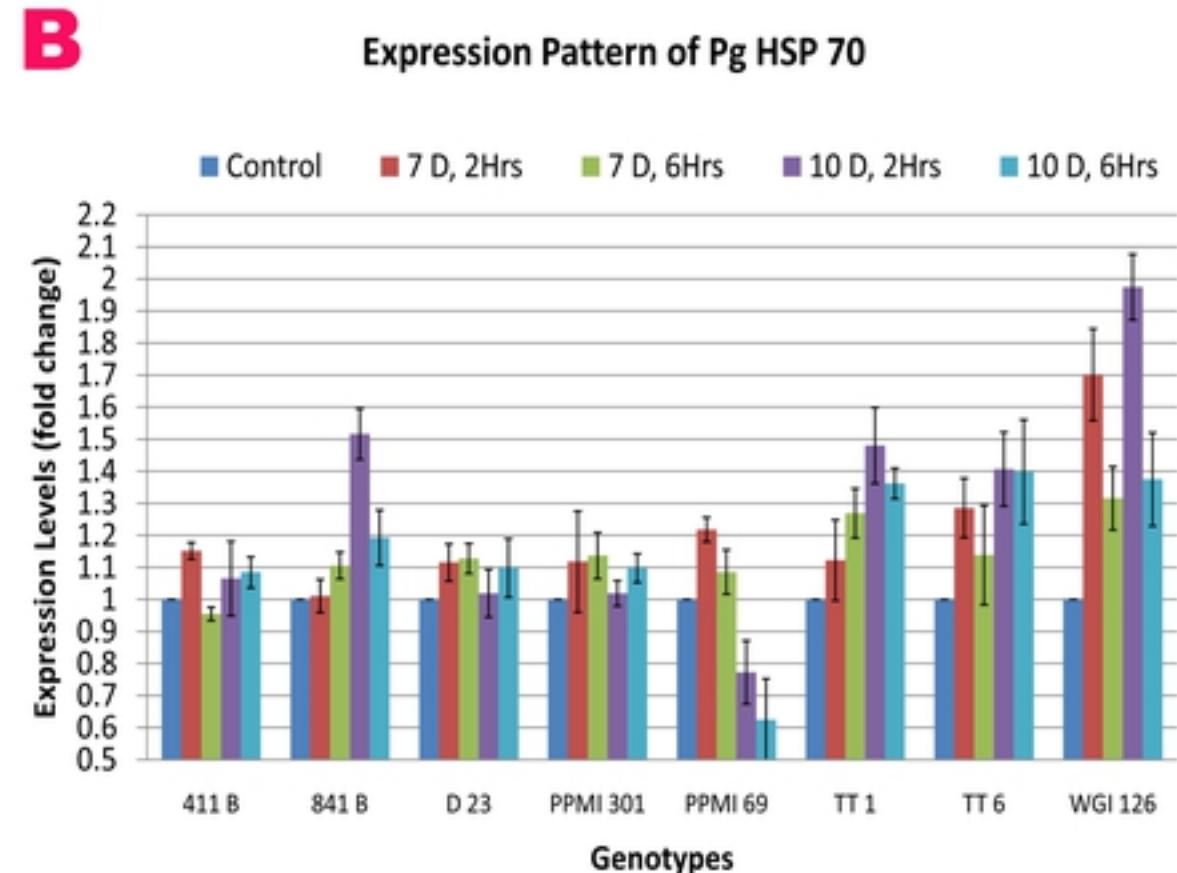
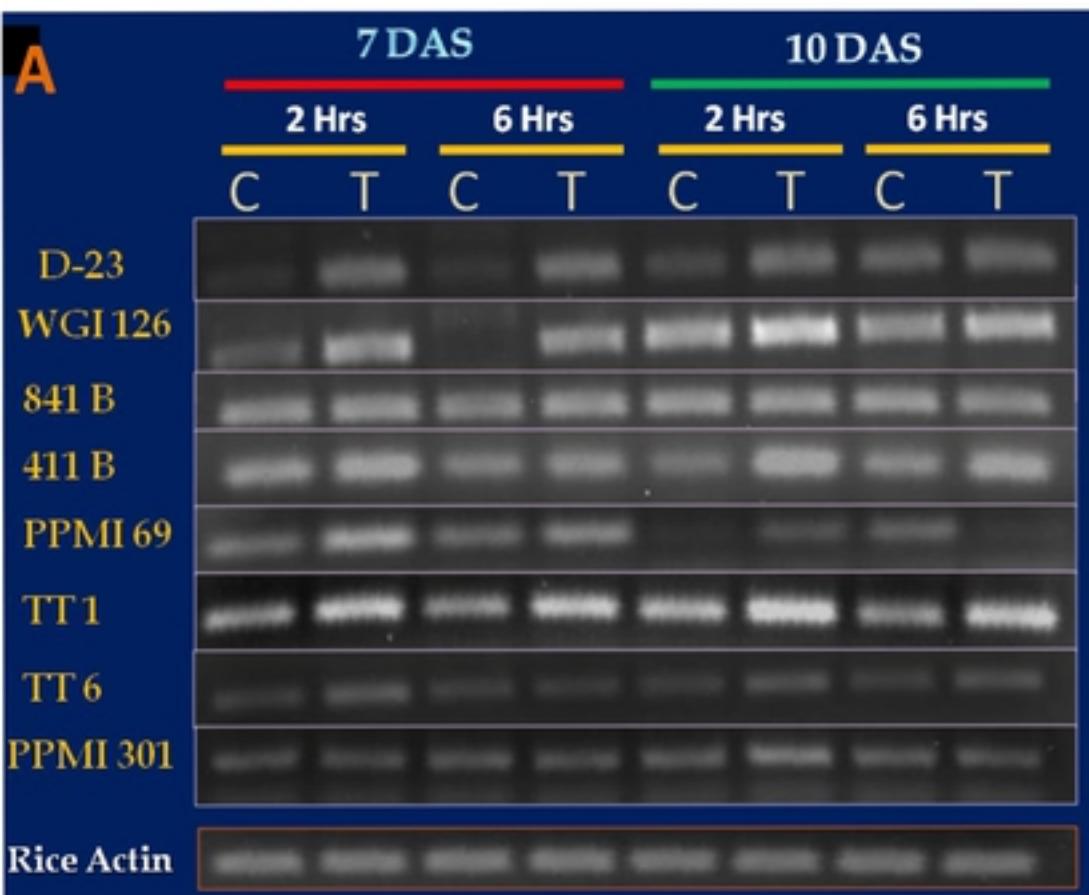
511 38. Key JL, Lin CY, Chen YM. Heat shock proteins of higher plants. Proc Natl Acad Sci USA. 1981; 78: 3526-3530.

