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Abstract  
Adaptive  evolution  has  shaped  major  biological  processes.  Finding  the  protein-­coding  genes  and  the  

sites  that  have  been  subjected  to  adaptation  during  evolutionary  time  is  a  major  endeavor.  However,  very  

few  methods  fully  automate  the  identification  of  positively  selected  genes,  and  widespread  sources  of  

genetic  innovations  as  gene  duplication  and  recombination  are  absent  from  most  pipelines.  Here,  we  

developed  DGINN,  a  highly-­flexible  and  public  pipeline  to  Detect  Genetic  INNovations  and  adaptive  evolution  

in  protein-­coding  genes.  DGINN  automates,  from  a  gene’s  sequence,  all  steps  of  the  evolutionary  analyses  

necessary  to  detect  the  aforementioned  innovations,  including  the  search  for  homologues  in  databases,  

assignation  of  orthology  groups,  identification  of  duplication  and  recombination  events,  as  well  as  detection  

of  positive  selection  using  five  different  methods  to  increase  precision  and  ranking  of  genes  when  a  large  

panel  is  analyzed.  DGINN  was  validated  on  nineteen  genes  with  previously-­characterized  evolutionary  

histories  in  primates,  including  some  engaged  in  host-­pathogen  arms-­races.  The  results  obtained  with  

DGINN  confirm  and  also  expand  results  from  the  literature,  establishing  DGINN  as  an  efficient  tool  to  

automatically  detect  genetic  innovations  and  adaptive  evolution  in  diverse  datasets,  from  the  user’s  gene  of  

interest  to  a  large  gene  list  in  any  species  range.  
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Introduction  
Genetic  innovation  is  a  major  adaptation  process  that  has  impacted  genome  structures  and  functions  

over  millions  of  years  in  response  to  natural  selection.  Such  changes  have  shaped  key  biological  functions,  

such  as  reproduction,  adaptation  to  a  new  environment,  immunity,  sensory-­perception,  host-­pathogen  

interaction.  Adaptation  in  protein-­coding  genes  can  take  place  through  several  mechanisms.  They  include,  

amongst  others,  positive  selection  on  coding  sequences,  duplication  events  with  subsequent  divergence  of  

the  copies,  as  well  as  recombination  (Daugherty  and  Malik  2012).  The  first  is  caused  by  natural  selection  

that  increases  the  frequency  of  advantageous  mutations,  leading  to  an  apparent  excess  of  non-­synonymous  

substitution  rates  over  synonymous  ones  over  evolutionary  times.  This  notably  leads  to  the  accumulation  of  

beneficial  amino-­acid  changes  at  the  location  of  functionally  important  residues,  such  as  the  interface  of  

proteins  involved  in  host-­virus  interactions.  Gene  duplication  is  another  important  source  of  genetic  novelty,  

which  notably  allows  to  increase  the  general  evolvability  (Daugherty  and  Zanders  2019,  Kondrashov  2012).  

The  fixation  of  multiple  copies  enables  diversification  of  gene  function  through  subfunctionalization  or  

neofunctionalization.  Moreover,  gene  conversion,  by  recombination  between  alleles,  allows  for  rapid  

divergence  of  the  copies.  Gene  duplication  and  loss  may  further  be  a  dynamic  and  rapid  adaptation  process  

(McLaughlin  and  Malik,  2017,  Daugherty  and  Zanders  2019,  Kondrashov  2012).    

These  mechanisms  fueling  genetic  novelty  are  all  parts  of  the  response  of  organisms  to  selective  

pressures  and  must  therefore  be  analyzed  as  much  has  possible  together  to  wholly  apprehend  the  

evolutionary  history  of  genes.  However,  despite  their  frequency  and  their  biological  importance  and  

relevance,  these  diverse  evolutionary  innovations  are  not  accounted  for  in  most  tools  and  studies  analyzing  

genes  under  adaptive  evolution  (such  as  Kosiol  et  al.,  2008,  Hawkins  et  al  2019,  and  reviewed  in  Sahm  et  al  

2017).  Lastly,  performing  gold-­standard  and  complete  phylogenetic  analyses  is  usually  highly  hand-­curated.  

Our  goal  was  therefore  to  design  a  tool  that  would  incorporate  all  these  mechanisms  at  the  origin  of  genetic  

innovation  in  a  robust  end-­to-­end  pipeline  to  identify  and  characterize  new  protein-­coding  genes  with  

signatures  of  adaptive  evolution.  

Such  a  pipeline  requires  the  automation  of  essential  steps.  Primarily,  searching  for  homologous  gene  

sequences  and  identifying  orthologous  relationships  represent  a  time-­consuming  and  difficult  process.  No  

existing  tool  include  these  steps,  because  they  either  remain  essentially  hand-­curated  (Hyphy  suite  (Pond  et  

al.,  2005),  Selecton  (Stern  et  al.,  2007),  IDEA  (Egan  et  al.,  2008),  JcoDa  (Steinway  et  al.,  2010),  PoSeiDon  

(Fuchs  et  al.,  2017)  and  POTION  (Hongo  et  al.,  2015)),  are  restricted  to  specific  vertebrate  and  prokaryotic  

species  (PhyleasProg  (Busset  et  al.,  2011)  and  PSP  (Su  et  al.,  2013)),  or  rely  on  published  orthologous  

annotations  (essentially  from  the  NCBI  HomoloGene)  which  may  become  imprecise  on  non-­model  species.    

Secondly,  correct  codon  alignments  are  necessary  for  the  accurate  detection  of  residues  under  positive  

selection.  However,  current  pipelines  rely  on  protein  or  nucleotide  alignment  softwares  like  ClustalW  

(Thompson  et  al.,  1994)  or  Muscle  (Edgar,  2004),  although  more  recent  ones  such  as  PRANK  (Löytynoja  

and  Goldman,  2008)  have  been  repeatedly  shown  to  provide  high-­quality  codon  alignments,  thereby  

diminishing  false  positives  during  the  detection  of  positive  selection  (Fletcher  and  Wang,  2010,  Privman  et  

al.,  2012,  Jordan  and  Goldman,  2012,  Markova-­Raina  and  Petrov,  2011).  

Thirdly,  we  identified  the  need  to  include  within  a  single  analysis  the  detection  of  positive  selection  

signatures  by  different  methods  and  models,  to  allow  for  more  specificity  and  sensitivity  of  the  results,  as  well  

as  to  help  “ranking”  genes  in  an  evolutionary  screening  approach  (for  example  Abdul  et  al.,  2018,  Elde  et  al  

2009,  Schultz  and  Sackton  2019,  Malfavon-­Borja  et  al.,  2013,  McBee  et  al.,  2015,  Rowley  et  al.,  2016).  
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Moreover,  the  inclusion  of  methods  in  which  the  experienced  user  has  access  to  the  parameterization  of  the  

maximum  likelihood  models  is  needed  (van  der  Lee  et  al,  2017).  Existing  tools  rely  almost  exclusively  on  

PAML  codeml  (Yang,  2007),  which  has  allowed  the  identification  of  numerous  genes  under  positive  

selection,  but  offers  limited  options  for  parameterization.  
Overall,  there  seemed  to  exist  a  void  when  it  comes  to  pipelines  which  fully  automate  the  search  for  

adaptive  evolution  in  protein-­coding  genes,  from  retrieving  homologous  sequences  of  a  gene  of  interest  in  

any  species  range,  establishing  orthologous  relationships,  reconstructing  codon  alignments  and  the  

corresponding  phylogenies,  to  detecting  different  genetic  innovations  using  gold-­standard  and  diverse  

methods  to  ensure  high-­degree  of  confidence  in  the  results.  We  thus  developed  an  integrative  pipeline,  that  

we  named  DGINN  (for  Detection  of  Genetic  INNovations)  to  satisfy  those  requirements.  All  scripts  are  freely  

available  on  Github  and  as  a  docker  on  DockerHub.  We  also  focused  on  user-­friendliness  and  flexibility,  so  

that  biologists  can  use  with  ease  and  use  only  parts  of  the  workflow  for  various  purposes.  DGINN  was  

developed  as  a  one-­gene  workflow  and  can  easily  be  up-­scaled  to  screen  large  datasets  of  dozens  or  

hundreds  of  genes.  Finally,  we  performed  an  extensive  validation  of  our  pipeline,  using  published  and  highly  

hand-­curated  phylogenetic  data  on  a  set  of  nineteen  primate  genes  with  various  evolutionary  histories  

including  genes  involved  in  virus-­host  evolutionary  arms-­races  (Daugherty  and  Malik  2012,  Duggal  and  

Emerman  2012).  Through  DGINN,  we  further  identified  previously  uncharacterized  signatures  of  genetic  

conflict  in  the  primate  Guanylate-­binding  protein  (GBP)  family,  which  plays  important  roles  in  cell-­

autonomous  immunity  against  pathogens  (Kim  et  al  2012,  Kraap  et  al.,  2016).  
  

Materials  and  Methods  
  
Pipeline  structure  
The  overall  goal  of  the  DGINN  pipeline  (overviewed  in  Figure  1)  is  to  provide  an  easy,  integrated,  and  

robust  way  of  detecting  genetic  innovations  from  a  gene  sequence  provided  by  the  user  on  two  scales,  either  

on  one  specific  gene  for  fine-­tuned  analyses  or  on  large  sets  of  genes  of  interest  for  screening  purposes.    
DGINN  is  implemented  in  Python  and  uses  numerous  modules,  including  some  from  Biopython,  as  well  

as  several  independent  softwares.  The  list  of  modules  and  external  softwares  is  provided  in  the  pipeline  

documentation.  All  scripts  and  documentation  can  be  downloaded  from  Github.  To  enhance  user-­

friendliness,  options  are  handled  through  a  parameter  file,  minimizing  the  complexity  of  the  command  line.  

