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Abstract

Adaptive evolution has shaped major biological processes. Finding the protein-coding genes and the
sites that have been subjected to adaptation during evolutionary time is a major endeavor. However, very
few methods fully automate the identification of positively selected genes, and widespread sources of
genetic innovations as gene duplication and recombination are absent from most pipelines. Here, we
developed DGINN, a highly-flexible and public pipeline to Detect Genetic INNovations and adaptive evolution
in protein-coding genes. DGINN automates, from a gene’s sequence, all steps of the evolutionary analyses
necessary to detect the aforementioned innovations, including the search for homologues in databases,
assignation of orthology groups, identification of duplication and recombination events, as well as detection
of positive selection using five different methods to increase precision and ranking of genes when a large
panel is analyzed. DGINN was validated on nineteen genes with previously-characterized evolutionary
histories in primates, including some engaged in host-pathogen arms-races. The results obtained with
DGINN confirm and also expand results from the literature, establishing DGINN as an efficient tool to
automatically detect genetic innovations and adaptive evolution in diverse datasets, from the user’s gene of
interest to a large gene list in any species range.

Running Title: DGINN, an automated pipeline to Detect Genetic INNovations
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Introduction

Genetic innovation is a major adaptation process that has impacted genome structures and functions
over millions of years in response to natural selection. Such changes have shaped key biological functions,
such as reproduction, adaptation to a new environment, immunity, sensory-perception, host-pathogen
interaction. Adaptation in protein-coding genes can take place through several mechanisms. They include,
amongst others, positive selection on coding sequences, duplication events with subsequent divergence of
the copies, as well as recombination (Daugherty and Malik 2012). The first is caused by natural selection
that increases the frequency of advantageous mutations, leading to an apparent excess of non-synonymous
substitution rates over synonymous ones over evolutionary times. This notably leads to the accumulation of
beneficial amino-acid changes at the location of functionally important residues, such as the interface of
proteins involved in host-virus interactions. Gene duplication is another important source of genetic novelty,
which notably allows to increase the general evolvability (Daugherty and Zanders 2019, Kondrashov 2012).
The fixation of multiple copies enables diversification of gene function through subfunctionalization or
neofunctionalization. Moreover, gene conversion, by recombination between alleles, allows for rapid
divergence of the copies. Gene duplication and loss may further be a dynamic and rapid adaptation process
(McLaughlin and Malik, 2017, Daugherty and Zanders 2019, Kondrashov 2012).

These mechanisms fueling genetic novelty are all parts of the response of organisms to selective
pressures and must therefore be analyzed as much has possible together to wholly apprehend the
evolutionary history of genes. However, despite their frequency and their biological importance and
relevance, these diverse evolutionary innovations are not accounted for in most tools and studies analyzing
genes under adaptive evolution (such as Kosiol et al., 2008, Hawkins et al 2019, and reviewed in Sahm et al
2017). Lastly, performing gold-standard and complete phylogenetic analyses is usually highly hand-curated.
Our goal was therefore to design a tool that would incorporate all these mechanisms at the origin of genetic
innovation in a robust end-to-end pipeline to identify and characterize new protein-coding genes with
signatures of adaptive evolution.

Such a pipeline requires the automation of essential steps. Primarily, searching for homologous gene
sequences and identifying orthologous relationships represent a time-consuming and difficult process. No
existing tool include these steps, because they either remain essentially hand-curated (Hyphy suite (Pond et
al., 2005), Selecton (Stern et al., 2007), IDEA (Egan et al., 2008), JcoDa (Steinway et al., 2010), PoSeiDon
(Fuchs et al., 2017) and POTION (Hongo et al., 2015)), are restricted to specific vertebrate and prokaryotic
species (PhyleasProg (Busset et al., 2011) and PSP (Su et al., 2013)), or rely on published orthologous
annotations (essentially from the NCBI HomoloGene) which may become imprecise on non-model species.

Secondly, correct codon alignments are necessary for the accurate detection of residues under positive
selection. However, current pipelines rely on protein or nucleotide alignment softwares like ClustalW
(Thompson et al., 1994) or Muscle (Edgar, 2004), although more recent ones such as PRANK (Ldytynoja
and Goldman, 2008) have been repeatedly shown to provide high-quality codon alignments, thereby
diminishing false positives during the detection of positive selection (Fletcher and Wang, 2010, Privman et
al., 2012, Jordan and Goldman, 2012, Markova-Raina and Petrov, 2011).

Thirdly, we identified the need to include within a single analysis the detection of positive selection
signatures by different methods and models, to allow for more specificity and sensitivity of the results, as well
as to help “ranking” genes in an evolutionary screening approach (for example Abdul et al., 2018, Elde et al
2009, Schultz and Sackton 2019, Malfavon-Borja et al., 2013, McBee et al., 2015, Rowley et al., 2016).
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Moreover, the inclusion of methods in which the experienced user has access to the parameterization of the
maximum likelihood models is needed (van der Lee et al, 2017). Existing tools rely almost exclusively on
PAML codeml (Yang, 2007), which has allowed the identification of numerous genes under positive
selection, but offers limited options for parameterization.

Overall, there seemed to exist a void when it comes to pipelines which fully automate the search for
adaptive evolution in protein-coding genes, from retrieving homologous sequences of a gene of interest in
any species range, establishing orthologous relationships, reconstructing codon alignments and the
corresponding phylogenies, to detecting different genetic innovations using gold-standard and diverse
methods to ensure high-degree of confidence in the results. We thus developed an integrative pipeline, that
we named DGINN (for Detection of Genetic INNovations) to satisfy those requirements. All scripts are freely
available on Github and as a docker on DockerHub. We also focused on user-friendliness and flexibility, so
that biologists can use with ease and use only parts of the workflow for various purposes. DGINN was
developed as a one-gene workflow and can easily be up-scaled to screen large datasets of dozens or
hundreds of genes. Finally, we performed an extensive validation of our pipeline, using published and highly
hand-curated phylogenetic data on a set of nineteen primate genes with various evolutionary histories
including genes involved in virus-host evolutionary arms-races (Daugherty and Malik 2012, Duggal and
Emerman 2012). Through DGINN, we further identified previously uncharacterized signatures of genetic
conflict in the primate Guanylate-binding protein (GBP) family, which plays important roles in cell-

autonomous immunity against pathogens (Kim et al 2012, Kraap et al., 2016).

Materials and Methods

Pipeline structure

The overall goal of the DGINN pipeline (overviewed in Figure 1) is to provide an easy, integrated, and
robust way of detecting genetic innovations from a gene sequence provided by the user on two scales, either
on one specific gene for fine-tuned analyses or on large sets of genes of interest for screening purposes.

DGINN is implemented in Python and uses numerous modules, including some from Biopython, as well
as several independent softwares. The list of modules and external softwares is provided in the pipeline
documentation. All scripts and documentation can be downloaded from Github. To enhance user-
friendliness, options are handled through a parameter file, minimizing the complexity of the command line.
Importantly, a Docker image is also available for local use without manual installation of the external required
softwares. The Docker may also be used to screen large dataset using AWS Batch for example

(https://aws.amazon.com/batch/). A specific script for the extraction of batch results, parseResults.py, and a

graphical interface to produce basic figures with them, have also been developed (see Availability).