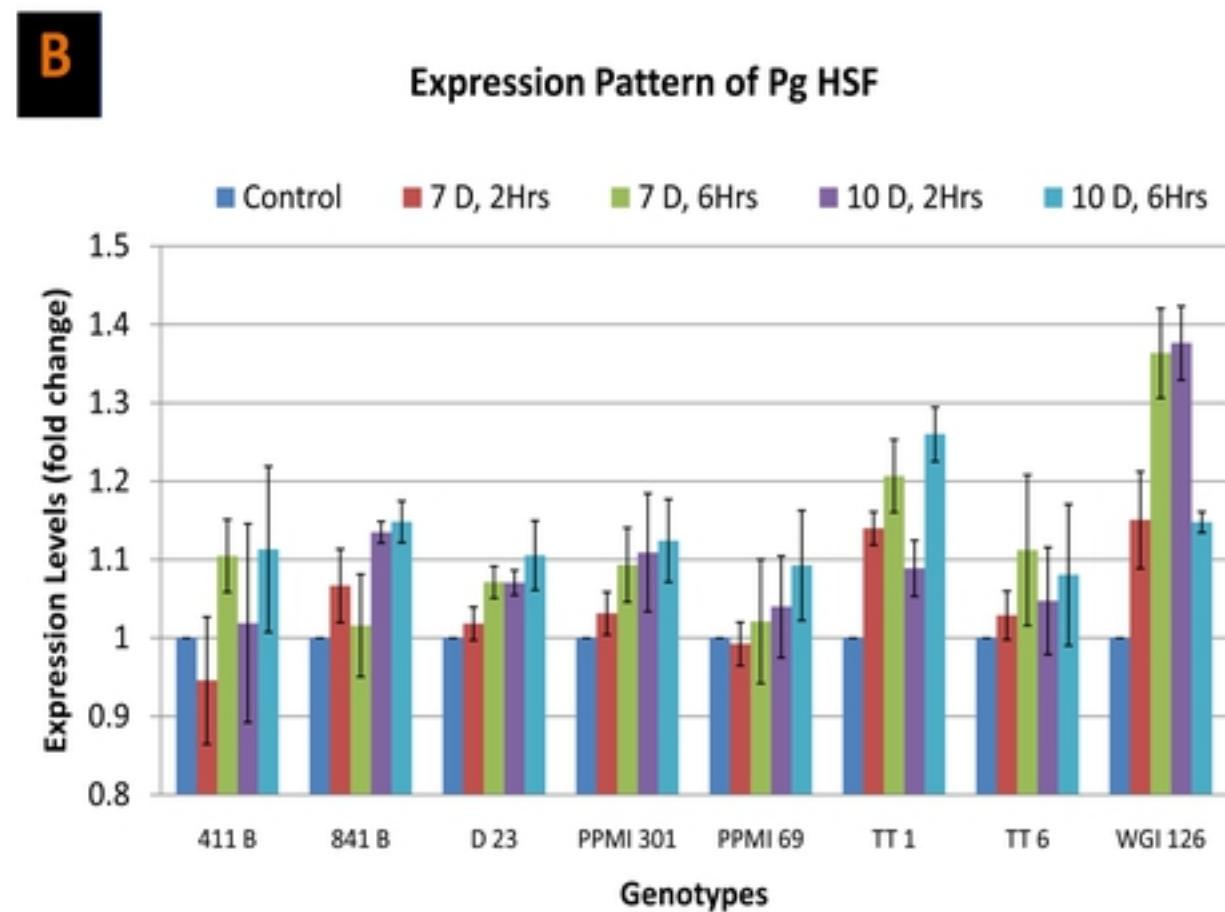
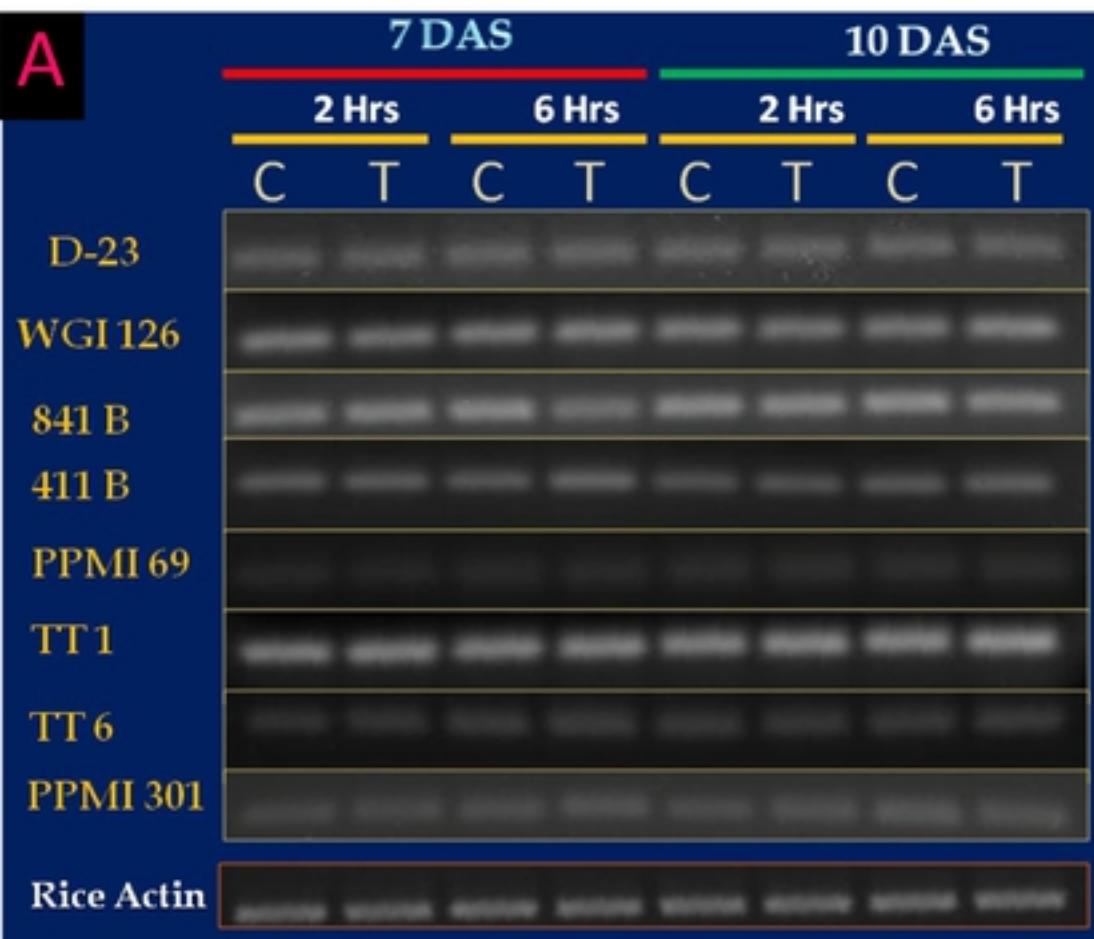
512 39. Baszczynski CL, Walden DB, Atkinson BG. Regulation of gene expression in corn (*Zea mays* L.) by heat shock.
513 II. In vitro analysis of RNAs from heat-shocked seedlings. Can J Biochem Cell Biol. 1983; 61(6):395-403.

