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Key message 21 

Polypoid crop breeders do not need more investment for sequencing depth, dosage information 22 

and fewer highly informative SNPs recommended, non-additive models and QTL advantages on 23 

prediction dependent on trait architecture. 24 

Abstract 25 

The autopolyploid nature of potato and sweetpotato ensures a wide range of meiotic 26 

configurations and linkage phases leading to complex gene action and pose problems in 27 

genotype data quality and genomic selection analyses. We used a 315-progeny biparental 28 

population of hexaploid sweetpotato and a diversity panel of 380 tetraploid potato, genotyped 29 

using different platforms to answer the following questions: i) do polyploid crop breeders need to 30 

invest more for additional sequencing depth? ii) how many markers are required to make 31 

selection decisions? iii) does considering non-additive genetic effects improve predictive ability 32 
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(PA)? iv) does considering dosage or quantitative trait loci (QTL) offer significant improvement 33 

to PA? Our results show that only a small number of highly informative single nucleotide 34 

polymorphisms (SNPs; ≤ 1000) are adequate for prediction, hence it is possible to get this 35 

number at the current sequencing depth from most service providers. We also show that 36 

considering dosage information and additive-effects only models had the best PA for most traits, 37 

while the comparative advantage of considering non-additive genetic effects and including 38 

known QTL in the predictive model depended on trait architecture. We conclude that genomic 39 

selection can help accelerate the rate of genetic gains in potato and sweetpotato. However, 40 

application of genomic selection should be considered as part of optimizing the entire breeding 41 

program. Additionally, since the predictions in the current study are based on single populations, 42 

further studies on the effects of haplotype structure and inheritance on PA should be studied in 43 

actual multi-generation breeding populations. 44 
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All single nucleotide polymorphism (SNP) data used in the current manuscript are provided with 46 

the manuscript as Online Resources 2-4 while all best linear unbiased estimators (BLUEs) are 47 

provided as Online Resources 5 and 6. 48 
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 64 

Introduction 65 

Phenotyping under recurrent selection has been an important approach for variety development 66 

in plant breeding, with substantial success to date. However, this process may take a long time 67 

for most crops, particularly for clonally propagated crops (Slater et al. 2016). For example, in 68 

potato, it typically takes an entire year to develop enough tubers from botanical seed obtained 69 

from crossing nurseries, for experimental trial purposes. This is followed by at least two years of 70 

field evaluation for qualitative traits, with evaluation for most quantitative traits in replicated 71 

multi-environment trials beginning in around year four (Endelman et al. 2018). The same can be 72 

said for sweetpotato, although cycle times in sweetpotato are shorter by about a year due to the 73 

fact that the crop can be vegetatively propagated via stem cuttings (Wolfgang et al. 2009). This 74 

represents a stark contrast with what can be achieved in cereal and legume crops, where up to 6 75 

generations can be raised within a calendar year (Watson et al. 2018), or in private corn 76 

breeding programs based in the United States and Europe which can raise multiple generations 77 

per year through the coordinated use of winter nurseries located in both hemispheres such as 78 

United States, Puerto Rico, Hawaii and Chile. This therefore implies that the estimation of 79 

parental value based on genetic designs and phenotypic evaluation in potato and sweetpotato 80 

increases the selection cycle time, thereby reducing the rate of genetic gains and the speed of 81 

delivery of superior, novel genetics to farmers.  82 

The use of genetic markers for selection offers potential to reduce the breeding cycle time as 83 

selection can be done at an earlier stage. Previously proposed methods have involved identifying 84 

quantitative trait loci (QTL) via QTL mapping and genome-wide association studies (GWAS), 85 

but they have had little practical application in the actual development of new cultivars through 86 

plant breeding to date, especially for complex quantitative traits, since identifying the causal 87 

genes underlying QTL needed to make their application practical is costly (Xu and Crouch 88 

2008). Genomic selection (GS) offers the ability to select parents within a shorter interval and 89 

increase selection intensity by predicting untested genotypes earlier and enhancing larger starting 90 

genetic variation. This approach uses genome-wide marker data to predict the performance of 91 

untested genotypes and estimate their breeding values (genomic estimated breeding values; 92 

GEBVs), based on a genotyped and phenotyped training population (Meuwissen et al. 2001). 93 
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Genomic selection is emerging as the approach of choice to circumvent the limitations associated 94 

with use of QTL for marker-assisted selection and to improve the efficiency of phenotypic 95 

selection (Bernal-Vasquez et al. 2014). Good genetic progress can be made using GS, as long as 96 

factors that affect its predictive ability (PA), i.e. the correlation between phenotypic best linear 97 

unbiased estimators (BLUPs) and GEBVs, are well understood. These include trait architecture, 98 

the size of the training population, the relationship between the training and validation 99 

populations, heritability of the trait, the quality of phenotypic efforts, the level of linkage 100 

disequilibrium (LD), marker density, environmental variances and covariance among traits 101 

(Covarrubias-Pazaran et al. 2018). 102 

The application of GS is taking shape in plant breeding with more and more crops exploring its 103 

utility (Spindel et al. 2016; Wang et al. 2018; Endelman et al. 2018; Covarrubias-Pazaran et 104 

al. 2018; Faville et al. 2018; Nyine et al. 2018; Bhandari et al. 2019). For crops like rice and 105 

wheat that are normally self-pollinated and have a high incidence of high-effect QTL (Spindel et 106 

al. 2016), faster success is expected from applying GS as prediction accuracy depends primarily 107 

on the factors listed above. However, breeders of auto-polyploid, clonally propagated crops like 108 

potato and sweetpotato, which are normally heterogenous and heterozygous, have to ask 109 

themselves additional questions and identify trade-off points that enhance the success of GS-110 

assisted breeding (Slater et al. 2016; Endelman et al. 2018). Potato and sweetpotato present a 111 

wide range of meiotic configurations and linkage phases (Mollinari et al. 2020). In addition to 112 

causing complex gene action effects, allelic and configuration diversity have consequences on 113 

genotyping and genotype data quality, which consequently affects downstream analysis for 114 

quantitative-genetic parameters required to make high quality breeding decisions. Genotyping-115 

by-sequencing (GBS) has currently become a genotyping method of choice in plant breeding 116 

(Poland and Rife 2012) but it is also prone to genotyping errors and a high level of missingness 117 

at low depth of sequencing, while high sequencing depth has additional cost implications. Data 118 

from polyploid crops is more prone to low quality genotype calls at low sequencing depth when 119 

compared to diploid crops, because of uncertain allele dosages and possibility of non-random 120 

inheritance of alleles such as in preferential pairing or double reduction (Blischak et al. 2016, 121 

2018). 122 
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Public sector breeding programs like those conducted in centers which are part of the 123 

Consultative Group on International Agricultural Research (CGIAR), and in the individual 124 

National Agricultural Research Systems (NARS) existing in many countries, are currently 125 

undergoing breeding program optimization efforts in order to keep up with the challenges of 126 

climate change and population increase (Cobb et al. 2019). Application of GS is one such tool 127 

for breeding program optimization. In order to develop GS tools to make more effective breeding 128 

efforts in auto-polyploid crops such as potato and sweetpotato, we have taken a practical 129 

perspective within a plant breeding setting to address several pertinent questions related to 130 

application of GS in auto-polyploids. We used real data sets from a 380 training-panel made up 131 

of advanced tetraploid potato clones and a 315-full-sib family of hexaploid sweetpotato, both 132 

developed by the International Potato Center (CIP) and genotyped using different platforms, to 133 

address the following questions: i) do polyploid crop breeders need to invest more resources for 134 

additional sequencing depth? ii) how many genetic markers are required to make selection 135 

decisions? iii) does the consideration of non-additive genetic effects add value to predictive 136 

ability (PA) to enhance genetic gains either for population improvement or product development 137 

in polyploid crops? iv) given the multiple alleles at loci with diverse meiotic configurations and 138 

linkage phases, does considering dosage, haplotypic or QTL effects offer significant 139 

improvement to PA to enhance genetic advances? We also discuss other factors that need to be 140 

considered while adopting GS as a decision support tool in an optimized breeding program. 141 

