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Key message

Polypoid crop breeders do not need more investment for sequencing depth, dosage information
and fewer highly informative SNPs recommended, non-additive models and QTL advantages on
prediction dependent on trait architecture.

Abstract

The autopolyploid nature of potato and sweetpotato ensures a wide range of meiotic
configurations and linkage phases leading to complex gene action and pose problems in
genotype data quality and genomic selection analyses. We used a 315-progeny biparental
population of hexaploid sweetpotato and a diversity panel of 380 tetraploid potato, genotyped
using different platforms to answer the following questions: i) do polyploid crop breeders need to
invest more for additional sequencing depth? ii) how many markers are required to make
selection decisons? iii) does considering non-additive genetic effects improve predictive ability
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(PA)?iv) does considering dosage or quantitative trait loci (QTL) offer significant improvement
to PA? Our results show that only a small number of highly informative single nucleotide
polymorphisms (SNPs;, < 1000) are adequate for prediction, hence it is possible to get this
number at the current sequencing depth from most service providers. We also show that
considering dosage information and additive-effects only models had the best PA for most traits,
while the comparative advantage of considering non-additive genetic effects and including
known QTL in the predictive model depended on trait architecture. We conclude that genomic
selection can help accelerate the rate of genetic gains in potato and sweetpotato. However,
application of genomic selection should be considered as part of optimizing the entire breeding
program. Additionally, since the predictions in the current study are based on single populations,
further studies on the effects of haplotype structure and inheritance on PA should be studied in

actual multi-generation breeding populations.

Data availability
All single nucleotide polymorphism (SNP) data used in the current manuscript are provided with
the manuscript as Online Resour ces 2-4 while all best linear unbiased estimators (BLUES) are

provided as Online Resources 5 and 6.
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I ntroduction

Phenotyping under recurrent selection has been an important approach for variety development
in plant breeding, with substantial success to date. However, this process may take a long time
for most crops, particularly for clonally propagated crops (Slater et al. 2016). For example, in
potato, it typically takes an entire year to develop enough tubers from botanical seed obtained
from crossing nurseries, for experimental trial purposes. Thisis followed by at least two years of
field evaluation for qualitative traits, with evaluation for most quantitative traits in replicated
multi-environment trials beginning in around year four (Endelman et al. 2018). The same can be
said for sweetpotato, although cycle times in sweetpotato are shorter by about a year due to the
fact that the crop can be vegetatively propagated via stem cuttings (Wolfgang et al. 2009). This
represents a stark contrast with what can be achieved in cereal and legume crops, where up to 6
generations can be raised within a calendar year (Watson et al. 2018), or in private corn
breeding programs based in the United States and Europe which can raise multiple generations
per year through the coordinated use of winter nurseries located in both hemispheres such as
United States, Puerto Rico, Hawaii and Chile. This therefore implies that the estimation of
parental value based on genetic designs and phenotypic evaluation in potato and sweetpotato
increases the selection cycle time, thereby reducing the rate of genetic gains and the speed of

delivery of superior, novel geneticsto farmers.

The use of genetic markers for selection offers potential to reduce the breeding cycle time as
selection can be done at an earlier stage. Previously proposed methods have involved identifying
guantitative trait loci (QTL) via QTL mapping and genome-wide association studies (GWAYS),
but they have had little practical application in the actual development of new cultivars through
plant breeding to date, especially for complex quantitative traits, since identifying the causal
genes underlying QTL needed to make their application practical is costly (Xu and Crouch
2008). Genomic selection (GS) offers the ability to select parents within a shorter interval and
increase selection intensity by predicting untested genotypes earlier and enhancing larger starting
genetic variation. This approach uses genome-wide marker data to predict the performance of
untested genotypes and estimate their breeding values (genomic estimated breeding values,
GEBVs), based on a genotyped and phenotyped training population (Meuwissen et al. 2001).
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94  Genomic selection is emerging as the approach of choice to circumvent the limitations associated
95 with use of QTL for marker-assisted selection and to improve the efficiency of phenotypic
96 selection (Bernal-Vasquez et al. 2014). Good genetic progress can be made using GS, as long as
97 factors that affect its predictive ability (PA), i.e. the correlation between phenotypic best linear
98  unbiased estimators (BLUPs) and GEBV's, are well understood. These include trait architecture,
99 the sze of the training population, the relationship between the training and validation
100  populations, heritability of the trait, the quality of phenotypic efforts, the level of linkage
101  disequilibrium (LD), marker density, environmental variances and covariance among traits

102  (Covarrubias-Pazaran et al. 2018).

103  The application of GSis taking shape in plant breeding with more and more crops exploring its
104  utility (Spindel et al. 2016; Wang et al. 2018; Endelman et al. 2018; Covarrubias-Pazaran et
105 al. 2018; Faville et al. 2018; Nyine et al. 2018; Bhandari et al. 2019). For crops like rice and
106  wheat that are normally self-pollinated and have a high incidence of high-effect QTL (Spindel et
107  al. 2016), faster success is expected from applying GS as prediction accuracy depends primarily
108  on the factors listed above. However, breeders of auto-polyploid, clonally propagated crops like
109 potato and sweetpotato, which are normally heterogenous and heterozygous, have to ask
110  themselves additional questions and identify trade-off points that enhance the success of GS-
111 assisted breeding (Slater et al. 2016; Endelman et al. 2018). Potato and sweetpotato present a
112 wide range of meiotic configurations and linkage phases (Mollinari et al. 2020). In addition to
113  causing complex gene action effects, allelic and configuration diversity have consegquences on
114  genotyping and genotype data quality, which consequently affects downstream analysis for
115  quantitative-genetic parameters required to make high quality breeding decisions. Genotyping-
116  by-sequencing (GBS) has currently become a genotyping method of choice in plant breeding
117  (Poland and Rife 2012) but it is also prone to genotyping errors and a high level of missingness
118  at low depth of sequencing, while high sequencing depth has additional cost implications. Data
119  from polyploid crops is more prone to low quality genotype calls at low sequencing depth when
120 compared to diploid crops, because of uncertain allele dosages and possibility of non-random
121 inheritance of alleles such as in preferential pairing or double reduction (Blischak et al. 2016,
122 2018).
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123 Public sector breeding programs like those conducted in centers which are part of the
124  Consultative Group on International Agricultura Research (CGIAR), and in the individual
125 National Agricultural Research Systems (NARS) existing in many countries, are currently
126  undergoing breeding program optimization efforts in order to keep up with the challenges of
127  climate change and population increase (Cobb et al. 2019). Application of GS is one such tool
128  for breeding program optimization. In order to develop GS tools to make more effective breeding
129  efforts in auto-polyploid crops such as potato and sweetpotato, we have taken a practical
130  perspective within a plant breeding setting to address severa pertinent questions related to
131 application of GS in auto-polyploids. We used real data sets from a 380 training-panel made up
132 of advanced tetraploid potato clones and a 315-full-sib family of hexaploid sweetpotato, both
133  developed by the International Potato Center (CIP) and genotyped using different platforms, to
134  address the following questions: i) do polyploid crop breeders need to invest more resources for
135 additional sequencing depth? ii) how many genetic markers are required to make selection
136  decisons? iii) does the consideration of non-additive genetic effects add value to predictive
137  ahility (PA) to enhance genetic gains either for population improvement or product development
138  in polyploid crops?iv) given the multiple alleles at loci with diverse meiotic configurations and
139  linkage phases, does consdering dosage, haplotypic or QTL effects offer significant
140  improvement to PA to enhance genetic advances? We also discuss other factors that need to be

141  considered while adopting GS as a decision support tool in an optimized breeding program.
142  Materialsand Methods