The overall workflow of the DGINN pipeline is a succession of eight steps, described hereafter. Of note,
DGINN is designed to be extremely flexible as to its uses. The user can enter the workflow at any step with
the files resulting from their own analyses, as indicated in Table 1 and Figure 1. The name of the step
reflects the very first step performed with the option. For example, starting DGINN at the ‘blast’ step will
make it begin with the blast search, and then execute the whole pipeline. The duplication, recombination and
positive selection steps will not be performed if the user has not specifically opted in for them, allowing for

maximum flexibility.
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(Step 1) Automated retrieval of homologous genes in species of interest

DGINN uses BLAST+ search (Camacho et al., 2009) against the NCBI databases. The BLAST search
can be done against a local database constructed by the user, or online against specific NCBI databases,
which allows the user to limit the search to certain sequences, such as ESTs, or certain species, by providing
the proper Entry Query, following the syntax used on the NCBI website, as described in their documentation
(https://www.ncbi.nim.nih.gov/books/NBK3837/#EntrezHelp.Entrez_Searching_Options). BLAST+ is used by
providing the coding sequence of the gene of interest against a nucleotide databank (blastn). We decided
not to use blastp (protein query against protein database) as it significantly complicated the recuperation of
the nucleotide sequences afterwards, which are indispensable to the rest of the pipeline. Moreover,
nucleotide databases include more sequences and thus allow for a more exhaustive search. The number
and speed of requests against NCBI databases can be increased through the acquisition of an NCBI API
key, available online. This ensures access to the largest possible number of sequences, including those not
annotated as orthologous or paralogous sequences. The user may modify minimum e-value, coverage, and
identity values to reflect the specificities of the database and the species set against which they are using
BLAST+. Because we validated our pipeline on primate evolution, we set those with default values of 107,
50%, and 70%, respectively, to retrieve a maximum of homologous sequences without too many unrelated

sequences.

(Step 2) Elimination of overly long sequences and isolation of Open Reading Frames (ORFs)

Because the user may want to cast a wide net in terms of homologue retrieval, and thus use low
coverage and identity for the blastn search (Step 1), a variety of resulting hits are retrieved, including overly
long sequences from whole contigs or chromosomes. Those sequences considerably increase the analysis
time if not properly curated. Furthermore, the detection of ORFs of interest is extremely difficult, as they
contain numerous genes. In DGINN, we identify and remove such sequences based on the median length of
all the retrieved sequences: if the median is longer than 10,000 nucleotides, any sequence longer than twice
the median are taken out, otherwise sequences are deleted if they exceed three times the median length.
The remaining sequences are searched for ORFs using ORFinder from the EMBOSS package (Rice et al.,
2000) to keep only the coding sequence of each gene. The longest detected ORF of each sequence is

selected for further analysis.

(Step 3) Initial codon alignment

Positive selection analyses rely on identifying substitutions leading to amino-acid changes over those
being silent. Therefore, a codon alignment of good quality is essential. However, very few softwares propose
true codon-alignment modes. To date, the best codon aligners are PRANK (L6ytynoja and Goldman, 2008)
and MACSE (Ranwez et al., 2011). PRANK has been shown to produce the best alignments for positive
selection analyses (Schneider et al., 2009, Fletcher and Yang, 2010, Markova-Raina and Petrov, 2011,
Jordan and Goldman, 2012, Privman et al., 2012). From our observations, MACSE also produced high-
quality codon alignments, but it was significantly slower than PRANK. We therefore selected the latter as the
best solution for both quality alignments and lower computational time. PRANK alignments are performed
with the codon model and without forcing insertions to be skipped, and otherwise default settings (prank -F -
codon; version 150803). After this initial alignment, we added a quality control step to eliminate sequences

that did not align properly, using Python homemade scripts, based on alignment coverage against the query
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(either the user-provided value or default of 50%). The remaining sequences are then re-aligned using the

same settings.

(Step 4) Construction of the initial phylogenetic gene tree

The gene’s phylogenetic reconstruction is performed with PhyML v3.2 (Guindon et al., 2010). We opted
for a HKY+G+| model as default, because it offers the best combination of realistic phylogenies without being
too time-consuming. As the produced trees are only intended for screening purposes at this step, we also
opted to use approximate Likelihood Ratio Test (aLRT) for the statistical support of the branches (Anisimova
and Gascuel, 2006).

(Step 5) Identification of duplication events and orthologous groups

As previous steps retrieved homologues without relying on synteny or gene annotation, we implemented
two strategies to identify duplicated genes and to constitute orthologous groups necessary for the positive
selection analyses. DGINN first identifies the overly “long branches” within the gene tree. We define a “long
branch” as a branch which length is superior to 50 times the mean of all branch lengths in the tree (i.e. the
estimated number of substitutions per position is at least 50 times superior in the “long branch” compared to
the mean). When “long branches” are identified, the tree is cut along those “long branches” and the groups
of sequences subsequently constituted are re-aligned (back to step 3) and their trees recomputed separately
(step 4). This constitutes a first method of separating highly divergent groups of genes, between which
detection of positive selection may be ambiguous because of suspicion of paralogy and branch length
saturation. However, for multigenic families that include paralogues that have recently diverged, the gene
members cannot be separated solely based on the relative lengths of the tree branches. We therefore
included a phylogenetic reconciliation method, TreeRecs (Comte et al., 2019), to identify genes sharing a
common evolutionary history in our species of interest. To identify duplication events, TreeRecs reconciles a
user-provided species tree or cladogram to each gene tree. From the reconciled tree, DGINN establishes
groups of orthologues based on ancestral duplication events annotated on the reconciled tree. Since
interspecific positive selection analyses rely on the comparison of several orthologous sequences,
orthologous groups resulting from very recent duplications may have too few sequences to be informative for
those analyses. So we chose to ignore duplication events that were not ancestral enough, by taking into
account the minimal number of species represented downstream of the event. This number is user-
determined. We decided on a default setting of a minimum of eight species to extract a duplication group
from the original alignment, based on the results obtained by Anisimova et al. (2002), and in primates
specifically by McBee et al., (2015). Duplication events on nodes that do not have at least two species in
common in the groups formed on either side of the node are considered dubious: the corresponding
annotated events are then ignored by DGINN. After extraction based on ancestral duplication events, the

orthologous groups are realigned using PRANK as in Step 3.

(Step 6) Identification of recombination events and splitting of alignments along the significant
breakpoints

To account for recombination, DGINN includes GARD from HYPHY (Kosakovsky Pond et al., 2006) with
standard parameters. The breakpoints are then assessed for statistical significance using a likelihood ratio
test (LRT) with p < 0.05 against a null hypothesis that there is no breakpoint at that position. If any
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breakpoint is significant, it is moved to the nearest inter-codon site, and the alignment is subsequently cut
into the corresponding non-recombinant fragments. These non-recombinant alignments, as well as the

original one, will become the input in the following steps.