Materials and Methods 142 

Genetic Materials and Phenotyping 143 

Sweetpotato bi-parental population 144 

A wide genetic variability exists in sweetpotato in terms of yield, nutritional content and culinary 145 

aspects, abiotic stress tolerance, biotic stress tolerance, among other attributes (Low et al. 2017). 146 

Introgression of high β-carotene content into locally adapted varieties is a major breeding 147 

objective especially in sub-Saharan Africa where vitamin A deficiency is prevalent. A 315-148 

progeny full-sib family was developed by crossing a US-bred high β-carotene variety, 149 

‘Beauregard’, with an adapted, locally preferred, starchy, low β-carotene landrace variety, 150 

‘Tanzania’, at CIP-Peru.  These two parents differ in additional traits of interest and the 151 

population will henceforth be referred to as the BT population. The population was evaluated in 152 
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six environments of Peru, and six environments of Uganda for various quality-related and yield-153 

related traits as described by Gemenet et al. (2020) and Pereira et al. (2019), between 2016 and 154 

2017. The full 315-progeny population was also genotyped together with the parents using an 155 

optimized protocol for hexaploid sweetpotato, ‘GBSpoly’ at North Carolina State University 156 

(NCSU). To support genotyping protocol optimization for the hexaploid, a diploid relative of 157 

sweetpotato, Ipomoea trifida, was used to develop a full-sib family of about 200. The family was 158 

developed from two I. trifida lines referred to as M9 and M19, hence the M9 x M19 population, 159 

and also genotyped at NCSU. Additionally, a sub-sample of 292-progeny and the two parents of 160 

the BT population were genotyped by DArTSeqTM in Australia, under the collaboration between 161 

the Integrated Genotyping Service and Support (IGSS) platform at the Biosciences east and 162 

central Africa (BecA) hub in Nairobi, Kenya and DArT. The quality-related traits measured in 163 

the BT population include: dry matter (DM) content, measured as a percentage of the laboratory 164 

dried samples divided by the initial fresh weight of 100g; Starch and β-carotene (BC) content, 165 

estimated using near-infrared reflectance spectroscopy (NIRS), and flesh color (FC), measured 166 

using internal color scales developed by CIP and partners. All quality-related traits were 167 

measured in Peru, but only flesh color was measured in Uganda (FC_U). Data is further 168 

described in Gemenet et al. (2020). For yield-related traits, total number of storage roots (TNR), 169 

number of commercial storage roots (NOCR), weight of total storage roots (RYTHA), weight of 170 

commercial storage roots (CYTHA), and total weight of foliage (FYTHA), were measured in the 171 

six experiments of Peru. Data is further described in Pereira et al. (2019). Trait abbreviations 172 

are further defined in Table 1. 173 

The quality-related traits were analyzed by fitting the following linear mixed model in 174 

ASREML: 175 

����� � μ � �� � �� �  ����� � 	����� � 
����� � �������, 176 

where �����  = the vector of phenotypes of the individual i in block j within replicate k of 177 

environment l, µ  = population mean, �� the fixed treatment (genotype) effect, �� = the random 178 

effect of environment l, ����� = random effect of replicate k in environment l, ������ =random 179 

effect of block j within replicate k of environment l, ������ = random effect of individual i in 180 

environment l (L=5) environments, ������� = random error of the residuals, assuming 181 

��~
�0, 
�
��, �����~
�0, 
	���

� ), ������~
�0, 

���
� �, ��~
�0, �∑� with ∑ = variance-covariance 182 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 25, 2020. ; https://doi.org/10.1101/2020.02.23.961383doi: bioRxiv preprint 

https://doi.org/10.1101/2020.02.23.961383
http://creativecommons.org/licenses/by-nc-nd/4.0/


matrix across L environments, which varies according to the trait, �������~
�0, 
�
�� (Gemenet et 183 

al. 2020). 184 

The yield-related traits were also analyzed with linear mixed models as described by Pereira et 185 

al. (2019) using GENSTAT 14 as: 186 

����� � μ � �� � �� � ����� � 	��� � ���� � ����� 

where �����= the vector of phenotypes as above, μ=population mean, �� the fixed treatment 187 

(genotype) effect, �� = fixed effect of environment l, ����� = fixed effect of replication k in 188 

environment l, ����  = random effect of block j within replication k in environment l; 189 

����~
�0, 


��, ���� = the fixed interaction effect of individual i and environment l, and 190 

�������~
�0, 
�� is the random residual error. The best linear unbiased estimators (BLUEs) as 191 

obtained by fitting the above models to the experimental data were then used to estimate GEBVs 192 

Potato trait observation network population 193 

A 380-genotype panel made up of advanced clones from the potato breeding program and 194 

representing all breeding populations at CIP was assembled for a trait observation network 195 

(TON) in Peru, China and Ethiopia. Henceforth, we shall refer to this population as the TON 196 

panel. The evaluation of the panel was carried out in diverse agro-ecological zones, and in 197 

subsets of genotypes subject to participating NARS’ partner capacity and/or ability to produce 198 

enough mini-tubers for experimentation. The experimental sites, experimental designs and the 199 

number of genotypes evaluated per experiment are summarized in Table 2. The TON panel was 200 

evaluated for maturity (bulking) by tuber characteristics at three harvest dates where average 201 

yield per plant (kg; AYP), weight of marketable tubers per plant (kg; WMT), were measured. 202 

Additionally, mature tuber weight was evaluated by measuring total tuber weight per plant 203 

(TTW; kg). In Peru, TTW was measured as the average total tuber weight across three drought-204 

related treatments: terminal drought (irrigation stopped at flowering until harvest; TTW16_TD), 205 

recovery (partially irrigated after drought stress; TTW16_REC), and fully irrigated (normally 206 

irrigated throughout the growth period; TTW16_NI), while random drought was used in China, 207 

with no controlled treatments. Resistance to potato virus Y (PVY) was evaluated after infection 208 

with virulent vectors and susceptible spreader rows using standard protocols at CIP, while late 209 
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blight resistance (LB) was evaluated by growing the population in endemic disease pressure and 210 

scored using standard protocols at CIP. Trait abbreviations are defined in Table 1. Additionally, 211 

the 380 genotypes were genotyped by GBS at Cornell University. 212 

The experiments were analyzed as single trials, depending on the experimental design used as 213 

summarized in Table 2. A linear mixed model, taking into account the respective experimental 214 

design, was fitted to the phenotypic data. For those traits with different treatments like TTW in 215 

Peru, the joint adjusted means were additionally obtained across all treatments by fitting a linear 216 

mixed model.  Genotype was considered as a fixed effect in these mixed models, so that BLUEs 217 

for the genotypic means were obtained for each trait and used to predict GEBVs. 218 

Genotyping and Variant Calling 219 

DArTSeqTM for Sweetpotato 220 

DArTseq™ represents a combination of DArT complexity reduction methods and next 221 

generation sequencing platforms (Kilian et al. 2012; Courtois et al. 2013; Raman et al. 2014; 222 

Cruz et al. 2013). Therefore, DArTseq™ represents a new implementation of sequencing 223 

complexity reduced representations (Altshuler et al. 2000) and more recent applications of this 224 

concept on the next-generation sequencing platforms (Baird et al. 2008; Elshire et al. 2011).  225 

Similar to previous DArT methods based on array hybridizations, the technology is optimized for 226 

each organism and application by selecting the most appropriate complexity reduction method 227 

(both the size of the representation and the fraction of a genome selected for assays). Four 228 

methods of complexity reduction were tested in sweetpotato (data not presented) and the PstI-229 

MseI method was selected.  DNA samples were processed in digestion/ligation reactions 230 

principally as per Kilian et al. (2012) but replacing a single PstI-compatible adaptor with two 231 

different adaptors corresponding to two different Restriction Enzyme (RE) overhangs. The PstI-232 

compatible adapter was designed to include Illumina flowcell attachment sequence, primer 233 

sequence and “staggered”, varying length barcode region, similar to the sequence reported by 234 