143 Genetic Materials and Phenotyping

144  Sweetpotato bi-parental population

145 A wide genetic variability exists in sweetpotato in terms of yield, nutritional content and culinary
146  aspects, abiotic stress tolerance, biotic stress tolerance, among other attributes (L ow et al. 2017).
147  Introgression of high B-carotene content into locally adapted varieties is a major breeding
148  objective especialy in sub-Saharan Africa where vitamin A deficiency is prevalent. A 315-
149  progeny full-sib family was developed by crossing a US-bred high p-carotene variety,
150 ‘Beauregard’, with an adapted, locally preferred, starchy, low B-carotene landrace variety,
151 ‘Tanzania, a CIP-Peru. These two parents differ in additional traits of interest and the
152 population will henceforth be referred to as the BT population. The population was evaluated in
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153  six environments of Peru, and six environments of Uganda for various quality-related and yield-
154  related traits as described by Gemenet et al. (2020) and Pereira et al. (2019), between 2016 and
155  2017. The full 315-progeny population was also genotyped together with the parents using an
156  optimized protocol for hexaploid sweetpotato, ‘GBSpoly’ at North Carolina State University
157  (NCSU). To support genotyping protocol optimization for the hexaploid, a diploid relative of
158  sweetpotato, |pomoea trifida, was used to develop a full-sib family of about 200. The family was
159  developed from two I. trifida lines referred to as M9 and M 19, hence the M9 x M 19 population,
160  and also genotyped at NCSU. Additionally, a sub-sample of 292-progeny and the two parents of
161  the BT population were genotyped by DArTSeq™ in Australia, under the collaboration between
162  the Integrated Genotyping Service and Support (IGSS) platform at the Biosciences east and
163  central Africa (BecA) hub in Nairobi, Kenya and DArT. The quality-related traits measured in
164  the BT population include: dry matter (DM) content, measured as a percentage of the laboratory
165  dried samples divided by the initial fresh weight of 100g; Starch and p-carotene (BC) content,
166  estimated using near-infrared reflectance spectroscopy (NIRS), and flesh color (FC), measured
167 using interna color scales developed by CIP and partners. All quality-related traits were
168  measured in Peru, but only flesh color was measured in Uganda (FC_U). Data is further
169  described in Gemenet et al. (2020). For yield-related traits, total number of storage roots (TNR),
170  number of commercial storage roots (NOCR), weight of total storage roots (RYTHA), weight of
171 commercial storage roots (CYTHA), and total weight of foliage (FY THA), were measured in the
172  six experiments of Peru. Data is further described in Pereira et al. (2019). Trait abbreviations
173 arefurther defined in Table 1.

174  The quality-related traits were analyzed by fitting the following linear mixed model in
175 ASREML:

176 Vit = U+ gi +e + Ty + by + (€)1 + Eijky
177 where y;;, = the vector of phenotypes of the individual i in block j within replicate k of

178  environment |, 1 = population mean, g; the fixed treatment (genotype) effect, e; = the random

179  effect of environment I, 7,y = random effect of replicate k in environment I, b, =random

180  effect of block j within replicate k of environment I, (ge;); = random effect of individua i in

181 environment | (L=5) environments, ¢, = random error of the residuals, assuming

182  ¢;~N(0,02), ey ~N (0, arz(l)), bjkwy~N (0, abz(l)), gi~N(0,Y) with Y = variance-covariance
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183 matrix across L environments, which varies according to the trait, &;,,;y~N (0, 07) (Gemenet et

184 al. 2020).

185  Theyield-related traits were also analyzed with linear mixed models as described by Pereira et
186  al. (2019) usng GENSTAT 14 as.

Vijkt = W+ gi + e+ 1y + bjr + geu + Eijia

187  where y; ;= the vector of phenotypes as above, u=population mean, g; the fixed treatment
188 (genotype) effect, e; = fixed effect of environment I, 7,y = fixed effect of replication k in
189  environment |, by, = random effect of block j within replication k in environment I
190 by ~N(0, o?), ge; = the fixed interaction effect of individual i and environment I, and
191 eijk(l)~N(0,az) is the random residual error. The best linear unbiased estimators (BLUES) as
192  obtained by fitting the above models to the experimental data were then used to estimate GEBV's

193  Potato trait observation network population

194 A 380-genotype panel made up of advanced clones from the potato breeding program and
195  representing al breeding populations at CIP was assembled for a trait observation network
196  (TON) in Peru, China and Ethiopia. Henceforth, we shall refer to this population as the TON
197 pand. The evaluation of the panel was carried out in diverse agro-ecological zones, and in
198  subsets of genotypes subject to participating NARS' partner capacity and/or ability to produce
199  enough mini-tubers for experimentation. The experimental sites, experimental designs and the
200 number of genotypes evaluated per experiment are summarized in Table 2. The TON panel was
201 evaluated for maturity (bulking) by tuber characteristics at three harvest dates where average
202 vyield per plant (kg; AYP), weight of marketable tubers per plant (kg; WMT), were measured.
203  Additionally, mature tuber weight was evaluated by measuring total tuber weight per plant
204  (TTW; kg). In Peru, TTW was measured as the average total tuber weight across three drought-
205  related treatments: terminal drought (irrigation stopped at flowering until harvest; TTW16_TD),
206 recovery (partialy irrigated after drought stress; TTW16_REC), and fully irrigated (normally
207  irrigated throughout the growth period; TTW16_NI), while random drought was used in China,
208  with no controlled treatments. Resistance to potato virus Y (PVY) was evaluated after infection

209  with virulent vectors and susceptible spreader rows using standard protocols at CIP, while late
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210  blight resistance (LB) was evaluated by growing the population in endemic disease pressure and
211 scored using standard protocols at CIP. Trait abbreviations are defined in Table 1. Additionally,
212 the 380 genotypes were genotyped by GBS at Cornell University.

213  The experiments were analyzed as single trials, depending on the experimental design used as
214 summarized in Table 2. A linear mixed model, taking into account the respective experimental
215  design, was fitted to the phenotypic data. For those traits with different treatments like TTW in
216  Peru, the joint adjusted means were additionally obtained across all treatments by fitting a linear
217  mixed model. Genotype was considered as a fixed effect in these mixed models, so that BLUEs
218  for the genotypic means were obtained for each trait and used to predict GEBVs.

