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Abstract 

Invasive lobular breast carcinoma (ILC), one of the major breast cancer histological subtypes, 

exhibits unique clinical and molecular features compared to the other well-studied ductal cancer 

subtype (IDC). The pathognomonic feature of ILC is loss of E-cadherin, mainly caused by 

inactivating mutations within the CDH1 gene, but the extent of contribution of this genetic 

alteration to ILC-specific molecular characteristics remains largely understudied. To profile 

these features transcriptionally, we conducted single cell RNA sequencing on a panel of IDC and 

ILC cell lines, as well as an IDC cell line (T47D) with CRISPR-Cas9-mediated knock out (KO) 

of CDH1. Inspection of intra-cell line heterogeneity illustrated genetically and transcriptionally 

distinct subpopulations in multiple cell lines and highlighted rare populations of MCF7 cells 

highly expressing an apoptosis-related signature, positively correlated with a pre-adaptation 

signature to estrogen deprivation. Investigation of CDH1 KO-induced alterations showed 

transcriptomic membranous systems remodeling, elevated resemblance to ILCs in regulon 

activation, and suggests IRF1 as a potential mediator of reduced proliferation and increased 

cytokine-mediated immune-reactivity in ILCs.  
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Introduction 

Among subtyping systems of breast cancer, histological classification remains an essential 

criterion due to distinctive features of the major two subtypes—invasive lobular breast 

carcinoma (ILC) and invasive ductal breast carcinoma (IDC). ILC is the 6th most common cancer 

in women,  with an estimated 40,000 new cases in 2019, despite accounting for a smaller 

proportion of breast cancer cases (~15%) compared to IDC (~75%)1. ILC shows distinct 

signaling in pathways essential for breast cancer growth and proliferation compared to IDC – 

such as the WNT4 signaling in response to estrogen stimulus or blockade2,3, increased PI3K/Akt 

signaling4,5, enhanced IGF1-IGF1R activation6, and dependency on ROS17, which suggest that 

ILC could benefit from unique treatment strategies. The most distinguishing molecular feature of 

ILC is loss of E-cadherin, largely arising from inactivating CDH1 mutations. E-cadherin loss 

disrupts adherens junctions8 and leads to cells with a smaller and rounder morphology, a more 

scattered alignment within tumor stroma, and greater metastatic tropisms to ovaries, peritoneum 

or gastrointestinal (GI) tracts compared to IDC9. Such loss often couples with other molecular 

features, including the aberrant cytosolic localization of p12010.  Meanwhile, E-cadherin-null 

tumor models also exhibit certain ILC resemblance: in vivo, the TP53 CDH1 dual KO mouse 

model showed elevated anoikis resistance and angiogenesis as well as GI tract or peritoneum 

dissemination similarly to human cases11; while in vitro, hypersensitized PI3K/Akt signaling via 

GFR-dependent response was identified in both human and mouse ILC cell lines compared to 

their E-cadherin positive counterparts4. Despite numerous clinical observations and biological 

models, it is currently unclear how E-cadherin loss leads to many of the lobular-specific features. 
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Intra-tumor heterogeneity (ITH) is a hallmark of treatment resistance and mortality in cancer12. 

Multiple genetically distinct populations of cancer cells within the same tumor – typically arising 

from a series of mutational events—are dynamically selected by both intrinsic and external 

pressures and potentially preserve subclones with high invasiveness and/or drug resistance13–16. 

In addition to genetic diversity, transcriptional heterogeneity is also a major driver of ITH in 

multiple cancer types17–20. Such transcriptional variation, defined as cell states, appear transient 

and flexible in response to environmental stimuli while partially influenced by DNA alterations. 

Although ITH is frequently considered under in-vivo context, previous studies have shown there 

is considerable heterogeneity even for cell lines grown in culture. However, the extent of this 

intra-cell line heterogeneity in breast cancer models has not yet been comprehensively 

characterized21,22. 