Importantly,  a  Docker  image  is  also  available  for  local  use  without  manual  installation  of  the  external  required  

softwares.  The  Docker  may  also  be  used  to  screen  large  dataset  using  AWS  Batch  for  example  

(https://aws.amazon.com/batch/).  A  specific  script  for  the  extraction  of  batch  results,  parseResults.py,  and  a  

graphical  interface  to  produce  basic  figures  with  them,  have  also  been  developed  (see  Availability).  
The  overall  workflow  of  the  DGINN  pipeline  is  a  succession  of  eight  steps,  described  hereafter.  Of  note,  

DGINN  is  designed  to  be  extremely  flexible  as  to  its  uses.  The  user  can  enter  the  workflow  at  any  step  with  

the  files  resulting  from  their  own  analyses,  as  indicated  in  Table  1  and  Figure  1.  The  name  of  the  step  

reflects  the  very  first  step  performed  with  the  option.  For  example,  starting  DGINN  at  the  ‘blast’  step  will  

make  it  begin  with  the  blast  search,  and  then  execute  the  whole  pipeline.  The  duplication,  recombination  and  

positive  selection  steps  will  not  be  performed  if  the  user  has  not  specifically  opted  in  for  them,  allowing  for  

maximum  flexibility.  
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(Step  1)  Automated  retrieval  of  homologous  genes  in  species  of  interest  
DGINN  uses  BLAST+  search  (Camacho  et  al.,  2009)  against  the  NCBI  databases.  The  BLAST  search  

can  be  done  against  a  local  database  constructed  by  the  user,  or  online  against  specific  NCBI  databases,  

which  allows  the  user  to  limit  the  search  to  certain  sequences,  such  as  ESTs,  or  certain  species,  by  providing  

the  proper  Entry  Query,  following  the  syntax  used  on  the  NCBI  website,  as  described  in  their  documentation  

(https://www.ncbi.nlm.nih.gov/books/NBK3837/#EntrezHelp.Entrez_Searching_Options).  BLAST+  is  used  by  

providing  the  coding  sequence  of  the  gene  of  interest  against  a  nucleotide  databank  (blastn).  We  decided  

not  to  use  blastp  (protein  query  against  protein  database)  as  it  significantly  complicated  the  recuperation  of  

the  nucleotide  sequences  afterwards,  which  are  indispensable  to  the  rest  of  the  pipeline.  Moreover,  

nucleotide  databases  include  more  sequences  and  thus  allow  for  a  more  exhaustive  search.  The  number  

and  speed  of  requests  against  NCBI  databases  can  be  increased  through  the  acquisition  of  an  NCBI  API  

key,  available  online.  This  ensures  access  to  the  largest  possible  number  of  sequences,  including  those  not  

annotated  as  orthologous  or  paralogous  sequences.  The  user  may  modify  minimum  e-­value,  coverage,  and  

identity  values  to  reflect  the  specificities  of  the  database  and  the  species  set  against  which  they  are  using  

BLAST+.  Because  we  validated  our  pipeline  on  primate  evolution,  we  set  those  with  default  values  of  10-­4,  

50%,  and  70%,  respectively,  to  retrieve  a  maximum  of  homologous  sequences  without  too  many  unrelated  

sequences.    
  

(Step  2)  Elimination  of  overly  long  sequences  and  isolation  of  Open  Reading  Frames  (ORFs)  
Because  the  user  may  want  to  cast  a  wide  net  in  terms  of  homologue  retrieval,  and  thus  use  low  

coverage  and  identity  for  the  blastn  search  (Step  1),  a  variety  of  resulting  hits  are  retrieved,  including  overly  

long  sequences  from  whole  contigs  or  chromosomes.  Those  sequences  considerably  increase  the  analysis  

time  if  not  properly  curated.  Furthermore,  the  detection  of  ORFs  of  interest  is  extremely  difficult,  as  they  

contain  numerous  genes.  In  DGINN,  we  identify  and  remove  such  sequences  based  on  the  median  length  of  

all  the  retrieved  sequences:  if  the  median  is  longer  than  10,000  nucleotides,  any  sequence  longer  than  twice  

the  median  are  taken  out,  otherwise  sequences  are  deleted  if  they  exceed  three  times  the  median  length.  

The  remaining  sequences  are  searched  for  ORFs  using  ORFinder  from  the  EMBOSS  package  (Rice  et  al.,  

2000)  to  keep  only  the  coding  sequence  of  each  gene.  The  longest  detected  ORF  of  each  sequence  is  

selected  for  further  analysis.  

  

(Step  3)  Initial  codon  alignment  
Positive  selection  analyses  rely  on  identifying  substitutions  leading  to  amino-­acid  changes  over  those  

being  silent.  Therefore,  a  codon  alignment  of  good  quality  is  essential.  However,  very  few  softwares  propose  

true  codon-­alignment  modes.  To  date,  the  best  codon  aligners  are  PRANK  (Löytynoja  and  Goldman,  2008)  

and  MACSE  (Ranwez  et  al.,  2011).  PRANK  has  been  shown  to  produce  the  best  alignments  for  positive  

selection  analyses  (Schneider  et  al.,  2009,  Fletcher  and  Yang,  2010,  Markova-­Raina  and  Petrov,  2011,  

Jordan  and  Goldman,  2012,  Privman  et  al.,  2012).  From  our  observations,  MACSE  also  produced  high-­

quality  codon  alignments,  but  it  was  significantly  slower  than  PRANK.  We  therefore  selected  the  latter  as  the  

best  solution  for  both  quality  alignments  and  lower  computational  time.  PRANK  alignments  are  performed  

with  the  codon  model  and  without  forcing  insertions  to  be  skipped,  and  otherwise  default  settings  (prank  -­F  -­

codon;;  version  150803).  After  this  initial  alignment,  we  added  a  quality  control  step  to  eliminate  sequences  

that  did  not  align  properly,  using  Python  homemade  scripts,  based  on  alignment  coverage  against  the  query  
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(either  the  user-­provided  value  or  default  of  50%).  The  remaining  sequences  are  then  re-­aligned  using  the  

same  settings.  
  

(Step  4)  Construction  of  the  initial  phylogenetic  gene  tree  
The  gene’s  phylogenetic  reconstruction  is  performed  with  PhyML  v3.2  (Guindon  et  al.,  2010).  We  opted  

for  a  HKY+G+I  model  as  default,  because  it  offers  the  best  combination  of  realistic  phylogenies  without  being  

too  time-­consuming.  As  the  produced  trees  are  only  intended  for  screening  purposes  at  this  step,  we  also  

opted  to  use  approximate  Likelihood  Ratio  Test  (aLRT)  for  the  statistical  support  of  the  branches  (Anisimova  

and  Gascuel,  2006).    

  

(Step  5)  Identification  of  duplication  events  and  orthologous  groups  
As  previous  steps  retrieved  homologues  without  relying  on  synteny  or  gene  annotation,  we  implemented  

two  strategies  to  identify  duplicated  genes  and  to  constitute  orthologous  groups  necessary  for  the  positive  

selection  analyses.  DGINN  first  identifies  the  overly  “long  branches”  within  the  gene  tree.  We  define  a  “long  

branch”  as  a  branch  which  length  is  superior  to  50  times  the  mean  of  all  branch  lengths  in  the  tree  (i.e.  the  

estimated  number  of  substitutions  per  position  is  at  least  50  times  superior  in  the  “long  branch”  compared  to  

the  mean).  When  “long  branches”  are  identified,  the  tree  is  cut  along  those  “long  branches”  and  the  groups  

of  sequences  subsequently  constituted  are  re-­aligned  (back  to  step  3)  and  their  trees  recomputed  separately  

(step  4).    This  constitutes  a  first  method  of  separating  highly  divergent  groups  of  genes,  between  which  

detection  of  positive  selection  may  be  ambiguous  because  of  suspicion  of  paralogy  and  branch  length  

saturation.  However,  for  multigenic  families  that  include  paralogues  that  have  recently  diverged,  the  gene  

members  cannot  be  separated  solely  based  on  the  relative  lengths  of  the  tree  branches.  We  therefore  

included  a  phylogenetic  reconciliation  method,  TreeRecs  (Comte  et  al.,  2019),  to  identify  genes  sharing  a  

common  evolutionary  history  in  our  species  of  interest.  To  identify  duplication  events,  TreeRecs  reconciles  a  

user-­provided  species  tree  or  cladogram  to  each  gene  tree.  From  the  reconciled  tree,  DGINN  establishes  

groups  of  orthologues  based  on  ancestral  duplication  events  annotated  on  the  reconciled  tree.  Since  

interspecific  positive  selection  analyses  rely  on  the  comparison  of  several  orthologous  sequences,  

orthologous  groups  resulting  from  very  recent  duplications  may  have  too  few  sequences  to  be  informative  for  

those  analyses.  So  we  chose  to  ignore  duplication  events  that  were  not  ancestral  enough,  by  taking  into  

account  the  minimal  number  of  species  represented  downstream  of  the  event.  This  number  is  user-­

determined.  We  decided  on  a  default  setting  of  a  minimum  of  eight  species  to  extract  a  duplication  group  

from  the  original  alignment,  based  on  the  results  obtained  by  Anisimova  et  al.  (2002),  and  in  primates  

specifically  by  McBee  et  al.,  (2015).  Duplication  events  on  nodes  that  do  not  have  at  least  two  species  in  

common  in  the  groups  formed  on  either  side  of  the  node  are  considered  dubious:  the  corresponding  

annotated  events  are  then  ignored  by  DGINN.  After  extraction  based  on  ancestral  duplication  events,  the  

orthologous  groups  are  realigned  using  PRANK  as  in  Step  3.  
  

(Step  6)  Identification  of  recombination  events  and  splitting  of  alignments  along  the  significant  
breakpoints  

To  account  for  recombination,  DGINN  includes  GARD  from  HYPHY  (Kosakovsky  Pond  et  al.,  2006)  with  

standard  parameters.  The  breakpoints  are  then  assessed  for  statistical  significance  using  a  likelihood  ratio  

test  (LRT)  with  p  <  0.05  against  a  null  hypothesis  that  there  is  no  breakpoint  at  that  position.  If  any  
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breakpoint  is  significant,  it  is  moved  to  the  nearest  inter-­codon  site,  and  the  alignment  is  subsequently  cut  

into  the  corresponding  non-­recombinant  fragments.  These  non-­recombinant  alignments,  as  well  as  the  

original  one,  will  become  the  input  in  the  following  steps.  
  

