

1 **Community-wide seed dispersal distances peak at low levels of specialisation in size-
2 structured networks**

3

4 Marjorie C. Sorensen^{1,2,3*}, Matthias Schleuning¹, Isabel Donoso¹, Eike Lena Neuschulz¹,
5 Thomas Mueller^{1,2}

6

7 ¹ Senckenberg Biodiversity and Climate Research Centre, Senckenberganlage 25, 60325
8 Frankfurt, Germany

9 ² Department of Biological Sciences, Goethe University Frankfurt, Max-von-Laue-Straße 9,
10 60438 Frankfurt, Germany

11 ³ Department of Integrative Biology, University of Guelph, 50 Stone Rd. E., N1G 2W1, Guelph,
12 ON, Canada

13

14 * **Corresponding author:** Marjorie Sorensen; E-mail: msoren02@uoguelph.ca

15

16 **Keywords:** ecosystem functioning, interaction networks, species traits, trait matching, niche
17 model

18 **Abstract**

19

20 Network approaches provide insight into the complex web of interspecific interactions that
21 structure ecological communities. However, because data on the functional outcomes of
22 ecological networks are very rarely available, the effect of network structure on ecosystem
23 functions, such as seed dispersal, is largely unknown. Here, we develop a new approach that is
24 able to link interaction networks to a trait-based seed-dispersal model to estimate community-
25 wide seed dispersal distances. We simulated networks, using a niche model based on size-
26 matching between plants and birds, that varied in the degree of niche partitioning. We found that
27 community-wide dispersal distances were longest when networks had low degrees of niche
28 partitioning. We further found that dispersal distances of plant species with small fruits peaked in
29 models without niche partitioning, whereas dispersal distances of medium and large-fruited
30 plants peaked at low degrees of niche partitioning. Our simulations demonstrate that the degree
31 of niche partitioning between species is an important determinant of the ecological functions
32 derived from ecological networks and that simulation approaches can provide new insights into
33 the relationship between the structural and functional components of ecological networks.

34

35 **Introduction**

36

37 During the last decade, studies of ecological networks have proliferated as a means to gain
38 insight into the complex web of interactions between species (Heleno et al. 2014). Although
39 ecological networks share some general properties such as an asymmetric distribution of links
40 among species (Bascompte et al. 2006), how species partition their interaction partners varies
41 widely across networks (Bascompte 2009). For instance, analysis of variation in network
42 specialisation has shown that the degree of niche partitioning of pollination and seed-dispersal
43 networks decreases with latitude (Schleuning et al. 2012), and that climate and human
44 disturbance are important factors determining this variation in seed dispersal networks
45 (Sebastian-Gonzalez et al. 2014). However, these studies only describe interaction frequencies
46 between species in a community, while measures of the actual species contributions to the
47 associated ecosystem functions are very rarely available across whole communities (but see
48 Dennis and Westcott 2006, Rehm et al. 2019). Thus, the consequences of variability in network
49 structure for community-wide ecosystem functions have not yet been quantified and investigated
50 beyond conceptual considerations (Tylianakis et al. 2010, Blüthgen and Klein 2011).

51

52 An ecosystem function that is derived directly from interaction networks between plants
53 and animals is animal-mediated seed dispersal. Seed dispersal away from the parent plant affects
54 the dynamics, distribution, and long-term persistence of plant populations (Levin et al. 2003).
55 Plant species with short seed dispersal ability may be unable to colonize new habitats, persist in
56 fragmented landscapes, or respond to a changing climate (Turnbull et al. 2000, Neilson et al.
57 2005, Trakhtenbrot et al. 2005). An understanding of seed dispersal distances is, thus, essential

58 for making predictions regarding future biodiversity change. Total dispersal kernels (TDKs; the
59 frequency distribution of seed dispersal distances) offer an integrative measure of seed dispersal
60 that account for the relative contribution of all major seed dispersers of a plant species (Jordano
61 et al. 2007, Rogers et al. 2019, Nathan 2007). At the community-level, species-specific total
62 dispersal kernels (TDK_{plant}) can be integrated into a single community-wide total dispersal kernel
63 denoted as $TDK_{community}$ (analogous to TDK_{system} in Nathan 2007). This metric can be used to
64 characterize differences in overall seed dispersal functions between communities and can serve
65 as an estimate of community and ecosystem stability in response to global change (Loreau et al.
66 2003, Nathan 2007). Current possibilities for estimating seed dispersal simultaneously for
67 several plant species include modelling (Schurr et al. 2009, Morales et al. 2013, Rehm et al.
68 2019, Rogers et al. 2019) and molecular approaches (Jordano et al. 2007, González-Varo et al.
69 2017), as well as approaches combining empirical data on frugivore movement and gut passage
70 time (Holbrook and Smith 2000, Mueller et al. 2014). However, applying these methods to
71 whole plant communities is a daunting task, because of the need to identify and quantify the
72 relative contributions of numerous frugivore species to seed dispersal for every plant species in a
73 community.

74

75 Functional traits are useful indicators of species' ecological roles in ecosystems (Dehling
76 et al. 2016) and may help overcome the challenge of quantifying the diverse contributions of
77 frugivore species to seed dispersal. The matching between functional traits of consumer and
78 resource species has a strong influence on network structure, due to its importance for
79 determining which species interact preferentially with each other and how interaction partners
80 are partitioned among species (Wheelwright 1985, Eklöf et al. 2013, Fründ et al. 2015, Dehling

81 et al. 2016, Bender et al. 2018). For instance, large frugivores are more likely to consume large
82 fruits, whereas small frugivores, constrained by a small gape width, are more likely to feed on
83 small fruits (Cohen et al. 1993, Jordano et al. 2002, Eklöf et al. 2013, González-Castro et al.
84 2015, Bender et al. 2018). Consequently, size matching influences the degree of niche
85 partitioning in plant frugivore networks (Dehling et al. 2014, Bender et al. 2018) and could have
86 significant effects on seed dispersal because it directly affects which frugivores species will
87 disperse which particular plant species.

88

89 Importantly, functional traits can also describe the ecological processes and functions that
90 result from species interactions. For example, frugivore body size scales with gut passage time
91 and movement distance, which means that large frugivores retain seeds longer and could carry
92 them over greater distances than small frugivores (Robbins 1993, Yoshikawa et al. 2019). This
93 results in longer-distance seed dispersal for plant species dispersed by large frugivores (Jordano
94 et al. 2007, Wotton and Kelly 2012, Costa-Pereira et al. 2018). Past studies have estimated that a
95 100-fold increase in seed mass may result in a 4.5-fold increase in seed dispersal distance
96 (Seidler and Plotkin 2006, Thomson et al. 2011). We suggest that the existing knowledge on how
97 functional traits such as body size determine interactions between plants and frugivores,
98 frugivore movement, and seed retention time, could help bridge the prevailing gap between
99 network structure and ecological function.

100

101 Here, we propose a new approach that links interaction networks between plants and
102 avian frugivores with a trait-based seed dispersal model to estimate dispersal kernels across
103 whole plant communities. In order to examine how network specialisation is associated with seed

104 dispersal distances at both the (1) community-wide ($TDK_{community}$) and (2) individual plant
105 species (TDK_{plant}) level, we simulated networks with varying degrees of niche partitioning, using
106 a niche model approach (Fründ et al. 2015, Donoso et al. 2017), while maintaining all other
107 community parameters constant. We hypothesised that $TDK_{community}$, and the majority of plant
108 species $TDKs$, would be shorter in highly specialized networks because niche partitioning should
109 result in the largest seed dispersers feeding only on a few plant species, contributing little to
110 dispersal of the whole plant community.