To quantify ITH between cell lines, referred to as ICH (Inter-Cellular Heterogeneity), and 

investigate differences between IDC and ILC, we performed single cell RNA sequencing 

(scRNA-seq) on a panel of eight cell lines. We first investigated ICH in general: most cell lines 

consist of genetic subclones with unique copy number alterations (CNAs). Transcriptomic 

heterogeneity was shown for MCF7 cells specifically, revealing that it is dominated by cell 

cycle, in which cells dynamically transit through several well-defined phases. Despite the 

majority of cycling cells, a rare population exists distinctively outside the cell cycle with a non-

transiting ‘dormant’ state. Characterization of such ‘outliers’ uncovered a unique apoptotic 

signature, which correlates with other functionally related signatures of dormancy in other cell 

lines and tumors.  

We further inspected transcriptomic alterations induced by loss of E-cadherin, using CRISPR-

mediated CDH1 KO in a commonly used IDC line, T47D. Simple deletion of CDH1 caused cells 
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to cluster independently from wild type (WT) T47D cells in two-dimensional (2D) UMAP 

embedding. Given such distinctive and systemic differences are likely mediated by 

transcriptional factors (TFs)23, we deduced regulon activation states from scRNA-seq data, 

which illustrated elevated resemblance towards two out of the three ILCs in CDH1 KO versus 

WT cells. Among the TFs identified, we found a regulon of IRF1 activated by CDH1 KO, which 

also show higher expression in luminal A ILC tumors than IDCs. While the mechanism whereby 

loss of E-cadherin activates IRF1 is not known, IRF1 regulon activation conforms to the less-

proliferative, and potentially more immune-enriched24 features of the lobular subtype.  
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Results 

scRNA-seq of breast cancer cell lines 

To investigate the effect of loss of E-cadherin in ILC, we generated T47D cells with CDH1 KO 

using CRISPR-Cas9, and ensured its depletion at the protein level. scRNA-seq was performed on 

this T47D KO strain and its parental WT strain, along with seven additional groups of cells: the 

IDC cell line MCF7, MCF7 with ESR1 Y537S mutation, referred to as MCF7-mut; three ILC 

cell lines: MDA-MB-134-VI, SUM44-PE, BCK4; as well as two immortalized but non-

cancerous cell lines: the breast MCF10A, and human embryonic kidney 293 (HEK293) cells. 

Each cell line was cultured separately in standardized conditions, mixed at similar number for 

standard 10X chemistry v3 library preparation, and sequenced with NovaSeq 6000 system (Fig. 

1a). 

Dimensional reduction in 2D UMAP revealed eight distinct clusters (Fig. 1b). We deconvoluted 

single cell identities by mapping transcriptomes of each cluster to six cell lines with available 

bulk-RNA reference. Except for cluster 2, every cluster showed distinctive similarity to a 

specific bulk transcriptome, and thus identity was confidently assigned (Supplementary Figure 

1). Cluster 2 was by default assigned as BCK4, which has no bulk RNA-seq data, and this 

identity was further confirmed by the exclusively high mucin expression in this cell line 

(Supplementary Figure 1). T47D CDH1 KO and WT cells were two proximal but discrete 

clusters and showed altered E-cadherin expression as expected (Supplementary Figure 1). In 

contrast, the MCF7-mut and WT cells, despite being equally mixed, did not cluster separately, 

indicating limited transcriptomic differences when grown in standard media without estrogen 

deprivation. As these cells couldn’t be separated, we refer to them hereafter as MCF7 cells. After 
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data pre-processing, the final single cell library consisted of 4,614 cells, approximately 500 cells 

for each cluster except MCF7 and HEK293, both of which contain approximately 900 cells (Fig. 

1b). 

Expression of key breast cancer genes were examined (Supplementary Figure 1), including 

hormone receptors (ESR1 for estrogen receptor, PGR for progesterone receptor, ERBB2 for 

human epidermal growth factor receptor 2), histology marker (CDH1 for E-cadherin) and 

proliferation indicator (MKI67 for Ki67). Consistent with the previous characterizations25–27, 

ESR1 was expressed higher in the six breast cancer cell lines compared to MCF10A or HEK293; 

PGR showed high expression in T47D and BCK4 cells and low to medium in others;  and 

ERBB2 expression was higher in BCK4 than other cell lines. Consistent with histological 

classification, CDH1 was highly expressed in IDC cell lines (MCF7, T47D WT) and MCF10A, 

compared to ILC cell lines or HEK293. All cell lines had abundant expression of MKI67.  

Despite cell-line specific expression, all markers showed a large variation in RNA abundance. 