(Step 7) Construction of the final phylogenetic trees

Following the analyses of duplication and recombination events (steps 5-6), new codon-wise alignments
using PRANK (same parameters as in step 3) and new phylogenies using PhyML (same parameters as in
step 4) are built for groups of non-recombinant fragments (see step 6) of orthologous genes (see step 5).

These final codon alignments and gene trees will further provide the input for the positive selection analyses.

(Step 8) Positive selection analyses

Numerous softwares exist to identify positive selection on coding sequences. DGINN includes several
methods of positive selection analyses, which the user can chose to turn on or off independently. Those
analyses make extensive use of three packages: HYPHY (Pond et al., 2005), PAML codeml (Yang, 2007)
through the ETE toolkit (http://etetoolkit.org/), and Bio++ (Guéguen et al., 2013).

From the HYPHY package, we included two methods. First, we included BUSTED (Branch-Site

Unrestricted Statistical Test for Episodic Diversification), a random effect model which allows for gene-wide

detection of episodic positive selection (Murrel et al., 2015). Results are considered positive in the DGINN
pipeline for a p-value < 0.05 for the LRT of the models admitting vs not admitting positive selection. Second,
we included MEME (Mixed Effects Model of Evolution), which detects individual sites subjected to episodic
positive selection based on a mixed effects model (Murrel et al., 2012). These models are complementary,
as BUSTED evaluates positive selection at the gene level and MEME at the site level.

Contrary to BUSTED and MEME, the codon substitution models used in PAML codeml focus on
pervasive positive selection and not episodic events. Briefly, the codon alignments are fitted to models that
do not allow for positive selection, M1 (with two classes w <1 and w = 1) or M7 (where the w < 1 class is
modeled as a gamma law of n classes, n=5 as default in DGINN), and the corresponding models allowing for
positive selection with one class of w > 1 (M2 or M8, respectively). Statistical significance of positive
selection is determined through a chi-squared test of the LRT of both associated models (M1 vs M2, and M7
vs M8) to derive p-values. Results are considered positive in the DGINN pipeline for a p-value < 0.05.

However, PAML codeml relies on the assumption of stationarity (i.e. that the base composition of
sequences is at the equilibrium of the evolutionary process), which may impact the detection of selection
(Guéguen and Duret, 2018). It is also limited with regards to its parameterization. Therefore, we also
integrated the parameterizable Bio++ library to propose similar models but without stationarity assumption
(Bio++ models M1 vs M2"S and M7N vs MSNS). Similarly, DGINN considers significant positive selection if
p-value < 0.05 of each model comparison.

If positive selection is determined with PAML or Bio++, the pipeline will proceed to the identification of
the sites under positive selection, using the Bayes Empirical Bayes statistics (BEB) from the M2 and M8 in
PAML codeml and the Bayesian Posterior Probabilities (PP) from the M2 and M8"® models in Bio++. Sites
are considered as under significant positive selection if BEB or PP > 0.95.

To detect specific branches/lineages under positive selection, DGINN uses Bio++ to include a method
similar to the Free-Ratio test available in PAML codeml, called One Per Branch in DGINN (OPB). The w ratio

is calculated along the branches of the phylogenetic tree by using a MO model where all parameters but w

7
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are homogeneous. As this step is independent and the Bio++ parameter file is fully accessible, an

experienced user can choose any model they wish, allowing for maximum flexibility.

Pipeline parallelization

DGINN has been developed with the intention to analyze each gene independently, with parallelization
over large datasets being handled in a cluster environment. This is done through user-made scripts (such as
job arrays) and facilitated through configuration parameters that are specific to this use. -i/--infile allows for
easier parallelization by eliminating the need to create parameter files for each analyzed gene. -host/--
hostfile allows the user to indicate the cluster hostfile to avoid conflicts when starting mpi processes.

Also, if the query genes are from human, a separate script is provided for downloading their CCDS
sequences prior to using DGINN itself. This script, called CCDSquery.py and available on the Github, only
requires a table as its entry, with HUGO Gene Nomenclature Committee (HGNC) approved symbols in one
column and the corresponding CCDS accessions in another. This table can be obtained through the HGNC

biomart (http://biomart.genenames.org/).

Results extraction

An independent script, parseResults.py, is provided to extract the essential results after running the
pipeline. This script outputs a table (described in DGINN’s documentation) which compiles, for each
analyzed gene, the results regarding duplication and recombination events, and the different methods of
positive selection detection used (including significance of each method and sites identified). This script only
requires the path to the directory containing DGINN’s results as input.

An R Shiny App (see Availability) has been further designed to help the user visualize the results
quickly, which only necessitates the file produced by parseResults.py. This app will output the figures in the

same format as those shown in Figures 3-4.

Validation dataset and method

To test our pipeline, we used a dataset of nineteen primate genes, for which evolutionary histories and
positive selection profiles are either known and described in the literature or have been established within
our laboratory in the past years (Table 2). We grouped those genes in three categories based on the clusters
described in Murrell et al., 2016: “canonical arms-race genes” such as APOBEC3G and SAMHD1 (Table 2,
red column), “genes described as presenting various selection profiles” (Table 2, green column), such as
HERCS5 or SERINCS, either regarding the methods employed to detect positive selection or the strength of
the detected signal, and “genes under no positive selection pressure” such as GADD45A and
RHO/rhodopsin (Table 2, blue column). The goal was to validate our automatic DGINN method using data
and findings from highly hand-curated phylogenetic and evolutionary analyses, and if possible enrich them.
To assess the pertinence of our detection of duplication events, we included nine genes belonging to
multigene families (annotated with an asterisk in Table 2). A gene was considered as part of a multigene
family if it had at least one paralogue with over 50% reciprocal identity amongst primates (according to
Ensembl). A member of the APOBEC3 gene family was also included as an extreme example of genes
involved in virus-host evolutionary arms-races and that have undergone numerous genetic innovations
(Nakano et al 2017, Etienne et al., 2015, Desimmie et al., 2014; Sawyer et al., 2004). Another example of

multigene family member included is HERCS5, which exhibits antiviral activity (reviewed in Kluge et al 2005)


https://doi.org/10.1101/2020.02.25.964155
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.02.25.964155; this version posted February 26, 2020. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

and described in the literature as evolving under positive selection (Woods et al., 2014). Given that in this
latter case the analyses were performed on a limited number of primate species (seven species) and that
this may conduct to a bias in the signature of positive selection, HERC5 was included in the “various”
category rather than in the “canonical” one.

The primate species tree used to assess for duplication events is based on the one established by
Perelman et al. (2011) and updated by Pecon-Slattery (2014), with minor modifications: species’ names
according to the six-letter naming system nomenclature that is used in DGINN (and is similar to UCSC
genome’s nomenclature: the first three characters of the organism's genus and species classification in the
format gggSss; e.g. Homo sapiens becomes homSap), species names were updated (e.g. Tarsius syrichta
was replaced by carSyr for Carlito syrichta), Rhinopithecus bieti (rhiBie) and Rhinopithecus roxellana
(rhiRox) were added as the closest relatives of Rhinopithecus brelichi (rhiBre). This modified tree is available
on DGINN’s Github (https://github.com/leapicard/DGINN/blob/master/examples/ex spTree.tree).