Elshire et al. (2011). This reverse adapter contained a flowcell attachment region and a MseI-235 

compatible overhang sequence. Only “mixed fragments” (PstI-MseI) were effectively amplified 236 

in 30 rounds of PCR using the following reaction conditions: i) 94� C for 1 min, ii) 30 cycles of: 237 

94� C for 20 sec, 58� C for 30 sec, 72� C for 45 sec, iii) 72� C for 7 min. After PCR, 238 

equimolar amounts of amplification products from each sample of the 96-well microtiter plate 239 
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were bulked and applied to c-Bot (Illumina) bridge PCR followed by sequencing on Illumina 240 

Hiseq2000.  The sequencing (single read) was run for 77 cycles. Sequences generated from each 241 

lane were processed using proprietary DArT analytical pipelines. In the primary pipeline the 242 

FastQ files were first processed to filter away poor-quality sequences, applying more stringent 243 

selection criteria to the barcode region compared to the rest of the sequence. This was to ensure 244 

reliability in the assignments of the sequences to specific samples carried in the “barcode split” 245 

step.  Approximately 2,000,000 sequences per barcode/sample were identified and used in 246 

marker calling. Finally, identical sequences were collapsed into “fastqcoll files”.  The fastqcoll 247 

files were “groomed” using DArT PL’s proprietary algorithm which corrects low quality base 248 

from singleton tag into a correct base using collapsed tags with multiple members as a template. 249 

The “groomed” fastqcoll files were used in the secondary pipeline for DArT PL’s proprietary 250 

SNP and SilicoDArT (presence/absence of restriction fragments in representation) calling 251 

algorithms (DArTsoft14). For SNP calling, all tags from all libraries included in the DArTsoft14 252 

analysis were clustered using DArT PL’s C++ algorithm at the threshold distance of 3, followed 253 

by parsing of the clusters into separate SNP loci using a range of technical parameters, especially 254 

the balance of read counts for the allelic pairs.  Additional selection criteria were added to the 255 

algorithm based on analysis of approximately 1,000 controlled cross populations. Testing a range 256 

of tag counts parameters facilitated selection of true allelic variants from paralogous sequences. 257 

In addition, multiple samples were processed from DNA to allelic calls as technical replicates 258 

and scoring consistency was used as the main selection criteria for high quality/low error rate 259 

markers.  Calling quality was assured by high average read depth per locus (>30X). The SNPs 260 

were coded as 0 = AA, 1 = BB, 2 = AB and “-“ = Missing. The sequences were not aligned to a 261 

reference genome because by the time of genotyping, the diploid references (Wu et al. 2018) 262 

had not been published.  263 

GBSPoly© for Sweetpotato 264 

GBSpoly is an optimized protocol for hexaploid sweetpotato developed at NCSU as part of a 265 

project focusing on developing genomic tools for sweetpotato improvement. The DNA was 266 

checked for quality on 1% agarose gel and quantified based on the PicoGreen florescence-267 

based assay and the concentration was normalized to 50 ng/µl. Initially, several optimization 268 

efforts regarding restriction enzyme pairing was carried out (data not shown) and CviAII-TseI 269 
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was selected to be the best combination for hexaploid sweetpotato. Therefore, 1µg of DNA was 270 

double-digested using five units of CviAII for three hours at 25oC followed by digestion with 271 

TseI for another three hours at 65oC. A new England Biolabs (NEB) CutSmart buffer was used to 272 

make up a total volume of 30 µl. Purification of the digested samples was done using AMPure 273 

XP magnetic beads from ThermoFisherTM and quantified with PicoGreen assay. Barcodes were 274 

designed to account for substitution and indel errors and had an 8-bp buffer sequence to ensure 275 

that the barcode lay within high-quality base call regions of the sequence reads. Additional 276 

double digests on 64-plex pooled samples, purification, and size selection steps were carried out 277 

as described by Wadl et al. (2018) before performing 125 bp single-end sequencing on a total of 278 

40 sequencing lanes (8 lanes for each of the 5 libraries) of the Illumina HiSeq 2500 platform. 279 

The resultant FastQ files were aligned to reference genomes of two wild relatives of sweetpotato, 280 

Ipomoea trifida and Ipomoea triloba, and variant calling done using the GBSapp pipeline as 281 

described by Wadl et al. (2018). The SNPs were coded according to the dosage of the alternative 282 

allele as 0 = AAAAAA, 1 = AAAAAB, 2 = AAAABB, 3 = AAABBB, 4 = AABBBB, 5 = 283 

ABBBBB, 6 = BBBBBB. The variant calling process is summarized in Online Resource 1. 284 

GBS-Cornell for Potato 285 

The 380-genotype TON panel was genotyped by Cornell University using GBS in 2015. The 286 

DNA was digested with EcoT221 restriction enzyme and 48-plex libraries were prepared for 287 

sequencing, using customized GBS protocols at Cornell. The resultant FastQ files were quality 288 

controlled and variant calling done using GATK HaplotypeCaller option (Poplin et al. 2017), 289 

disabling the duplicate read filter (this is recommended for GBS data) and using the joint 290 

genotyping -ERC GVCF mode. The reads were aligned to the potato genome reference 291 

sequenced from S. tuberosum group Phureja, line DM1-3 516 R44, a doubled monoploid (DM) 292 

via anther culture by the potato genome sequencing consortium (PGSC). Version 293 

PGSC_DM_v4.03 of the reference genome was used in alignment. The barcodes were removed 294 

using stacks and the ends were trimmed using trim-galore, followed by mapping to the reference 295 

using BWA. Resultant SAM files were processed using samtools and variants called using 296 

GATK Haplotype caller, targeting biallelic SNPs only. The SNPs were coded according to the 297 

dosage of the alternative allele as 0 = AAAA, 1 = AAAB, 2 = AABB, 3 = ABBB, and 4 = 298 

BBBB. The SNP filtration was done using bcftools allowing only for those SNPs with MAF of ≥ 299 
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3%, missingness of ≤ 2%, average genotype quality (GQ) ≥ 20 and average allele sequencing 300 

depth (DP) ≥ 16. 301 

Model comparison for predictive ability 302 

We used the AGHmatrix package (Amadeu et al. 2016) to develop kinship G-matrices 303 

partitioning genetic variation based on several gene-action models. For the BT population 304 

DArTSeq markers (sweetpotato) where we did not have dosage information, we developed an 305 

additive G-matrix according to VanRaden (2008), here-in referred to as Add_2x_DArTseq, and 306 

a non-additive effects G-matrix according Vitezica and colleagues (2013), herein referred to as 307 

NonAdd_2x_DArTSeq. For the BT population GBSpoly (sweetpotato) and TON population 308 

GBS-Cornell (potato) data where we had dosage information, we employed three models to 309 

develop the G-matrices: (i) modeling only additive effects, according to VanRaden (2008) here-310 

in referred to as  Add_6x_GBSpoly for sweetpotato and Add_4x_GBSCornell for potato, (ii) 311 

modeling additive plus non-additive effects, according to Slater et al. (2016) here-in referred to 312 

as  Add+Non_6x_GBSpoly for sweetpotato and Add+Non_4x_GBSCornell for potato, and (iii) a 313 

pseudo-diploidized effect model according to Slater et al. (2016), here-in referred to as 314 

Pseudo_2x_GBSpoly for sweetpotato and Pseudo_2x_GBSCornell. The pseudo-diploidization 315 

collapses all dosage classes between the nulliplex and the hexaplex (in sweetpotato), and 316 

between the nulliplex and tetraplex (in potato) into one heterozygous class, under the assumption 317 

that all heterozygotes have an equal effect which falls in between both homozygotes. In the case 318 

of potato, the design matrix coding for the pseudo-diploid, additive autotetraploid and full 319 

autotetraploid was as described by Slater et al. (2016), while that for sweetpotato is shown in 320 