219  Genotyping and Variant Calling
220 DArTSeq™ for Sweetpotato

221 DArTseg™ represents a combination of DArT complexity reduction methods and next
222 generation sequencing platforms (Kilian et al. 2012; Courtois et al. 2013; Raman et al. 2014;
223 Cruz et al. 2013). Therefore, DArTseq™ represents a new implementation of sequencing
224  complexity reduced representations (Altshuler et al. 2000) and more recent applications of this
225  concept on the next-generation sequencing platforms (Baird et al. 2008; Elshire et al. 2011).
226 Similar to previous DArT methods based on array hybridizations, the technology is optimized for
227  each organism and application by selecting the most appropriate complexity reduction method
228  (both the size of the representation and the fraction of a genome selected for assays). Four
229  methods of complexity reduction were tested in sweetpotato (data not presented) and the Pstl-
230 Msel method was selected. DNA samples were processed in digestion/ligation reactions
231 principaly as per Kilian et al. (2012) but replacing a single Pstl-compatible adaptor with two
232 different adaptors corresponding to two different Restriction Enzyme (RE) overhangs. The Pstl-
233  compatible adapter was designed to include Illumina flowcell attachment sequence, primer
234  sequence and “staggered”, varying length barcode region, similar to the sequence reported by
235 Elshire et al. (2011). This reverse adapter contained a flowcell attachment region and a Msel-
236  compatible overhang sequence. Only “mixed fragments’ (Pstl-Msel) were effectively amplified
237 in 30 rounds of PCR using the following reaction conditions: i) 9411 C for 1 min, ii) 30 cycles of:
238 9471 C for 20 sec, 58 1 C for 30 sec, 7271 C for 45 sec, iii) 721 C for 7 min. After PCR,
239  equimolar amounts of amplification products from each sample of the 96-well microtiter plate
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240  were bulked and applied to c-Bot (lllumina) bridge PCR followed by sequencing on Illumina
241  Hiseq2000. The sequencing (single read) was run for 77 cycles. Sequences generated from each
242  lane were processed using proprietary DArT analytical pipelines. In the primary pipeline the
243  FastQ files were first processed to filter away poor-quality sequences, applying more stringent
244  selection criteriato the barcode region compared to the rest of the sequence. This was to ensure
245  reiability in the assignments of the sequences to specific samples carried in the “barcode split”
246 step. Approximately 2,000,000 sequences per barcode/sample were identified and used in
247  marker calling. Finally, identical sequences were collapsed into “fastqcoll files’. The fastqcoll
248  files were “groomed” using DArT PL’s proprietary algorithm which corrects low quality base
249  from singleton tag into a correct base using collapsed tags with multiple members as a template.
250 The “groomed” fastqcoll files were used in the secondary pipeline for DArT PL’S proprietary
251  SNP and SilicoDArT (presence/absence of restriction fragments in representation) calling
252  agorithms (DArTsoft14). For SNP calling, all tags from all libraries included in the DArTsoft14
253  analysis were clustered using DArT PL’s C++ algorithm at the threshold distance of 3, followed
254 by parsing of the clusters into separate SNP loci using a range of technical parameters, especialy
255  the balance of read counts for the allelic pairs. Additional selection criteria were added to the
256  algorithm based on analysis of approximately 1,000 controlled cross populations. Testing a range
257  of tag counts parameters facilitated selection of true allelic variants from paralogous sequences.
258  In addition, multiple samples were processed from DNA to allelic calls as technical replicates
259  and scoring consistency was used as the main selection criteria for high quality/low error rate
260 markers. Caling quality was assured by high average read depth per locus (>30X). The SNPs
261 werecoded as0=AA, 1=BB, 2=AB and “-“ = Missing. The sequences were not aligned to a
262  reference genome because by the time of genotyping, the diploid references (Wu et al. 2018)
263 had not been published.

264  GBSPoly© for Sweetpotato

265 GBSpoly is an optimized protocol for hexaploid sweetpotato developed at NCSU as part of a
266  project focusng on developing genomic tools for sweetpotato improvement. The DNA was
267  checked for quality on 1% agarose gel and quantified based on the PicoGreen florescence-
268  based assay and the concentration was normalized to 50 ng/ul. Initially, several optimization
269  efforts regarding restriction enzyme pairing was carried out (data not shown) and CviAll-Tsel
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270  was selected to be the best combination for hexaploid sweetpotato. Therefore, 1pug of DNA was
271 double-digested using five units of CviAll for three hours at 25°C followed by digestion with
272 Tsel for another three hours at 65°C. A new England Biolabs (NEB) CutSmart buffer was used to
273 make up atotal volume of 30 pl. Purification of the digested samples was done using AMPure
274  XP magnetic beads from ThermoFisher™ and quantified with PicoGreen assay. Barcodes were
275 designed to account for substitution and indel errors and had an 8-bp buffer sequence to ensure
276  that the barcode lay within high-quality base call regions of the sequence reads. Additional
277  double digests on 64-plex pooled samples, purification, and size selection steps were carried out
278  asdescribed by Wadl et al. (2018) before performing 125 bp single-end sequencing on atotal of
279 40 sequencing lanes (8 lanes for each of the 5 libraries) of the Illumina HiSeq 2500 platform.
280 Theresultant FastQ files were aligned to reference genomes of two wild relatives of sweetpotato,
281  Ipomoea trifida and Ipomoea triloba, and variant calling done using the GBSapp pipeline as
282  described by Wadl et al. (2018). The SNPs were coded according to the dosage of the alternative
283 dlele as 0 = AAAAAA, 1 = AAAAAB, 2 = AAAABB, 3 = AAABBB, 4 = AABBBB, 5 =
284 ABBBBB, 6 = BBBBBB. The variant calling process is summarized in Online Resour ce 1.

285 GBS-Cornell for Potato

286  The 380-genotype TON panel was genotyped by Cornell University using GBS in 2015. The
287 DNA was digested with EcoT221 restriction enzyme and 48-plex libraries were prepared for
288  sequencing, using customized GBS protocols at Cornell. The resultant FastQ files were quality
289  controlled and variant calling done using GATK HaplotypeCaller option (Poplin et al. 2017),
290 disabling the duplicate read filter (this is recommended for GBS data) and using the joint
291  genotyping -ERC GVCF mode. The reads were aligned to the potato genome reference
292 sequenced from S tuberosum group Phuregja, line DM 1-3 516 R44, a doubled monoploid (DM)
293 via anther culture by the potato genome sequencing consortium (PGSC). Version
294 PGSC_DM_v4.03 of the reference genome was used in alignment. The barcodes were removed
295  using stacks and the ends were trimmed using trim-galore, followed by mapping to the reference
296 using BWA. Resultant SAM files were processed using samtools and variants called using
297  GATK Haplotype caller, targeting biallelic SNPs only. The SNPs were coded according to the
298 dosage of the aternative allele as 0 = AAAA, 1 = AAAB, 2 = AABB, 3 = ABBB, and 4 =
299 BBBB. The SNP filtration was done using bcftools allowing only for those SNPs with MAF of >
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300 3%, missingness of < 2%, average genotype quality (GQ) > 20 and average allele sequencing
301  depth (DP) > 16.

302 Moded comparison for predictive ability

303 We used the AGHmatrix package (Amadeu et al. 2016) to develop kinship G-matrices
304 partitioning genetic variation based on several gene-action models. For the BT population
305 DArTSeq markers (sweetpotato) where we did not have dosage information, we developed an
306  additive G-matrix according to VanRaden (2008), here-in referred to as Add_2x_DAIrTseq, and
307 anon-additive effects G-matrix according Vitezica and colleagues (2013), herein referred to as
308 NonAdd 2x_DArTSeq. For the BT population GBSpoly (sweetpotato) and TON population
309 GBS-Cornell (potato) data where we had dosage information, we employed three models to
310 develop the G-matrices:. (i) modeling only additive effects, according to VanRaden (2008) here-
311 in referred to as Add_6x_GBSpoly for sweetpotato and Add_4x_GBSCornell for potato, (ii)
312 modeling additive plus non-additive effects, according to Slater et al. (2016) here-in referred to
313 as Add+Non_6x_GBSpoly for sweetpotato and Add+Non_4x_GBSCornell for potato, and (iii) a
314 pseudo-diploidized effect model according to Sater et al. (2016), here-in referred to as
315 Pseudo_2x_GBSpoly for sweetpotato and Pseudo _2x_GBSCornell. The pseudo-diploidization
316 collapses all dosage classes between the nulliplex and the hexaplex (in sweetpotato), and
317  between the nulliplex and tetraplex (in potato) into one heterozygous class, under the assumption
318 that all heterozygotes have an equal effect which falls in between both homozygotes. In the case
319 of potato, the design matrix coding for the pseudo-diploid, additive autotetraploid and full
320 autotetraploid was as described by Slater et al. (2016), while that for sweetpotato is shown in
321 Table 3. During kinship matrix development, additional filters were applied to the genotype
322  data, to have MAF > 30%, and missing data < 10%. We used genomic best linear unbiased
323  prediction (G-BLUP; Clark and van der Werf 2013) to compare the predictive ability of the
324  five models for sweetpotato and three models for potato using the kinship matrices as variance-
325  covariance matrices to fit the compressed linear mixed model (Zhang et al. 2010) and estimate
326  genomic best linear unbiased predictors (G-BLUPS). The software GAPIT (Lipka et al. 2012)
327  wasused in the G-BLUP prediction fitting the following general model:

y=1l,u+Zu+e
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328 where y = vector of phenotypic data, 1, is the vector of ones, u = population mean, Z = the
329  known design matrix for genotypes, u = random genetic effects and ~ N(0, 62K or 62, ,.K)
330 with K = kinship matrix, a = additive model, na = non-additive model, e = vector of residuals
331 ~N(0,a2D).