111 Material and methods

112 *Methods summary:*

113

114 1. *First, we simulated interaction networks that varied in the degree of niche partitioning*
115 *and spanned a wide range of network specialisation using a niche model based on size-*
116 *matching between plants and avian dispersers (Fründ et al. 2015, Donoso et al. 2017);*
117 *Fig. 1a, b).*

118 2. *Second, we developed a trait-based seed dispersal model using allometric scaling*
119 *relationships between avian body size, gut passage time, and flight speed (following*
120 *Schurr et al. 2009) to estimate the seed dispersal distances provided by avian dispersers*
121 *for each interaction in the simulated networks (Fig. 1c and Table 1 for an overview of*
122 *model parameters).*

123 3. *Third, we combined the information from the simulated networks with the trait-based*
124 *seed dispersal model to estimate dispersal distances for every plant species (TDK_{plant} ,*
125 *Fig. 1d) and community-wide dispersal distances ($TDK_{community}$) of each network.*

126 4. *Fourth, we conducted a global and a local sensitivity analyses on the parameters of the*
127 *seed-dispersal model to test the robustness of our simulation model.*

128

129 1. Simulating interaction networks with different degrees of niche partitioning

130

131 We used a simulation approach to build networks along the full gradient of specialisation,
132 representing different degrees of niche partitioning (Donoso et al. 2017). This simulation
133 approach allowed network specialisation to vary while maintaining all other community

134 parameters, such as the number of plant and disperser species, constant. Simulations of size-
135 structured interaction networks were based on trait distributions of avian body size and fruit
136 volume in a theoretical community comprising 50 plant and 50 bird species. We focused on
137 avian seed dispersers because birds are responsible for the majority of fruit removal (e.g.,
138 according to Jordano et al. 2007: 75 % birds, 15 % mammals).

139

140 For the simulations, species trait values were drawn from an idealized lognormal
141 distribution with equidistant quantiles (Donoso et al. 2017), and the mean and standard deviation
142 of body mass and fruit volume were defined by a large empirical data set of bird and fruit traits
143 ($n = 173$ bird and 213 plant species; Bender et al. 2018). The total interaction frequencies of
144 birds and plants were defined as a function of avian size and fruit volume (according to Donoso
145 et al. 2017, see Supplementary material Appendix 1 for details), because smaller fruited plants
146 are more abundant than larger fruited plants and smaller frugivores are more abundant than
147 larger frugivores (Cotgreave 1993, Moles et al. 2005). In the simulations, the total number of
148 interactions per bird species was kept fixed. Total interaction frequencies of plant species could
149 vary among different model runs because they depended on the simulated bird preferences
150 (Donoso et al. 2017).

151

152 According to the quantitative niche model used for simulating the networks (Donoso et
153 al. 2017), we determined the preference of a bird species for a plant species as a function of the
154 pairwise difference in trait values between bird body mass and plant fruit volume (Fig. 1a). Size
155 matching in seed-dispersal networks is primarily driven by fruit size and avian gape width (e.g.
156 Dehling et al. 2016). Since avian gape width and body mass are closely correlated (Moran and

157 Catterall 2010), we chose to use body mass as this trait was also used for the simulations of seed
158 dispersal distances (see below). We used a right-skewed niche shape to account for the fact that
159 negative mismatches in trait values (bird < fruit) render interactions impossible ('forbidden
160 links'; Jordano et al. 2002), whereas positive size matching (bird > fruit) makes interactions less
161 likely (Dehling et al. 2016). We modelled that birds choose among plants with a probability
162 proportional to the product of preference and the total number of plant species interactions. By
163 varying the breadth of bird foraging preferences, we were able to simulate different degrees of
164 niche partitioning. In total, we simulated 116 networks, including a scenario without foraging
165 preferences. We determined network specialisation for each simulated network by calculating the
166 degree of complementary specialisation (H_2'), a measure of niche partitioning ranging between 0
167 and 1, using the R package *bipartite* v. 2.11 (Dormann et al. 2009). For additional technical
168 details on simulating interaction networks see the Supplementary material Appendix 1.

169

170 2. Trait-based seed dispersal distance model

171

172 To estimate the seed dispersal distance resulting from each plant-bird interaction in the
173 simulated networks, we developed a trait-based seed dispersal distance model. The two main
174 components determining seed dispersal distances provided by frugivorous birds were: 1) gut
175 passage times, and 2) movement distances (Westcott and Graham 2000, Jordano et al. 2007).

176

177 *Gut passage time*

178 Since larger birds have longer gastrointestinal tracts, avian body mass and gut passage
179 time (GPT) generally follow an allometric relationship (Robbins 1993). To build on the

180 allometric relationship by Robbins 1993 and to develop an equation specifically for frugivorous
181 birds foraging in natural environments, we collected GPT estimates from the literature. We only
182 included studies that fed natural fruit to birds and excluded studies using artificial seeds or fruits,
183 or marker dyes (see Supplementary material Appendix 1 Table A1 for included studies). We
184 found a strong positive relationship between body mass (BM) and gut passage time (GPT; $r^2 =$
185 0.69 $p < 0.001$; Supplementary material Appendix 3 Fig. A1). We used ordinary least squares
186 (OLS) to estimate the steepness of the scaling relationship (Kilmer and Rodríguez 2016),
187 resulting in the equation:

188

189 (3) $GPT[h] = 4.5BM[kg]^{0.5}$

190

191 where $GPT[h]$ is gut passage time, and $BM[kg]$ is body mass. We focus on dispersal events
192 resulting from endozoochory via defecation, although seeds can also be dispersed by other means
193 such as epizoochory (Sorensen 1986) and regurgitation (Kays et al. 2011). We also did not
194 include fruit size effects on GPT since observed patterns are inconsistent across studies, and
195 include negative and positive relationships between seed size and GPT (Fukui 2003, Lenz et al.
196 2011, Wilson and Downs 2012).

197

198 *Movement distance*

199 Body size generally scales positively with movement distance across several animal taxa
200 including birds (Turner et al. 1969, Minns 1995, Carbone et al. 2005, Ottaviani et al. 2006);
201 however, there is no reliable information on the general relationship between body size and
202 home range size for bird species as birds often make movements beyond their home range (Lenz

203 et al. 2011). We thus used the allometric equation between bird body mass and flight speed (FS)
204 developed by (Tucker 1974) as a metric of foraging distance (Schurr et al. 2009, Tsoar et al.
205 2011, Viana et al. 2016):

206

207 (4) $FS[m/s] = 15.7BM[kg]^{0.17}$ (Tucker 1974)

208

209 where FS is flight speed (in no-wind conditions), and BM is body mass. Equation 4 theoretically
210 derives flight speed from avian aerodynamic measures collected during wind tunnel experiments
211 (Tucker 1974).

212

213 *Combining gut passage time and movement distance*

214 We used the allometric relationships between bird body mass - GPT (3), and bird body
215 mass - movement distance (4), to parameterize a trait-based seed dispersal model, building on
216 earlier studies that used similar approaches for individual species (Schurr et al. 2009, Tsoar et al.
217 2011, Viana et al. 2016).

218

219 For every interaction between a bird and plant, we followed the process of fruit
220 consumption and passage through the gut until elimination. First, gut passage time was drawn
221 from a Gamma distribution (Guttal et al. 2011). We chose a Gamma distribution because it most
222 closely matches the GPT data found in empirical studies (Guttal et al. 2011, Pires et al. 2017).
223 The shape (k) and scale (θ) parameters of the Gamma distribution can be defined in terms of the
224 empirical GPT mean (\bar{t}) and variance (s^2) as follows:

225

226 (5) $k = \bar{t}^2 / s^2$

227 (6) $\theta = s^2 / \bar{t}$

228

229 We used the allometric relationship (3) between body size and GPT to calculate the
230 mean (\bar{t}). We selected a fixed variance which was set at the mean variance (s^2) found in GPT
231 studies collected during the literature search (Supplementary material Appendix 3 Table A1;
232 (Pires et al. 2017)). Second, we selected the avian travel speed from a Gaussian distribution
233 (Bruderer and Boldt 2008). We parameterized the Gaussian distribution using the mean flight
234 speed calculated from allometric equation (4), and the average standard deviation of flight speeds
235 reported in (Alerstam et al. 2007). We excluded birds larger than 1.5 kg from the standard
236 deviation calculation because avian frugivores rarely exceed this size (Bender et al. 2018,
237 Albrecht et al. 2018). Finally, we determined seed dispersal distance by multiplying GPT and FS.