Table 3. During kinship matrix development, additional filters were applied to the genotype 321 

data, to have MAF ≥ 30%, and missing data ≤ 10%. We used genomic best linear unbiased 322 

prediction (G-BLUP; Clark and van der Werf 2013) to compare the predictive ability of the 323 

five models for sweetpotato and three models for potato using the kinship matrices as variance-324 

covariance matrices to fit the compressed linear mixed model (Zhang et al. 2010) and estimate 325 

genomic best linear unbiased predictors (G-BLUPs). The software GAPIT (Lipka et al. 2012) 326 

was used in the G-BLUP prediction fitting the following general model:  327 

� � 1�� � �� � � 
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where y = vector of phenotypic data, 1n is the vector of ones, μ = population mean, Z = the 328 

known design matrix for genotypes, u = random genetic effects and ~ 
�0, 
�
�� �� 
��
�

� �� 329 

with K = kinship matrix, a = additive model, na = non-additive model,  e = vector of residuals 330 

~
�0, 
�
���.  331 

Cross-validation was done by setting 20% of the population to missing phenotypes to be used as 332 

a validation set. We used 1,000 iterations to estimate the predictive ability of the models using 333 

both simple/oligo (quality traits in sweetpotato, disease traits in potato) and complex (storage 334 

root or tuber yield and yield component traits in both), as defined in Table 1.  335 

Unlike in sweetpotato where phenotype and genotype data were balanced across 336 

experiments, (292 + Parents for DArTSeq and 315 + parents for GBSpoly), the potato 337 

experiments were unbalanced in terms of experimental genotypes. For the purposes of this study, 338 

we only selected the locations with the highest training population per trait. Consequently, we 339 

used AYP from Kunming (China; AYP_K), WMT from Kunming (China; WMT_K), LB from 340 

Oxapampa (Peru; LB2014_O), LB from Yunnan (China; LB2016_Y), PVY from Lima (Peru; 341 

PVY_L), TTW averaged across three treatments of 2016 in Ica (Peru; TTW16_Ica), and TTW in 342 

2016 from Heilongjiang (China; TTW16_HLJ), all having number of genotypes indicated in 343 

Table 2. Differences in PA among models per trait were tested using t-tests. Quantitative-genetic 344 

parameters were tested for the additive model with or without dosage by obtaining the additive 345 

genetic variation �
�
�) and random residual effects �
�

�� from the mixed linear model and 346 

calculating narrow-sense heritability for each trait as: 347 

     �� �
	��


	�
��	�

��
 348 

 349 

Additionally, we calculated the estimated rate of genetic gains from genomic selection per 350 

additive model with or without dosage for each trait according to Oliveira et al. (2019) as: 351 

∆�� �
�� � 
� � ���

�
 

assuming L=5 for sweetpotato following the accelerated breeding scheme currently implemented 352 

(Mwanga et al. 2017), and L= 8 for potato. 353 
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How many markers are adequate for prediction? 354 

For sweetpotato, we used the GBSpoly data, using different filtration criteria to end up with 355 

different number of markers. We used three criteria i) total number of SNPs filtered at 10% MAF 356 

and ≥ 90% call rate, ii) total number of SNPs filtered at 30% MAF and ≥ 90% call rate (used in 357 

the analyses above), and iii) A random sample of 15,000 SNPs from the total number of SNPs 358 

and filtered at 30% MAF and ≥ 90% call rate. In Potato, the total number of SNPs was filtered 359 

using two criteria: i) 30% MAF and ≥ 90% call rate, ii) 40% MAF and ≥ 90% call rate. The 360 

model considering only additive effects was used in comparing the effect of number of markers 361 

in sweetpotato, while all three models were tested between the two filtering criteria in potato. 362 

Incorporating haplotypic-QTL in prediction models for sweetpotato 363 

By taking advantage of the fully phased integrated linkage map from BT (Mollinari et al. 2020), 364 

we tested the predictive ability from QTL-informed models. Towards this end, we used the same 365 

cross-validation scheme as above, where 80%:20% random samples were used as training and 366 

testing populations, respectively, replicated 1,000 times. In order to detect QTL, we ran our 367 

random-effect multiple interval mapping (REMIM) using a sequential forward search (Pereira 368 

et al. 2019). We used score statistics to test map positions every 2 centiMorgans (cM) and added 369 

a QTL at a time using a relaxed genome-wide significance level threshold (α = 0.20). A window 370 

size of 20 cM was used to avoid that another position was selected very close to another QTL 371 

already in the model. For G-BLUP models, realized kinship matrices were based on the 372 

haplotype information from markers positioned every 2 cM in the genetic map. For QTL-BLUP 373 

(Q-BLUP), realized kinship matrices were based on the haplotypes from QTL peak marker; if 374 

there were more than one QTL, their kinship matrices were averaged out; if there were no QTL, 375 

we obtained the prediction as in G-BLUP. For Q+G-BLUP models, two terms were fitted, each 376 

with realized kinship matrices based on QTL peak markers (like for Q-BLUP) and the remaining 377 

markers in the linkage map but those selected as QTL.  378 

 379 

Results 380 

SNP profiles from the genotyping platforms 381 
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DArTseq sequencing of sweetpotato resulted in 13,504 biallelic SNPs (Online Resource 2). The 382 

call rates and polymorphic information content (PIC) are shown in Fig. 1A&B and ranged from 383 

about 0.4 - 1.0, with a mean of 0.96 for call rate and from 0 - 0.5 with a mean of 0.37 for PIC. 384 

Stringent filtering at a call rate ≥ 0.8 and PIC ≥ 0.25 left 9,649 SNPs that were used in 385 

AGHMatrix. Additional filtration in AGHMatrix at ≤ 0.1 missingness and ≥ 30% MAF resulted 386 

in 6,015 diploidized, biallelic SNPs being used to develop the matrices following additive 387 

(Add_2x_DArTSeq) and nonadditive (NonAdd_2x_DArTSeq) models.  388 

Cornell GBS in potato resulted in 295,401 biallelic SNPs at the variant calling step that were 389 

then hard-filtered to 3,262 high confidence SNPs by setting MAF ≥ 0.03, missing ≤ 2% and 390 

average read depth (DP) ≥ 16 (Online Resource 3). The 3,262 SNP profiles are shown in Fig. 391 

1C&D showing MAF ranging from 0.03 - 0.5, with a mean of 0.15 and PIC ranging from 0.0 - 392 

0.5, with a mean of 0.23. The 3,262 SNPs were used in the AGHMatrix relationship matrix 393 

development. For a relative comparison of models across crops for trait groups, we also filtered 394 

the Cornell GBS data in AGHMatrix at ≤ 0.1 missingness and ≥ 30% MAF as done for DArTSeq 395 

data above, which resulted in 411 SNPs used to develop the additive (Add_4x_GBSCornell), 396 

additive plus non-additive (Add+Non_4x_GBSCornell) and the pseudo-diploidized 397 

(Pseudo_2x_GBSCornell) models. Examining the relationship matrices indicated that at MAF ≥ 398 

0.3, the full model (Add+Non_4x_GBSCornell) was mainly monomorphic. For potato therefore, 399 

we also changed the MAF to ≥ 0.4, which resulted in 178 SNPs that were used to develop a 400 

second set of relationship matrices. All PA comparisons among traits for potato are based on this 401 

matrix. 402 

For GBSpoly in sweetpotato called according to Wadl et al (2018), comparing diploid genotype 403 

data from M9 x M19 diploid population and hexaploid BT data showed that for the same level of 404 

genotype quality as for the diploid at about 25x depth of coverage, we needed ≥ 100x depth of 405 

coverage (Fig. 2). Consequently, for sweetpotato, GBSpoly data was filtered to this high depth of 406 

coverage, with MAF ≥ 0.05. This resulted in 34,390 high confidence SNPs (Online Resource 4) 407 

that were used in AGHMatrix to develop the additive (Add_6x_GBSpoly), additive plus non-408 

additive (Add+Non_6x_GBSpoly) and the pseudo-diploidized (Pseudo_2x_GBSpoly) 409 

relationship matrices. The filters in AGHMatrix were set to ≤ 0.1 missing and ≥ 0.3 MAF as for 410 

the preceding data types and resulted in a final 2,883 SNPs that developed the matrices for model 411 
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comparison. For comparing the effects of number of markers on PA, the first filtration criteria of 412 