332 Cross-validation was done by setting 20% of the population to missing phenotypes to be used as
333 avalidation set. We used 1,000 iterations to estimate the predictive ability of the models using
334  both smple/oligo (quality traits in sweetpotato, disease traits in potato) and complex (storage
335  root or tuber yield and yield component traits in both), as defined in Table 1.

336 Unlike in sweetpotato where phenotype and genotype data were balanced across
337  experiments, (292 + Parents for DArTSeq and 315 + parents for GBSpoly), the potato
338  experiments were unbalanced in terms of experimental genotypes. For the purposes of this study,
339 we only selected the locations with the highest training population per trait. Consequently, we
340 used AYP from Kunming (China; AYP_K), WMT from Kunming (China; WMT_K), LB from
341  Oxapampa (Peru; LB2014 O), LB from Yunnan (China; LB2016_Y), PVY from Lima (Peru;
342  PVY_L), TTW averaged across three treatments of 2016 in Ica (Peru; TTW16 Ica), and TTW in
343 2016 from Heilongjiang (China; TTW16_HLJ), all having number of genotypes indicated in
344  Table 2. Differencesin PA among models per trait were tested using t-tests. Quantitative-genetic
345 parameters were tested for the additive model with or without dosage by obtaining the additive
346  genetic variation (¢2) and random residua effects (62) from the mixed linear model and

347  calculating narrow-sense heritability for each trait as:

n2 = 2L

348
(O'a"'o'e)

349

350 Additionally, we calculated the estimated rate of genetic gains from genomic selection per
351  additive model with or without dosage for each trait according to Oliveira et al. (2019) as:

(i x o, *x PA)

AGG = I

352  assuming L=5 for sweetpotato following the accelerated breeding scheme currently implemented
353 (Mwanga et al. 2017), and L= 8 for potato.
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354 How many markers areadequatefor prediction?

355  For sweetpotato, we used the GBSpoly data, using different filtration criteria to end up with
356  different number of markers. We used three criteriai) total number of SNPsfiltered at 10% MAF
357 and > 90% call rate, ii) total number of SNPs filtered at 30% MAF and > 90% call rate (used in
358 the analyses above), and iii) A random sample of 15,000 SNPs from the total number of SNPs
359  and filtered at 30% MAF and > 90% call rate. In Potato, the total number of SNPs was filtered
360 using two criteria: i) 30% MAF and > 90% call rate, ii) 40% MAF and > 90% call rate. The
361 model considering only additive effects was used in comparing the effect of number of markers

362  insweetpotato, while all three models were tested between the two filtering criteriain potato.
363  Incorporating haplotypic-QTL in prediction modelsfor sweetpotato

364 By taking advantage of the fully phased integrated linkage map from BT (Mollinari et al. 2020),
365  wetested the predictive ability from QTL-informed models. Towards this end, we used the same
366  cross-validation scheme as above, where 80%:20% random samples were used as training and
367  testing populations, respectively, replicated 1,000 times. In order to detect QTL, we ran our
368  random-effect multiple interval mapping (REMIM) using a sequential forward search (Pereira
369 et al. 2019). We used score statistics to test map positions every 2 centiMorgans (cM) and added
370 aQTL at atime using a relaxed genome-wide significance level threshold (o = 0.20). A window
371 size of 20 cM was used to avoid that another position was selected very close to another QTL
372 dready in the model. For G-BLUP models, realized kinship matrices were based on the
373 haplotype information from markers positioned every 2 cM in the genetic map. For QTL-BLUP
374 (Q-BLUP), realized kinship matrices were based on the haplotypes from QTL peak marker; if
375 there were more than one QTL, their kinship matrices were averaged out; if there were no QTL,
376  we obtained the prediction as in G-BLUP. For Q+G-BLUP models, two terms were fitted, each
377  with realized kinship matrices based on QTL peak markers (like for Q-BLUP) and the remaining
378  markersin the linkage map but those selected as QTL.

379
380 Results

381  SNP profilesfrom the genotyping platfor ms
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382  DArTseq sequencing of sweetpotato resulted in 13,504 biallelic SNPs (Online Resource 2). The
383  call rates and polymorphic information content (PIC) are shown in Fig. 1A& B and ranged from
384  about 0.4 - 1.0, with a mean of 0.96 for call rate and from O - 0.5 with a mean of 0.37 for PIC.
385  Stringent filtering at a call rate > 0.8 and PIC > 0.25 left 9,649 SNPs that were used in
386  AGHMatrix. Additiona filtration in AGHMatrix at < 0.1 missingness and > 30% MAF resulted
387 in 6,015 diploidized, biallelic SNPs being used to develop the matrices following additive
388  (Add_2x_DArTSeq) and nonadditive (NonAdd_2x_DArTSeq) models.

389  Cornell GBS in potato resulted in 295,401 biallelic SNPs at the variant calling step that were
390 then hard-filtered to 3,262 high confidence SNPs by setting MAF > 0.03, missing < 2% and
391  average read depth (DP) > 16 (Online Resource 3). The 3,262 SNP profiles are shown in Fig.
392 1C&D showing MAF ranging from 0.03 - 0.5, with a mean of 0.15 and PIC ranging from 0.0 -
393 0.5, with a mean of 0.23. The 3,262 SNPs were used in the AGHMatrix relationship matrix
394  development. For a relative comparison of models across crops for trait groups, we also filtered
395 the Cornell GBS datain AGHMatrix at < 0.1 missingness and > 30% MAF as done for DArTSeq
396 data above, which resulted in 411 SNPs used to develop the additive (Add_4x_GBSCornell),
397 additive plus non-additive (Add+Non 4x _GBSCornell) and the pseudo-diploidized
398  (Pseudo_2x_GBSCornel) models. Examining the relationship matrices indicated that at MAF >
399 0.3, the full model (Add+Non_4x_GBSCornell) was mainly monomorphic. For potato therefore,
400 we aso changed the MAF to > 0.4, which resulted in 178 SNPs that were used to develop a
401  second set of relationship matrices. All PA comparisons among traits for potato are based on this
402  matrix.

403  For GBSpaly in sweetpotato called according to Wadl et al (2018), comparing diploid genotype
404  datafrom M9 x M19 diploid population and hexaploid BT data showed that for the same level of
405  genotype quality as for the diploid at about 25x depth of coverage, we needed > 100x depth of
406  coverage (Fig. 2). Consequently, for sweetpotato, GBSpoly data was filtered to this high depth of
407  coverage, with MAF > 0.05. This resulted in 34,390 high confidence SNPs (Online Resour ce 4)
408  that were used in AGHMatrix to develop the additive (Add_6x_GBSpoly), additive plus non-
409 additive (Add+Non _6x GBSpoly) and the pseudo-diploidized (Pseudo 2x_GBSpoly)
410 relationship matrices. The filters in AGHMatrix were set to < 0.1 missing and > 0.3 MAF as for
411  the preceding datatypes and resulted in afinal 2,883 SNPs that developed the matrices for model
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412 comparison. For comparing the effects of number of markers on PA, the first filtration criteria of
413 10% MAF and > 90% call rate resulted in 10,358 SNPs, while the third criteria based on a
414  random sample of 15,000 SNPs resulted in 1,291 SNPs that were used in PA comparison, based
415  on the additive only model.