514 40. Ramesha Reddy A, Kumar B, Reddy PS, Kaul T, Tanushri Nair S, Sopory SK, Reddy MK. Molecular cloning and
515 characterization of genes encoding *Pennisetum glaucum* ascorbate peroxidase and heat-shock factor: interlinking
516 oxidative and heat-stress responses. J plant physiol. 2009; 166(15):1646-1659.

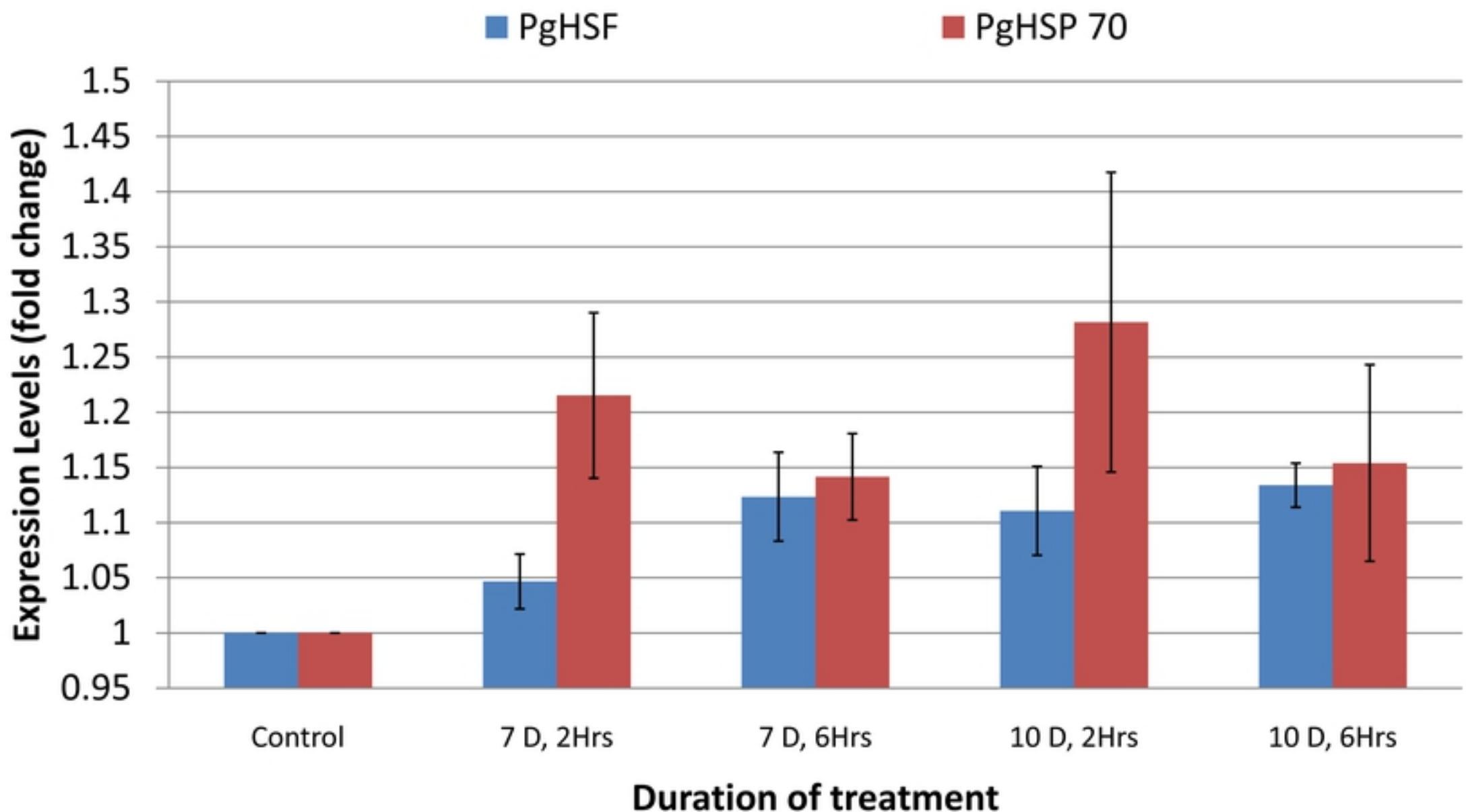
517 41. Zhang JH, Wang LJ, Pan QH, Wang YZ, Zhan JC, Huang WD. Accumulation and subcellular localization of heat
518 shock proteins in young grape leaves during cross-adaptation to temperature stresses. SciHortic. 2008; 117: 231–
519 240.


520 42. Hilton GR, Lioe H, Stengel F, Baldwin AJ, Benesch JL. Small heat-shock proteins: paramedics of the cell. *Top*
521 *Curr Chem.* 2013; 328:69-98.