238

239 Following Schurr et al. 2009, we calculated a calibration term of the simulated seed
240 dispersal distances to account for the time frugivores spent not moving, and movements
241 deviating from a straight line. To estimate the calibration term of absolute seed dispersal
242 distances, we combined the GPT equation (equation 3 with hours converted to seconds) and
243 flight speed equation (4) to produce the following:

244

245 (7) $z = fc 15.7 (16200)^{0.17+0.5} = fc 254340 BM^{0.67}$

246

247 where z is seed dispersal distance (m) and BM is avian body mass (kg); c is a straightness factor
248 which accounts for movements deviating from a straight line (c is 1 if movement occurs in a

249 straight line); f is time allocated to movement as a constant fraction of the GPT (Schurr et al.
250 2009). We compared the independent expectation of the relationship between bird body mass
251 and seed dispersal distance (equation 7) to the allometric equation derived from available
252 empirical seed dispersal studies ($z = 504BM^{0.48}$, Supplementary material Appendix 3 Table A2
253 Fig. S2). The calibration term (defined by the product of f and c), was calculated by computing
254 the ratio between the allometric constant from equation 7 and that derived from empirical studies
255 (504/254340). This resulted in a calibration term of $fc = 0.002$ which was applied to the
256 simulated seed dispersal distance.

257

258 3. Community-wide seed dispersal distance estimates

259

260 The model of seed dispersal was used to estimate the seed dispersal distance resulting
261 from every plant-bird interaction in every simulated network (Fig. 1). We pooled the simulated
262 seed dispersal distances for each individual plant species to create total dispersal kernels
263 (TDK_{plant}) for every plant species in each community (Fig. 1d). In order to estimate community-
264 wide seed dispersal distances ($TDK_{community}$), we calculated the median of the mean seed
265 dispersal distance of all plant species in the respective network (each plant species was given
266 equal weight when calculating the median). Similarly, we quantified community-wide long-
267 distance seed dispersal (LDD) by taking the median of LDD events for each individual plant
268 species. We defined LDD events as those beyond the 95th percentile of the distribution of seed-
269 dispersal distances. These calculations were repeated for each network along the full range of
270 network specialisation.

271

272 Finally, we compared plants with different fruit sizes in order to investigate the
273 association between network specialisation and TDK_{plant} for plant species with different sized
274 fruits. Plants were grouped into small (bottom 25 % of species arranged by decreasing fruit
275 volume), medium (middle 50 % of species arranged by decreasing fruit volume), and large (top
276 25 % of species arranged by decreasing fruit volume) fruits. All analyses and fitting of *loess*
277 smoothing curves were conducted in R version 3.5.0 (R Core Development Team 2018; the *loess*
278 smoothing parameter was equal to 0.2 for all figures).

279

280 4. Sensitivity analysis

281

282 To estimate the influence of different model parameters on the seed dispersal distance model, we
283 carried out a global sensitivity analysis. We used the Morris's elementary effects method (Morris
284 1991) which estimates the relative rank of parameter importance while taking into account
285 parameter interactions and is the most appropriate method for individual-based simulation
286 models (Thiele et al. 2014). μ^* provides the order of importance for each factor with respect to
287 the model output and can be considered as a proxy of the total sensitivity index (Supplementary
288 material Appendix 5). We performed the sensitivity analysis on six model parameters, which
289 were varied according to predefined ranges (Table 1). The sensitivity analysis was performed
290 using the R package *sensitivity* version 1.16.0 (Pujol et al. 2015).

291

292 Based on the results of the global sensitivity analysis, we applied a local sensitivity
293 analysis to test whether variation in the relevant parameters influenced our main findings. To this
294 end, we selected the three most important model parameters for each of the mean and 95%

295 quantile model outputs and evaluated the relationship between network specialisation (H_2') and
296 TDK_{community} for both the maximum and minimum values of each of the important model
297 parameters (see Table 1 for the range of variation in the model parameters).

298 Results

299 *Community level*

300

301 Community-wide seed dispersal distances ($TDK_{community}$) varied systematically along the range
302 of network specialisation. Networks with a low degree of niche partitioning showed longer
303 community-wide seed dispersal distances than networks with no niche partitioning or high
304 partitioning, resulting in a hump-shaped relationship between network specialisation and
305 community seed dispersal distance (Fig. 2a). Mean community seed dispersal distances were
306 longest at $H_2' = 0.11$ (74 m) and shorter at both $H_2' = 0$ (59 m) and $H_2' = 0.98$ (46 m).

307 Community-wide long-distance seed dispersal (LDD; 95 % quantile), as an alternative descriptor
308 of $TDK_{community}$, resulted in a similar hump-shaped relationship between network specialisation
309 and LDD (Fig. 2b). Community-wide LDD events were longest when niche partitioning was
310 low, $H_2' = 0.07$ (173 m), and shorter at both, $H_2' = 0$ (166 m) and $H_2' = 0.98$ (65 m). However,
311 LDD distance declined more rapidly between low and high degree of niche partitioning than
312 mean seed dispersal distances (mean = 38 % decline between $H_2' = 0.11$ and $H_2' = 0.98$, LDD =
313 63 % decline between $H_2' = 0.07$ and $H_2' = 0.98$).

314

315 *Plant species level*

316

317 Seed dispersal distances of individual plant species (TDK_{plant}) were associated with plant species
318 traits (Fig. 3). Mean seed dispersal distances of plant species with the smallest fruits declined
319 steadily from no to complete niche partitioning (67 % decline between no niche partitioning and
320 complete niche partitioning; Fig. 3b). In contrast, mean seed dispersal distances of plant species

321 with medium sized fruits were longest when specialisation was low, $H_2' = 0.11$ (75 m), and
322 shorter at the extremes of niche partitioning (no niche partitioning = 59 m; complete niche
323 partitioning = 45 m; Fig. 3c). Mean seed dispersal distances of plant species with the largest
324 fruits were also longest when niche partitioning was low (156 m) and shorter at the extremes of
325 network specialisation (no niche partitioning = 59 m; complete niche partitioning = 126 m; Fig.
326 3d). Minimum seed dispersal distances of the largest fruited plant species occurred when
327 networks had no niche partitioning; whereas, minimum seed dispersal distances for medium and
328 small fruited plants occurred when niche partitioning was highest. Long-distance seed dispersal,
329 as an alternative descriptor of TDK_{plant} , followed the same pattern (Supplementary material
330 Appendix 4 Fig. A4).

331

332 *Sensitivity analysis*

333

334 The sensitivity analyses showed that the simulation results were robust to variation in the
335 parameter estimates. The most influential parameters for both the mean and 95% quantile of seed
336 dispersal distances were GPT_{var} , $CorrFactor$, and GPT^{exp} , while the parameters of the FS
337 equation were of little relevance (Fig. 4). Although absolute seed dispersal distances varied in the
338 local sensitivity analysis, the relationship between network specialisation and community-wide
339 seed dispersal distance ($TDK_{community}$) remained qualitatively consistent, varying GPT_{var} ,
340 $CorrFactor$, and GPT^{exp} (Supplementary material Appendix 5 Fig. A5 – A7).

341 Discussion

342

343 We propose a new approach to link interaction networks with a trait-based seed dispersal model
344 to estimate avian seed dispersal distances of plant communities. We found support for the
345 hypothesis that network specialisation is systematically associated with the total dispersal kernels
346 of plant communities ($TDK_{community}$). Specifically, we found that the mean and LDD of
347 community-wide seed dispersal distance, as two alternative descriptors of $TDK_{community}$, were
348 longest when niche partitioning between bird and plant species was low, and shorter in scenarios
349 of complete and no niche partitioning. This hump-shaped relationship between seed dispersal
350 and network specialisation was driven by changes in the relative contribution of birds to the seed
351 dispersal of medium and large-fruited plants at different scenarios of niche partitioning. These
352 results suggest that low niche partitioning between plants and avian frugivores maximizes
353 community-wide seed-dispersal functions.