416  The comparison of models with(out) QTL and use of markers per se or haplotypes was carried
417  out using 30,684 SNPs from the same genotyping platform and data set, filtered and processed as
418  described by Mollinari et al. (2020), which were used to develop a 2,708.4 cM phased genetic
419  linkage map for sweetpotato, and subsequent QTL analyses (Pereira et al. 2019; Gemenet et al.
420  2019). Sweetpotato BLUEs are provided in Online Resource 5 while potato BLUES are

421  provided as Online Resour ce 6.
422  Genotyping platforms, genetic effects and predictive ability

423  In sweetpotato, the diploidized additive modedl (Add_2x_DArTSeq) using data from DArTSeq
424  performed equally highly as or sometimes better than the additive model using high confidence
425 dosage data from GBSpoly (Add 6x_GBSpoly), depending on trait architecture, for simpler
426  quality-related traits (Fig. 4). DM had 0.33 and 0.44, Starch had 0.32 and 0.38, BC had 0.43 and
427 043, FC_Phad 0.44 and 0.45, while FC_U had 0.41 and 0.38 average PA for Add_2x_DArTSeq
428 and Add_6x_GBSpoly models, respectively (Table 4). For these traits, additive only models
429  were the best and the full model (Add_Non 6x_GBSpoly) always had negative PA due to a
430 largely monomorphic relationship matrix. Nonetheless, the situation changed with yield-related
431  traits as the effects of dosage and non-additive effects became more important. For these traits,
432  the high-quality data with dosage from GBSpoly (Add_6x_GBSpoly) was always better in
433  prediction when compared to the additive model with diploidized data (Add_2x_DArTSeq).
434  NOCR had 0.19 and 0.31, TNR had 0.25 and 0.37, CYTHA had 0.18 and 0.22, RYTHA had
435 018 and 0.23, FYTHA had 0.21 and 0.26 average PA for Add 2x DArTSeq and
436 Add _6x_GBSpoly additive-models, respectively (Table 4). However, the additive only model
437  with dosage (Add _6x_GBSpoly) was not aways the best in PA for all yield-related traits,
438  especially not for storage roots traits CY THA and RY THA, where it performed similar to either
439 or both of the models considering non-additive effects whether with dosage
440  (Add+Non_6x_GBSpoly) or without dosage (NonAdd_2x_DArTseq) (Fig. 3). Nevertheless, the
441  largely monomorphic relationship matrix from the full model (Add+Non_6x_GBSpoly) ensured
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442  low predictive ability using this mode for most yield-related traits as well, especially FY THA
443  which had the highest negative PA, (collapsed to zero in Fig.3, for plotting purposes). In general,
444  pseudo-diploidizing data already called with dosage (Pseudo_2x_GBSpoly) drastically reduced
445  PA even more than using data called as diploid (DArTseq). In potato, the situation was not very
446  different as the diploidized additive model (Pseudo_2x_GBSCornell) was the second-best model
447  after the additive only model with dosage (Add_4x_GBSCornell) for ssimpler disease traits and
448 its comparative advantage significantly reduced with more complex traits (Fig. 4). LB2014 O
449  had 0.68 and 0.63, LB2016_Y had 0.62 and 0.52, PVY _L had 0.54 and 0.50, AYP_K had 0.45
450 and 0.34, WMT_K had 0.48 and 0.34, TTW16_Ica had 0.16 and 0.16, while TTW16_HLJ had
451  0.37 and 0.32 average PA for Add _4x_GBSCornell and Pseudo_2x_GBSCornéll, respectively.
452 As with the full model in sweetpotato, the modd including non-additive effects
453  (Add+Non_4x_GBSCornell) was the least performing in terms of PA (Table 4).

454  Number of markersand environments

455  Our results in potato indicated that an increased number of markers by more than double did not
456  have a dgnificant effect on PA (411 vs 178 SNPs; Fig. 4A) considering the best predictive
457 mode (Add_4x_GBSCornell). LB2014 O had 0.69 and 0.68, LB2016_Y had 0.66 and 0.62,
458 PVY_L had 0.59 and 0.54, AYP_K had 0.51 and 0.45, WMT had 0.51 and 0.48, TTW16_Ica
459  had 0.19 and 0.16, while TTW16_HLJ had 0.40 and 0.37 average PA for 411 and 178 SNPs
460  respectively. Similarly, in sweetpotato, comparing PA using 10,358 SNPs, 2,883 SNPsand 1,291
461  SNPsusing the best predictive model (Add_6x_GBSpoly) showed no effect of increasing marker
462  density at the cost of marker informativeness on PA. PA based on 10,358 SNPs which had 10%
463  MAF generally performed lower than 2,883 and 1,291 SNPs which both had 30% MAF (Fig. 5).
464  Additionally, 2,883 SNPs did not have a clear comparative advantage over 1,291 SNPs (Fig. 5).
465 Regarding traits in different locations, environmental effects on PA were observed, though the
466  magnitude of such effects was also dependent on trait architecture. The PA based on the best
467 modd for FC_P (0.45; Peru) and FC_U (0.38; Uganda) in sweetpotato and LB2014 O (0.68;
468  Peru) and LB2016_Y (0.62; China), in potato, though abit different, were both relatively high to
469  alow meaningful selections for the trait. For more complex yield traits, the PA for TTW16 Ica
470  (0.16; Peru) and TTW16_HLJ(0.37; China) were significantly different.

471  Effectsof quantitative trait loci, haplotypes and dosage on predictive ability
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472 We additionally tested three analysis models using BT sweetpotato data: i) Q-BLUP based on
473  relationship matrices from QTL-peak haplotypes, ii) Q+G-BLUP fitting two terms based on
474  QTL-peak haplotypes and the rest of the markers in the linkage map, iii) G-BLUP, predictions
475  using markers spaced every 2 cM in the genetic map without considering QTL. The PA results
476  are shown in Fig. 6. Considering QTL haplotypes either per se (Q-BLUP) or with G-BLUP
477  (Q+G-BLUP) had a clear comparative advantage for PA in simpler traits. However, this
478  comparative advantage faded with more complex yield-related traits. Our results therefore show
479  that with genomic selection, the comparative advantage of using the linkage map information
480 and QTL is dependent on trait architecture, hence the magnitude of QTL effects that can be
481  mapped (Fig. 6).