Reconstruction of the evolutionary history of primate Guanylate-binding protein (GBP) family
Homologs for human GBP4 and GBP6 were retrieved online through Blastn

(https://blast.ncbi.nim.nih.gov/) against the nr database limited to primates (taxid:9443). Sequences were

manually selected to span as many primate species as available. Their accession numbers were added to
the list of accession numbers previously obtained from the DGINN run from the human GBP5 query, then
DGINN was run from the accession step to the duplication step (steps 2-5) to determine the new orthologous

relationships and reconstruct the different gene trees.

Resources

DGINN was run on the nineteen genes in a cluster environment (PSMN, http://www.ens-lyon.fr/PSMN/)

in two stages. The first one ran from blast step against the NCBI non-redundant nucleotide nr/nt database
circumscribed to primate species, with default settings (2 CPUs for each gene) until the identification of
recombination events (steps 1-7, Figure 1). The second stage focused solely on positive selection analyses

(step 8, 1 CPU for each alignment). Running times are summarized in Table 3.

Availability
All scripts and documentation are freely available on Github (https://github.com/leapicard/DGINN) and

as a Docker on DockerHub (https://hub.docker.com/r/leapicard/dginn). Example files to test DGINN are

available to the users on GitHub. A specific script for the extraction of batch results, parseResults.py, is also
available on the same Github. A graphical interface, which uses the file produced by parseResults.py as
input and produces basic figures from the results (as in Figures 3-4), has also been developed and is

available at https://rna-seq.shinyapps.io/DGINN Pipeline Visualization/. All results obtained and presented

in this manuscript are available on the GitHub (https://github.com/leapicard/DGINN validation).

Results and Discussion

1- Presentation and novelties of the DGINN pipeline
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The DGINN pipeline presents an end-to-end solution for the phylogenetic and automated detection of
genetic innovations on protein-coding genes that are suspected to have undergone adaptive evolution. It
automates the search for homologous sequences, their codon alignment and the reconstruction of
phylogenetic histories. This is followed by the identification of marks of genetic innovations: (i) duplication
events (also allowing for the identification of orthologous groups), (ii) recombination events (also limiting bias
in subsequent positive selection analyses), (iii) positive selection through different methods.

The detailed presentation of the steps is found in the Method section.

Key novelties of the DGINN pipeline include a major focus on its flexibility of use: as such, it is possible
to enter at any step in the pipeline without deep knowledge of the command line. The possibility to search
within a single pipeline for diverse mechanisms of genetic innovations and using different methods for
positive selection analyses translates to saved time compared to independent performance of each analysis.
Moreover, though DGINN is designed to screen large datasets, it can also be used to perform gold-standard
analyses on a single gene of interest with ease. For example, in the analyses of Lahaye et al (Lahaye et al.,
2018), positive selection analyses on the NONO gene were performed through the use of DGINN to
determine the evolutionary history of this newly discovered sensor of the Human Immunodeficiency Virus
(HIV) capsid. Finally, DGINN includes key features detailed hereafter which are novel in such pipelines and

allow for a more versatile use than just the detection of positive selection.

Automatic retrieval of homologous sequences and constitution of orthologous groups by tree
reconciliation

The first important step for the identification of genetic innovations in a protein-coding gene is the
retrieval of orthologous sequences of this gene, in as many species as possible in a given range, clade or
family of interest to the user. Automating this step is a challenge as the evolutionary characteristics of
orthologous genes vary a lot (between organisms, between copies in different species, according to different
molecular clocks or environmental constraints). Usually, this step is time consuming and demands high
manual curation. This is even more true for genes that have rapidly evolved. Most available tools for the
detection of positive selection rely on user-provided alignments or are limited to fixed input species as
PosiGene (Sahm et al., 2017). To circumvent these limits, DGINN uses BLAST against the NCBI online
databases (see Methods — Steps 1-2). This approach makes the search for homologues simpler and relies
on a widely-used and well-known tool, BLAST, which can be parameterized by the user. As true orthologous
genes are identified through a subsequent reconciliation step, the user can cast a wide net by tuning
parameters in terms of minimum coverage, e-value, identity, and species concerned.

From a set of homologous sequences, true orthologous groups are identified through a reconciliation
software, Treerecs (Comte et al., 2019) and additional homemade scripts (Steps 3-5). Using tree
reconciliation instead of annotations or tools such as OMA or Eggnogg (Altenhoff et al., 2018, Huerta-Cepas
et al., 2016) may be particularly advantageous when working with non-model species, unknown genes, and
recent duplication events. By separating the two phases of homology retrieval and orthology identification,
we ensure that the user can change BLAST parameters without compromising the validity of the subsequent

positive selection analyses.

DGINN detects gene duplication events, which may themselves be hallmarks of genetic

innovation
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While tools for the detection of positive selection abound, they often leave aside the detection of other
hallmarks of genetic innovations, such as duplications (Daugherty and Zanders 2019). Very often, duplicated
genes are even taken out of the analysis entirely to avoid bias during the detection of positive selection
(Kosiol et al., 2008). However, this may lead to missing potential genes of interest and dismissing the gene
copies that have been under adaptive evolution. On the contrary, DGINN looks for duplication events, as
signals of potential genetic innovation as well as to identify relevant groups of orthology for further analyses.
Similarly, tools which perform orthologous assignments from annotations cannot be trusted to detect either
recent duplications or ancient ones on non-model species. To our knowledge this is the first time this feature
is included in an automated pipeline searching for genetic innovation. The importance of accounting for
those events is shown through the numerous genes involved in genetic conflicts which have undergone
duplications and subsequent diversification (Daugherty and Zanders 2019). For example, many antiviral
effectors, also called restriction factors, belong to multigene families, where duplicated copies have evolved
varied antiviral functions and/or virus-host interfaces/determinants, such as the Mx (Myxovirus resistance)
Dynamin Like GTPases Mx1 and Mx2 (Haller et al., 2015), the guanylate-binding proteins GBPs (Tretina et
al., 2019, Huang et al., 2019), the primate APOBEC3 gene family (Munk et al., 2012, Desimmie et al., 2014,
Etienne et al., 2015, Nakano et al 2017 ) or the genes from the TRIM family (Malfavon-Borja et al., 2013).

Accounting for recombination allows for the detection of an important source of genetic
innovation, while also avoiding bias in subsequent positive selection analyses

DGINN uses GARD to detect significant recombination breakpoints along the aligned sequences. As
previously mentioned, recombination and gene conversion may be major sources of genetic innovations (in
particular in the context of large gene families), and are widely ignored in existing pipelines. One example is
the TRIMcyp gene present in certain primate species which results from the recombination and fusion of a
cypA gene with the antiviral TRIMS5 gene leading to a change of antiviral specificity (Malfavon-Borja et al.,
2013). Moreover, recombination may also itself bias phylogenetic reconstruction and positive selection
analyses (Anisimova et al., 2003, Posada and Crandall, 2002), as exemplified by the multiple recombination
and gene conversion events that occurred in the Mx gene family during mammalian evolution (Mitchell et al.,
2015). To date, only PSP (Su et al., 2013) and PoSeiDon (Fuchs et al., 2017) pipelines account for such
events in their workflow. In DGINN, detecting recombination events thus serves two purposes: identifying

one possible hallmark of genetic innovation and avoiding bias in positive selection analyses.