(Step  7)  Construction  of  the  final  phylogenetic  trees  
Following  the  analyses  of  duplication  and  recombination  events  (steps  5-­6),  new  codon-­wise  alignments  

using  PRANK  (same  parameters  as  in  step  3)  and  new  phylogenies  using  PhyML  (same  parameters  as  in  

step  4)  are  built  for  groups  of  non-­recombinant  fragments  (see  step  6)  of  orthologous  genes  (see  step  5).  

These  final  codon  alignments  and  gene  trees  will  further  provide  the  input  for  the  positive  selection  analyses.  

  

(Step  8)  Positive  selection  analyses  
Numerous  softwares  exist  to  identify  positive  selection  on  coding  sequences.  DGINN  includes  several  

methods  of  positive  selection  analyses,  which  the  user  can  chose  to  turn  on  or  off  independently.  Those  

analyses  make  extensive  use  of  three  packages:  HYPHY  (Pond  et  al.,  2005),  PAML  codeml  (Yang,  2007)  

through  the  ETE  toolkit  (http://etetoolkit.org/),  and  Bio++  (Guéguen  et  al.,  2013).  
From  the  HYPHY  package,  we  included  two  methods.  First,  we  included  BUSTED  (Branch-­Site  

Unrestricted  Statistical  Test  for  Episodic  Diversification),  a  random  effect  model  which  allows  for  gene-­wide  

detection  of  episodic  positive  selection  (Murrel  et  al.,  2015).  Results  are  considered  positive  in  the  DGINN  

pipeline  for  a  p-­value  <  0.05  for  the  LRT  of  the  models  admitting  vs  not  admitting  positive  selection.  Second,  

we  included  MEME  (Mixed  Effects  Model  of  Evolution),  which  detects  individual  sites  subjected  to  episodic  

positive  selection  based  on  a  mixed  effects  model  (Murrel  et  al.,  2012).  These  models  are  complementary,  

as  BUSTED  evaluates  positive  selection  at  the  gene  level  and  MEME  at  the  site  level.  
Contrary  to  BUSTED  and  MEME,  the  codon  substitution  models  used  in  PAML  codeml  focus  on  

pervasive  positive  selection  and  not  episodic  events.  Briefly,  the  codon  alignments  are  fitted  to  models  that  

do  not  allow  for  positive  selection,  M1  (with  two  classes  ω  <  1  and  ω  =  1)  or  M7  (where  the  ω  <  1  class  is  

modeled  as  a  gamma  law  of  n  classes,  n=5  as  default  in  DGINN),  and  the  corresponding  models  allowing  for  

positive  selection  with  one  class  of  ω  >  1  (M2  or  M8,  respectively).  Statistical  significance  of  positive  

selection  is  determined  through  a  chi-­squared  test  of  the  LRT  of  both  associated  models  (M1  vs  M2,  and  M7  

vs  M8)  to  derive  p-­values.  Results  are  considered  positive  in  the  DGINN  pipeline  for  a  p-­value  <  0.05.  
However,  PAML  codeml  relies  on  the  assumption  of  stationarity  (i.e.  that  the  base  composition  of  

sequences  is  at  the  equilibrium  of  the  evolutionary  process),  which  may  impact  the  detection  of  selection  

(Guéguen  and  Duret,  2018).  It  is  also  limited  with  regards  to  its  parameterization.  Therefore,  we  also  

integrated  the  parameterizable  Bio++  library  to  propose  similar  models  but  without  stationarity  assumption  

(Bio++  models  M1NS  vs  M2NS,  and  M7NS  vs  M8NS).  Similarly,  DGINN  considers  significant  positive  selection  if  

p-­value  <  0.05  of  each  model  comparison.  
If  positive  selection  is  determined  with  PAML  or  Bio++,  the  pipeline  will  proceed  to  the  identification  of  

the  sites  under  positive  selection,  using  the  Bayes  Empirical  Bayes  statistics  (BEB)  from  the  M2  and  M8  in  

PAML  codeml  and  the  Bayesian  Posterior  Probabilities  (PP)  from  the  M2NS  and  M8NS  models  in  Bio++.  Sites  

are  considered  as  under  significant  positive  selection  if  BEB  or  PP  >  0.95.  
To  detect  specific  branches/lineages  under  positive  selection,  DGINN  uses  Bio++  to  include  a  method  

similar  to  the  Free-­Ratio  test  available  in  PAML  codeml,  called  One  Per  Branch  in  DGINN  (OPB).  The  ω  ratio  

is  calculated  along  the  branches  of  the  phylogenetic  tree  by  using  a  M0  model  where  all  parameters  but  ω  
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are  homogeneous.  As  this  step  is  independent  and  the  Bio++  parameter  file  is  fully  accessible,  an  

experienced  user  can  choose  any  model  they  wish,  allowing  for  maximum  flexibility.  
  

Pipeline  parallelization  
DGINN  has  been  developed  with  the  intention  to  analyze  each  gene  independently,  with  parallelization  

over  large  datasets  being  handled  in  a  cluster  environment.  This  is  done  through  user-­made  scripts  (such  as  

job  arrays)  and  facilitated  through  configuration  parameters  that  are  specific  to  this  use.  -­i/-­-­infile  allows  for  

easier  parallelization  by  eliminating  the  need  to  create  parameter  files  for  each  analyzed  gene.  -­host/-­-­

hostfile  allows  the  user  to  indicate  the  cluster  hostfile  to  avoid  conflicts  when  starting  mpi  processes.  
Also,  if  the  query  genes  are  from  human,  a  separate  script  is  provided  for  downloading  their  CCDS  

sequences  prior  to  using  DGINN  itself.  This  script,  called  CCDSquery.py  and  available  on  the  Github,  only  

requires  a  table  as  its  entry,  with  HUGO  Gene  Nomenclature  Committee  (HGNC)  approved  symbols  in  one  

column  and  the  corresponding  CCDS  accessions  in  another.  This  table  can  be  obtained  through  the  HGNC  

biomart  (http://biomart.genenames.org/).    
  

Results  extraction  
An  independent  script,  parseResults.py,  is  provided  to  extract  the  essential  results  after  running  the  

pipeline.  This  script  outputs  a  table  (described  in  DGINN’s  documentation)  which  compiles,  for  each  

analyzed  gene,  the  results  regarding  duplication  and  recombination  events,  and  the  different  methods  of  

positive  selection  detection  used  (including  significance  of  each  method  and  sites  identified).  This  script  only  

requires  the  path  to  the  directory  containing  DGINN’s  results  as  input.  

An  R  Shiny  App  (see  Availability)  has  been  further  designed  to  help  the  user  visualize  the  results  

quickly,  which  only  necessitates  the  file  produced  by  parseResults.py.  This  app  will  output  the  figures  in  the  

same  format  as  those  shown  in  Figures  3-­4.  

  
Validation  dataset  and  method  
To  test  our  pipeline,  we  used  a  dataset  of  nineteen  primate  genes,  for  which  evolutionary  histories  and  

positive  selection  profiles  are  either  known  and  described  in  the  literature  or  have  been  established  within  

our  laboratory  in  the  past  years  (Table  2).  We  grouped  those  genes  in  three  categories  based  on  the  clusters  

described  in  Murrell  et  al.,  2016:  “canonical  arms-­race  genes”  such  as  APOBEC3G  and  SAMHD1  (Table  2,  

red  column),  “genes  described  as  presenting  various  selection  profiles”  (Table  2,  green  column),  such  as  

HERC5  or  SERINC3,  either  regarding  the  methods  employed  to  detect  positive  selection  or  the  strength  of  

the  detected  signal,  and  “genes  under  no  positive  selection  pressure”  such  as  GADD45A  and  

RHO/rhodopsin  (Table  2,  blue  column).  The  goal  was  to  validate  our  automatic  DGINN  method  using  data  

and  findings  from  highly  hand-­curated  phylogenetic  and  evolutionary  analyses,  and  if  possible  enrich  them.  

To  assess  the  pertinence  of  our  detection  of  duplication  events,  we  included  nine  genes  belonging  to  

multigene  families  (annotated  with  an  asterisk  in  Table  2).  A  gene  was  considered  as  part  of  a  multigene  

family  if  it  had  at  least  one  paralogue  with  over  50%  reciprocal  identity  amongst  primates  (according  to  

Ensembl).  A  member  of  the  APOBEC3  gene  family  was  also  included  as  an  extreme  example  of  genes  

involved  in  virus-­host  evolutionary  arms-­races  and  that  have  undergone  numerous  genetic  innovations  

(Nakano  et  al  2017,  Etienne  et  al.,  2015,  Desimmie  et  al.,  2014;;  Sawyer  et  al.,  2004).  Another  example  of  

multigene  family  member  included  is  HERC5,  which  exhibits  antiviral  activity  (reviewed  in  Kluge  et  al  2005)  
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and  described  in  the  literature  as  evolving  under  positive  selection  (Woods  et  al.,  2014).  Given  that  in  this  

latter  case  the  analyses  were  performed  on  a  limited  number  of  primate  species  (seven  species)  and  that  

this  may  conduct  to  a  bias  in  the  signature  of  positive  selection,  HERC5  was  included  in  the  “various”  

category  rather  than  in  the  “canonical”  one.  
The  primate  species  tree  used  to  assess  for  duplication  events  is  based  on  the  one  established  by  

Perelman  et  al.  (2011)  and  updated  by  Pecon-­Slattery  (2014),  with  minor  modifications:  species’  names  

according  to  the  six-­letter  naming  system  nomenclature  that  is  used  in  DGINN  (and  is  similar  to  UCSC  

genome’s  nomenclature:  the  first  three  characters  of  the  organism's  genus  and  species  classification  in  the  

format  gggSss;;  e.g.  Homo  sapiens  becomes  homSap),  species  names  were  updated  (e.g.  Tarsius  syrichta  

was  replaced  by  carSyr  for  Carlito  syrichta),  Rhinopithecus  bieti  (rhiBie)  and  Rhinopithecus  roxellana  

(rhiRox)  were  added  as  the  closest  relatives  of  Rhinopithecus  brelichi  (rhiBre).  This  modified  tree  is  available  

on  DGINN’s  Github  (https://github.com/leapicard/DGINN/blob/master/examples/ex_spTree.tree).  
  