Such heterogeneity is also reflected in PAM50 subtypes, calculated for each single cell with the 

subgroup-specific gene-centering method28 (Fig. 1f) – each cell line exhibits several PAM50 

calls in spite of the luminal subtype dominance. 

To quantify inter and intra-cell line differences, we calculated Euclidean distance among all pairs 

of single cells (Fig. 1d). Cells from each cell line showed greater similarity to each other, and 

T47D WT and KO were highly similar to each other. This analysis highlighted the intrinsic inter-

cell line distinctions. Intra-cell line distances were also selected and compared, revealing intra-

cell line heterogeneity which was highest in MCF10A, relatively consistently among breast 

cancer cells, and lowest in HEK293 (Fig. 1e).  
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Inferred copy number aberrations (CNAs) reveal intra-cell line 

subpopulations that in part account for transcriptional heterogeneity 

Cell lines are the most widely used laboratory model of cancer. However, studies have shown 

dissimilarities among breast cancer cell lines from different laboratories, potentially as a result of 

different culture conditions and/or intrinsic evolution of cells with genomic instability21. Even 

within a single cell line, transcriptomic subpopulations exist – composing a small or median 

proportion of the whole population, and are only partially explained by CNA22.  

We examined genetic heterogeneity in cell lines using CNA inferred from scRNA-seq, a method 

described in multiple previous studies18,29. To test robustness and accuracy of this method, we 

incorporated two external 10X scRNA-seq datasets, which investigated the same cell lines 

(MCF7 and T47D cells cultured in standard media29, plus three different MCF7 strains21). 

Different strains of the same cell type exhibited high resemblance to each other, as shown by co-

clustering of T47D CDH1 WT and KO cells with the external T47D dataset (Fig. 2a). Similarly, 

our MCF7 cells clustered with MCF7 strains from two other studies, in a different hierarchical 

branching to T47Ds. Three ILC cell lines (MDA-MB-134-VI, BCK4 and SUM44-PE) clustered 

together in a third independent branch from the hierarchical tree. 

To characterize genetic ICH,  we identified subpopulations from CNA using selected 

chromosome arms as described by Kinker et al.22 (Fig. 2b,c; Supplementary Figure 2). For cell 

lines exhibiting CNA subclones, we compared the genetic subclones with transcriptomic 

subclones (derived from Louvain clustering from normalized RNA expression, and annotated by 

phases deduced from cell cycle gene expression) (Fig. 2d). Most of the cell lines investigated (5 

out of 8) showed distinct genetic subpopulations not attributed to the cell cycle or scRNA-seq 
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library quality (Fig. 2d, Supplementary Figure 2). Some but not all CNA clusters (CNA cluster 1 

in MCF7, CNA cluster 3 in T47D WT and MCF10A), taking up a minority of the total 

population, corresponded to a transcriptomic subcluster based on both 2D layout and Louvain 

clustering (Fig. 2d). 

 

Apoptotic signature derived from a dormant-like MCF7 subpopulation  

To investigate transcriptomic ICH, we focused on MCF7 cells, which had sufficient cell numbers 

in favor of statistical analysis. To cluster cells and select indicative features simultaneously, we 

used non-negative matrix factorization (NMF), which generated a matrix highlighting three 

major blocks of cells with corresponding genes, referred to as NMF clusters/genes (Fig. 3a, 

Supplementary Table 2). 

Most cells belonged to NMF cluster 1 or 3, which overlapped with the two major RNA clusters 

(1 and 2 in Fig. 3a) or CNA subclusters (2 and 3 in Fig. 3a). A comparison with cell cycle 

showed that NMF cluster 1 correspond to the mitotic phase, while cluster 3 majorly consist of 

cells in G1/S, further supported by Gene Ontology (GO) enrichment (Fig. 3a , Supplementary 

Figure 3). The major effect of the cell cycle on transcriptional variation in MCF7 cells was 

demonstrated by highlighting the cell cycle phase of each cell (Fig. 3c), and the transition 

through different states predicted by RNA velocity analysis (Fig. 3d). 