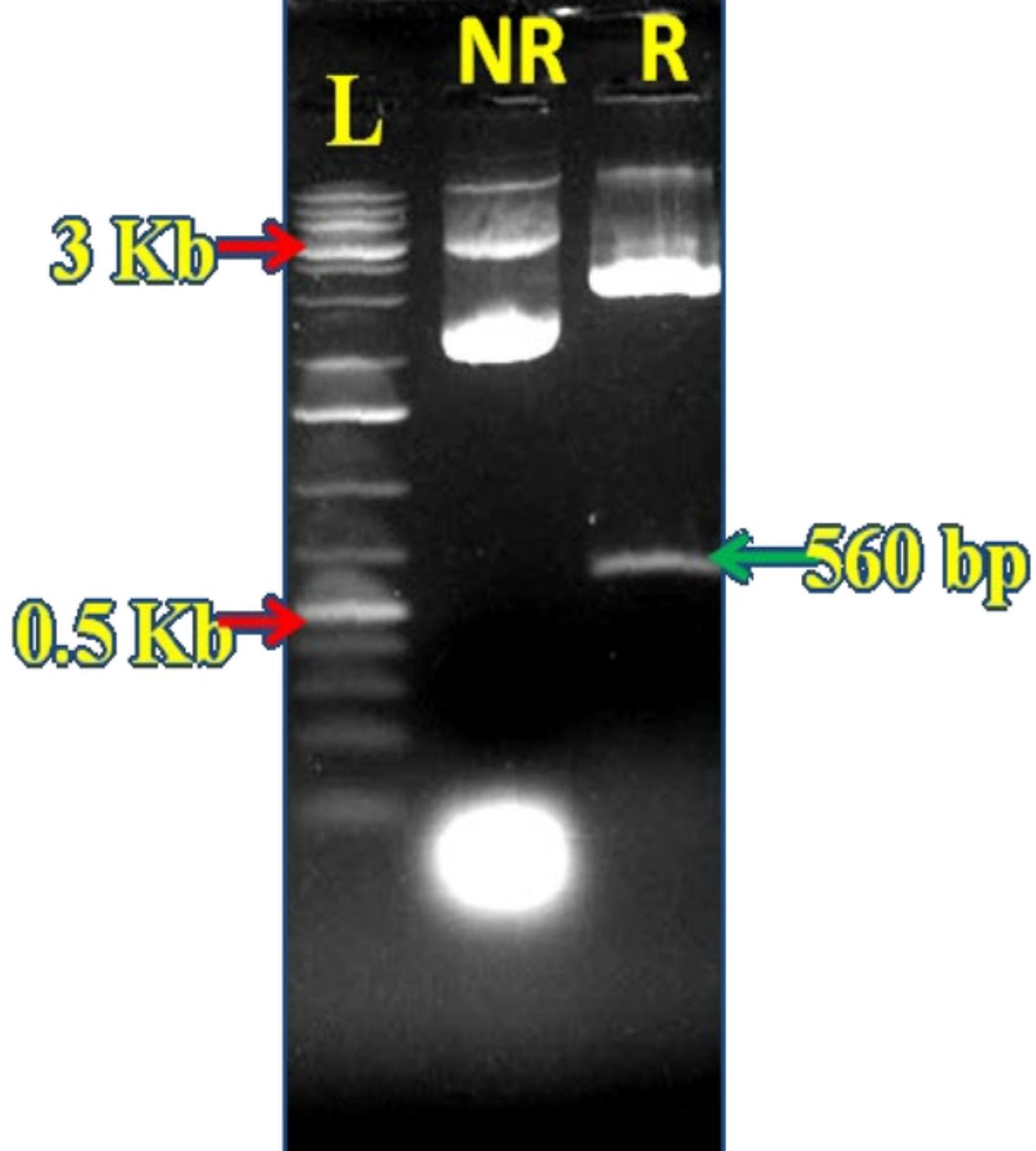


522 43. Jaya N, Garcia V, Vierling E. Substrate binding site flexibility of the small heat shock protein molecular
523 chaperones. *Proc Natl Acad Sci USA.* 2009; 106:15604–15609.



524 44. van Montfort RL, Basha E, Friedrich KL, Slingsby C, Vierling E. Crystal structure and assembly of a eukaryotic
525 small heat shock protein. *Nat. Struct. Biol.* 2001; 8: 1025–1030.

526 45. Morris AM, Treweek TM, Aquilina JA, Carver JA, Walker MJ. Glutamic acid residues in the C-terminal
527 extension of small heat shock protein 25 are critical for structural and functional integrity. *FEBS J.*
528 2008; 275: 5885–5898.


529 46. Studer S, Obrist M, Lentze N, Narberhaus F. A critical motif for oligomerization and chaperone activity of
530 bacterial heat shock proteins. *Eur. J. Biochem.* 2002; 269: 3578–3586.

A**B****C**

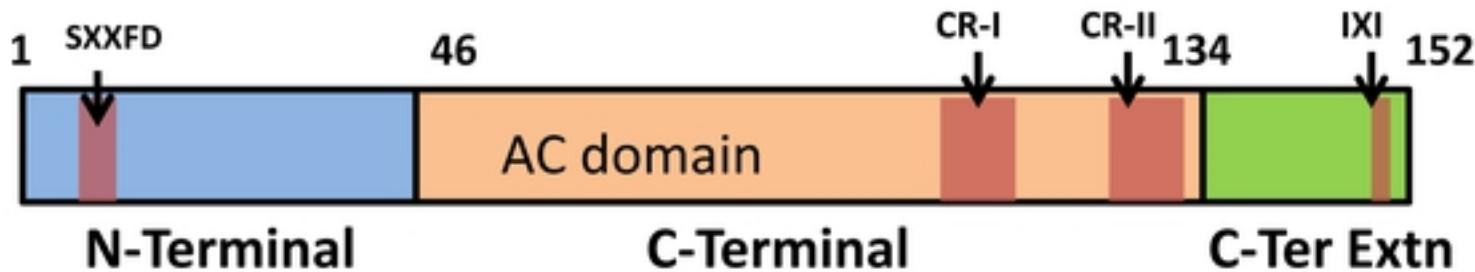

Co-Expression Pattern of *Pg HSP 70* & *Pg HSF*

LB Agar- Amp^R 100 + IPTG + XGal - M.S (16/100 μl)