Reconstruction  of  the  evolutionary  history  of  primate  Guanylate-­binding  protein  (GBP)  family  
Homologs  for  human  GBP4  and  GBP6  were  retrieved  online  through  Blastn  

(https://blast.ncbi.nlm.nih.gov/)  against  the  nr  database  limited  to  primates  (taxid:9443).  Sequences  were  

manually  selected  to  span  as  many  primate  species  as  available.  Their  accession  numbers  were  added  to  

the  list  of  accession  numbers  previously  obtained  from  the  DGINN  run  from  the  human  GBP5  query,  then  

DGINN  was  run  from  the  accession  step  to  the  duplication  step  (steps  2-­5)  to  determine  the  new  orthologous  

relationships  and  reconstruct  the  different  gene  trees.  
  

Resources  
DGINN  was  run  on  the  nineteen  genes  in  a  cluster  environment  (PSMN,  http://www.ens-­lyon.fr/PSMN/)  

in  two  stages.  The  first  one  ran  from  blast  step  against  the  NCBI  non-­redundant  nucleotide  nr/nt  database  

circumscribed  to  primate  species,  with  default  settings  (2  CPUs  for  each  gene)  until  the  identification  of  

recombination  events  (steps  1-­7,  Figure  1).  The  second  stage  focused  solely  on  positive  selection  analyses  

(step  8,  1  CPU  for  each  alignment).  Running  times  are  summarized  in  Table  3.  
  

Availability  
All  scripts  and  documentation  are  freely  available  on  Github  (https://github.com/leapicard/DGINN)  and  

as  a  Docker  on  DockerHub  (https://hub.docker.com/r/leapicard/dginn).  Example  files  to  test  DGINN  are  

available  to  the  users  on  GitHub.  A  specific  script  for  the  extraction  of  batch  results,  parseResults.py,  is  also  

available  on  the  same  Github.  A  graphical  interface,  which  uses  the  file  produced  by  parseResults.py  as  

input  and  produces  basic  figures  from  the  results  (as  in  Figures  3-­4),  has  also  been  developed  and  is  

available  at  https://rna-­seq.shinyapps.io/DGINN_Pipeline_Visualization/.  All  results  obtained  and  presented  

in  this  manuscript  are  available  on  the  GitHub  (https://github.com/leapicard/DGINN_validation).  
  

  

Results  and  Discussion  
  
1-­  Presentation  and  novelties  of  the  DGINN  pipeline  
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The  DGINN  pipeline  presents  an  end-­to-­end  solution  for  the  phylogenetic  and  automated  detection  of  

genetic  innovations  on  protein-­coding  genes  that  are  suspected  to  have  undergone  adaptive  evolution.  It  

automates  the  search  for  homologous  sequences,  their  codon  alignment  and  the  reconstruction  of  

phylogenetic  histories.  This  is  followed  by  the  identification  of  marks  of  genetic  innovations:  (i)  duplication  

events  (also  allowing  for  the  identification  of  orthologous  groups),  (ii)  recombination  events  (also  limiting  bias  

in  subsequent  positive  selection  analyses),  (iii)  positive  selection  through  different  methods.  

The  detailed  presentation  of  the  steps  is  found  in  the  Method  section.    

Key  novelties  of  the  DGINN  pipeline  include  a  major  focus  on  its  flexibility  of  use:  as  such,  it  is  possible  

to  enter  at  any  step  in  the  pipeline  without  deep  knowledge  of  the  command  line.  The  possibility  to  search  

within  a  single  pipeline  for  diverse  mechanisms  of  genetic  innovations  and  using  different  methods  for  

positive  selection  analyses  translates  to  saved  time  compared  to  independent  performance  of  each  analysis.  

Moreover,  though  DGINN  is  designed  to  screen  large  datasets,  it  can  also  be  used  to  perform  gold-­standard  

analyses  on  a  single  gene  of  interest  with  ease.  For  example,  in  the  analyses  of  Lahaye  et  al  (Lahaye  et  al.,  

2018),  positive  selection  analyses  on  the  NONO  gene  were  performed  through  the  use  of  DGINN  to  

determine  the  evolutionary  history  of  this  newly  discovered  sensor  of  the  Human  Immunodeficiency  Virus  

(HIV)  capsid.  Finally,  DGINN  includes  key  features  detailed  hereafter  which  are  novel  in  such  pipelines  and  

allow  for  a  more  versatile  use  than  just  the  detection  of  positive  selection.  
  
Automatic  retrieval  of  homologous  sequences  and  constitution  of  orthologous  groups  by  tree  

reconciliation  
The  first  important  step  for  the  identification  of  genetic  innovations  in  a  protein-­coding  gene  is  the  

retrieval  of  orthologous  sequences  of  this  gene,  in  as  many  species  as  possible  in  a  given  range,  clade  or  

family  of  interest  to  the  user.  Automating  this  step  is  a  challenge  as  the  evolutionary  characteristics  of  

orthologous  genes  vary  a  lot  (between  organisms,  between  copies  in  different  species,  according  to  different  

molecular  clocks  or  environmental  constraints).  Usually,  this  step  is  time  consuming  and  demands  high  

manual  curation.  This  is  even  more  true  for  genes  that  have  rapidly  evolved.  Most  available  tools  for  the  

detection  of  positive  selection  rely  on  user-­provided  alignments  or  are  limited  to  fixed  input  species  as  

PosiGene  (Sahm  et  al.,  2017).  To  circumvent  these  limits,  DGINN  uses  BLAST  against  the  NCBI  online  

databases  (see  Methods  –  Steps  1-­2).  This  approach  makes  the  search  for  homologues  simpler  and  relies  

on  a  widely-­used  and  well-­known  tool,  BLAST,  which  can  be  parameterized  by  the  user.  As  true  orthologous  

genes  are  identified  through  a  subsequent  reconciliation  step,  the  user  can  cast  a  wide  net  by  tuning  

parameters  in  terms  of  minimum  coverage,  e-­value,  identity,  and  species  concerned.  

From  a  set  of  homologous  sequences,  true  orthologous  groups  are  identified  through  a  reconciliation  

software,  Treerecs  (Comte  et  al.,  2019)  and  additional  homemade  scripts  (Steps  3-­5).  Using  tree  

reconciliation  instead  of  annotations  or  tools  such  as  OMA  or  Eggnogg  (Altenhoff  et  al.,  2018,  Huerta-­Cepas  

et  al.,  2016)  may  be  particularly  advantageous  when  working  with  non-­model  species,  unknown  genes,  and  

recent  duplication  events.  By  separating  the  two  phases  of  homology  retrieval  and  orthology  identification,  

we  ensure  that  the  user  can  change  BLAST  parameters  without  compromising  the  validity  of  the  subsequent  

positive  selection  analyses.  
  

DGINN  detects  gene  duplication  events,  which  may  themselves  be  hallmarks  of  genetic  
innovation  
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While  tools  for  the  detection  of  positive  selection  abound,  they  often  leave  aside  the  detection  of  other  

hallmarks  of  genetic  innovations,  such  as  duplications  (Daugherty  and  Zanders  2019).  Very  often,  duplicated  

genes  are  even  taken  out  of  the  analysis  entirely  to  avoid  bias  during  the  detection  of  positive  selection  

(Kosiol  et  al.,  2008).  However,  this  may  lead  to  missing  potential  genes  of  interest  and  dismissing  the  gene  

copies  that  have  been  under  adaptive  evolution.  On  the  contrary,  DGINN  looks  for  duplication  events,  as  

signals  of  potential  genetic  innovation  as  well  as  to  identify  relevant  groups  of  orthology  for  further  analyses.  

Similarly,  tools  which  perform  orthologous  assignments  from  annotations  cannot  be  trusted  to  detect  either  

recent  duplications  or  ancient  ones  on  non-­model  species.  To  our  knowledge  this  is  the  first  time  this  feature  

is  included  in  an  automated  pipeline  searching  for  genetic  innovation.  The  importance  of  accounting  for  

those  events  is  shown  through  the  numerous  genes  involved  in  genetic  conflicts  which  have  undergone  

duplications  and  subsequent  diversification  (Daugherty  and  Zanders  2019).  For  example,  many  antiviral  

effectors,  also  called  restriction  factors,  belong  to  multigene  families,  where  duplicated  copies  have  evolved  

varied  antiviral  functions  and/or  virus-­host  interfaces/determinants,  such  as  the  Mx  (Myxovirus  resistance)    

Dynamin  Like  GTPases  Mx1  and  Mx2  (Haller  et  al.,  2015),  the  guanylate-­binding  proteins  GBPs  (Tretina  et  

al.,  2019,  Huang  et  al.,  2019),  the  primate  APOBEC3  gene  family  (Munk  et  al.,  2012,  Desimmie  et  al.,  2014,  

Etienne  et  al.,  2015,  Nakano  et  al  2017  )  or  the  genes  from  the  TRIM  family  (Malfavon-­Borja  et  al.,  2013).  
  