DGINN integrates numerous methods for the detection of positive selection

The detection of signatures of positive selection is a key part of the pipeline. Indeed, very few pipelines
include different models than the ones from PAML (Stern et al., 2007, Su et al., 2013). In DGINN, we
decided to implement various methods with different underlying models, so the results obtained are more
robust and can be balanced between methods. It also helps to “rank” the importance of signatures on genes
when a large dataset is screened. The methods and models are described in the Method section, Step 8. In
addition to the most used PAML codeml, we included Bio++ bppml with similar but non-stationary models. Of
note, on our validation dataset, Bio++ bppml consistently performed better than PAML codeml when it comes
to calculating likelihoods (Supplementary Table 1). Moreover, because of its versatility, Bio++ allows for
more parameterization and the easy declaration of many modelings that would permit to detect positive

selection under user-defined scenarios (e.g. using non-homogeneous mixture models, or other kinds of
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models such as allowing amino-acid specificity or simultaneous substitutions (Weber et al., 2019, Zaheri et
al., 2014)).

Lastly, HYPHY is a good complement in those analyses, as shown in various studies (for example
Malfavon-Borja et al., 2013, McBee et al., 2015, Rowley et al., 2016, Abdul et al., 2018, Schultz and
Sackton, 2019). We thus decided to include two methods from the HYPHY package: one that considers the
impact of positive selection at the level of the gene itself, using a branch-site model (BUSTED, Murrel et al.,
2015), and another one which detects episodic positive selection at the site level (MEME, Murrel et al.,
2012).

2- Validation

We tested our pipeline on nineteen primate genes selected for their various evolutionary histories and
positive selection profiles (Table 2). These genes were grouped in three categories based on the clusters
described in Murrell et al., 2016: “canonical arms-race genes” such as MX1 and SAMHD1, “genes described
as presenting various selection profiles”, such as HERC5 or SERINC3 “genes under no positive selection
pressure” such as GADD45A and RHO/rhodopsin (Table 2). The intermediate category was attributed on the
basis of the methods employed to detect positive selection or the strength of the detected signal (see

Method section).

An overview of the complete execution of DGINN on a protein-coding gene, HERC5

A brief overview of DGINN’s workflow on a specific gene, HERCS, is presented in Figure 2. The Blast
search returned 71 primate homologous sequences, of which twelve were eliminated by the subsequent
filters, yielding to a total of 59 sequences. As a duplication event was detected by Treerecs, these 59
sequences were then automatically (and correctly) split into two groups: one with 32 sequences
corresponding to HERC5 and one with 27 sequences corresponding to HERC6. No recombination event was
identified and the positive selection analyses then followed. All methods found highly significant evidence of
positive selection on the complete alignment of 59 mixed HERC5-HERCG6 sequences, with p-values ranging
from 2.24e® to 2.27¢™" for PAML and Bio++ models. However, after separating the two paralogues into
orthologous groups, it appeared that most of this signal was driven by the positive selection on HERC6 (p-
values of 4.38e™" to 8.10e™" for PAML and Bio++ models), while the signal on HERC5 sequences was
present but much more modest (p-values, 0.030 to 0.004), with BUSTED even returning a non-significant p-
value for positive selection on that alignment. The positive selection results therefore highlight the necessity
to properly separate paralogues from each other prior to performing the analyses. For a query on the HERC5
gene, keeping the initial mixed alignment could have caused a mistaken conclusion that primate HERC5 has
been under very strong positive selection, though the signal was mostly driven by HERC6. Moreover, the
sites identified as under positive selection on that alignment would also be erroneous. Overall, the complete
DGINN analyses with HERCS5 as query took less than 20 hours (Table 3, 4h03 for the data mining and

phylogenetics, and 15h36 for the detection of genetic innovations per se).

Detection of ancestral duplications allows for proper assignation of orthologous groups
We identified genes as belonging to multigene families if at least one member had over 50% reciprocal
identity with our gene query according to ENSEMBL annotations (Table 2). Given this definition, we were

able to retrieve multiple family members for the majority of the genes belonging to such families, when
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performing BLAST with the minimum coverage (50%) and identity (70%) values. The sole exception was
SERINCS3, for which no paralogue was returned through our Blast search. Two additional exceptions were
observed, first with HERCS5, for which the Blast search also returned HERC6 sequences, though reciprocal
identity between the two paralogues was below our threshold. The second case concerned TREX1, for
which the Blast search also returned sequences annotated as ATRIP, an adjacent gene. Given that read-
through transcription of TREX1-ATRIP occurs naturally and yields a non-coding transcript, it is probable that
those sequences annotated ATRIP actually represents the non-coding transcript and not the mRNA of the
ATRIP gene. This explains the retrieval of ATRIP-annotated genes through Blast despite the two genes not
being strictly homologous.

DGINN efficiently reconstructed orthologous groups (Table 4). Indeed, in the case of multigene families
(from two to five paralogues retrieved here), we were able to properly reconstruct orthologous groups for our
genes of interest, without mixture with other paralogues. Our approach allowed us to separate the different
family members retrieved through BLAST in groups which did not mix paralogous sequences through long
branch partition (LB) and/or through reconciliation (Treerecs). For example, using the human CCDS
sequence of FOXP2 as input in DGINN, we retrieved sequences from both FOXP2 and its paralogue
FOXP1. The tree reconstructed from their alignment featured a branch over 50 times longer than the mean
length of the tree’s branches, and by automatically splitting the sequences separated by that branch, we
were able to reconstitute two groups corresponding to the paralogues. However, paralogues from other
families may not have diverged enough for long branch partition to be able to properly discriminate them into
different groups. We resolved those through TreeRecs, reconciling the tree obtained from the Blast-retrieved
sequences with the primate species tree. This is the case, for example, of the immune sensor IFI16, which
was properly assigned to a different group than MNDA through our Treerecs-based approach.

Non-annotated sequences (such as those referred as LOCXXX in databases) were also assigned to
groups through this process, showing that this method of attributing orthologous relationships might help with
non-annotated sequences in the databases.