③

1. 1.1

7a


cagttcatcaaacacagagttcagcaatgtcgctggtgagtgcagcagcgtttcgacccttctcc**ATGGAC**CTCTGGGACCCCTCGATAGCATGTT CGCTCCATCGTCCAGTCGGGGAGCCCCGACTCCGACACCGCCCTCGCCGCCGCATCGACTGGAAGGAGACCCCC GAAGCGCACGTCTCAAGGCTGACCTCCAGGCGTCAAGAAGGAGGAGGTCAAGGTCAGGGTGGAGGATGGCAACGTCCTCGT CATCAGCGGCCAGCGCAGCAAGGAGAAGGAGGACAAGAACGACAGGTGGCACC CGTCAGCGCAGCAGCGGCCAGTCATG AGGAGGTTTCGCCTGCCGGGAACGCCAAGGTGGACCAGGTGAAGGCTGGCTCGAGAACGGCGTGCACGGTACCGTGCC CAAGGCCGAGGAGAAGAACCCGAGGTGAAGGCCATTGAGATCTCTGGTTAAgagtccgtatagggtgctacggttgaagaaa**AT**gggtggtg ATgcg**AT**gtg**AT**gctacgagtcgtgcttgttgc

Acc.No. JQ627835.1

7b

MSLVSRSVFDPFSMDLWDPFDSMFRSIVQSAGSPDSDTAAFAAAA RIDWKETPEAHVFKADLPGVKKEEVKVEVEDGNVLVISGQRSKEKEDKNDRWHRVE RSSGQFMRRFLPGNAKVDQVKAGLENGV **LTVTVPKAEEKKPEVKAIEISG**