Accounting  for  recombination  allows  for  the  detection  of  an  important  source  of  genetic  
innovation,  while  also  avoiding  bias  in  subsequent  positive  selection  analyses  

DGINN  uses  GARD  to  detect  significant  recombination  breakpoints  along  the  aligned  sequences.  As  

previously  mentioned,  recombination  and  gene  conversion  may  be  major  sources  of  genetic  innovations  (in  

particular  in  the  context  of  large  gene  families),  and  are  widely  ignored  in  existing  pipelines.  One  example  is  

the  TRIMcyp  gene  present  in  certain  primate  species  which  results  from  the  recombination  and  fusion  of  a  

cypA  gene  with  the  antiviral  TRIM5  gene  leading  to  a  change  of  antiviral  specificity  (Malfavon-­Borja  et  al.,  

2013).  Moreover,  recombination  may  also  itself  bias  phylogenetic  reconstruction  and  positive  selection  

analyses  (Anisimova  et  al.,  2003,  Posada  and  Crandall,  2002),  as  exemplified  by  the  multiple  recombination  

and  gene  conversion  events  that  occurred  in  the  Mx  gene  family  during  mammalian  evolution  (Mitchell  et  al.,  

2015).  To  date,  only  PSP  (Su  et  al.,  2013)  and  PoSeiDon  (Fuchs  et  al.,  2017)  pipelines  account  for  such  

events  in  their  workflow.  In  DGINN,  detecting  recombination  events  thus  serves  two  purposes:  identifying  

one  possible  hallmark  of  genetic  innovation  and  avoiding  bias  in  positive  selection  analyses.    
  

DGINN  integrates  numerous  methods  for  the  detection  of  positive  selection  
The  detection  of  signatures  of  positive  selection  is  a  key  part  of  the  pipeline.  Indeed,  very  few  pipelines  

include  different  models  than  the  ones  from  PAML  (Stern  et  al.,  2007,  Su  et  al.,  2013).  In  DGINN,  we  

decided  to  implement  various  methods  with  different  underlying  models,  so  the  results  obtained  are  more  

robust  and  can  be  balanced  between  methods.  It  also  helps  to  “rank”  the  importance  of  signatures  on  genes  

when  a  large  dataset  is  screened.  The  methods  and  models  are  described  in  the  Method  section,  Step  8.  In  

addition  to  the  most  used  PAML  codeml,  we  included  Bio++  bppml  with  similar  but  non-­stationary  models.  Of  

note,  on  our  validation  dataset,  Bio++  bppml  consistently  performed  better  than  PAML  codeml  when  it  comes  

to  calculating  likelihoods  (Supplementary  Table  1).  Moreover,  because  of  its  versatility,  Bio++  allows  for  

more  parameterization  and  the  easy  declaration  of  many  modelings  that  would  permit  to  detect  positive  

selection  under  user-­defined  scenarios  (e.g.  using  non-­homogeneous  mixture  models,  or  other  kinds  of  
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models  such  as  allowing  amino-­acid  specificity  or  simultaneous  substitutions  (Weber  et  al.,  2019,  Zaheri  et  

al.,  2014)).    
Lastly,  HYPHY  is  a  good  complement  in  those  analyses,  as  shown  in  various  studies  (for  example  

Malfavon-­Borja  et  al.,  2013,  McBee  et  al.,  2015,  Rowley  et  al.,  2016,  Abdul  et  al.,  2018,  Schultz  and  

Sackton,  2019).  We  thus  decided  to  include  two  methods  from  the  HYPHY  package:  one  that  considers  the  

impact  of  positive  selection  at  the  level  of  the  gene  itself,  using  a  branch-­site  model  (BUSTED,  Murrel  et  al.,  

2015),  and  another  one  which  detects  episodic  positive  selection  at  the  site  level  (MEME,  Murrel  et  al.,  

2012).  
  
2-­  Validation  
We  tested  our  pipeline  on  nineteen  primate  genes  selected  for  their  various  evolutionary  histories  and  

positive  selection  profiles  (Table  2).  These  genes  were  grouped  in  three  categories  based  on  the  clusters  

described  in  Murrell  et  al.,  2016:  “canonical  arms-­race  genes”  such  as  MX1  and  SAMHD1,  “genes  described  

as  presenting  various  selection  profiles”,  such  as  HERC5  or  SERINC3  “genes  under  no  positive  selection  

pressure”  such  as  GADD45A  and  RHO/rhodopsin  (Table  2).  The  intermediate  category  was  attributed  on  the  

basis  of  the  methods  employed  to  detect  positive  selection  or  the  strength  of  the  detected  signal  (see  

Method  section).  
  

An  overview  of  the  complete  execution  of  DGINN  on  a  protein-­coding  gene,  HERC5  
A  brief  overview  of  DGINN’s  workflow  on  a  specific  gene,  HERC5,  is  presented  in  Figure  2.  The  Blast  

search  returned  71  primate  homologous  sequences,  of  which  twelve  were  eliminated  by  the  subsequent  

filters,  yielding  to  a  total  of  59  sequences.  As  a  duplication  event  was  detected  by  Treerecs,  these  59  

sequences  were  then  automatically  (and  correctly)  split  into  two  groups:  one  with  32  sequences  

corresponding  to  HERC5  and  one  with  27  sequences  corresponding  to  HERC6.  No  recombination  event  was  

identified  and  the  positive  selection  analyses  then  followed.  All  methods  found  highly  significant  evidence  of  

positive  selection  on  the  complete  alignment  of  59  mixed  HERC5-­HERC6  sequences,  with  p-­values  ranging  

from  2.24e-­05  to  2.27e-­13  for  PAML  and  Bio++  models.  However,  after  separating  the  two  paralogues  into  

orthologous  groups,  it  appeared  that  most  of  this  signal  was  driven  by  the  positive  selection  on  HERC6  (p-­

values  of  4.38e-­11  to  8.10e-­15  for  PAML  and  Bio++  models),  while  the  signal  on  HERC5  sequences  was  

present  but  much  more  modest  (p-­values,  0.030  to  0.004),  with  BUSTED  even  returning  a  non-­significant  p-­

value  for  positive  selection  on  that  alignment.  The  positive  selection  results  therefore  highlight  the  necessity  

to  properly  separate  paralogues  from  each  other  prior  to  performing  the  analyses.  For  a  query  on  the  HERC5  

gene,  keeping  the  initial  mixed  alignment  could  have  caused  a  mistaken  conclusion  that  primate  HERC5  has  

been  under  very  strong  positive  selection,  though  the  signal  was  mostly  driven  by  HERC6.  Moreover,  the  

sites  identified  as  under  positive  selection  on  that  alignment  would  also  be  erroneous.  Overall,  the  complete  

DGINN  analyses  with  HERC5  as  query  took  less  than  20  hours  (Table  3,  4h03  for  the  data  mining  and  

phylogenetics,  and  15h36  for  the  detection  of  genetic  innovations  per  se).  
  
Detection  of  ancestral  duplications  allows  for  proper  assignation  of  orthologous  groups  
We  identified  genes  as  belonging  to  multigene  families  if  at  least  one  member  had  over  50%  reciprocal  

identity  with  our  gene  query  according  to  ENSEMBL  annotations  (Table  2).  Given  this  definition,  we  were  

able  to  retrieve  multiple  family  members  for  the  majority  of  the  genes  belonging  to  such  families,  when  
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performing  BLAST  with  the  minimum  coverage  (50%)  and  identity  (70%)  values.  The  sole  exception  was  

SERINC3,  for  which  no  paralogue  was  returned  through  our  Blast  search.  Two  additional  exceptions  were  

observed,  first  with  HERC5,  for  which  the  Blast  search  also  returned  HERC6  sequences,  though  reciprocal  

identity  between  the  two  paralogues  was  below  our  threshold.  The  second  case  concerned  TREX1,  for  

which  the  Blast  search  also  returned  sequences  annotated  as  ATRIP,  an  adjacent  gene.  Given  that  read-­

through  transcription  of  TREX1-­ATRIP  occurs  naturally  and  yields  a  non-­coding  transcript,  it  is  probable  that  

those  sequences  annotated  ATRIP  actually  represents  the  non-­coding  transcript  and  not  the  mRNA  of  the  

ATRIP  gene.  This  explains  the  retrieval  of  ATRIP-­annotated  genes  through  Blast  despite  the  two  genes  not  

being  strictly  homologous.  
DGINN  efficiently  reconstructed  orthologous  groups  (Table  4).  Indeed,  in  the  case  of  multigene  families  

(from  two  to  five  paralogues  retrieved  here),  we  were  able  to  properly  reconstruct  orthologous  groups  for  our  

genes  of  interest,  without  mixture  with  other  paralogues.  Our  approach  allowed  us  to  separate  the  different  

family  members  retrieved  through  BLAST  in  groups  which  did  not  mix  paralogous  sequences  through  long  

branch  partition  (LB)  and/or  through  reconciliation  (Treerecs).  For  example,  using  the  human  CCDS  

sequence  of  FOXP2  as  input  in  DGINN,  we  retrieved  sequences  from  both  FOXP2  and  its  paralogue  

FOXP1.  The  tree  reconstructed  from  their  alignment  featured  a  branch  over  50  times  longer  than  the  mean  

length  of  the  tree’s  branches,  and  by  automatically  splitting  the  sequences  separated  by  that  branch,  we  

were  able  to  reconstitute  two  groups  corresponding  to  the  paralogues.  However,  paralogues  from  other  

families  may  not  have  diverged  enough  for  long  branch  partition  to  be  able  to  properly  discriminate  them  into  

different  groups.  We  resolved  those  through  TreeRecs,  reconciling  the  tree  obtained  from  the  Blast-­retrieved  

sequences  with  the  primate  species  tree.  This  is  the  case,  for  example,  of  the  immune  sensor  IFI16,  which  

was  properly  assigned  to  a  different  group  than  MNDA  through  our  Treerecs-­based  approach.  
Non-­annotated  sequences  (such  as  those  referred  as  LOCXXX  in  databases)  were  also  assigned  to  

groups  through  this  process,  showing  that  this  method  of  attributing  orthologous  relationships  might  help  with  

non-­annotated  sequences  in  the  databases.  
Of  our  nineteen  genes  of  interest,  only  one  presented  some  inaccuracies  in  the  distribution  of  

sequences  to  orthologue  groups.  With  an  APOBEC3F  query,  DGINN  erroneously  divided  APOBEC3F  itself  

in  two  different  groups  (group  3  and  5,  Table  4).  By  further  analyzing  all  the  retrieved  paralogues,  we  

observed  two  mixes:  in  the  APOBEC3F  query,  group  2  contained  APOBEC3D  and  APOBEC3B  sequences  

and  APOBEC3B  was  split  in  two  groups,  and  a  similar  pattern  occurred  in  the  GBP5  query,  with  GBP1  in  

groups  2  and  3  (Table  4).  These  errors  could  be  explained  by  the  particularly  complicated  evolutionary  

histories  of  those  two  expanded  gene  families  during  primate  evolution  (Münk  et  al.,  2012,  Desimmie  et  al.,  

2014,  Nakano  et  al.,  2017).  This  highlights  a  need  to  improve  the  management  of  the  detection  of  duplication  

events  in  further  versions  of  DGINN.  Importantly,  because  such  genes  would  be  tagged  by  DGINN  with  

“detected  duplication  events”,  these  cases  would  anyway  not  be  missed  by  the  user  and  the  gene  of  interest  

could  be  reanalyzed  through  DGINN  after  curation.  
  