Of our nineteen genes of interest, only one presented some inaccuracies in the distribution of
sequences to orthologue groups. With an APOBECS3F query, DGINN erroneously divided APOBEC3F itself
in two different groups (group 3 and 5, Table 4). By further analyzing all the retrieved paralogues, we
observed two mixes: in the APOBECS3F query, group 2 contained APOBEC3D and APOBEC3B sequences
and APOBEC3B was split in two groups, and a similar pattern occurred in the GBP5 query, with GBP1 in
groups 2 and 3 (Table 4). These errors could be explained by the particularly complicated evolutionary
histories of those two expanded gene families during primate evolution (Mink et al., 2012, Desimmie et al.,
2014, Nakano et al., 2017). This highlights a need to improve the management of the detection of duplication
events in further versions of DGINN. Importantly, because such genes would be tagged by DGINN with
“detected duplication events”, these cases would anyway not be missed by the user and the gene of interest

could be reanalyzed through DGINN after curation.

Using several positive selection methods together allows for more sensitivity and specificity and
a “ranking” of genes’ positive selection status during screening

Positive selection results were analyzed according to two different aspects. The first aspect focused on
how many methods found a gene with significant evidence of positive selection (Figure 3, left panel —

produced using the Shiny app openly available). The methods considered at this point were those on which
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a LRT could be performed: HYPHY BUSTED, the M1 vs M2 and M7 vs M8 models of PAML Codeml, and
the M1 vs M2V and M7"® vs M8"® models of Bio++ bppml. Genes were ranked according to the number of
positive results. This allowed us to compare the results obtained for the three categories of genes (Table 2).
The canonical arms-race genes were all detected under positive selection by all five methods, with the
exception of RSAD2 which was detected by four methods (Figure 3). Genes which presented variable signs
of positive selection in the literature (green category, Table 2) also fell into a middle category in the DGINN
screen. Genes without signs of positive selection in previous studies (blue category, Table 2) displayed low
signs of positive selection: detected by less than two methods in DGINN. Two genes were detected by two
methods: FOXP2 and RHO. FOXP2 was detected by both PAML M7 vs M8 and Bio++ M7 vs M8™S, but
both the mean omega and the very low number of sites detected under positive selection (n=1) suggested
artefactual results. Similarly, RHO was detected by BUSTED and Bio++ M7 vs M8™S, but only two sites
were detected. Therefore, our DGINN screen efficiently recapitulated results from published studies.

These results further highlight the advantage of using different methods within a single analysis to
confirm results and discriminate for false positives. Doing this validation also showed that amongst those
methods, BUSTED and PAML Codeml M7 vs M8 appeared the least conservative methods to detect positive
selection.

The second aspect taken into account focused on the percentage of positively-selected sites. Overall,
the arms-race genes displayed higher proportions of positively selected sites (2.4%-14.4%) compared to
other genes (Figure 3, right side). However, this does not represent a hard rule, as some of those arms-race
genes show rather low percentages, such as MX1 (around 2.4%). This suggests that ranking genes by the
number of significant methods rather than the proportion of positive selection sites, as in Figure 3, is a better

proxy for positive selection status.

DGINN recapitulates and expands the findings from previously published profiles of positively
selected sites along genes.

To identify the domains that have evolved under positive selection, we mapped every positively selected
site detected by DGINN by a peak along the alignment (Figure 4, using the Shiny app). We further
represented the height of the peak proportional to the number of methods detecting that site under significant
positive selection, amongst five methods, M2 and M8 results of PAML codeml, M2"° and M8"® results of
Bio++ bppml and HYPHY MEME (Figure 4). Overall, we observed similar patterns as described in the
literature, especially on the canonical arms-race genes. For example, in the case of SAMHD1, we found
most positively selected sites at the N- and the C-termini (Figure 4). This is in accordance with the findings
that the N-ter and C-ter domains both play a role in the antiviral/escape determinants of primate SAMHD1
and that rapid evolutions at these sites are certainly adaptive as a result of lentiviral selective pressure
(Fregoso et al., 2013, Lim et al., 2012, Laguette et al., 2012). In the case of ZC3HAV1/ZAP, we found the
positively selected sites cluster at both extremities of the alignment (Figure 4). However, the middle portion
without positively selected sites corresponds to a gap-enriched region in the alignment linked to the different
possible isoforms of the gene. Interestingly, this shows that the maintenance of these gap regions in the
alignment did not lead to an excess of false positive detection in DGINN. If we now consider the main ORF
(with the gap-enriched region ignored), it appears that the positively selected sites are spread over the whole

length of the gene. Previous results from Kerns et al., 2008 established that the C-ter domain in particular
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was under significant positive selection (Kerns et al., 2008). In contrast, the N-ter domain was not detected,
probably because we used more methods and had more species/sequences available for analyses.

The differences between our results and the published ones for APOBEC3F (Murrell et al., 2016) were
mainly due to the sequences used for the positive selection analyses. Indeed, our analyses excluded four
hominoid species that were correctly retrieved in the early steps of DGINN but were erroneously assigned by
TreeRecs to another group. The detection of positive selection was therefore only performed on a subset of
primate sequences, spanning solely Old World monkeys. However, we have included the solution to such
problems in DGINN thanks to its high flexibility. The user may retrieve the gene sequences (here
APOBECS3F) from the different groups and re-enter DGINN at step 3/alignment (Figure 1 and Table 2) to
obtain the complete evolutionary history and positive selection analyses.

For MX1, we were first surprised that we did not detect such a high signal of positive selection in the L4
loop as described in Mitchell et al., 2012. However, we found that this was mainly due to differences in the
alignments, because PRANK (as opposed to ClustalX used in Mitchell et al., 2012) introduced many gaps in
the L4 loop region due to the extremely-high divergence of the region. Whether MX1 adaptation to viral
countermeasures has occurred by accumulation of non-synonymous changes and/or by indels in the L4 loop
remains to be determined.

In the case of HERC5, four methods detected the gene as under positive selection during primate
evolution (Figures 2-3), but only one site was identified as positively selected (Figure 4). These results differ
from the ones reported in Woods et al., 2014, who found a much larger number of residues under positive
selection (n=50). This discrepancy, however, can be explained by the fact that Woods ef al. identified
positive selection on an alignment that included six non-primate species and only seven primate species,
while ours focused exclusively on primates and included twenty species. It is therefore possible that a
stronger selective pressure has occurred in placental mammals outside of primate evolution. Interestingly, in
DGINN, our Blast search with HERCS5 as query also automatically retrieved HERC6 sequences (Figure 2).
The latter were then correctly assigned to a different orthologous group than HERC5. As previously reported
(Paparisto et al., 2018), we identified strong evidence of positive selection on HERCG6 (with five methods,
Figure 2). This could mean that while both HERC5 and HERCG6 have been evolving under positive selection
in mammals, they have been subjected to different evolutionary constraints in primates, with a lower
selective pressure on primate HERC5 vs HERCSG. It further shows that DGINN is an efficient tool to screen
not only the query genes but also the evolutionary history of their closest gene relatives that may have

themselves be subjected to positive selection and would otherwise be missed by most analyses.