10% MAF and ≥ 90% call rate resulted in 10,358 SNPs, while the third criteria based on a 413 

random sample of 15,000 SNPs resulted in 1,291 SNPs that were used in PA comparison, based 414 

on the additive only model.  415 

The comparison of models with(out) QTL and use of markers per se or haplotypes was carried 416 

out using 30,684 SNPs from the same genotyping platform and data set, filtered and processed as 417 

described by Mollinari et al. (2020), which were used to develop a 2,708.4 cM phased genetic 418 

linkage map for sweetpotato, and subsequent QTL analyses (Pereira et al. 2019; Gemenet et al. 419 

2019). Sweetpotato BLUEs are provided in Online Resource 5 while potato BLUEs are 420 

provided as Online Resource 6. 421 

Genotyping platforms, genetic effects and predictive ability 422 

In sweetpotato, the diploidized additive model (Add_2x_DArTSeq) using data from DArTSeq 423 

performed equally highly as or sometimes better than the additive model using high confidence 424 

dosage data from GBSpoly (Add_6x_GBSpoly), depending on trait architecture, for simpler 425 

quality-related traits (Fig. 4). DM had 0.33 and 0.44, Starch had 0.32 and 0.38, BC had 0.43 and 426 

0.43, FC_P had 0.44 and 0.45, while FC_U had 0.41 and 0.38 average PA for Add_2x_DArTSeq 427 

and Add_6x_GBSpoly models, respectively (Table 4). For these traits, additive only models 428 

were the best and the full model (Add_Non_6x_GBSpoly) always had negative PA due to a 429 

largely monomorphic relationship matrix. Nonetheless, the situation changed with yield-related 430 

traits as the effects of dosage and non-additive effects became more important. For these traits, 431 

the high-quality data with dosage from GBSpoly (Add_6x_GBSpoly) was always better in 432 

prediction when compared to the additive model with diploidized data (Add_2x_DArTSeq). 433 

NOCR had 0.19 and 0.31, TNR had 0.25 and 0.37, CYTHA had 0.18 and 0.22, RYTHA had 434 

0.18 and 0.23, FYTHA had 0.21 and 0.26 average PA for Add_2x_DArTSeq and 435 

Add_6x_GBSpoly additive-models, respectively (Table 4). However, the additive only model 436 

with dosage (Add_6x_GBSpoly) was not always the best in PA for all yield-related traits, 437 

especially not for storage roots traits CYTHA and RYTHA, where it performed similar to either 438 

or both of the models considering non-additive effects whether with dosage 439 

(Add+Non_6x_GBSpoly) or without dosage (NonAdd_2x_DArTseq) (Fig. 3). Nevertheless, the 440 

largely monomorphic relationship matrix from the full model (Add+Non_6x_GBSpoly) ensured 441 
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low predictive ability using this model for most yield-related traits as well, especially FYTHA 442 

which had the highest negative PA, (collapsed to zero in Fig.3, for plotting purposes). In general, 443 

pseudo-diploidizing data already called with dosage (Pseudo_2x_GBSpoly) drastically reduced 444 

PA even more than using data called as diploid (DArTseq). In potato, the situation was not very 445 

different as the diploidized additive model (Pseudo_2x_GBSCornell) was the second-best model 446 

after the additive only model with dosage (Add_4x_GBSCornell) for simpler disease traits and 447 

its comparative advantage significantly reduced with more complex traits (Fig. 4). LB2014_O 448 

had 0.68 and 0.63, LB2016_Y had 0.62 and 0.52, PVY_L had 0.54 and 0.50, AYP_K had 0.45 449 

and 0.34, WMT_K had 0.48 and 0.34, TTW16_Ica had 0.16 and 0.16, while TTW16_HLJ had 450 

0.37 and 0.32 average PA for Add_4x_GBSCornell and Pseudo_2x_GBSCornell, respectively. 451 

As with the full model in sweetpotato, the model including non-additive effects 452 

(Add+Non_4x_GBSCornell) was the least performing in terms of PA (Table 4). 453 

Number of markers and environments 454 

Our results in potato indicated that an increased number of markers by more than double did not 455 

have a significant effect on PA (411 vs 178 SNPs; Fig. 4A) considering the best predictive 456 

model (Add_4x_GBSCornell). LB2014_O had 0.69 and 0.68, LB2016_Y had 0.66 and 0.62, 457 

PVY_L had 0.59 and 0.54, AYP_K had 0.51 and 0.45, WMT had 0.51 and 0.48, TTW16_Ica 458 

had 0.19 and 0.16, while TTW16_HLJ had 0.40 and 0.37 average PA for 411 and 178 SNPs 459 

respectively. Similarly, in sweetpotato, comparing PA using 10,358 SNPs, 2,883 SNPs and 1,291 460 

SNPs using the best predictive model (Add_6x_GBSpoly) showed no effect of increasing marker 461 

density at the cost of marker informativeness on PA. PA based on 10,358 SNPs which had 10% 462 

MAF generally performed lower than 2,883 and 1,291 SNPs which both had 30% MAF (Fig. 5). 463 

Additionally, 2,883 SNPs did not have a clear comparative advantage over 1,291 SNPs (Fig. 5). 464 

Regarding traits in different locations, environmental effects on PA were observed, though the 465 

magnitude of such effects was also dependent on trait architecture. The PA based on the best 466 

model for FC_P (0.45; Peru) and FC_U (0.38; Uganda) in sweetpotato and LB2014_O (0.68; 467 

Peru) and LB2016_Y (0.62; China), in potato, though a bit different, were both relatively high to 468 

allow meaningful selections for the trait. For more complex yield traits, the PA for TTW16_Ica 469 

(0.16; Peru) and TTW16_HLJ (0.37; China) were significantly different. 470 

Effects of quantitative trait loci, haplotypes and dosage on predictive ability 471 
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We additionally tested three analysis models using BT sweetpotato data: i) Q-BLUP based on 472 

relationship matrices from QTL-peak haplotypes, ii) Q+G-BLUP fitting two terms based on 473 

QTL-peak haplotypes and the rest of the markers in the linkage map, iii) G-BLUP, predictions 474 

using markers spaced every 2 cM in the genetic map without considering QTL.  The PA results 475 

are shown in Fig. 6. Considering QTL haplotypes either per se (Q-BLUP) or with G-BLUP 476 

(Q+G-BLUP) had a clear comparative advantage for PA in simpler traits. However, this 477 

comparative advantage faded with more complex yield-related traits. Our results therefore show 478 

that with genomic selection, the comparative advantage of using the linkage map information 479 

and QTL is dependent on trait architecture, hence the magnitude of QTL effects that can be 480 

mapped (Fig. 6). 481 

Genetic variation, heritability and estimated rate of genetic gain 482 

Given that the additive effects only model with dosage performed better for most traits in both 483 

sweetpotato and potato (Add_6x_GBSpoly and Add_4x_GBSCornell, respectively), we 484 

evaluated quantitative genetic parameters for this model in comparison with the additive model 485 

without dosage for both crops (Add_2x_DArTseq for sweetpotato and Pseudo_6x_for potato). 486 

Narrow sense heritability ����   ranged from 0.24-0.66 for the model with dosage 487 

(Add_6x_GBSpoly) and 0.13-0.62 for the model without dosage (Add_2x_DArTseq) in 488 

sweetpotato. In potato, ����  ranged from 0.07 – 0.49 in the model with dosage 489 

(Add_4x_GBSCornell) and 0.10 – 0.46 in the model with pseudo-diploidized dosages (Pseudo-490 

2x_GBSCornell; Table 4). As expected, traits with simpler architecture (quality-related traits in 491 

sweetpotato; disease traits in potato had the highest ���� compared to more complex yield-492 

related traits. All models across crops resulted in positive estimated genetic gain considering L= 493 