Using  several  positive  selection  methods  together  allows  for  more  sensitivity  and  specificity  and  
a  “ranking”  of  genes’  positive  selection  status  during  screening    

Positive  selection  results  were  analyzed  according  to  two  different  aspects.  The  first  aspect  focused  on  

how  many  methods  found  a  gene  with  significant  evidence  of  positive  selection  (Figure  3,  left  panel  –  

produced  using  the  Shiny  app  openly  available).  The  methods  considered  at  this  point  were  those  on  which  
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a  LRT  could  be  performed:  HYPHY  BUSTED,  the  M1  vs  M2  and  M7  vs  M8  models  of  PAML  Codeml,  and  

the  M1NS  vs  M2NS  and  M7NS  vs  M8NS  models  of  Bio++  bppml.  Genes  were  ranked  according  to  the  number  of  

positive  results.  This  allowed  us  to  compare  the  results  obtained  for  the  three  categories  of  genes  (Table  2).  

The  canonical  arms-­race  genes  were  all  detected  under  positive  selection  by  all  five  methods,  with  the  

exception  of  RSAD2  which  was  detected  by  four  methods  (Figure  3).  Genes  which  presented  variable  signs  

of  positive  selection  in  the  literature  (green  category,  Table  2)  also  fell  into  a  middle  category  in  the  DGINN  

screen.  Genes  without  signs  of  positive  selection  in  previous  studies  (blue  category,  Table  2)  displayed  low  

signs  of  positive  selection:  detected  by  less  than  two  methods  in  DGINN.  Two  genes  were  detected  by  two  

methods:  FOXP2  and  RHO.  FOXP2  was  detected  by  both  PAML  M7  vs  M8  and  Bio++  M7NS  vs  M8NS,  but  

both  the  mean  omega  and  the  very  low  number  of  sites  detected  under  positive  selection  (n=1)  suggested  

artefactual  results.  Similarly,  RHO  was  detected  by  BUSTED  and  Bio++  M7NS  vs  M8NS,  but  only  two  sites  

were  detected.  Therefore,  our  DGINN  screen  efficiently  recapitulated  results  from  published  studies.  
These  results  further  highlight  the  advantage  of  using  different  methods  within  a  single  analysis  to  

confirm  results  and  discriminate  for  false  positives.  Doing  this  validation  also  showed  that  amongst  those  

methods,  BUSTED  and  PAML  Codeml  M7  vs  M8  appeared  the  least  conservative  methods  to  detect  positive  

selection.  
The  second  aspect  taken  into  account  focused  on  the  percentage  of  positively-­selected  sites.  Overall,  

the  arms-­race  genes  displayed  higher  proportions  of  positively  selected  sites  (2.4%-­14.4%)  compared  to  

other  genes  (Figure  3,  right  side).  However,  this  does  not  represent  a  hard  rule,  as  some  of  those  arms-­race  

genes  show  rather  low  percentages,  such  as  MX1  (around  2.4%).  This  suggests  that  ranking  genes  by  the  

number  of  significant  methods  rather  than  the  proportion  of  positive  selection  sites,  as  in  Figure  3,  is  a  better  

proxy  for  positive  selection  status.  
  

DGINN  recapitulates  and  expands  the  findings  from  previously  published  profiles  of  positively  
selected  sites  along  genes.  

To  identify  the  domains  that  have  evolved  under  positive  selection,  we  mapped  every  positively  selected  

site  detected  by  DGINN  by  a  peak  along  the  alignment  (Figure  4,  using  the  Shiny  app).  We  further  

represented  the  height  of  the  peak  proportional  to  the  number  of  methods  detecting  that  site  under  significant  

positive  selection,  amongst  five  methods,  M2  and  M8  results  of  PAML  codeml,  M2NS  and  M8NS  results  of  

Bio++  bppml  and  HYPHY  MEME  (Figure  4).  Overall,  we  observed  similar  patterns  as  described  in  the  

literature,  especially  on  the  canonical  arms-­race  genes.  For  example,  in  the  case  of  SAMHD1,  we  found  

most  positively  selected  sites  at  the  N-­  and  the  C-­termini  (Figure  4).  This  is  in  accordance  with  the  findings  

that  the  N-­ter  and  C-­ter  domains  both  play  a  role  in  the  antiviral/escape  determinants  of  primate  SAMHD1  

and  that  rapid  evolutions  at  these  sites  are  certainly  adaptive  as  a  result  of  lentiviral  selective  pressure  

(Fregoso  et  al.,  2013,  Lim  et  al.,  2012,  Laguette  et  al.,  2012).  In  the  case  of  ZC3HAV1/ZAP,  we  found  the  

positively  selected  sites  cluster  at  both  extremities  of  the  alignment  (Figure  4).  However,  the  middle  portion  

without  positively  selected  sites  corresponds  to  a  gap-­enriched  region  in  the  alignment  linked  to  the  different  

possible  isoforms  of  the  gene.  Interestingly,  this  shows  that  the  maintenance  of  these  gap  regions  in  the  

alignment  did  not  lead  to  an  excess  of  false  positive  detection  in  DGINN.  If  we  now  consider  the  main  ORF  

(with  the  gap-­enriched  region  ignored),  it  appears  that  the  positively  selected  sites  are  spread  over  the  whole  

length  of  the  gene.  Previous  results  from  Kerns  et  al.,  2008  established  that  the  C-­ter  domain  in  particular  
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was  under  significant  positive  selection  (Kerns  et  al.,  2008).  In  contrast,  the  N-­ter  domain  was  not  detected,  

probably  because  we  used  more  methods  and  had  more  species/sequences  available  for  analyses.  
The  differences  between  our  results  and  the  published  ones  for  APOBEC3F  (Murrell  et  al.,  2016)  were  

mainly  due  to  the  sequences  used  for  the  positive  selection  analyses.  Indeed,  our  analyses  excluded  four  

hominoid  species  that  were  correctly  retrieved  in  the  early  steps  of  DGINN  but  were  erroneously  assigned  by  

TreeRecs  to  another  group.  The  detection  of  positive  selection  was  therefore  only  performed  on  a  subset  of  

primate  sequences,  spanning  solely  Old  World  monkeys.  However,  we  have  included  the  solution  to  such  

problems  in  DGINN  thanks  to  its  high  flexibility.  The  user  may  retrieve  the  gene  sequences  (here  

APOBEC3F)  from  the  different  groups  and  re-­enter  DGINN  at  step  3/alignment  (Figure  1  and  Table  2)  to  

obtain  the  complete  evolutionary  history  and  positive  selection  analyses.    
For  MX1,  we  were  first  surprised  that  we  did  not  detect  such  a  high  signal  of  positive  selection  in  the  L4  

loop  as  described  in  Mitchell  et  al.,  2012.  However,  we  found  that  this  was  mainly  due  to  differences  in  the  

alignments,  because  PRANK  (as  opposed  to  ClustalX  used  in  Mitchell  et  al.,  2012)  introduced  many  gaps  in  

the  L4  loop  region  due  to  the  extremely-­high  divergence  of  the  region.  Whether  MX1  adaptation  to  viral  

countermeasures  has  occurred  by  accumulation  of  non-­synonymous  changes  and/or  by  indels  in  the  L4  loop  

remains  to  be  determined.  
In  the  case  of  HERC5,  four  methods  detected  the  gene  as  under  positive  selection  during  primate  

evolution  (Figures  2-­3),  but  only  one  site  was  identified  as  positively  selected  (Figure  4).  These  results  differ  

from  the  ones  reported  in  Woods  et  al.,  2014,  who  found  a  much  larger  number  of  residues  under  positive  

selection  (n=50).  This  discrepancy,  however,  can  be  explained  by  the  fact  that  Woods  et  al.  identified  

positive  selection  on  an  alignment  that  included  six  non-­primate  species  and  only  seven  primate  species,  

while  ours  focused  exclusively  on  primates  and  included  twenty  species.  It  is  therefore  possible  that  a  

stronger  selective  pressure  has  occurred  in  placental  mammals  outside  of  primate  evolution.  Interestingly,  in  

DGINN,  our  Blast  search  with  HERC5  as  query  also  automatically  retrieved  HERC6  sequences  (Figure  2).  

The  latter  were  then  correctly  assigned  to  a  different  orthologous  group  than  HERC5.  As  previously  reported  

(Paparisto  et  al.,  2018),  we  identified  strong  evidence  of  positive  selection  on  HERC6  (with  five  methods,  

Figure  2).  This  could  mean  that  while  both  HERC5  and  HERC6  have  been  evolving  under  positive  selection  

in  mammals,  they  have  been  subjected  to  different  evolutionary  constraints  in  primates,  with  a  lower  

selective  pressure  on  primate  HERC5  vs  HERC6.  It  further  shows  that  DGINN  is  an  efficient  tool  to  screen  

not  only  the  query  genes  but  also  the  evolutionary  history  of  their  closest  gene  relatives  that  may  have  

themselves  be  subjected  to  positive  selection  and  would  otherwise  be  missed  by  most  analyses.  