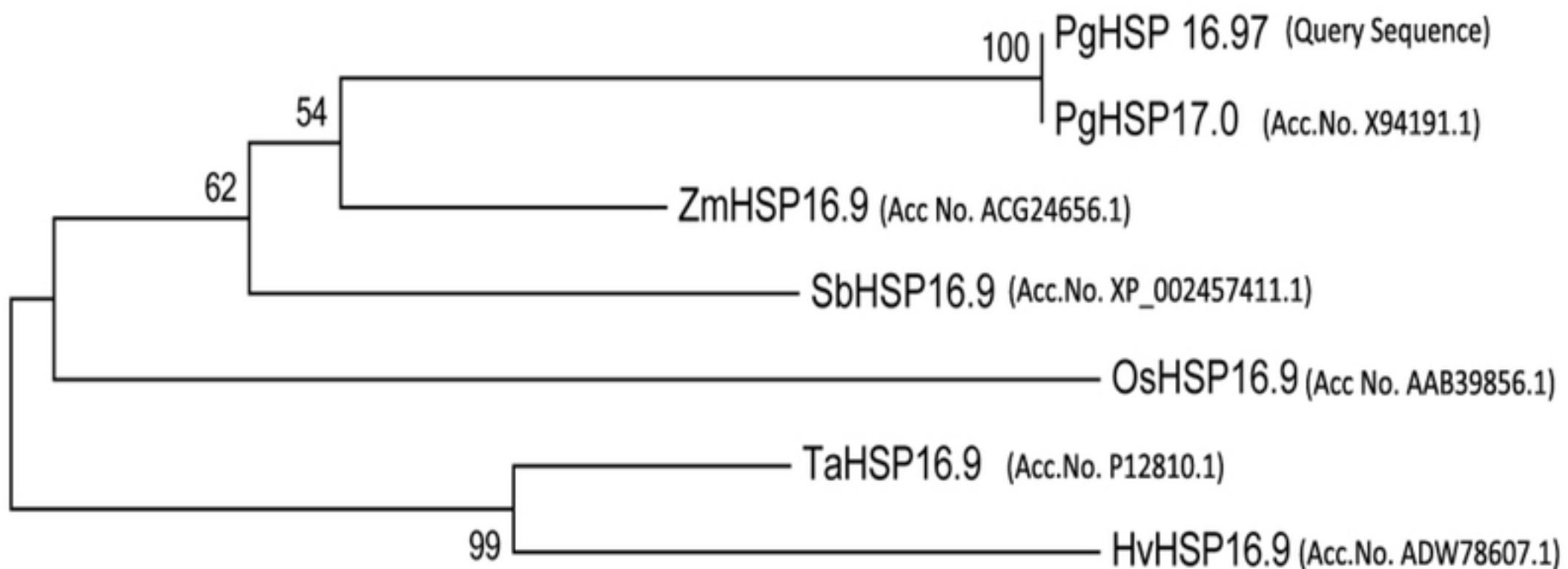
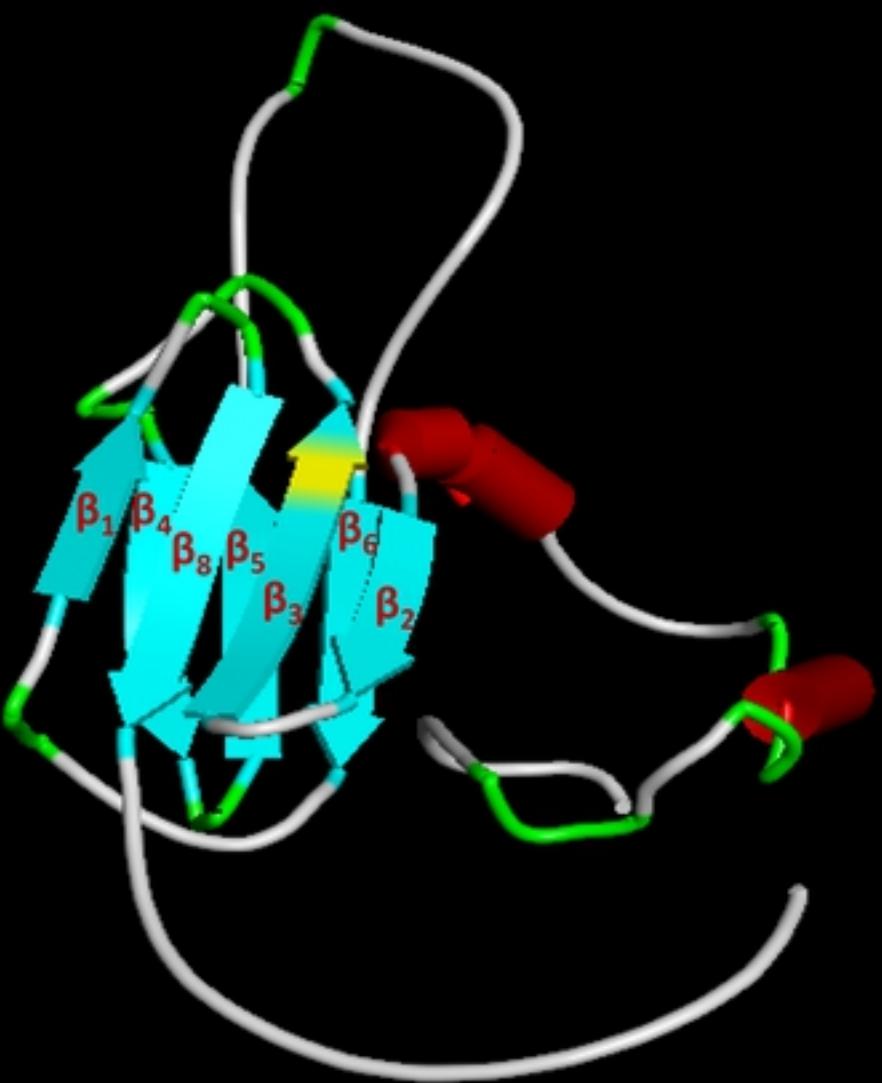