5 years in sweetpotato and L= 8 in potato, which are the cycle lengths of current breeding 494 

schemes at CIP (Table 4). This implies that more genetic gains can be realized if such breeding 495 

cycle lengths are further significantly reduced. 496 

 497 

Discussion 498 

Low-cost, targeted amplicon sequencing platforms could realize faster genetic gains per 499 

unit time 500 
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Having a reliable, cost-efficient genotyping platform that ensures faster data turn-around to 501 

breeding programs on time to impact selection and advancement decisions is a must for routine 502 

application of genomic selection in plant breeding programs. Here we have compared results 503 

based on data from three GBS-based platforms, two of which provide data at the commercial 504 

diploid sequencing depth level (DArTSeq and GBS-Cornell). About 100x read depth was 505 

required to confidently call all the five heterozygous dosage classes of sweetpotato, against 25-506 

30x required for the diploid. These results agree with studies in potato where Uitdewilligen et al. 507 

(2013) reported that 60-80x depth was required to confidently call the three heterozygote classes. 508 

GBSpoly (Wadl et al. 2018) which had high quality dosage data in our study was developed as 509 

part of a project to understand optimal conditions for GBS in hexaploid sweetpotato and 510 

therefore not amenable to routine use in plant breeding. Other options for more precise 511 

genotyping such as SNP arrays, in addition to issues with ascertainment biases, are crop-specific 512 

and therefore do not benefit from economies of scale that drive costs down. Breeding programs 513 

of polyploid crops therefore have to weigh whether investing more for higher depth of 514 

sequencing is an efficient resource allocation strategy (Endelman et al. 2018). To this end, 515 

although our results show that genotype quality and consequently the number of realized SNPs is 516 

lower with low allele sequencing depth, we also show as described in the next sections that only 517 

a small number of highly informative SNPs are required to realize relatively high PA depending 518 

on the trait. These results agree with the findings of Chang et al. (2019) who showed that PA 519 

can be improved by prioritizing relevant SNP polymorphisms. This therefore implies that for 520 

practical plant breeding applications, using established genotyping platforms that ensure low-521 

costs due to scale effects and faster data turn-around will have better likelihood of success in 522 

routine application of genomic selection in polyploids despite the low allele sequencing depths. 523 

Since both crops already have GBS-based SNPs at high density, the process can be fast-tracked 524 

by targeting the high informative segregating loci in amplicon sequencing. This is encouraging 525 

as polyploid crops in developing countries with limited access to expensive, high quality 526 

genotypic datasets could also deploy GS approaches. 527 

A few highly informative SNPs segregating in the population are adequate for prediction 528 

purposes 529 
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Guo et al. (2018) found that at allele sequencing depth between 10x to 20x, between 80-100K 530 

SNPs would be required to accurately predict additive breeding values in tetraploid ryegrass. Our 531 

research in both hexaploid sweetpotato and tetraploid potato however shows a reduced number 532 

of realized SNPs after quality filtration, which can be attributed to the difficulty of genotyping 533 

polyploid crops. SNP calling in polyploids is further complicated by the presence of polymorphic 534 

positions across homologues within and among individuals in addition to the polymorphic 535 

positions within a single homologue among individuals (Clevenger et al. 2015). In our potato 536 

example, the initial filtration of SNPs to allele sequencing depth at DP ≥ 16 and MAF 3% 537 

resulted in only 3,262 SNPs. The same scenario was observed for sweetpotato. However, our 538 

results also show that if SNPs are highly informative (MAF ≥ 30%), a number as low as 178 539 

SNPs could give relatively high PA comparable to a larger number of SNPs. In potato, 178 SNPs 540 

at MAF ≥ 40% performed relatively similar as 411 SNPs at MAF ≥ 30%. Not shown results from 541 

a preliminary analysis of the same dataset of potato using MAF ≥ 10% resulted in 1,710 SNPs 542 

whose PA did not differ significantly with the PA using either 411 or 178 SNPs. Additionally, in 543 

sweetpotato, 2,883 SNPs at MAF ≥ 30% gave the same or better PA as 10,358 SNPs at MAF ≥ 544 

10%, and 1,291 SNPs. Our results therefore agree with the findings of Covarrubias-Pazaran et 545 

al. (2018) using three biparental populations of the American cranberry, that addition of SNPs 546 

after 500 markers did not result in much increase in PA as only a few hundred SNPs were needed 547 

to reach PA plateau. Even though their study used a consensus map to intentionally distribute 548 

markers evenly across the genome, our random sampling method based on MAF and PIC came 549 

to the same conclusion. These results imply that breeding programs with limited resources for 550 

genotyping can target few highly informative regions within the genome that are segregating in 551 

their breeding populations via targeted genotyping methods following amplicon sequencing 552 

techniques, as a cost-effective way of incorporating genomic selection in their breeding 553 

programs. We propose the use of between 500-1000 highly informative SNPs for routine 554 

prediction purposes in a breeding program. 555 

Modelling non-additive genetic effects has negligible contribution to predictive ability 556 

Our results both in potato and sweetpotato show that additive effects-only models, whether 557 

diploidized or with dosage, were comparatively better in PA than the models considering non-558 

additive effects for all simple traits. This comparative advantage however lessened with more 559 
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complex traits, where non-additive effects and inclusion of dosage information became slightly 560 

more relevant, although in most cases the additive effects-only model with dosage still remained 561 

the best in terms of PA. This finding makes sense in quantitative genetic terms as the more the 562 

number of genes affecting a trait, the more the expected interaction among loci. In sweetpotato 563 

for example, issues of ‘missing’ heritability have been established for yield-related traits using 564 

the current BT population in multiple environments, where only a few QTL with very small 565 

effects were reported even though a very dense, well phased hexaploid genetic map was used 566 

(Pereira et al. 2019; Gemenet et al. 2020). According to Varona et al. (2018), the contribution 567 

of non-additive effects to genetic variance depends on the allele frequency of the causative loci, 568 

and their consideration in breeding programs can improve the prediction accuracy for breeding 569 

values and inform cross-combinations that maximize non-additive variation in progeny. Several 570 

studies have however shown that inclusion of non-additive effects in the prediction models have 571 

negligible effects in improving the accuracy of predicting breeding (additive) values. For 572 

instance, Endelman et al. (2018) reported uncertainty in partitioning non-additive genetic 573 

variance in tetraploid potato, whereas Crow (2010), suggested that variance due to epistasis 574 

would have little effects in plant breeding as additive variance and covariance effects quickly 575 

overshadow such contribution following selection. Non-additive effects are mainly considered 576 

important in genomic prediction (prediction for performance of different traits based on the 577 

genotype of the individual), while additive-only methods as important in genomic selection 578 

(prediction of parental value of an individual), because only additive effects can be passed from 579 

parents to progeny (Varona et al. 2018). However, our results, supported by previous findings in 580 

other crops, imply that in light of the large number of moving parts to consider, including 581 

concerns with genotyping platforms and genotype quality for polyploids, practical breeding 582 

programs for potato and sweetpotato, and perhaps other polyploid crops,  will achieve more 583 

advances considering only the infinitesimal model (additive) for both genomic selection and 584 

genomic prediction. 585 

The relative importance of considering dosage, haplotypes and quantitative trait loci is 586 

dependent on trait architecture 587 

Oliveira et al. (2019) showed that the relative advantage of including dosage information to PA 588 

is dependent on trait architecture. Our results confirm this and show that for simple traits 589 
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diploidized data, especially when the genotypic data are directly called as diploid during variant 590 

calling e.g. the DArTSeq data in sweetpotato rather than pseudo-diploidizing data already called 591 

with dosage e.g. in GBS-Cornell data in potato, would just do fine. However, as the traits 592 

become more complex, considering dosage improves PA and therefore the rate of progress that 593 

can be made for such traits. Endelman et al. (2018) also showed that not considering allele 594 

dosage effects in potato reduced prediction accuracy by about 0.13 on average using data from 595 

the SolCAP potato SNP array, where they reported PA ranging from 0.06 to 0.63 for specific 596 

gravity, yield and fry color. Given that most traits are quantitative, we recommend the use of 597 

data with dosage even though they may come from sequencing platforms with low allele 598 

sequencing depth, that could benefit more with improved genotype calling methods, such as 599 