482  Genetic variation, heritability and estimated rate of genetic gain

483  Given that the additive effects only model with dosage performed better for most traits in both
484  sweetpotato and potato (Add 6x GBSpoly and Add 4x_GBSCornell, respectively), we
485  evaluated quantitative genetic parameters for this model in comparison with the additive model
486  without dosage for both crops (Add _2x_DArTseq for sweetpotato and Pseudo_6x_for potato).
487 Narrow sense heritability (h?) ranged from 0.24-0.66 for the model with dosage
488  (Add _6x_GBSpoly) and 0.13-0.62 for the mode without dosage (Add 2x_DArTseq) in
489  sweetpotato. In potato, (h?) ranged from 0.07 — 0.49 in the model with dosage
490 (Add_4x_GBSCornell) and 0.10 — 0.46 in the model with pseudo-diploidized dosages (Pseudo-
491  2x_GBSCorndll; Table 4). As expected, traits with simpler architecture (quality-related traitsin
492  sweetpotato; disease traits in potato had the highest (h?) compared to more complex yield-
493  related traits. All models across crops resulted in positive estimated genetic gain considering L=
494 5 years in sweetpotato and L= 8 in potato, which are the cycle lengths of current breeding
495 schemes at CIP (Table 4). Thisimplies that more genetic gains can be realized if such breeding

496 cyclelengths are further significantly reduced.
497
498  Discussion

499  Low-cost, targeted amplicon sequencing platforms could realize faster genetic gains per

500 unit time
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501 Having a reliable, cost-efficient genotyping platform that ensures faster data turn-around to
502  breeding programs on time to impact selection and advancement decisions is a must for routine
503 application of genomic selection in plant breeding programs. Here we have compared results
504 based on data from three GBS-based platforms, two of which provide data at the commercial
505 diploid sequencing depth level (DArTSeq and GBS-Cornell). About 100x read depth was
506  required to confidently call all the five heterozygous dosage classes of sweetpotato, against 25-
507  30x required for the diploid. These results agree with studies in potato where Uitdewilligen et al.
508  (2013) reported that 60-80x depth was required to confidently call the three heterozygote classes.
509 GBSpoly (Wadl et al. 2018) which had high quality dosage data in our study was developed as
510 part of a project to understand optima conditions for GBS in hexaploid sweetpotato and
511 therefore not amenable to routine use in plant breeding. Other options for more precise
512  genotyping such as SNP arrays, in addition to issues with ascertainment biases, are crop-specific
513  and therefore do not benefit from economies of scale that drive costs down. Breeding programs
514 of polyploid crops therefore have to weigh whether investing more for higher depth of
515 sequencing is an efficient resource allocation strategy (Endelman et al. 2018). To this end,
516  although our results show that genotype quality and consequently the number of realized SNPsis
517 lower with low allele sequencing depth, we also show as described in the next sections that only
518 asmall number of highly informative SNPs are required to realize relatively high PA depending
519  on the trait. These results agree with the findings of Chang et al. (2019) who showed that PA
520 can be improved by prioritizing relevant SNP polymorphisms. This therefore implies that for
521  practica plant breeding applications, using established genotyping platforms that ensure low-
522  costs due to scale effects and faster data turn-around will have better likelihood of success in
523  routine application of genomic selection in polyploids despite the low allele sequencing depths.
524  Since both crops already have GBS-based SNPs at high density, the process can be fast-tracked
525 by targeting the high informative segregating loci in amplicon sequencing. This is encouraging
526 as polyploid crops in developing countries with limited access to expensive, high quality
527  genotypic datasets could also deploy GS approaches.

528 A few highly informative SNPs segregating in the population are adequate for prediction
529  purposes
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530 Guo et al. (2018) found that at allele sequencing depth between 10x to 20x, between 80-100K
531  SNPswould be required to accurately predict additive breeding values in tetraploid ryegrass. Our
532  research in both hexaploid sweetpotato and tetraploid potato however shows a reduced number
533  of realized SNPs after quality filtration, which can be attributed to the difficulty of genotyping
534 polyploid crops. SNP calling in polyploids is further complicated by the presence of polymorphic
535 positions across homologues within and among individuals in addition to the polymorphic
536  positions within a single homologue among individuals (Clevenger et al. 2015). In our potato
537 example, the initial filtration of SNPs to allele sequencing depth at DP > 16 and MAF 3%
538 resulted in only 3,262 SNPs. The same scenario was observed for sweetpotato. However, our
539  results also show that if SNPs are highly informative (MAF > 30%), a number as low as 178
540  SNPscould giverelatively high PA comparableto a larger number of SNPs. In potato, 178 SNPs
541  at MAF > 40% performed relatively similar as 411 SNPsat MAF > 30%. Not shown results from
542  apreiminary analysis of the same dataset of potato usng MAF > 10% resulted in 1,710 SNPs
543  whose PA did not differ significantly with the PA using either 411 or 178 SNPs. Additionally, in
544  sweetpotato, 2,883 SNPs at MAF > 30% gave the same or better PA as 10,358 SNPs at MAF >
545  10%, and 1,291 SNPs. Our results therefore agree with the findings of Covarrubias-Pazaran et
546  al. (2018) using three biparental populations of the American cranberry, that addition of SNPs
547  after 500 markers did not result in much increase in PA as only afew hundred SNPs were needed
548  to reach PA plateau. Even though their study used a consensus map to intentionally distribute
549  markers evenly across the genome, our random sampling method based on MAF and PIC came
550 to the same conclusion. These results imply that breeding programs with limited resources for
551  genotyping can target few highly informative regions within the genome that are segregating in
552  their breeding populations via targeted genotyping methods following amplicon sequencing
553  techniques, as a cost-effective way of incorporating genomic selection in their breeding
554  programs. We propose the use of between 500-1000 highly informative SNPs for routine
555  prediction purposes in abreeding program.

556  Modelling non-additive genetic effects has negligible contribution to predictive ability

557  Our results both in potato and sweetpotato show that additive effects-only models, whether
558 diploidized or with dosage, were comparatively better in PA than the models considering non-
559  additive effects for all simple traits. This comparative advantage however lessened with more
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560 complex traits, where non-additive effects and inclusion of dosage information became slightly
561  more relevant, although in most cases the additive effects-only model with dosage still remained
562 the best in terms of PA. This finding makes sense in quantitative genetic terms as the more the
563  number of genes affecting a trait, the more the expected interaction among loci. In sweetpotato
564  for example, issues of ‘missing’ heritability have been established for yield-related traits using
565 the current BT population in multiple environments, where only a few QTL with very small
566  effects were reported even though a very dense, well phased hexaploid genetic map was used
567 (Pereraet al. 2019; Gemenet et al. 2020). According to Varona et al. (2018), the contribution
568  of non-additive effects to genetic variance depends on the allele frequency of the causative loci,
569 and their consderation in breeding programs can improve the prediction accuracy for breeding
570 values and inform cross-combinations that maximize non-additive variation in progeny. Several
571  studies have however shown that inclusion of non-additive effects in the prediction models have
572  negligible effects in improving the accuracy of predicting breeding (additive) values. For
573 instance, Endelman et al. (2018) reported uncertainty in partitioning non-additive genetic
574  variance in tetraploid potato, whereas Crow (2010), suggested that variance due to epistasis
575 would have little effects in plant breeding as additive variance and covariance effects quickly
576  overshadow such contribution following selection. Non-additive effects are mainly considered
577 important in genomic prediction (prediction for performance of different traits based on the
578 genotype of the individual), while additive-only methods as important in genomic selection
579  (prediction of parental value of an individual), because only additive effects can be passed from
580 parentsto progeny (Varona et al. 2018). However, our results, supported by previous findingsin
581  other crops, imply that in light of the large number of moving parts to consider, including
582  concerns with genotyping platforms and genotype quality for polyploids, practical breeding
583  programs for potato and sweetpotato, and perhaps other polyploid crops, will achieve more
584  advances considering only the infinitessimal model (additive) for both genomic selection and

585  genomic prediction.

586 The relative importance of considering dosage, haplotypes and quantitative trait loci is

587 dependent on trait architecture

588 Olivara et al. (2019) showed that the relative advantage of including dosage information to PA
589 is dependent on trait architecture. Our results confirm this and show that for ssimple traits


https://doi.org/10.1101/2020.02.23.961383
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.02.23.961383; this version posted February 25, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

590 diploidized data, especially when the genotypic data are directly called as diploid during variant
591 caling eg. the DArTSeq datain sweetpotato rather than pseudo-diploidizing data aready called
592  with dosage e.g. in GBS-Cornell data in potato, would just do fine. However, as the traits
593  become more complex, considering dosage improves PA and therefore the rate of progress that
594 can be made for such traits. Endelman et al. (2018) also showed that not considering allele
595  dosage effects in potato reduced prediction accuracy by about 0.13 on average using data from
596 the SolCAP potato SNP array, where they reported PA ranging from 0.06 to 0.63 for specific
597  gravity, yield and fry color. Given that most traits are quantitative, we recommend the use of
598 data with dosage even though they may come from sequencing platforms with low allele
599  sequencing depth, that could benefit more with improved genotype calling methods, such as
600  Bayesian genotype calling methods.