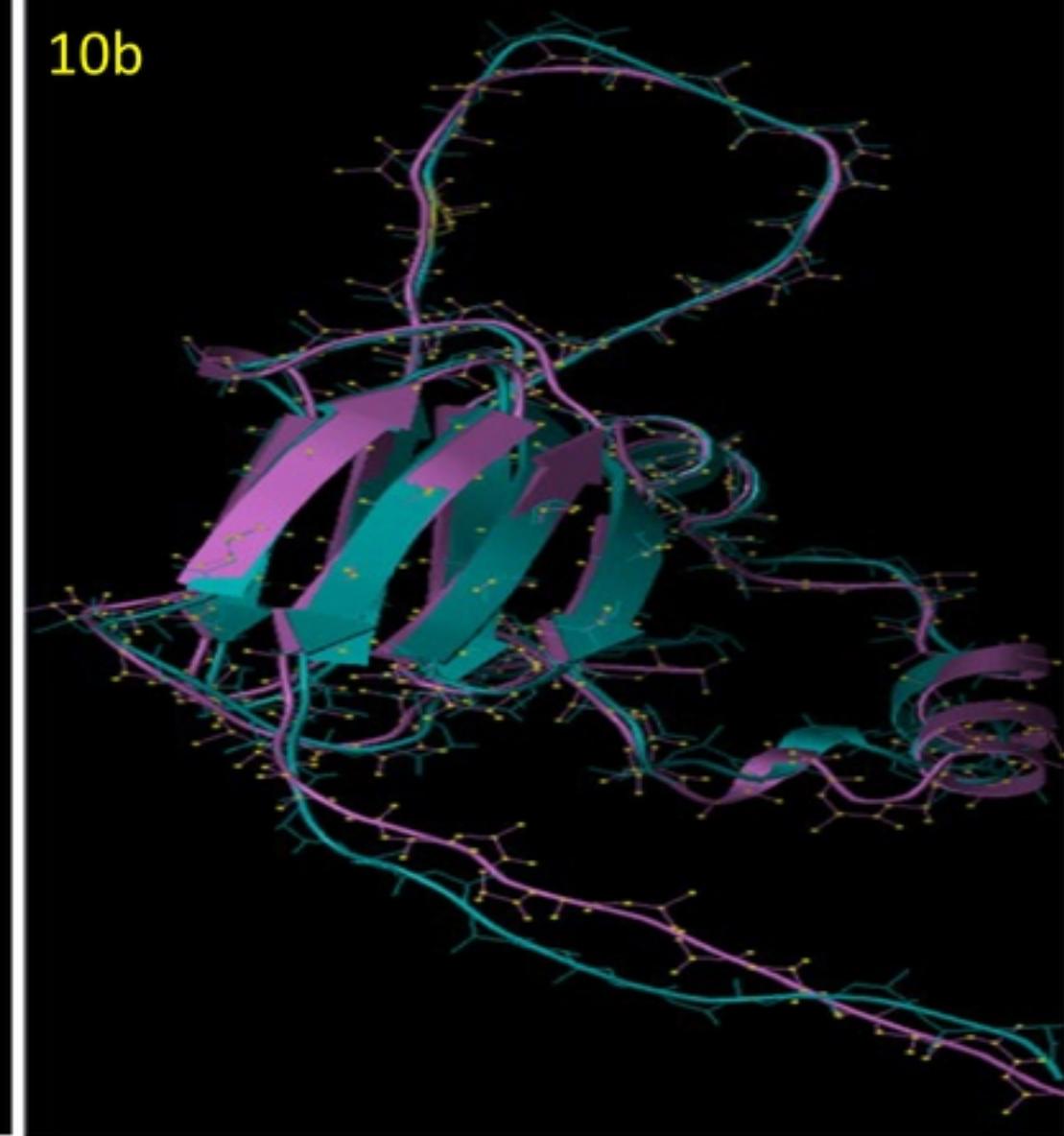