354

355 Our simulations demonstrate that variation in the degree of niche partitioning is
356 associated with ecosystem functioning via effects on $TDK_{community}$. The observed hump-shaped
357 relationship between seed dispersal distances and network specialisation results from different
358 avian foraging preferences at different levels of niche partitioning. Reduced seed dispersal in
359 networks with no niche partitioning ($H_2' = 0$) may be explained by small and large bird species
360 being able to feed on all plant species, leading to weak effects of large birds on community seed
361 dispersal. At the other extreme, in networks with complete niche partitioning ($H_2' = 1$), large
362 birds interacted with only a few large-fruited plant species and, thus, had comparatively little
363 effect on community-wide dispersal distances. The effects of large birds species were maximized

364 at low niche partitioning ($H_2' = 0.11$) because under these conditions large species were able to
365 forage widely across the plant community, whereas small birds were restricted to small-fruited
366 plants, due to morphological size constraints. We found that LDD events also peaked when niche
367 partitioning was low ($H_2' = 0.07$), and large birds were foraging most widely; however, LDD
368 declined more rapidly than mean seed dispersal as network specialisation increased. This is
369 consistent with empirical studies which have shown that long-distance dispersal usually results
370 from fruit removal by the largest bird species (Wotton and Kelly 2012, Mueller et al. 2014,
371 Costa-Pereira et al. 2018).

372

373 The results of our simulation study have implications for real-world communities which
374 vary widely in the degree of niche partitioning between plants and avian frugivores. Empirical
375 studies have shown that plant-frugivore networks vary in network specialisation (H_2') between
376 0.16 – 0.58 and exhibit this structural variability at both global and local scales (Schleuning et
377 al. 2012, Quitián et al. 2018). Our results suggest that size-structured networks within this range
378 of network specialisation may vary both in community and individual plant species seed
379 dispersal distances. For example, networks with a low degree of niche partitioning, such as
380 networks at forest edges (Menke et al. 2012) and at low latitudes (Schleuning et al. 2012),
381 especially in the Afrotropics (Dugger et al. 2018), may provide longer community seed dispersal
382 distances than the comparatively more specialised networks in forest interiors and at higher
383 latitudes. However, our simulation study was based only on variation in the degree of size
384 matching between species and kept community and trait composition constant. In addition to
385 effects of size matching, variability in network structure is also driven by other factors such as
386 the spatial and temporal fluctuations in resource availability and species abundances (Carnicer et

387 al. 2009, Bender et al. 2017, Sebastian-Gonzalez et al. 2017). Nevertheless, our study
388 demonstrates that variation in the degree of size matching between species alone can trigger
389 substantial differences in seed dispersal.

390

391 The functional outcome of network structure that we have measured in terms of
392 $TDK_{community}$ may serve as an important measure of community and ecosystem stability in
393 response to environmental change, as has been conceptually suggested in previous studies
394 (Loreau et al. 2003, Nathan 2007). Previous studies seeking to understand the potential
395 consequences of variability in network structure primarily investigated how network structure is
396 related to community stability. For instance, highly generalised and connected networks are more
397 resistant to secondary extinctions following species loss (Memmott et al. 2004, Okuyama and
398 Holland 2008, Thébault and Fontaine 2010, Rohr et al. 2014), are less likely to disassemble (Sole
399 and Montoya 2001, Dunne and Williams 2009), and are more resistant to species invasions (Post
400 and Pimm 1983) than more specialised networks. This stability is likely due to an association
401 between niche partitioning and functional redundancy, as similar species can fulfill similar
402 functional roles and compensate for species loss in generalised networks (Blüthgen and Klein
403 2011). Here, we move beyond structural measures of community stability by estimating the
404 functional outcome derived from species interactions in ecological networks. We show that a
405 generalised structure of ecological networks leads to a higher degree of ecosystem functioning.
406 We suggest that $TDK_{community}$ could be used as a community-wide indicator for assessing the
407 stability of ecosystems in response to global change. Insufficient dispersal distance constrains the
408 adaptive capacity of species to changing climatic conditions, for example by reducing the speed

409 of plant range shifts (Neilson et al. 2005, Trakhtenbrot et al. 2005) and plant persistence in
410 fragmented landscapes (Turnbull et al. 2000).

411

412 We found that the association between network structure and seed dispersal was mediated
413 by plant species traits. Seed dispersal distances of small-fruited plant species were longest when
414 niche partitioning was completely absent since in this scenario the largest bird species feed
415 equally across plant species. In contrast, seed dispersal distances of medium and large-fruited
416 plant species were the drivers of the community-wide hump-shaped relationship between
417 dispersal distance and network specialisation. At low degrees of niche partitioning, these plants
418 received a higher proportion of fruit removal by large frugivores compared to small frugivores
419 because asymmetric size matching renders interactions between large fruits and small birds
420 impossible.

421

422 The association between plant species traits and niche partitioning could influence the
423 spatial patterns of seed dispersal for different types of plant species. Since seed dispersal is the
424 critical first step for competitive processes and subsequent recruitment (Nathan and Muller-
425 Landau 2000, Rohr et al. 2014), spatial patterns of seed dispersal may have implications for
426 long-term persistence and coexistence of plant species. Theoretical work has highlighted
427 conspecific spatial clustering as a mechanism reducing competitive exclusion and promoting
428 diversity (Hubbell 1986, Chave et al. 2002). Empirical work has demonstrated that between-
429 species variability in seed dispersal distances leads to differences in spatial clustering of plants,
430 such that species with shorter seed dispersal distances are more tightly clustered in space than
431 species with longer seed dispersal distances (Seidler and Plotkin 2006). In our simulations, we

432 found no variability between seed dispersal distances across plant species under a scenario that
433 lacked niche partitioning (Fig. 2; $H_2' = 0$); whereas, increasing niche partitioning resulted in
434 higher variability between species-specific seed dispersal distances (Fig. 2; $H_2' = 0.1$). This
435 suggests that niche partitioning among avian frugivores may contribute to conspecific
436 aggregation and coexistence of plant species.

437

438 The trait-based model proposed here combines simulated ecological networks and
439 allometric relationships to estimate the functional effects of species interactions in complex
440 ecological networks. We show that this trait-based approach can be used to estimate avian seed
441 dispersal for whole plant communities. The simplicity of this approach allows the model to be
442 broadly applicable to plant communities that are primarily dispersed by birds and for which trait
443 information are available. However, other animal frugivores may also be important seed
444 dispersers (e.g., Mello et al. 2011, Dugger et al. 2018), and our model would need to be
445 developed further to also account for the contributions of other animal frugivores (but see Pires
446 et al. 2017) for a similar approach for mammal seed dispersers). While the main goal of our
447 analysis was not to estimate absolute seed dispersal distances, we stress that the estimated
448 distances closely match those expected from the few available empirical studies (Jordano et al.
449 2007). The sensitivity analysis of our simulation model showed that our main finding, derived
450 from the comparison of seed dispersal distances among differently structured networks, was
451 qualitatively consistent along the full range of selected model parameters (see Supplementary
452 material Appendix 5 Fig. A5-A7). Nevertheless, we acknowledge that our trait-based approach is
453 not able to capture variability in avian behaviour, independent of variation in body size. For
454 example, the model cannot account for species differences in habitat selection, responses to

455 resource availability, or mating strategies, all of which may affect movement and seed deposition
456 (e.g., Wenny and Levey 1998, Karubian and Durães 2009, Morales et al. 2013, Da Silveira et al.
457 2016). The collection of empirical movement data from a wide range of animal species would
458 help to improve the seed dispersal distance estimates of trait-based models and could cover
459 additional species traits and more aspects of animal behaviour.