  

Identification  of  the  loss  of  GBP5  during  primate  evolution  using  DGINN  
The  positive  selection  results  obtained  through  DGINN  screening  for  GBP5  showed  strong  positive  

selection  (identified  by  five  methods).  This  was  in  accordance  with  previous  results  from  McLaren  et  al.,  

2015.  By  analyzing  the  phylogenetic  tree  generated  by  DGINN  for  all  the  homologs  retrieved  with  the  GBP5  

query  (after  step  4,  Figure  5A),  we  found  that  no  sequence  from  Old  World  monkeys  were  retrieved  for  GBP5  

through  our  Blast  search.  This  absence  was  confirmed  in  the  tree  reconstructed  with  only  GBP5  sequences  

after  orthologue  group  attribution  (step  5,  Figure  5B).  However,  (and  as  expected),  the  entire  GBP  gene  

family  was  not  retrieved  by  DGINN  using  human  GBP5  as  query  (with  blastn  70%  identity  and  50%  

coverage);;  in  particular,  GBP4  and  GBP6  were  too  divergent  to  be  retrieved  by  DGINN.  To  reconstruct  to  

GBP  family  evolutionary  history,  we  independently  retrieved  primate  sequences  of  GBP4  and  GBP6  by  
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blastn  and  added  the  new  sequences  to  a  large  GBP  family  sequence  file.  This  served  as  input  to  DGINN  

steps  2-­5  to  automatically  perform  alignments,  phylogenies,  and  duplication/orthologous  group  detection.  

The  final  tree  confirmed  that  GBP5  is  absent  in  Old  World  Monkeys  (Figure  5C).  This  might  also  be  the  case  

for  GBP4,  for  which  we  did  not  retrieve  sequences  from  Old  World  Monkeys;;  with  the  exception  of  two  

sequences  from  Papio  anubis  and  Mandrillus  leucophoeus  that  were  annotated  as  “GBP4”  but  did  not  follow  

a  typical  orthologous  phylogeny  and  branched  more  closely  with  GBP7  in  our  phylogeny  (Figure  5C).  

Genomic  analyses  of  the  GBP  locus  in  several  primates  confirmed  that  GBP5  has  been  lost  in  the  ancestor  

of  Old  World  Monkeys  during  primate  evolution,  and  that  it  may  also  be  the  case  for  GBP4  (Figure  5D).  To  

explain  our  retrieval  of  the  two  sole  Old  Word  Monkeys  sequences,  and  their  position  in  the  phylogeny,  one  

hypothesis  could  be  that  GBP4  has  indeed  been  lost  at  a  similar  point  in  primate  evolution  than  GBP5,  and  

was  then  regained  in  some  Old  World  monkey  species  through  a  duplication  of  GBP7.  Overall,  these  results  

show  that  GBP5  has  been  subjected  to  strong  positive  selection  during  primate  evolution  but  has  also  

entirely  been  lost  in  the  Cercopithecinae.  Whether  part  of  this  has  been  driven  by  pathogens  such  as  

lentiviruses  (Krapp  et  al.  2016)  or  bacteria  (Kim  et  al.  2012)  should  be  investigated.    
  
Conclusion  
We  have  developed  DGINN,  an  integrative  pipeline  for  the  automatic  detection  of  genetic  innovations,  

and  made  it  freely  available  through  both  GitHub  and  Docker.  DGINN  was  validated  for  screening  usage  

against  nineteen  primate  genes.  It  automates  and  streamlines  those  analyses,  allowing  the  user  to  simply  

provide  the  coding  sequence  of  their  gene  of  interest  and  a  parameter  file  to  complete  the  whole  workflow,  

from  retrieval  of  homologous  sequences  to  the  detection  of  orthology  relationships,  recombination  events  

and  positive  selection.  
Through  our  validation,  we  confirmed  and  expanded  on  results  previously  established  in  the  literature.  

Genes  described  as    engaged  in  arms-­races  with  viruses  were  found  under  strong  positive  selection  by  all  

five  methods  included  in  DGINN.  Our  analyses  allowed  us  to  establish  clearer  profiles  for  the  genes  

belonging  to  the  “varied”  category,  owing  to  our  inclusion  of  different  methods  for  positive  selection:  this  way,  

we  were  able  to  establish  that  some  genes  previously  thought  to  present  moderate  signs  of  positive  selection  

presented  stronger  signs  than  suspected.  Little  evidence  of  positive  selection  was  found  on  the  genes  

belonging  to    “no  positive  selection”  category,  in  accordance  to  the  literature.  
An  important  feature  of  DGINN  is  its  flexibility,  which  allows  usage  beyond  its  screening  capacity.  

Indeed,  in  cases  of  dubious  results,  the  possibility  remains  for  the  user  to  curate  their  input  files  and  perform  

the  appropriate  analyses  by  entering  DGINN  at  any  of  the  downstream  steps.  This  also  means  that  the  

“positive  selection”  part  might  be  of  primary  interest  to  scientists  wishing  to  perform  gold-­standard  positive  

selection  analyses  on  their  favorite  gene,  because  they  could  enter  their  curated  alignment  and  phylogeny  

and  obtain  results  of  positive  selection  analyses  from  five  methods  in  a  single  query.  
Using  DGINN  to  analyze  nineteen  primate  genes  also  allowed  us  to  enrich  some  findings,  notably  on  

the  importance  of  detecting  duplications  and  properly  ascribing  orthologue  groups,  as  exemplified  by  the  

case  of  HERC5  and  its  paralogue  HERC6  in  primates.  The  ability  to  check  multiple  members  of  a  query’s  

gene  family  is  a  major  advantage  of  DGINN,  as  it  may  allow  the  user  to  identify  genes  bearing  signs  of  

genetic  innovations  that  they  would  not  have  analyzed  otherwise.  Improving  the  constitution  of  orthologue  

groups  will  remain  an  objective  in  future  versions  of  DGINN.  
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Tables  
  

Table  1.  Overview  of  the  possible  entry  steps  into  DGINN.  DGINN  can  be  entered  at  different  steps  to  
enhance  flexibility.  If  the  user  introduces  the  name  of  the  proper  entry  step  option  and  inputs  the  appropriate  

files  for  this  option  in  the  parameter  file,  DGINN  will  start  at  that  step,  ignoring  the  upstream  steps.  

  

Name  of  entry  step  option   Input  files   Format  
blast   CDS  of  the  gene  of  interest   Fasta  
accession   List  of  blast  results   NCBI  tabulated  format  
fasta   List  of  accession  identifiers  (one  per  line)   Text  file  
orf   mRNA  sequences  of  homologs   Fasta  
alignment   CDS  sequences  of  homologs/orthologs   Fasta  
tree   (codon)  alignment  of  homologs/orthologs   Fasta  
duplication   (codon)  alignment,  gene  tree   Fasta,  newick  
recombination   (codon)  alignment   Fasta  
positiveSelection   codon  alignment,  gene  tree   Fasta,  newick    
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Table  2.  Validation  dataset  of  nineteen  primate  genes  with  various  evolutionary  histories.  Genes  are  
categorized  according  to  their  selection  profiles  as  reported  in  the  literature.  Asterisks  (*)  denote  a  gene  

belonging  to  a  gene  family  with  at  least  one  paralogue  in  primates  presenting  over  50%  reciprocal  identity  

with  the  query  gene  according  to  Ensembl.  

  

Canonical  arms  race  genes   Variable  signs  of  positive  
selection   No  positive  selection  

APOBEC3F  *   Murrel  et  al.,  2016   HERC5   Woods  et  al.,  2014   FOXP2  *   Murrel  et  al.,  2016  
IFI16  *   Cagliani  et  al.,  2014   NT5C3A   In  house  analysis   GADD45A  *   In  house  analysis  
GBP5  *   McLaren  et  al.,  2015   RB1   Murrel  et  al.,  2016   GMPR  *   In  house  analysis  
MX1  *   Mitchell  et  al.,  2012   SERINC3  *   Murrel  et  al.,  2016   ISG20   In  house  analysis  

RSAD2/Viperin   Lim  et  al.,  2012   SHH  *   Murrel  et  al.,  2016   RHO   Murrel  et  al.,  2016  

SAMHD1   Lim  et  al.,  2012,  
Laguette  et  al.,  2012   SMC6   Abdul  et  al.,  2018   TREX1   In  house  analysis  

ZC3HAV1/ZAP   Kerns  et  al.,  2008                      
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Table  3.  DGINN  running  times.  For  each  gene,  the  running  time  of  “Steps  1-­7”  (Figure  1)  and  “Step  8”  
is  shown.  Times  for  Step  8  (positive  selection  analyses)  are  only  shown  for  the  query  genes  of  the  validation  
dataset  following  attribution  of  orthologous  groups  (Table  4).  

  

   Steps  1  –  7   Step  8  
APOBEC3F   12:18:39   04:11:18  
FOXP2   05:26:33   5  days,  23:28:04  

GADD45A   01:24:26   02:17:59  
GBP5   14:04:30   06:43:06  
GMPR   03:51:52   07:50:42  
HERC5   04:03:01   15:36:40  
IFI16   05:45:16   5  days,  8:01:45  
ISG20   01:34:50   08:01:08  
MX1   02:34:42   1  day,  18:16:17  

NT5C3A   00:53:48   4  days,  20:17:21  
RB1   00:14:09   14:16:03  
RHO   00:06:30   02:05:53  
RSAD2   01:11:31   18:40:09  
SAMHD1   00:51:44   3  days,  13:26:08  
SERINC3   01:21:46   11:55:16  
SHH   01:54:44   06:12:50  
SMC6   02:48:41   2  days,  20:34:48  
TREX1   01:01:04   09:43:10  
ZC3HAV1   02:38:52   2  days,  13:27:12  
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Table  4.  Groups  of  orthologues  reconstructed  by  DGINN,  using  long-­branch  partition  and  TreeRecs  
for  identification  of  duplication  events.  For  each  gene  of  the  validation  dataset,  are  represented  the  
orthologous  groups  that  were  identified,  the  number  of  sequences  per  group,  the  orthologues  present  in  the  

group  and  the  method  used  to  separate  the  groups  (long  branch  (LB)  partition  or  TreeRecs-­based).  Groups  

kept  for  subsequent  analyses  are  highlighted  in  yellow.  