7c

Fig : 8 Alignment of Cereal HSP17 Amino Acid Sequences


CLUSTAL 2.1 multiple sequence alignment

		SC
PgHSP_16.97	MSLVSRSSVFDPF SMDLWDPFDSMFRSIVQSAGS PDSDTAAFAAARIDWKET PEAHVEKA	60
PgHSP17.0	MSLVSRSSVFDPF SMDLWDPFDSMFRSIVQSAGS PDSDTAAFAAARIDWKET PEAHVEKA	60
OsHSP16.9	MSLVRRSNVFDPF-ADFWDPFDGVLRSIVP--ATSDRDTAAFANARVDWKET PEAHVEKA	57
TaHSP16.9	MSIVRRSNVFDPFADLWADPFD-TFRSIVPAISGGSSSETAAFANARVDWKET PEAHVEKV	59
ZmHSP16.9	MSLVRRSNVFDPF SMDLWDPFDTMFRSIVPSAVSTNSETAAFASARIDWKET PEAHVEKA	60
SbHSP16.9	MSLVRRSNVFDPF SMDLWDPFDNMFRSIVPSAASGDSETAAFANARIDWKET PEAHVEKA	60
HvHSP16.9	MSIVRRSNVLDPFADLWADPFD-TFRSIFPAISGSNSETAAFANARMDWKET PEAHVEKA	59
	: * *.*: * *** :***: . :***** * :*****:*****:*****.	
PgHSP_16.97	DLPGVKKEEVKVEVEDGNVLVI SGQRSGKEKEDKNDRWHRVERSSGQFMRRFRLPGNAKVD	120
PgHSP17.0	DLPGVKKEEVKVEVEDGNVLVI SGQRSGKEKEDKNDRWHRVERSSGQFMRRFRLPGNAKVD	120
OsHSP16.9	DLPGVKKEEVKVEVEEGNVLVI SGQRSGKEKEDKNDKWHRVERSSGQFMRRFRLPENAKVD	117
TaHSP16.9	DLPGVKKEEVKVEVEDGNVLVSGERSREKEDKNDKWHRVERSSGKEVRRFRLPEDAKVE	119
ZmHSP16.9	DLPGVKKEEVKVEVEDGNVLVI SGQRSGREKEDKDDKWHRVERSSGQEVRRFRLPENAKD	120
SbHSP16.9	DLPGVKKEEVKVEVEDGNVLVI SGQRSGREKEDKNDKWHRVERSSGQETRRFRLPENAKTE	120
HvHSP16.9	DLPGVKKEDVKVEVEDGNVLIVSGGRTKEKEDKNDKWHRVERSSGKEVRRFRLPEDAKVD	119
	*****:*****:****:*** * :*****: * :*****:*****: * ***** :***:.	
PgHSP_16.97	QVKAGLENGVLTVTVPKAEEKKPEVKAIIEISG	152
PgHSP17.0	QVKAGLENGVLTVTVPKAEEKKPEVKAIIEISG	152
OsHSP16.9	QVKASMENGVLTVTVPKAEVNKPEVKAIIEISG	149
TaHSP16.9	EVKAGLENGVLTVTVPKAEVKKPEVKAIIEISG	151
ZmHSP16.9	QVKAGLENGVLTVTVPKAEEKKPEVKAIIEISG	152
SbHSP16.9	EVKAGLENGVLTVTVPKAEVKKPEVKSIQISG	152
HvHSP16.9	EVKAGLENGVLTVTVPKAEVKKPEVKAIIEISG	151
	:***:*****:*****:*****:*****:*****	



0.02

10a

10b