Bayesian genotype calling methods. 600 

Our data also shows that for all traits, considering both QTL and haplotypes resulted in the best 601 

PA especially for simple traits, although this comparative advantage also faded with more 602 

complex yield traits. Having markers in complete LD with causative QTL for a given trait is a 603 

prerequisite for improving PA in genomic prediction (Velasco et al. 2019). The study of 604 

Cuyabano et al. (2014) showed that considering haplotype blocks rather than single markers 605 

improved PA for dairy traits in cattle. This is because haplotypes are supposed to be in tighter 606 

LD with QTL than single markers. This can be attributed to the fact that GS-only GBLUP 607 

methods use the average genome information relationship for model building and for prediction 608 

whereas incorporating QTL analysis gives different weights (QTL effects) to different 609 

“significant” genome positions (QTL positions) for model building and for prediction. Due to 610 

this, studies have proposed a combination of QTL mapping to explain trait architecture and 611 

genomic prediction, to improve PA (Spindel et al. 2016; Lopes et al. 2017; Morgante et al. 612 

2018; Bhandari et al. 2019). Our results however indicate that the relative advantage of 613 

considering QTL-based haplotypes is dependent on trait architecture and directly related to the 614 

number and effect size of the QTL in question. In this case, yield-related traits did not show 615 

much improvement in PA when QTL were considered. Despite this finding, additional efforts in 616 

studying the effect of haplotype structure on PA is recommended to increase the likelihood of 617 

fully recovering the polyploid genetic information, where the information from individual dosage 618 

markers can be rather limited. However, given that QTL mapping/GWAS methods require high 619 

density markers, the application of such a strategy should be considered in the context of the cost 620 
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of developing high density markers against available resources for genotyping in a given 621 

program. Additionally, such methods would be computationally demanding and should also be 622 

considered depending on available computational tools and analytical capacity of a given 623 

program. 624 

Further considerations for optimized breeding programs using genomic selection 625 

The PA of genomic selection is influenced by several factors including trait architecture, the size 626 

of the training population, the relationship between the training and validation populations, 627 

heritability of the trait, the level of linkage disequilibrium (LD), marker density, environmental 628 

variances and covariance among traits (Nakaya and Isobe 2012). In addition to the already 629 

discussed factors, our results indicate that environment plays a significant role in determining PA 630 

as can be seen in the same traits measured across several environments. Additionally, PA 631 

magnitude even for simple traits were lower in sweetpotato where we used BLUEs across six 632 

environments, than in potato where predictions were made per single environment. Models 633 

incorporating genotype-x-environment interaction are important and more realistic when 634 

predicting performance of untested genotypes across environments (Burgueno et al. 2012; 635 

Heslot et al. 2014; Wang et al. 2018). Furthermore, PA for complex yield-related traits were 636 

always lower than for simpler quality-related or disease traits. PA for such complex traits have 637 

been shown to benefit from multi-trait selection models incorporating simpler, correlated traits 638 

with the primary trait (Covarrubias-Pazaran et al. 2018; Michel et al. 2019). Additionally, 639 

Bernal-Vasquez et al. (2014) alluded to the fact that phenotypic data analysis contributed to 640 

improved PA, which speaks to the necessary precision and accuracy of the phenotype in training 641 

populations. Taken together, the current results show that genomic selection will contribute 642 

towards increased genetic gains, especially via reduced breeding cycle time in potato and 643 

sweetpotato. However, the effectiveness of genomic selection will have to be considered from 644 

the perspective of optimizing the entire breeding program (Cobb et al. 2019). This refers to the 645 

assembly and deployment of a package of technological tools that allow a specific program to 646 

realize maximum genetic gains within its current context in terms of time and resources, by 647 

exploiting all components of the breeder’s equation. Therefore, given the diversity existing from 648 

program to program in terms of resources and human capacity, no ‘one size fits all’ scenario is 649 

anticipated. 650 
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Finally, it does not escape to our attention that the predictions here-in are based on single 651 

populations. However, plant breeding requires several levels of allele recombination through 652 

generations. We cannot estimate from the current data, how such recombination complexity will 653 

affect the efficiency of GS in breeding programs. Additional studies estimating PA in actual 654 

multigeneration breeding populations therefore need to be carried out to reliably estimate the 655 

value of GS to potato and sweetpotato, and perhaps other polyploid breeding programs. 656 

Figure Captions 657 

Fig. 1 Quality attributes of the SNP profiles from DArTSeq (call rate and polymorphic 658 

information content; PIC) data in sweetpotato and GBSCornell (minor allele frequency; MAF 659 

and PIC) in potato 660 

Fig. 2 Comparison of genotype quality at different allele sequencing depths in diplod I. trifida 661 

(M9xM19) and hexaploid sweetpotato (I. batatas; BT) 662 

Fig. 3 Boxplots comparing predictive ability of additive-effects-only models without dosage 663 

(Add_2x_DArTseq) and with dosage (Add_6x_GBSpoly); models considering also non-additive 664 

effects (NonAdd_2x_DArTSeq; Add+Non_6x_GBSpoly); and pseudo-diploidized dosage data 665 

(Pseudo_2x_GBSpoly) for quality related traits (A; DM = dry matter, starch, BC = β-carotene, 666 

FC_P = flesh color in Peru; FC_U = flesh color in Uganda); and yield related traits (B; NOCR = 667 

number of commercial storage roots, TNR = total number of storage roots, CYTHA = weight of 668 

commercial storage roots, RYTHA = weight of total storage roots, FYTHA = total weight of 669 

foliage) in a full-sib family of sweetpotato. 670 

Fig. 4 Box plots comparing predictive ability of additive-effects-only model 671 

(Add_4x_GBSCornell); additive and non-additive effects (Add+Non_4x_GBSCornell); and 672 

pseudo-diploidized dosage data (Pseudo_2x_GBSCornell); using minimum allele frequency 673 

(MAF) ≥ 30% (A; 411 SNPs) and MAF ≥ 40% (B; 178 SNPs). LB2014_O = late blight in 674 

Oxapampa (Peru) in 2014, LB2016_Y = late blight in Yunnan (China) in 2016, PVY_L = potato 675 

virus Y in Lima (Peru), AYP_K = average yield per plant in Kunming (China), WMT_K = 676 

weight of marketable tubers in Kunming, TTW16_Ica = total tuber weight in Ica (Peru) in 2016 677 

across three drought treatments, TTW16_HLJ = total tuber weight in Heilongjiang (China) in 678 

2016, single treatment, in potato. 679 

Fig. 5 Box plots comparing the effect of number of markers on predictive ability using additive-680 

effects only model (Add_6x_GBSpoly) with 10,358 SNPs, 2,883 SNPs and 1,291 SNPs in 681 

sweetpotato. A; DM = dry matter, starch, BC = β-carotene, FC_P = flesh color in Peru; FC_U = 682 

flesh color in Uganda; and yield related traits: B; NOCR = number of commercial storage roots, 683 

TNR = total number of storage roots, CYTHA = weight of commercial storage roots, RYTHA = 684 

weight of total storage roots, FYTHA = total weight of foliage in a full-sib family of 685 

sweetpotato. 686 
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Fig. 6 Boxplots comparing predictive ability of models using QTL haplotypes only in prediction 687 

(Q-BLUP); QTL combined with prediction based on markers per se, (Q+G-BLUP); prediction 688 

using markers per se without QTL (G-BLUP) for quality-related traits (A; DM = dry matter, 689 

starch, BC = β-caroten, FC_P = flesh color in Peru; FC_U = flesh color in Uganda); and yield 690 

related traits (B; NOCR = number of commercial storage roots, TNR = total number of storage 691 

roots, CYTHA = weight of commercial storage roots, RYTHA = weight of total storage roots, 692 