460

461 We conclude that our trait-based model provides a new means by which seed dispersal
462 distances can be estimated for whole plant communities. Our simulation study demonstrates that
463 variability in how species interact in ecological communities is relevant for determining the
464 ecological functions derived from ecological networks. These findings show the relevance of
465 better integration of structural and functional approaches in network ecology and should fuel
466 more theoretical and empirical research on linking network structure and function.

467

468

469 **Acknowledgements**

470

471 We are grateful to Jochen Fründ for suggestions and guidance on network simulations and to
472 Javier Rodríguez-Pérez for input on the sensitivity analysis. MCS and ID were funded by the
473 Alexander von Humboldt Foundation. TM was funded by the Robert Bosch Foundation. ELN
474 and MS obtained funding by the German Research Foundation (DFG) in the framework of the
475 Research Bundle 823–825 “Platform for Biodiversity and Ecosystem Monitoring and Research
476 in South Ecuador” (PAK 825/1) and the Research Unit FOR2730 “Environmental changes in
477 biodiversity hotspot ecosystems of South Ecuador: RESPonse and feedback effECTs”.

478 **References**

479 Albrecht, J. et al. 2018. Plant and animal functional diversity drive mutualistic network assembly
480 across an elevational gradient. - *Nat. Comm.* 9: 1–10.

481 Alerstam, T. et al. 2007. Flight speeds among bird species: allometric and phylogenetic effects. -
482 *PLoS Biol* 5: e197.

483 Bascompte, J. 2009. Mutualistic networks. - *Front. Ecol. Environ.* 7: 429–436.

484 Bascompte, J. et al. 2006. Asymmetric coevolutionary networks facilitate biodiversity
485 maintenance. - *Science* 312: 431–433.

486 Bender, I. M. A. et al. 2018. Morphological trait matching shapes plant–frugivore networks
487 across the Andes. - *Ecography* 30: 1894.

488 Bender, I. M. A. et al. 2017. Functionally specialised birds respond flexibly to seasonal changes
489 in fruit availability. - *J. Anim. Ecol.* 86: 800–811.

490 Blüthgen, N. and Klein, A.-M. 2011. Functional complementarity and specialisation: The role of
491 biodiversity in plant–pollinator interactions. - *Basic Appl. Ecol.* 12: 282–291.

492 Bruderer, B. and Boldt, A. 2008. Flight characteristics of birds - *Ibis* 143: 178–204.

493 Carbone, C. et al. 2005. How far do animals go? Determinants of day range in mammals. - *The*
494 *Am. Nat.* 165: 290–297.

495 Carnicer, J. et al. 2009. The temporal dynamics of resource use by frugivorous birds: a network
496 approach. - *Ecology* 90: 1958–1970.

497 Chave et al. 2002. Comparing classical community models: theoretical consequences for patterns
498 of diversity. - *Am. Nat.* 159: 1.

499 Cohen, J. E. et al. 1993. Body sizes of animal predators and animal prey in food webs. - *J.*
500 *Anim. Ecol.* 62: 67–78.

501 Costa-Pereira, R. et al. 2018. Defaunation shadow on mutualistic interactions. - *Proc. Natl. Acad.*
502 *Sci.* 115: E2673–E2675.

503 Cotgreave, P. 1993. The relationship between body size and population abundance in animals. -
504 *Trends. Ecol. Evol.* 8: 244–248.

505 Da Silveira, N. S. et al. 2016. Effects of land cover on the movement of frugivorous birds in a
506 heterogeneous landscape. - *PLoS ONE* 11: e0156688.

507 Dehling, D. M. et al. 2016. Morphology predicts species' functional roles and their degree of
508 specialization in plant–frugivore interactions. - *Proc. R. Soc. B Biol. Sci.* 283: 20152444.

509 Dehling, D. M. et al. 2014. Functional relationships beyond species richness patterns: trait
510 matching in plant-bird mutualisms across scales. - *Glob. Ecol. Biogeogr.* 23: 1085–1093.

511 Dennis, A. J. and Westcott, D. A. 2006. Reducing complexity when studying seed dispersal at
512 community scales: a functional classification of vertebrate seed dispersers in tropical forests.
513 - *Oecologia* 149: 620–634.

514 Donoso, I. et al. 2017. Defaunation effects on plant recruitment depend on size matching and
515 size trade-offs in seed-dispersal networks. - *Proc. R. Soc. B Biol. Sci.* 284: 20162664–10.

516 Dormann, C. F. et al. 2009. Indices, graphs and null models: analyzing bipartite ecological
517 networks. - *Open Ecol.* 2: 7–24.

518 Dugger, P. J. et al. 2018. Seed-dispersal networks are more specialized in the Neotropics than in
519 the Afrotropics. - *Glob. Ecol. Biogeogr.* 28: 248–261.

520 Dunne, J. A. and Williams, R. J. 2009. Cascading extinctions and community collapse in model
521 food webs. - *Proc. R. Soc. B Biol. Sci.* 364: 1711–1723.

522 Eklöf, A. et al. 2013. The dimensionality of ecological networks. - *Ecol. Letters* 16: 577–583.

523 Fründ, J. et al. 2015. Sampling bias is a challenge for quantifying specialization and network
524 structure: lessons from a quantitative niche model. - *Oikos* 125: 502–513.

525 Fukui, A. 2003. Relationship between seed retention time in bird's gut and fruit characteristics. -
526 *Ornithol. Sci.* 2: 41–48.

527 González-Castro, A. et al. 2015. Relative importance of phenotypic trait matching and species'
528 abundances in determining plant-avian seed dispersal interactions in a small insular
529 community. - *AoB Plants* 7: plv017–plv017.

530 González-Varo, J. P. et al. 2017. Unravelling seed dispersal through fragmented landscapes:
531 Frugivore species operate unevenly as mobile links. - *Mol. Ecol.* - 26: 4309–4321.

532 Guttal, V. et al. 2011. Retention time variability as a mechanism for animal mediated long-
533 distance dispersal. - *PLoS ONE* 6: e28447.

534 Heleno, R. et al. 2014. Ecological networks: delving into the architecture of biodiversity. - *Biol.*
535 *Lett.* 10: 20131000.

536 Holbrook, K. M. and Smith, T. B. 2000. Seed dispersal and movement patterns in two species of
537 *Ceratogymna* hornbills in a West African tropical lowland forest. - *Oecologia* 125: 249–257.

538 Hubbell, S.P. & Foster, R.B. 1986. Biology, chance, and history and the structure of tropical rain
539 forest tree communities. In: Diamond J, Case TJ (eds) *Community ecology*. Harper and
540 Row, New York, pp 314–329

541 Jordano, P. et al. 2002. Invariant properties in coevolutionary networks of plant–animal
542 interactions. - *Ecol. Letters* 6: 69–81.

543 Jordano, P. et al. 2007. Differential contribution of frugivores to complex seed dispersal patterns.
544 - *Proc. Natl. Acad. Sci.* 104: 3278–3282.

545 Karubian, J. and Durães, R. 2009. Effects of seed disperser social behavior on patterns of seed
546 movement and deposition. - *Oecol. Bras.* 13: 45–57.

547 Kays, R. et al. 2011. The effect of feeding time on dispersal of *Virola* seeds by toucans
548 determined from GPS tracking and accelerometers. - *Acta Oecologica*: 1–7.

549 Kilmer, J. T. and Rodríguez, R. L. 2016. Ordinary least squares regression is indicated for
550 studies of allometry. - *J. Evol. Biol.* 30: 4–12.

551 Lenz, J. et al. 2011. Seed-dispersal distributions by trumpeter hornbills in fragmented
552 landscapes. - *Proc. R. Soc. B Biol. Sci.* 278: 2257–2264.