  

Query   Group   Number  of  sequences   Gene   Type  

APOBEC3F  

1   11   APOBEC3B  

Treerecs-­
based  

2   56   APOBEC3D  +  
APOBEC3B  

3   16   APOBEC3F  
4   94   APOBEC3G  
5   10   APOBEC3F  

FOXP2   1   77   FOXP2  
LB  2   59   FOXP1  

GADD45A   1   30   GADD45A  
LB  2   4   GADD45B  

GBP5  

1   48   GBP3  

Treerecs-­
based  

2   28   GBP1  
3   32   GBP7  +  GBP1  
4   36   GBP2  
5   24   GBP5  

GMPR   1   104   GMPR2  
LB  2   34   GMPR  

HERC5   1   27   HERC6   Treerecs-­
based  2   32   HERC5  

IFI16     1   60   IFI16   Treerecs-­
based  2   26   MNDA  

MX1   1   60   MX2  
LB  2   55   MX1  

SHH   1   25   IHH  
LB  2   22   SHH  

TREX1   1   35   TREX1  
LB  2   14   ATRIP  
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Figure  Legends  
  

Figure  1.  Workflow  diagram  of  DGINN.  Phylogenetic  steps  (yellow)  happen  sequentially  from  the  entry  
point  of  the  pipeline  (Steps  1-­4).  Each  genetic  innovation  step  (purple,  Step  5,  6,  and  7)  is  optional.  All  red  

arrowheads  denote  possible  entry  points  into  the  pipeline  following  file  formats  from  Table  1.  
  
Figure  2.  Example  of  workflow  on  the  HERC5  primate  gene.  The  workflow  follows  the  diagram  from  
Figure  1.  Using  human  HERC5  CDS  as  the  starting  point  in  DGINN  gave  results  for  both  HERC5  and  

HERC6.  The  number  of  sequences  (seq)  retrieved  or  left  after  each  step  is  indicated.  In  the  bottom  panel,  

each  colored  circle  represents  the  results  from  one  of  the  five  methods  to  detect  positive  selection  at  the  

gene  level,  with  red  representing  significant  evidence  of  positive  selection  and  blue  no  significant  evidence.  

P-­values  are  indicated  below  the  colored  circles.  Gp,  orthologous  group.  
  
Figure  3.  DGINN  results  on  the  validation  dataset.  The  nineteen  primate  genes  studied  are  color-­coded  
according  to  their  selection  profile  category  (Table  2).  Left  panel,  number  of  methods  detecting  significant  

positive  selection  for  each  alignment;;  each  method  is  color-­coded  (embedded  legend).  Middle,  mean  ω  

value  calculated  by  Bio++  M0  model.  Genes  are  ordered  by  descending  number  of  methods  detecting  

positive  selection  then  descending  ω  values.  Right  panel,  percentage  of  positively  selected  sites  (by  at  least  

one  method)  over  the  length  of  the  query  coding  sequence.  
  

Figure  4.  Positive  selection  patterns  on  nineteen  primate  genes.  The  nineteen  genes  studied  are  color-­
coded  according  to  their  selection  profile  category  (Table  2)  and  follow  the  same  order  as  in  Figure  3.  Genes  

without  positively  selected  sites  were  excluded  from  this  representation.  Positively  selected  sites  are  

represented  as  a  spike  (y  axis)  at  their  position  along  the  alignment  (x  axis).  Height  of  the  peak  is  

proportional  to  the  number  of  methods  that  have  identified  the  site  as  being  under  positive  selection  

(posterior  probabilities  >  0.95  for  Bio++  and  PAML  codeml,  and  p-­value  <  0.10  for  MEME),  with  each  method  

being  represented  by  a  different  color  (embedded  legend).  HYPHY  MEME  sites  were  only  mapped  if  the  

gene  was  detected  as  under  positive  selection  by  BUSTED  (p  <  0.05).  For  each  gene,  the  alignment  

coverage  (number  of  sequences  at  a  given  position)  is  represented  below  the  x  axis.  
  

Figure  5.  Evolutionary  history  of  the  primate  GBP  family.  (A)  Maximum-­likelihood  phylogeny  established  
through  DGINN  based  on  a  run  on  the  GBP5  query  (step  4).  The  four  main  primate  lineages  are  identified  by  

color-­coding  (embedded  legend).  Asterisks  (*)  denote  nodes  that  are  statistically  supported  by  aLRT  >  0.90.  

The  GBP5  group,  which  lacks  Old  World  monkey  sequences,  is  boxed  in  yellow.  The  scale  bar  represents  

the  number  of  nucleotide  substitutions  per  site  and  the  tree  was  midpoint  rooted.  (B)  Maximum-­likelihood  

phylogeny  of  the  GBP5  group  of  primate  orthologues  established  through  DGINN  screen  (step  7).  (C)  

Maximum-­likelihood  phylogeny  of  the  whole  GBP  family  performed  in  DGINN  after  manual  addition  of  

primate  GBP4  and  GBP6  sequences.  (D)  Diagram  of  the  genomic  locus  of  the  GBP  gene  family  in  seven  

simian  primate  species.  The  reference  genomes  from  the  NCBI  used  were:  papAnu  (Papio  anubis):  

Panu_3.0,  macMul  (Macaca  mulatta):  Mmul10,  chlSab  (Chlorocebus  sabaeus):  Chlorocebus_sabeus  1.1,  

homSap  (Homo  sapiens):  GRCh38.p13,  gorGor  (Gorilla  gorilla):  gorGor4,  calJac  (Callithrix  jacchus):  

Callithrix  jacchus-­3.2,  saiBol  (Saimiri  boliviensis):  saiBol1.0.  Gene  annotations  and  predictions  are  from  the  
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NCBI  database.  “X(L)”  annotations  with  dotted  outlines,  such  as  6(L),  represent  genes  for  which  the  

orthology  and  paralogy  relationships  have  not  been  determined.  Alignments  and  phylogenies  for  panel  A,  B,  

and  C  can  be  found  at  https://github.com/leapicard/DGINN_validation/tree/master/GBPfamily/  (referred  as  

5A_aln,  5A_tree,  etc.).       
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Supplementary  Information  
  

Supplementary  Table  1.  Log  likelihoods  calculated  by  BIO++  and  PAML  codeml  for  each  of  the  
different  models.  
  

File   Method   M1   M2   M7   M8  

APOBEC3F     BPP   -­2507,37   -­2491,43   -­2511,01   -­2491,47  
PAML   -­3945,63   -­3930,68   -­3945,88   -­3930,68  

FOXP2     BPP   -­3997,30   -­3995,85   -­3999,96   -­3995,98  
PAML   -­5860,15   -­5858,43   -­5861,65   -­5858,44  

GADD45A     BPP   -­1239,99   -­1239,99   -­1241,28   -­1238,69  
PAML   -­1291,75   -­1291,75   -­1292,06   -­1289,64  

GBP5     BPP   -­6138,60   -­6131,37   -­6139,83   -­6131,78  
PAML   -­6516,42   -­6504,84   -­6518,34   -­6505,90  

GMPR     BPP   -­3027,30   -­3027,30   -­3027,12   -­3025,84  
PAML   -­3425,82   -­3425,82   -­3423,78   -­3423,53  

HERC5     BPP   -­10433,56   -­10430,06   -­10434,33   -­10430,37  
PAML   -­11950,25   -­11945,50   -­11951,66   -­11946,35  

IFI16     BPP   -­11099,74   -­11075,12   -­11103,87   -­11075,78  
PAML   -­18264,89   -­18223,86   -­18270,40   -­18225,35  

ISG20     BPP   -­1837,14   -­1837,14   -­1836,69   -­1836,69  
PAML   -­3048,57   -­3048,57   -­3047,88   -­3047,42  

MX1     BPP   -­8537,86   -­8532,47   -­8543,10   -­8531,57  
PAML   -­11329,45   -­11316,93   -­11335,61   -­11317,74  

NT5C3A     BPP   -­2324,85   -­2324,85   -­2324,19   -­2323,64  
PAML   -­4483,43   -­4483,43   -­4482,88   -­4482,16  

RB1     BPP   -­6873,89   -­6873,89   -­6874,36   -­6872,91  
PAML   -­7244,38   -­7244,38   -­7242,93   -­7242,93  

RHO     BPP   -­2910,93   -­2910,93   -­2913,24   -­2908,65  
PAML   -­2967,07   -­2967,07   -­2953,69   -­2953,12  

RSAD2   BPP   -­4248,12   -­4248,12   -­4248,75   -­4243,00  
PAML   -­4875,51   -­4868,59   -­4874,28   -­4865,51  

SAMHD1     BPP   -­7522,22   -­7495,71   -­7534,66   -­7497,30  
PAML   -­8219,63   -­8186,06   -­8225,38   -­8187,80  

SERINC3     BPP   -­4751,87   -­4749,23   -­4755,82   -­4749,69  
PAML   -­5373,70   -­5370,57   -­5376,40   -­5371,08  

SHH     BPP   -­3576,79   -­3576,79   -­3580,07   -­3575,89  
PAML   -­4855,15   -­4841,25   -­4853,34   -­4837,51  

SMC6     BPP   -­8971,83   -­8971,83   -­8974,05   -­8970,65  
PAML   -­12342,77   -­12342,77   -­12341,63   -­12336,91  

TREX1     BPP   -­3421,42   -­3421,42   -­3421,35   -­3421,15  
PAML   -­5080,28   -­5080,27   -­5080,76   -­5080,15  

ZC3HAV1     BIO++   -­12413,91   -­12384,63   -­12418,39   -­12392,87  
PAML   -­17617,28   -­17585,61   -­17619,80   -­17585,77  
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Figure  1  
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Figure  2  
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Figure  3  

  

  

  

  
     

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 26, 2020. ; https://doi.org/10.1101/2020.02.25.964155doi: bioRxiv preprint 

https://doi.org/10.1101/2020.02.25.964155
http://creativecommons.org/licenses/by-nc-nd/4.0/


 
 

DGINN,  an  automated  pipeline  to  Detect  Genetic  INNovations  
 

 

34 

Figure  4  
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Figure  5  
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