FYTHA = total weight of foliage) in a full-sib family of sweetpotato. 693 

Online Resource Captions 694 

Online Resource 1 Variant calling pipeline used in the GBSapp for calling GBSpoly data in 695 

sweetpotato 696 

Online Resource 2 DArTSeq SNP data for the Beauregard x Tanzania (BT) sweetpotato full-sib 697 

family 698 

Online Resource 3 GBS-Cornell SNP data for the trait observation network (TON) potato 699 

population 700 

Online Resource 4 GBSpoly SNP data for the Beauregard x Tanzania (BT) sweetpotato full-sib 701 

family 702 

Online Resource 5 Best linear unbiased estimators for sweetpotato traits used in genomic 703 

prediction in the current study 704 

Online Resource 6 Best linear unbiased estimators for potato traits used in genomic prediction 705 

in the current study 706 

Table 1. Trait abbreviations and their description as used in the current study 707 

Crop Trait Abbreviation Trait Description 

Sweetpotato DM Dry matter content 

Starch Starch content 

BC Beta-carotene 

FC_P Flesh color in Peru 

FC-U Flesh color in Uganda 

NOCR # commercial storage roots 

TNR # total storage roots 

CYTHA Commercial storage root weight 

RYTHA Total storage root weigh 

FYTHA Total foliage yield weight 

Potato LB2014_O Late blight in 2014 in Oxapampa, Peru 

LB2016_Y Late blight 2016 in Yunnan, China 

PVY_L Potato virus Y in Lima, Peru 

AYP_K Average yield per plant in Kunming, China 

WMT_K Weight of marketable tubers in Kunming, China 

TTW16_Ica Total tuber weight in 2016 in Ica-Peru 

TTW16_HLJ Total tuber weight in 2016 in Heilongjinag, China 
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 725 

 726 

 727 

 728 

 729 

 730 

 731 

Table 2. Locations, designs and traits measured in the trait observation network (TON) panel of potato 

Country Location Agroecology  

Peru Lima, La Molina 12.0820° S, 

76.9282° W 

Lowland sub-tropics 

Ica, Ica 14.0755° S, 75.7342° 

W 

Pasco, Oxapampa 10.5853° S, 

75.4053° W 

Highland tropics 

China Yunnan, Kunming 24.8801° 

N, 102.8329° E 

 

Mixed agriculture systems, 

lowland & highland 

Heilongjian, Harbin 45.8038° 

N, 126.5350° E 

Temperate (long day) 

Trait Group Trait Location, Country, Year Trial Design #Genotype 

Late Blight 

resistance 

LB2014_O Oxapampa, Peru, 2014 RCBD 241 

LB2016_Y Yunnan, China, 2016 RCBD 336 

Virus resistance PVY_L Lima, Peru, 2016-2018 RCBD 341 

Bulking-based 

maturity 

AYP_K Kunming, China, 2016 RCBD 317 

WMT_K Kunming, China, 2016 RCBD 317 

Mature tuber 

weight 

TTW16_Ica Ica, Peru, 2016 Augmented 269 

TTW16_HLJ Heilongjiang, China, 2016 Augmented 300 

Table 3 Proposed design matrix coding for auto-hexaploid sweetpotato as adapted from Slater et 
al. 2016. 

  Pseudo_2x Add_6x Add+Non_6x 

Effects/Marker 1 1 1 2 3 4 5 6 7 

AAAAAA 0 0 1 0 0 0 0 0 0 

AAAAAB 1 1 0 1 0 0 0 0 0 

AAAABB 1 2 0 0 1 0 0 0 0 

AAABBB 1 3 0 0 0 1 0 0 0 

AABBBB 1 4 0 0 0 0 1 0 0 

ABBBBB 1 5 0 0 0 0 0 1 0 

BBBBBB 2 6 0 0 0 0 0 0 1 
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Table 4 Summary quantitative-genetic parameters derived from genomic selection with cross 732 

validation applying different genetic effects models in sweetpotato and potato. 
�
� is the additive 733 

genetic variation, 
�
� the residual variance, �� the narrow-sense heritability, �� the predictive 734 

ability, ∆�� the estimated rate of genetic gain considering the current breeding cycle length 735 

Crop Trait
a

 
Model

b
 

��
�  ��

� �
� �� ∆�� 

S
w
e
e
tp
o
ta
to
 

DM 
Add_2x_DArTSeq 1.6935 2.9536 0.36 0.33b 0.085889 

Add_6x_GBSpoly 4.0035 2.0762 0.66 0.44a 0.176077 

Starch 
Add_2x_DArTSeq 6.1716 13.7616 0.31 0.32b 0.158993 

Add_6x_GBSpoly 12.1683 11.5424 0.53 0.38a 0.265111 

BC 
Add_2x_DArTSeq 150.2336 113.1697 0.57 0.43a 1.0541 

Add_6x_GBSpoly 225.1431 152.0581 0.60 0.43a 1.29041 

FC_P 
Add_2x_DArTSeq 0.5416 0.3304 0.62 0.44a 0.064762 

Add_6x_GBSpoly 0.8168 0.4189 0.66 0.45a 0.081339 

FC_U 
Add_2x_DArTSeq 12.9633 10.9257 0.54 0.41a 0.295238 

Add_6x_GBSpoly 16.1489 16.777 0.49 0.38ab 0.305411 

NOCR 
Add_2x_DArTSeq 50134102 2.93E+08 0.15 0.19b 269.0607 

Add_6x_GBSpoly 1.36E+08 2.43E+08 0.36 0.31a 722.4699 

TNR 
Add_2x_DArTSeq 1.86E+08 7.40E+08 0.20 0.25b 681.9091 

Add_6x_GBSpoly 4.71E+08 5.83E+08 0.45 0.37a 1606.149 

CYTHA 
Add_2x_DArTSeq 8.6149 27.7157 0.13 0.18b 0.105664 

Add_6x_GBSpoly 8.6149 26.6061 0.24 0.22a 0.129145 

RYTHA 
Add_2x_DArTSeq 4.6249 31.4849 0.13 0.18b 0.07742 

Add_6x_GBSpoly 10.9811 29.4989 0.27 0.23a 0.152434 

FYTHA 
Add_2x_DArTSeq 7.678 26.0083 0.23 0.21b 0.116379 

Add_6x_GBSpoly 12.8721 26.6023 0.33 0.26a 0.186564 

P
o
ta
to
 

LB2014_O 
Add_4x_GBSCornell 0.0189 0.0193 0.49 0.68a 0.011686 

Pseudo_2x_GBSCornell 0.0195 0.023 0.46 0.63b 0.010997 

LB2016_Y 
Add_4x_GBSCornell 0.0191 0.0259 0.42 0.62a 0.010711 

Pseudo_2x_GBSCornell 0.0166 0.0323 0.34 0.52b 0.008375 

PVY_L 
Add_4x_GBSCornell 0.0419 0.0738 0.36 0.54a 0.013817 

Pseudo_2x_GBSCornell 0.0364 0.0818 0.31 0.50ab 0.011924 

AYP_K 
Add_4x_GBSCornell 0.0118 0.0327 0.27 0.45a 0.00611 

Pseudo_2x_GBSCornell 0.0066 0.0389 0.15 0.34b 0.003453 

WMT_K 
Add_4x_GBSCornell 0.0132 0.0322 0.29 0.48a 0.006893 

Pseudo_2x_GBSCornell 0.0069 0.0392 0.15 0.34b 0.00353 

TTW16_Ica 
Add_4x_GBSCornell 2.00E-04 0.0028 0.07 0.16a 0.000283 

Pseudo_2x_GBSCornell 3.00E-04 0.0027 0.10 0.16a 0.000346 

TTW16_HLJ 
Add_4x_GBSCornell 0.0061 0.018 0.25 0.37a 0.003612 

Pseudo_2x_GBSCornell 0.0049 0.0192 0.20 0.32b 0.0028 
a
Traits as defined in Table 1, 

b
Models: Add_2x_DArTseq = additive model using data from DArTseq called as 736 

diploid; Add_6x_GBSpoly= additive model using data with dosage from GBSpoly; Add_4x_GBSCornell = additive 737 
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model using data with dosage from GBS at Cornell, Pseudo_2x_GBSCornell = additive model using data from GBS 738 

Cornell with three heterozygote classes collapsed into one. 739 

 740 
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