553 Levin, S. A. et al. 2003. The ecology and evolution of seed dispersal: a theoretical perspective. -
554 *Annu. Rev. Ecol. Evol. Syst.* 34: 575–604.

555 Loreau, M. et al. 2003. Biodiversity as spatial insurance in heterogeneous landscapes. - *Proc.*
556 *Natl. Acad. Sci.* 100: 12765–12770.

557 Mello, M. A. R. et al. 2011. The modularity of seed dispersal: differences in structure and
558 robustness between bat– and bird–fruit networks. - *Oecologia* 167: 131–140.

559 Memmott, J. et al. 2004. Tolerance of pollination networks to species extinctions. - *Proc. R. Soc.*
560 *B Biol. Sci.* 271: 2605–2611.

561 Menke, S. et al. 2012. Plant-frugivore networks are less specialized and more robust at forest–
562 farmland edges than in the interior of a tropical forest. - *Oikos* 121: 1553–1566.

563 Minns, C. K. 1995. Allometry of home range size in lake and river fishes. - *Can. J. Fish. Aquat.*
564 *Sci.* 52: 1499–1508.

565 Moles, A. T. et al. 2005. A brief history of seed size. - *Science* 307: 576–580.

566 Morales, J. M. et al. 2013. Frugivore behavioural details matter for seed dispersal: a multi-
567 species model for cantabrian thrushes and trees. - *PLoS ONE* 8: e65216.

568 Moran, C. and Catterall, C. P. 2010. Can functional traits predict ecological interactions? A case
569 study using rain forest frugivores and plants in Australia. - *Biotropica* 42: 318–326.

570 Morris, M. D. 1991. Factorial sampling plans for preliminary computational experiments. -
571 *Technometrics* 33: 161–174.

572 Mueller, T. et al. 2014. Large frugivorous birds facilitate functional connectivity of fragmented
573 landscapes. - *J. Appl. Ecol.* 51: 684–692.

574 Nathan, R. 2007 Total dispersal kernels and the evaluation of diversity and similarity in complex
575 dispersal systems. *Seed Dispersal: Theory and Its Application in a Changing World* (ed. A.J.
576 Dennis), pp. 252–276. CABI, Wallingford, UK.

577 Nathan, R. and Muller-Landau, H. C. 2000. Spatial patterns of seed dispersal, their determinants
578 and consequences for recruitment. - *Trends Ecol. Evol.* 15: 278–285.

579 Neilson, R. P. et al. 2005. Forecasting regional to global plant migration in response to climate
580 change. - *BioScience* 55: 749.

581 Okuyama, T. and Holland, J. N. 2008. Network structural properties mediate the stability of
582 mutualistic communities. - *Ecol. Letters* 11: 208–216.

583 Ottaviani, D. et al. 2006. Body mass as a predictive variable of home-range size among Italian
584 mammals and birds. - *J. Zool.* 269: 317–330.

585 Pires, M. M. et al. 2017. Pleistocene megafaunal extinctions and the functional loss of long-
586 distance seed-dispersal services. - *Ecography* 41: 153–163.

587 Post, W. M. and Pimm, S. L. 1983. Community assembly and food web stability. - *Math. Biosci.*
588 64: 169–192.

589 Pujol, G. et al. 2017 sensitivity: global sensitivity analysis of model outputs. <https://cran.r-project.org/package=sensitivity>.

590

591 Quitián, M. et al. 2018. Elevation-dependent effects of forest fragmentation on plant–bird
592 interaction networks in the tropical Andes. - *Ecography* 101: 990.

593 Rehm, E. et al. 2019. Animal movement drives variation in seed dispersal distance in a plant–
594 animal network. - *Proc. R. Soc. B Biol. Sci.* 286: 20182007–8.

595 Robbins 1993. *Wildlife feeding and Nutrition*, 2nd edn. Academic Press, San Diego.

596 Rogers, H. S. et al. 2019. The total dispersal kernel: a review and future directions. - *AoB Plants*
597 11: 593–13.

598 Rohr, R. P. et al. 2014. Ecological networks. On the structural stability of mutualistic systems. -
599 *Science* 345: 1253497–1253497.

600 Schleuning, M. et al. 2012. Specialization of mutualistic interaction networks decreases toward
601 tropical latitudes. - *Curr. Biol.* 22: 1925–1931.

602 Schurr, F. M. et al. 2009. Long-distance seed dispersal. - *Ann. Plant Rev.* 38: 204–237.

603 Sebastian-Gonzalez, E. et al. 2014. Macroecological trends in nestedness and modularity of seed-
604 dispersal networks: human impact matters. - *Glob. Ecol. Biogeogr.* 24: 293–303.

605 Sebastian-Gonzalez, E. et al. 2017. Species traits and interaction rules shape a species-rich seed-
606 dispersal interaction network. - *Ecol. Evol.* 7: 4496–4506.

607 Seidler, T. G. and Plotkin, J. B. 2006. Seed dispersal and spatial pattern in tropical trees. - PLoS
608 Biol 4: e344.

609 Sole, R. V. and Montoya, J. M. 2001. Complexity and fragility in ecological networks. - Proc. R.
610 Soc. B Biol. Sci. 268: 2039–2045.

611 Sorensen, A. E. 1986. Seed dispersal by adhesion. - Annual Review of Ecology and Systematics
612 17: 443–463.

613 Thébault, E. and Fontaine, C. 2010. Stability of ecological communities and the architecture of
614 mutualistic and trophic networks. - Science 329: 853–856.

615 Thiele, J.C. et al. 2014. Facilitating parameter estimation and sensitivity analysis of agent-based
616 models: A cookbook using netlogo and r. - Journal of Artificial Societies and Social
617 Simulation 17: 11.

618 Thomson, F. J. et al. 2011. Seed dispersal distance is more strongly correlated with plant height
619 than with seed mass. - J. Ecol. 99: 1299–1307.

620 Trakhtenbrot, A. et al. 2005. The importance of long-distance dispersal in biodiversity
621 conservation. - Diversity Distrib. 11: 173–181.

622 Tsoar, A. et al. 2011. A movement ecology approach to study seed dispersal and plant invasion:
623 An overview and application of seed dispersal by fruit bats. In: Fifty Years of Invasion
624 Ecology: The Legacy of Charles Elton (ed. Richardson, D.M.). Wiley-Blackwell, Oxford,
625 UK, pp. 103–119

626 Tucker, V.A. 1974 Energetics of natural avian flight. In Avian energetics (ed. RA Paynter Jr),
627 pp. 298 – 333. Cambridge, MA: *Publ. Nuttall Ornithol. Club* no. 15.

628 Turnbull, L. A. et al. 2000. Are plant populations seed-limited? A review of seed sowing
629 experiments. - Oikos 88: 225–238.

630 Turner, F. B. et al. 1969. Home ranges and body size of lizards. - Ecology 50: 1076–1081.

631 Tylianakis, J. M. et al. 2010. Conservation of species interaction networks. - Biol. Cons. 143:
632 2270–2279.

633 Viana, D. S. et al. 2016. Overseas seed dispersal by migratory birds. - Proc. R. Soc. B Biol. Sci.
634 283: 20152406.

635 Wenny, D. G. and Levey, D. J. 1998. Directed seed dispersal by bellbirds in a tropical cloud
636 forest. - Proc. Natl. Acad. Sci. 95: 6204–6207.

637 Westcott, D. A. and Graham, D. L. 2000. Patterns of movement and seed dispersal of a tropical
638 frugivore. - Oecologia 122: 249–257.

639 Wheelwright, N. T. 1985. Fruit-size, gape width, and the diets of fruit-eating birds. - Ecology 66:
640 808–818.

641 Wilson, A. L. and Downs, C. T. 2012. Knysna turacos (*Tauraco corythaix*) do not improve seed
642 germination of ingested fruit of some indigenous South African tree species. - S. Afr. J. Bot.
643 78: 55–62.