Identification of the loss of GBP5 during primate evolution using DGINN

The positive selection results obtained through DGINN screening for GBP5 showed strong positive
selection (identified by five methods). This was in accordance with previous results from McLaren et al.,
2015. By analyzing the phylogenetic tree generated by DGINN for all the homologs retrieved with the GBP5
query (after step 4, Figure 5A), we found that no sequence from Old World monkeys were retrieved for GBP5
through our Blast search. This absence was confirmed in the tree reconstructed with only GBP5 sequences
after orthologue group attribution (step 5, Figure 5B). However, (and as expected), the entire GBP gene
family was not retrieved by DGINN using human GBP5 as query (with blastn 70% identity and 50%
coverage); in particular, GBP4 and GBP6 were too divergent to be retrieved by DGINN. To reconstruct to

GBP family evolutionary history, we independently retrieved primate sequences of GBP4 and GBP6 by
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blastn and added the new sequences to a large GBP family sequence file. This served as input to DGINN
steps 2-5 to automatically perform alignments, phylogenies, and duplication/orthologous group detection.
The final tree confirmed that GBPS5 is absent in Old World Monkeys (Figure 5C). This might also be the case
for GBP4, for which we did not retrieve sequences from Old World Monkeys; with the exception of two
sequences from Papio anubis and Mandrillus leucophoeus that were annotated as “GBP4” but did not follow
a typical orthologous phylogeny and branched more closely with GBP7 in our phylogeny (Figure 5C).
Genomic analyses of the GBP locus in several primates confirmed that GBP5 has been lost in the ancestor
of Old World Monkeys during primate evolution, and that it may also be the case for GBP4 (Figure 5D). To
explain our retrieval of the two sole Old Word Monkeys sequences, and their position in the phylogeny, one
hypothesis could be that GBP4 has indeed been lost at a similar point in primate evolution than GBP5, and
was then regained in some Old World monkey species through a duplication of GBP7. Overall, these results
show that GBPS5 has been subjected to strong positive selection during primate evolution but has also
entirely been lost in the Cercopithecinae. Whether part of this has been driven by pathogens such as

lentiviruses (Krapp et al. 2016) or bacteria (Kim et al. 2012) should be investigated.

Conclusion

We have developed DGINN, an integrative pipeline for the automatic detection of genetic innovations,
and made it freely available through both GitHub and Docker. DGINN was validated for screening usage
against nineteen primate genes. It automates and streamlines those analyses, allowing the user to simply
provide the coding sequence of their gene of interest and a parameter file to complete the whole workflow,
from retrieval of homologous sequences to the detection of orthology relationships, recombination events
and positive selection.

Through our validation, we confirmed and expanded on results previously established in the literature.
Genes described as engaged in arms-races with viruses were found under strong positive selection by all
five methods included in DGINN. Our analyses allowed us to establish clearer profiles for the genes
belonging to the “varied” category, owing to our inclusion of different methods for positive selection: this way,
we were able to establish that some genes previously thought to present moderate signs of positive selection
presented stronger signs than suspected. Little evidence of positive selection was found on the genes
belonging to “no positive selection” category, in accordance to the literature.

An important feature of DGINN is its flexibility, which allows usage beyond its screening capacity.
Indeed, in cases of dubious results, the possibility remains for the user to curate their input files and perform
the appropriate analyses by entering DGINN at any of the downstream steps. This also means that the
“positive selection” part might be of primary interest to scientists wishing to perform gold-standard positive
selection analyses on their favorite gene, because they could enter their curated alignment and phylogeny
and obtain results of positive selection analyses from five methods in a single query.

Using DGINN to analyze nineteen primate genes also allowed us to enrich some findings, notably on
the importance of detecting duplications and properly ascribing orthologue groups, as exemplified by the
case of HERC5 and its paralogue HERCG in primates. The ability to check multiple members of a query’s
gene family is a major advantage of DGINN, as it may allow the user to identify genes bearing signs of
genetic innovations that they would not have analyzed otherwise. Improving the constitution of orthologue

groups will remain an objective in future versions of DGINN.
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Tables

Table 1. Overview of the possible entry steps into DGINN. DGINN can be entered at different steps to

enhance flexibility. If the user introduces the name of the proper entry step option and inputs the appropriate

files for this option in the parameter file, DGINN will start at that step, ignoring the upstream steps.

Name of entry step option Input files Format

blast CDS of the gene of interest Fasta

accession List of blast results NCBI tabulated format
fasta List of accession identifiers (one per line) Text file

orf mRNA sequences of homologs Fasta

alignment CDS sequences of homologs/orthologs Fasta

tree (codon) alignment of homologs/orthologs Fasta

duplication (codon) alignment, gene tree Fasta, newick
recombination (codon) alignment Fasta

positiveSelection

codon alignment, gene tree

Fasta, newick
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DGINN, an automated pipeline to Detect Genetic INNovations

Table 2. Validation dataset of nineteen primate genes with various evolutionary histories. Genes are
categorized according to their selection profiles as reported in the literature. Asterisks (*) denote a gene

belonging to a gene family with at least one paralogue in primates presenting over 50% reciprocal identity

with the query gene according to Ensembl.
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Table 3. DGINN running times. For each gene, the running time of “Steps 1-7” (Figure 1) and “Step 8”
is shown. Times for Step 8 (positive selection analyses) are only shown for the query genes of the validation

dataset following attribution of orthologous groups (Table 4).

Steps 1-7 Step 8
APOBEC3F 12:18:39 04:11:18
FOXP2 05:26:33 5 days, 23:28:04
GADD45A 01:24:26 02:17:59
GBP5 14:04:30 06:43:06
GMPR 03:51:52 07:50:42
HERCS5 04:03:01 15:36:40
IFI16 05:45:16 5 days, 8:01:45
1ISG20 01:34:50 08:01:08
MXx1 02:34:42 1 day, 18:16:17
NT5C3A 00:53:48 4 days, 20:17:21
RB1 00:14:09 14:16:03
RHO 00:06:30 02:05:53
RSAD2 01:11:31 18:40:09
SAMHD1 00:51:44 3 days, 13:26:08
SERINC3 01:21:46 11:55:16
SHH 01:54:44 06:12:50
SMC6 02:48:41 2 days, 20:34:48
TREX1 01:01:04 09:43:10
ZC3HAV1 02:38:52 2 days, 13:27:12
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Table 4. Groups of orthologues reconstructed by DGINN, using long-branch partition and TreeRecs

for identification of duplication events. For each gene of the validation dataset, are represented the

orthologous groups that were identified, the number of sequences per group, the orthologues present in the

group and the method used to separate the groups (long branch (LB) partition or TreeRecs-based). Groups

kept for subsequent analyses are highlighted in yellow.

Number of
Query Group sequences Gene Type
1 11 APOBEC3B
) 56 APOBEC3D +
APOBEC3B Treerecs-
APOBEC3F 4 16 APOBEC3F based
4 94 APOBEC3G
5 10 APOBEC3F
1 77 FOXP2
FOXP2 2 59 FOXP1 LB
1 30 GADD45A
GADD4SA A GADD45B LB
1 48 GBP3
2 28 GBP1
GBPS 3 32 GBP7 + GBP1 Treerecs-
based
4 36 GBP2
5 24 GBP5
1 104 GMPR2
1 27 HERC6 Treerecs-
HERC5 2 32 HERCS5 based
6 1 60 IFI16 Treerecs-
2 26 MNDA based
1 60 MX2
MX1 2 55 MXA1 LB
1 25 IHH
SHH 2 22 SHH LB
1 35 TREX1
TREX1 2 14 ATRIP LB
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Figure Legends

Figure 1. Workflow diagram of DGINN. Phylogenetic steps (yellow) happen sequentially from the entry
point of the pipeline (Steps 1-4). Each genetic innovation step (purple, Step 5, 6, and 7) is optional. All red
arrowheads denote possible entry points into the pipeline following file formats from Table 1.