601  Our data also shows that for all traits, considering both QTL and haplotypes resulted in the best
602 PA especidly for simple traits, although this comparative advantage also faded with more
603  complex yield traits. Having markers in complete LD with causative QTL for a given trait is a
604  prerequisite for improving PA in genomic prediction (Velasco et al. 2019). The study of
605 Cuyabano et al. (2014) showed that considering haplotype blocks rather than single markers
606  improved PA for dairy traits in cattle. This is because haplotypes are supposed to be in tighter
607 LD with QTL than single markers. This can be attributed to the fact that GS-only GBLUP
608  methods use the average genome information relationship for model building and for prediction
609 whereas incorporating QTL analysis gives different weights (QTL effects) to different
610  “significant” genome positions (QTL positions) for model building and for prediction. Due to
611  this, studies have proposed a combination of QTL mapping to explain trait architecture and
612  genomic prediction, to improve PA (Spindel et al. 2016; Lopes et al. 2017; Morgante et al.
613  2018; Bhandari et al. 2019). Our results however indicate that the relative advantage of
614  considering QTL-based haplotypes is dependent on trait architecture and directly related to the
615 number and effect size of the QTL in question. In this case, yield-related traits did not show
616  much improvement in PA when QTL were considered. Despite this finding, additional effortsin
617  studying the effect of haplotype structure on PA is recommended to increase the likelihood of
618  fully recovering the polyploid genetic information, where the information from individual dosage
619  markers can be rather limited. However, given that QTL mapping/ GWAS methods require high
620  density markers, the application of such a strategy should be considered in the context of the cost
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621  of developing high density markers against available resources for genotyping in a given
622  program. Additionally, such methods would be computationally demanding and should also be
623 considered depending on available computational tools and analytical capacity of a given

624  program.
625 Further considerationsfor optimized breeding programs using genomic selection

626  The PA of genomic selection isinfluenced by several factors including trait architecture, the size
627  of the training population, the relationship between the training and validation populations,
628  heritability of the trait, the level of linkage disequilibrium (LD), marker density, environmental
629  variances and covariance among traits (Nakaya and |sobe 2012). In addition to the already
630  discussed factors, our results indicate that environment plays a significant role in determining PA
631 as can be seen in the same traits measured across several environments. Additionally, PA
632  magnitude even for simple traits were lower in sweetpotato where we used BLUES across six
633  environments, than in potato where predictions were made per single environment. Models
634  incorporating genotype-x-environment interaction are important and more redlistic when
635  predicting performance of untested genotypes across environments (Burgueno et al. 2012;
636 Hedot et al. 2014; Wang et al. 2018). Furthermore, PA for complex yield-related traits were
637  aways lower than for simpler quality-related or disease traits. PA for such complex traits have
638  been shown to benefit from multi-trait selection models incorporating simpler, correlated traits
639  with the primary trait (Covarrubias-Pazaran et al. 2018; Michel et al. 2019). Additionally,
640 Bernal-Vasguez et al. (2014) alluded to the fact that phenotypic data analysis contributed to
641  improved PA, which speaks to the necessary precision and accuracy of the phenotype in training
642  populations. Taken together, the current results show that genomic selection will contribute
643  towards increased genetic gains, especially via reduced breeding cycle time in potato and
644  sweetpotato. However, the effectiveness of genomic selection will have to be considered from
645  the perspective of optimizing the entire breeding program (Cobb et al. 2019). This refers to the
646  assembly and deployment of a package of technological tools that allow a specific program to
647  realize maximum genetic gains within its current context in terms of time and resources, by
648  exploiting all components of the breeder’s equation. Therefore, given the diversity existing from
649  program to program in terms of resources and human capacity, no ‘one size fits al’ scenario is

650  anticipated.
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651  Finally, it does not escape to our attention that the predictions here-in are based on single
652  populations. However, plant breeding requires several levels of allele recombination through
653  generations. We cannot estimate from the current data, how such recombination complexity will
654  affect the efficiency of GS in breeding programs. Additional studies estimating PA in actual
655  multigeneration breeding populations therefore need to be carried out to reliably estimate the
656  valueof GSto potato and sweetpotato, and perhaps other polyploid breeding programs.

657  Figure Captions

658 Fig. 1 Quality attributes of the SNP profiles from DArTSeq (call rate and polymorphic
659 information content; PIC) data in sweetpotato and GBSCornell (minor alele frequency; MAF
660 and PIC) in potato

661  Fig. 2 Comparison of genotype quality at different allele sequencing depths in diplod I. trifida
662 (M9xM19) and hexaploid sweetpotato (I. batatas; BT)

663 Fig. 3 Boxplots comparing predictive ability of additive-effects-only models without dosage
664  (Add_2x_DArTseq) and with dosage (Add_6x_GBSpoly); models considering aso non-additive
665 effects (NonAdd 2x_DArTSeq; Add+Non _6x_GBSpoly); and pseudo-diploidized dosage data
666  (Pseudo_2x_GBSpoly) for quality related traits (A; DM = dry matter, starch, BC = B-carotene,
667 FC_P =flesh color in Peru; FC_U = flesh color in Uganda); and yield related traits (B; NOCR =
668  number of commercial storage roots, TNR = total number of storage roots, CY THA = weight of
669 commercial storage roots, RYTHA = weight of total storage roots, FY THA = total weight of
670 foliage) in afull-sib family of sweetpotato.

671 Fig. 4 Box plots comparing predictive ability of additive-effectsonly model
672 (Add_4x_GBSCorndl); additive and non-additive effects (Add+Non_4x_GBSCornell); and
673  pseudo-diploidized dosage data (Pseudo 2x_GBSCornell); using minimum allele frequency
674 (MAF) > 30% (A; 411 SNPs) and MAF > 40% (B; 178 SNPs). LB2014 O = late blight in
675  Oxapampa (Peru) in 2014, LB2016_Y = late blight in Yunnan (China) in 2016, PVY _L = potato
676  virus Y in Lima (Peru), AYP_K = average yield per plant in Kunming (China), WMT_K =
677  weight of marketable tubersin Kunming, TTW16_ Ica = total tuber weight in Ica (Peru) in 2016
678  across three drought treatments, TTW16_HLJ = total tuber weight in Heilongjiang (China) in
679 2016, single treatment, in potato.

680  Fig. 5 Box plots comparing the effect of number of markers on predictive ability using additive-
681  effects only model (Add 6x_GBSpoly) with 10,358 SNPs, 2,883 SNPs and 1,291 SNPs in
682  Sweetpotato. A; DM = dry matter, starch, BC = p-carotene, FC_P = flesh color in Peru; FC_U =
683  flesh color in Uganda; and yield related traits: B; NOCR = number of commercia storage roots,
684 TNR = total number of storage roots, CY THA = weight of commercial storage roots, RY THA =
685 weight of total storage roots, FYTHA = total weight of foliage in a full-sib family of
686  Sweetpotato.


https://doi.org/10.1101/2020.02.23.961383
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.02.23.961383; this version posted February 25, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

687  Fig. 6 Boxplots comparing predictive ability of models using QTL haplotypes only in prediction
688 (Q-BLUP); QTL combined with prediction based on markers per se, (Q+G-BLUP); prediction
689  using markers per se without QTL (G-BLUP) for quality-related traits (A; DM = dry matter,
690  starch, BC = B-caroten, FC_P = flesh color in Peru; FC_U = flesh color in Uganda); and yield
691 related traits (B; NOCR = number of commercial storage roots, TNR = total number of storage
692  roots, CYTHA = weight of commercial storage roots, RY THA = weight of total storage roots,
693 FYTHA =total weight of foliage) in afull-sib family of sweetpotato.