644 Wotton, D. M. and Kelly, D. 2012. Do larger frugivores move seeds further? Body size, seed
645 dispersal distance, and a case study of a large, sedentary pigeon. - J. Biogeogr. 39: 1973–
646 1983.

647 Yoshikawa, T. et al. 2019. Allometric scaling of seed retention time in seed dispersers and its
648 application to estimation of seed dispersal potentials of theropod dinosaurs. - Oikos: 1–26.

649

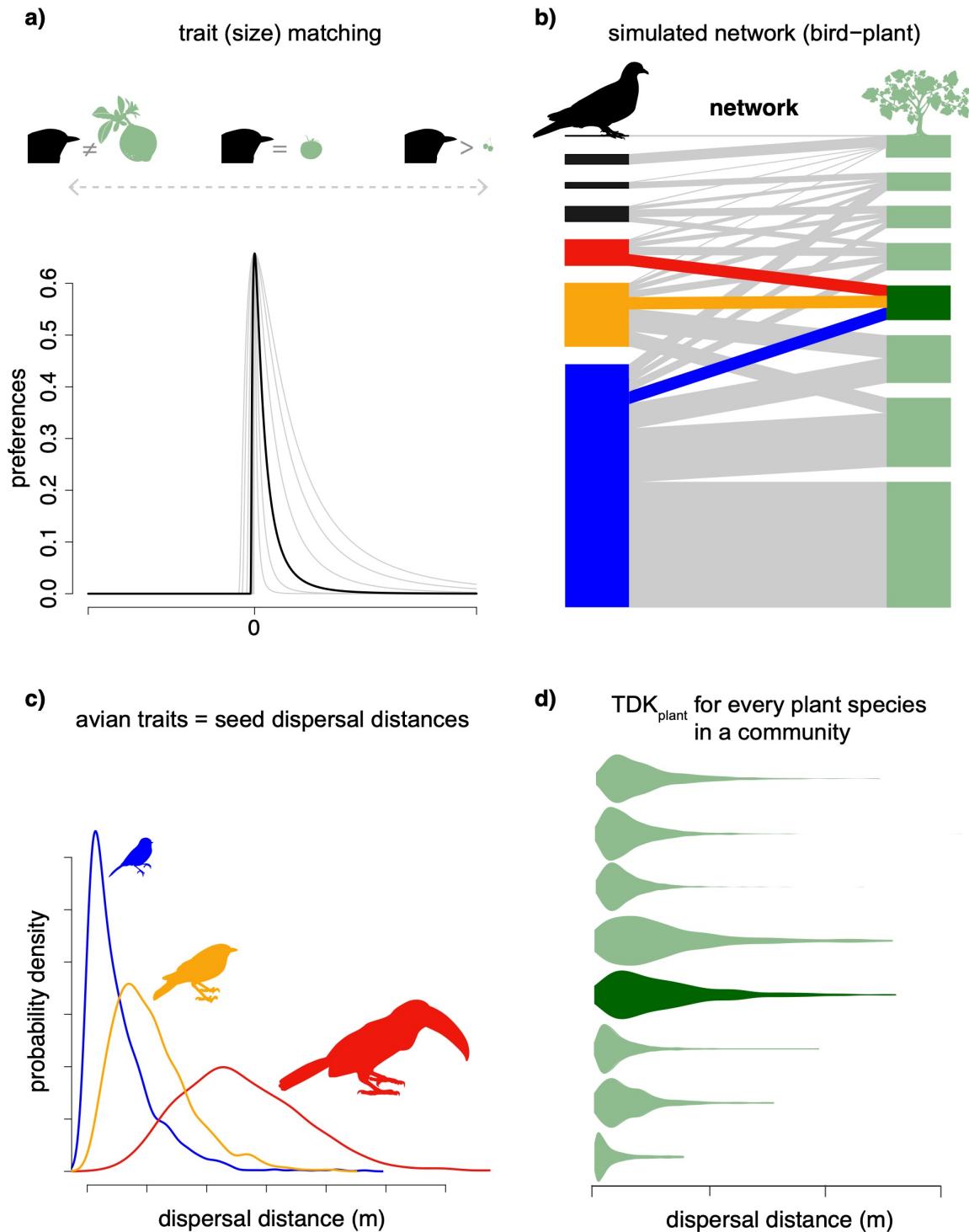
650 **Figure legends**

651 Figure 1. Estimating community seed dispersal ($TDK_{community}$) with trait-based models. The
652 proposed approach varies a) size matching between plant and frugivore species (derived from a
653 right-skewed niche shape of trait matching as a function of trait distances between species; light
654 grey lines indicate wider and narrower skewed niche shapes) to produce b) interaction networks
655 with different degrees of niche partitioning (here, we display a single network with moderate
656 specialisation). Models of interaction networks are combined with c) a trait-based model of
657 frugivore movement to estimate dispersal kernels provided by each frugivore species to estimate
658 d) dispersal distances for every plant species in a community (TDK_{plant}). Colours indicate
659 different frugivore species (blue = avian frugivore with small body size, orange = medium body
660 size, red = large body size), and plant species (dark green = the plant species for which the
661 method is illustrated, light green = all other plant species in the community).

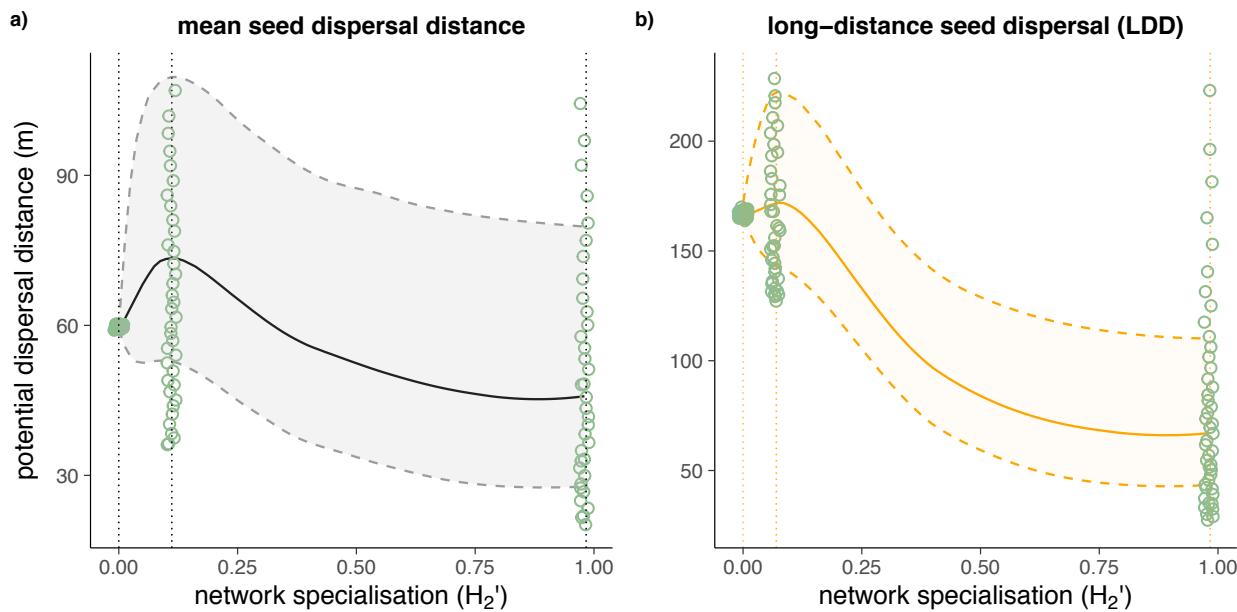
662

663 Figure 2. Relationship between network specialisation (H_2') and community-wide a) mean seed
664 dispersal distances, and b) LDD (95 % seed dispersal distance quantile) for the overall
665 community (representing two alternative descriptors of $TDK_{community}$). Dotted lines intersect the
666 x-axis at $H_2' = 0$ (no niche partitioning), $H_2' = 0.1$ (maximum community seed dispersal or
667 LDD), and at $H_2' = 0.98$ (complete niche partitioning). At each point where dotted lines intersect
668 the x-axis (H_2' : 0, 0.11 & 0.98) open green circles show the mean or 95 % quantile seed
669 dispersal distances for all plant species that fall within the plotted range. Please note different
670 scales of the y-axes.