Figure 2. Example of workflow on the HERCS5 primate gene. The workflow follows the diagram from
Figure 1. Using human HERC5 CDS as the starting point in DGINN gave results for both HERC5 and
HERCSG. The number of sequences (seq) retrieved or left after each step is indicated. In the bottom panel,
each colored circle represents the results from one of the five methods to detect positive selection at the
gene level, with red representing significant evidence of positive selection and blue no significant evidence.

P-values are indicated below the colored circles. Gp, orthologous group.

Figure 3. DGINN results on the validation dataset. The nineteen primate genes studied are color-coded
according to their selection profile category (Table 2). Left panel, number of methods detecting significant
positive selection for each alignment; each method is color-coded (embedded legend). Middle, mean w
value calculated by Bio++ MO model. Genes are ordered by descending number of methods detecting
positive selection then descending w values. Right panel, percentage of positively selected sites (by at least

one method) over the length of the query coding sequence.

Figure 4. Positive selection patterns on nineteen primate genes. The nineteen genes studied are color-
coded according to their selection profile category (Table 2) and follow the same order as in Figure 3. Genes
without positively selected sites were excluded from this representation. Positively selected sites are
represented as a spike (y axis) at their position along the alignment (x axis). Height of the peak is
proportional to the number of methods that have identified the site as being under positive selection
(posterior probabilities > 0.95 for Bio++ and PAML codeml, and p-value < 0.10 for MEME), with each method
being represented by a different color (embedded legend). HYPHY MEME sites were only mapped if the
gene was detected as under positive selection by BUSTED (p < 0.05). For each gene, the alignment

coverage (number of sequences at a given position) is represented below the x axis.

Figure 5. Evolutionary history of the primate GBP family. (A) Maximum-likelihood phylogeny established
through DGINN based on a run on the GBP5 query (step 4). The four main primate lineages are identified by
color-coding (embedded legend). Asterisks (*) denote nodes that are statistically supported by aLRT > 0.90.
The GBPS5 group, which lacks Old World monkey sequences, is boxed in yellow. The scale bar represents
the number of nucleotide substitutions per site and the tree was midpoint rooted. (B) Maximum-likelihood
phylogeny of the GBP5 group of primate orthologues established through DGINN screen (step 7). (C)
Maximum-likelihood phylogeny of the whole GBP family performed in DGINN after manual addition of
primate GBP4 and GBP6 sequences. (D) Diagram of the genomic locus of the GBP gene family in seven
simian primate species. The reference genomes from the NCBI used were: papAnu (Papio anubis):
Panu_3.0, macMul (Macaca mulatta): Mmul10, chiSab (Chlorocebus sabaeus): Chlorocebus_sabeus 1.1,
homSap (Homo sapiens): GRCh38.p13, gorGor (Goirilla gorilla): gorGor4, calJac (Callithrix jacchus):

Callithrix jacchus-3.2, saiBol (Saimiri boliviensis): saiBol1.0. Gene annotations and predictions are from the
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NCBI database. “X(L)” annotations with dotted outlines, such as 6(L), represent genes for which the
orthology and paralogy relationships have not been determined. Alignments and phylogenies for panel A, B,
and C can be found at https://github.com/leapicard/DGINN validation/tree/master/GBPfamily/ (referred as

5A_aln, 5A_tree, etc.).
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Supplementary Information

Supplementary Table 1. Log likelihoods calculated by BIO++ and PAML codeml for each of the

different models.

File Method M1 M2 M7 M8

BPP -2507,37 | -2491,43 | -2511,01 | -2491,47

APOBEC3F PAML -3945,63 | -3930,68 | -3945,88 | -3930,68
FOXP2 BPP -3997,30 | -3995,85 | -3999,96 | -3995,98
PAML -5860,15 | -5858,43 | -5861,65 | -5858,44

GADD45A BPP -1239,99 | -1239,99 | -1241,28 | -1238,69
PAML -1291,75 | -1291,75 | -1292,06 | -1289,64

GBP5 BPP -6138,60 | -6131,37 | -6139,83 | -6131,78
PAML -6516,42 | -6504,84 | -6518,34 | -6505,90

GMPR BPP -3027,30 | -3027,30 | -3027,12 | -3025,84
PAML -3425,82 | -3425,82 | -3423,78 | -3423,53

HERC5 BPP -10433,56 | -10430,06 | -10434,33 | -10430,37
PAML |-11950,25|-11945,50 | -11951,66 | -11946,35

IFI16 BPP -11099,74 | -11075,12 | -11103,87 | -11075,78
PAML |-18264,89 | -18223,86 | -18270,40 | -18225,35

ISG20 BPP -1837,14 | -1837,14 | -1836,69 | -1836,69
PAML -3048,57 | -3048,57 | -3047,88 | -3047,42

MX1 BPP -8537,86 | -8532,47 | -8543,10 | -8531,57
PAML |-11329,45|-11316,93 | -11335,61|-11317,74

NT5C3A BPP -2324,85 | -2324,85 | -2324,19 | -2323,64
PAML -4483,43 | -4483,43 | -4482,88 | -4482,16

RB1 BPP -6873,89 | -6873,89 | -6874,36 | -6872,91
PAML -7244,38 | -7244,38 | -7242,93 | -7242,93

RHO BPP -2910,93 | -2910,93 | -2913,24 | -2908,65
PAML -2967,07 | -2967,07 | -2953,69 | -2953,12

RSAD2 BPP -4248,12 | -4248,12 | -4248,75 | -4243,00
PAML -4875,51 | -4868,59 | -4874,28 | -4865,51

SAMHD1 BPP -7522,22 | -7495,71 | -7534,66 | -7497,30
PAML -8219,63 | -8186,06 | -8225,38 | -8187,80

SERINC3 BPP -4751,87 | -4749,23 | -4755,82 | -4749,69
PAML -5373,70 | -5370,57 | -5376,40 | -5371,08

SHH BPP -3576,79 | -3576,79 | -3580,07 | -3575,89
PAML -4855,15 | -4841,25 | -4853,34 | -4837,51

SMC6 BPP -8971,83 | -8971,83 | -8974,05 | -8970,65
PAML |-12342,77 | -12342,77 | -12341,63 | -12336,91

TREX1 BPP -3421,42 | -3421,42 | -3421,35 | -3421,15
PAML -5080,28 | -5080,27 | -5080,76 | -5080,15
ZC3HAVA BIO++ | -12413,91 | -12384,63 | -12418,39 | -12392,87
PAML |-17617,28 |-17585,61|-17619,80 | -17585,77
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