694  Online Resour ce Captions

695  Online Resource 1 Variant calling pipeline used in the GBSapp for calling GBSpoly data in
696  Sweetpotato

697  Online Resour ce 2 DArTSeq SNP data for the Beauregard x Tanzania (BT) sweetpotato full-sib
698  family

699  Online Resource 3 GBS-Cornell SNP data for the trait observation network (TON) potato
700  population

701 Online Resour ce 4 GBSpoly SNP data for the Beauregard x Tanzania (BT) sweetpotato full-sib
702 family

703  Online Resource 5 Best linear unbiased estimators for sweetpotato traits used in genomic
704  prediction in the current study

705  Online Resource 6 Best linear unbiased estimators for potato traits used in genomic prediction
706  inthe current study

707  Table 1. Trait abbreviations and their description as used in the current study

Crop Trait Abbreviation Trait Description
Sweetpotato DM Dry matter content
Starch Starch content
BC Beta-carotene
FC P Flesh color in Peru
FC-U Flesh color in Uganda
NOCR # commercial storage roots
TNR # total storage roots
CYTHA Commercial storage root weight
RYTHA Total storage root weigh
FYTHA Total foliage yield weight
Potato LB2014_0O Late blight in 2014 in Oxapampa, Peru
LB2016_Y Late blight 2016 in Yunnan, China
PVY_L Potato virus Y in Lima, Peru
AYP_K Average yield per plant in Kunming, China
WMT_K Weight of marketable tubers in Kunming, China
TTW16_lIca Total tuber weight in 2016 in Ica-Peru

TTW16_HL Total tuber weight in 2016 in Heilongjinag, China
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Table 2. Locations, designs and traits measured in the trait observation network (TON) panel of potato

Country Location Agroecology \
Peru Lima, La Molina 12.0820°S, | Lowland sub-tropics
76.9282° W
Ica, Ica 14.0755° S, 75.7342°
W
Pasco, Oxapampa 10.5853° S, | Highland tropics
75.4053° W
China Yunnan, Kunming 24.8801° | Mixed agriculture systems,
N, 102.8329° E lowland & highland
Heilongjian, Harbin 45.8038° Temperate (long day)
N, 126.5350° E
Trait Group Trait Location, Country, Year Trial Design | #Genotype
Late Blight LB2014 O Oxapampa, Peru, 2014 RCBD 241
resistance LB2016_Y Yunnan, China, 2016 RCBD 336
Virus resistance PVY_L Lima, Peru, 2016-2018 RCBD 341
Bulking-based AYP_K Kunming, China, 2016 RCBD 317
maturity WMT_K Kunming, China, 2016 RCBD 317
Mature tuber TTW16 Ica Ica, Peru, 2016 Augmented | 269
725 weight TTW16_HU Heilongjiang, China, 2016 Augmented | 300
726
Table 3 Proposed design matrix coding for auto-hexaploid sweetpotato as adapted from Slater et
a. 2016.
Pseudo_2x Add_6x Add+Non_6x
Effects/Marker 1 1 1 2 3 4 5 6 7
AAAAAA 0 0 1 0 0 0 0 0 O
AAAAAB 1 1 01 0 0 0 0 O
AAAABB 1 2 0 01 0 0 0 O
AAABBB 1 3 0 0 01 0 0O
AABBBB 1 4 0 0 0 01 0O
ABBBBB 1 5 0 0 0 0 0 1 0
BBBBBB 2 6 0 0 00O 0 01
727
728
729
730

731
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732  Table4 Summary quantitative-genetic parameters derived from genomic selection with cross
733 validation applying different genetic effects models in sweetpotato and potato. o2 isthe additive
734  genetic variation, g2 the residual variance, h? the narrow-sense heritability, PA the predictive
735  ability, AGG the estimated rate of genetic gain considering the current breeding cycle length

Model® 2

Crop Trait a2 a> h? PA AGG
o Add_2x_DArTSeq 16935 29536 036 033b  0.085889
Add_6x_GBSpoly 40035 20762 066 0.44a  0.176077
Add_2x_DArTSeq 61716 137616 031 032b  0.158993
Starch )\ 4d_6x_GBSpoly 121683 11.5424 053 038a  0.265111
o Add_2x_DArTSeq 150.2336 113.1697 057 0.43a 1.0541
Add_6x_GBSpoly 2251431 152.0581  0.60 0.43a 1.29041
o p  Add2x DATSeq 05416 03304 062 0.44a  0.064762
- Add_6x_GBSpoly 08168 04189 066 0.45a  0.081339
8 oy Add_2x DAfSeq 129633 109257 054 041a  0.295238
3 - Add_6x_GBSpoly 161489 16777 049 038ab  0.305411
o vocg | Add_2x DATSeq 50134102 2.93E+08 0.5 0.9  269.0607
E Add_6x_GBSpoly 136E+08 2.43E+08 036 031a  722.4699
R Add_2x_DArTSeq 186E+08 7.40E+08 020 025b  681.9091
Add_6x_GBSpoly 471E+08 5.83E+08 045 037a  1606.149
s Add_2x DATSeq 86149 277157 013 0.18b  0.105664
Add_6x_GBSpoly 86149 266061 024 022a  0.129145
s Add_2x DAITSeq 46249 314849 013 0.18b 007742
Add_6x_GBSpoly 109811 29.4989 027 023a  0.152434
s Add_2x DATSeq 7678 260083 023 021b  0.116379
Add_6x_GBSpoly 12.8721 266023 033 026a  0.186564
eoora o Add_ax_GBSComell 00189 00193 049 068a 0011686
— pseudo_2x_GBSCornell 00195 0023  0.46 063b  0.010997
eoote y  Add_4x_GBSComell 00191 00259 042 062a 0010711
~' pseudo_2x_GBSCornell  0.0166  0.0323 034 052b  0.008375
oy | Add_4x_GBSComnel 00419 00738 036 054a  0.013817
- Pseudo_2x_GBSCornell 0.0364 0.0818 0.31 0.50ab  0.011924
2 o g Add_ax_GBSComell 00118 00327 027 0.45a 0.00611
s - Pseudo_2x_GBSCornell 00066  0.0389 015 0.34b  0.003453
Add_4x_GBSCornell 00132 00322 029 0.48a  0.006893
WMTK pceudo_2x GBSCornell 00069 00392 015 034b  0.00353
Add_4x_GBSCornell 2.00E-04 00028 007 016a  0.000283
TTWIb lea  ido 2x GBSCornell  3.00E-04 00027 010 0.16a 0000346
Add_4x_GBSCornell 00061 0018 025 037a  0.003612

TTW16_HLJ —=
Pseudo_2x_GBSCornell ~ 0.0049 00192 020 0.32b 0.0028

736 “Traits as defined in Table 1, "Models: Add_2x_DArTseq = additive model using data from DArTseq called as
737 diploid; Add_6x_GBSpoly= additive model using data with dosage from GBSpoly; Add_4x_GBSCornell = additive
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738 model using data with dosage from GBS at Cornell, Pseudo_2x_GBSCornell = additive model using data from GBS
739 Cornell with three heterozygote classes collapsed into one.

740
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