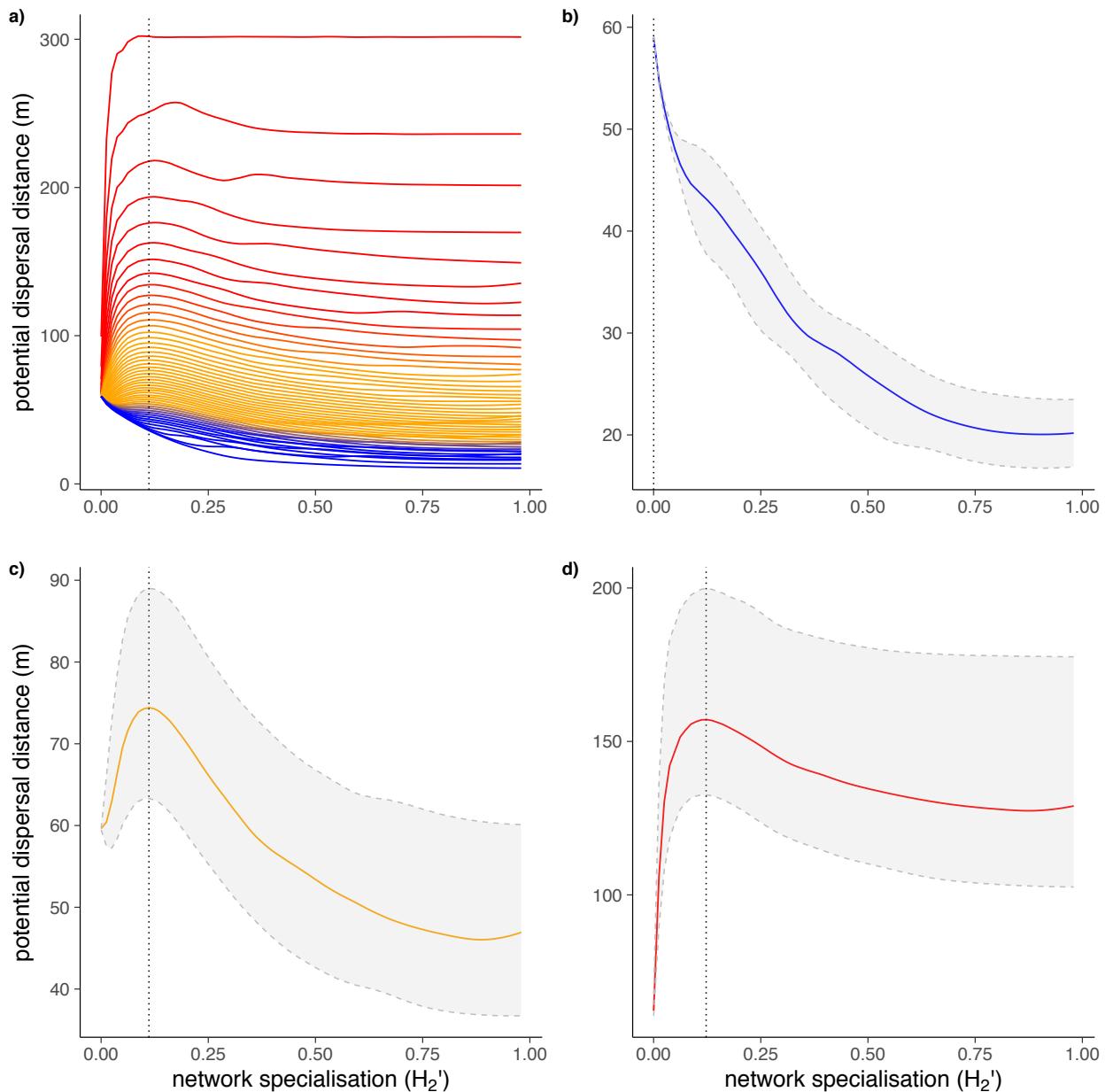
671

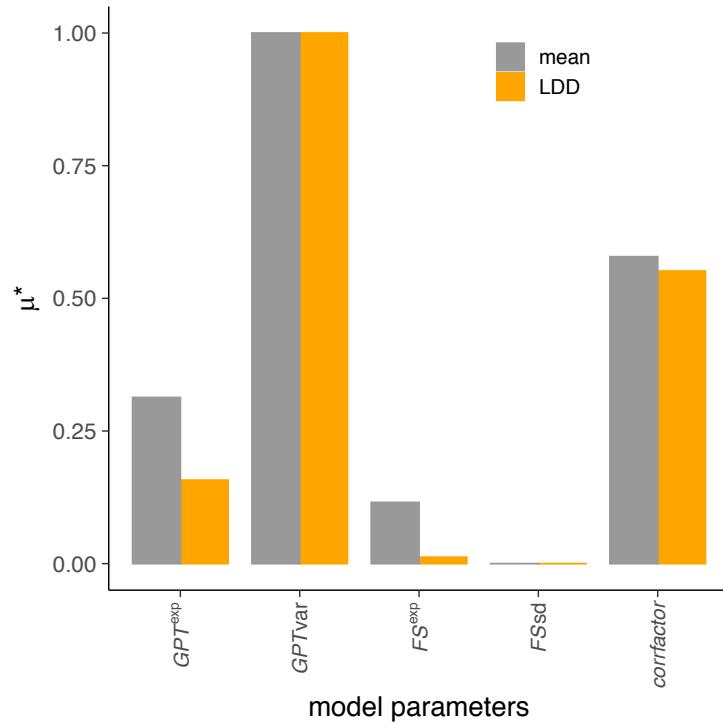

672

673 Figure 3. Relationship between network specialisation (H_2') and seed dispersal distances for
674 plants (TDK_{plant}) with different fruit sizes. The colour gradient ranges from blue (small fruited
675 plant species, smallest 25 %) to orange (medium fruited plant species, middle 50 %) to red (large
676 fruited plant species, largest 25 %). a) Mean seed dispersal distances for each plant species in the
677 community. Median of mean seed dispersal distances b) for plant species with the smallest fruits,
678 c) for plant species with medium sized fruits, and d) for plant species with the largest fruits.
679 Dotted lines intersect the x-axis at maximum seed dispersal distances (community-wide: $H_2' =$
680 0.1; small fruits: $H_2' = 0$; medium fruits: $H_2' = 0.1$; large fruits: $H_2' = 0.11$). The light grey area
681 represents the 75 % confidence intervals. Please note different scales of the y-axes.


682

683 Figure 4. Results from the sensitivity analysis for two different descriptors of $TDK_{community}$: mean
684 seed dispersal, and LDD (95 % quantile of seed dispersal distances). Bars show the μ^* values
685 ranking the relative influence of each model parameter on the results for both descriptors (grey =
686 mean seed dispersal distance; orange = LDD). See Table 1 for a full description of each model
687 parameter under consideration.


688 Figure 1.
689


690 Figure 2.

691 Figure 3.

692 Figure 4.

693 Table 1: Summary information on model parameters included in the global sensitivity analysis.

694

695

parameter	description	range
gut passage time:		
GPT^{exp}	exponent of the GPT equation (3)	0.39–0.62
$GPT\text{var}$	variance of the GPT gamma distribution, s^2 in equation (5) and (6)	2613–931509
bird movement:		
FS^{exp}	exponent of the FS equation (4)	0.13–0.21
$FS\text{sd}$	standard deviation of the FS gaussian distribution	0–4.7
$CorrFactor$	fc in equation (7)	0.001–0.004