Despite the majority of cells apparently transiting through the cell cycle, there existed a minor 

population (NMF cluster 2) exhibiting a ‘dormant-like’ non-transiting state. This is consistently 

indicated by high latent time values from RNA velocity analysis (Fig. 3e). An inspection of 
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highly expressed genes in this cluster revealed an enrichment of apoptosis-related pathways. We 

thus refer to this cluster of cells as Apop cells and their corresponding genes as ApopSig 

(signature). Interestingly, a recent report revealed that MCF7 cells contain a rare 'pre-adapted 

endocrine resistant’ sub-population even when grown in regular media (DMEM, 10% fetal calf 

serum)29. A pre-adaptation signature (highly-expressed PA Up genes or lowly-expressed PA 

Down genes), derived from these cells, revealed a negative correlation with cell cycle and was 

indicative of dormancy. It is hypothesized that these pre-adapted cells may evade growth 

inhibition by anti-estrogens via exhibiting the less-aggressive dormant-like features. Motivated 

by this discovery, we investigated the association of the ApopSig with the pre-adapted signature. 

Despite a limited overlap in genes present in these two signatures (Supplementary Figure 3), 

ApopSig showed a significant correlation with both the PA Up (r=0.611, p<0.01) and PA Down 

signatures (r=-0.657, p<0.01) (Fig. 3f) in MCF7 cells. This correlation is similarly observed in 

TCGA breast tumors (Fig. 3g) or other breast cell lines (Supplementary Figure 3). Expression 

correlation with other functionally-relevant tumor signatures18 further illustrated a positive 

correlation of ApopSig with partial EMT (epithelial–mesenchymal transition), stress and hypoxia 

(Fig. 3h, Supplementary Figure 3). ApopSig showed enrichment in Luminal A tumors, which has 

the best prognosis among all PAM50 subtypes (Fig. 3i). High expression of ApopSig also 

indicates good prognosis, possibly due to its less aggressive manifestations, which holds true 

even when restricted to the estrogen receptor positive and LumA cohort (HR = 0.18, p = 0.022 

by log rank test) (Supplementary Figure 3).  

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 23, 2020. ; https://doi.org/10.1101/2020.02.21.959023doi: bioRxiv preprint 

https://doi.org/10.1101/2020.02.21.959023
http://creativecommons.org/licenses/by-nc-nd/4.0/


11 
 

 

CDH1 point mutation results in loss of spliced E-cadherin RNA and alters 

expression programs related to the ILC phenotype 

CRISPR-Cas9-mediated CDH1 KO is induced by a single base pair deletion, which generated a 

premature stop codon, mimicking missense mutaitons found in ILC tumors and in genetically 

characterized ILC cell lines30. This point mutation led to depletion of both E-cadherin RNA and 

protein (Fig. 4a, Supplementary Figure 4), caused cells to lose cell-cell adhesion (Fig. 4a) and 

induced a profound effect on the transcriptome landscape, illustrated by distinct clustering of 

CDH1 KO and WT cells (Supplementary Figure 4). When specifically examining spliced versus 

unspliced E-cadherin RNA abundance, the three ILC cell lines and T47D CDH1 KO showed 

depleted spliced RNA abundance but comparable unspliced RNA distribution compared to 

MCF7 and T47D WT cells (Supplementary Figure 4). This suggests that CDH1 mutation does 

not affect the nascent RNA transcript but post-transcriptional events, e.g., causing insufficient 

splicing or rapid degradation31. This result was mirrored in human tumors from TCGA32, in 

which IDC vs ILC showed a difference in exon RNA sequeuncing coverage than intron regions 

of CDH1 (Supplementary Figure 4).  

We explored what genes and pathways were differentially expressed (DE) after CDH1 KO. As 

expected, cell junction-related components were down-regulated following loss of E-cadherin, 

along with some less specific pathways such as developmental or cytosolic processes (Fig. 4c). 

This is consistent with morphology changes in CDH1 KO cells, which were more round with 

brighter margins, indicating decreased cell-cell contacts (Fig. 4a). Components in membranous 

system, endomembrane in particular, as well as stress response-related genes, were up-regulated 
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in CDH1 KO cells (Fig. 4c). Interestingly, extracellular vesicle-related pathways were enriched 

in both up and down regulated genes (Fig. 4c).  

To investigate whether the transcriptomic changes in CDH1 KO cells versus WT truly reflect 

ILC-IDC differences in tumors, we analyzed the expression of DE programs, refined by the 

overlap of DE genes with the original GO program (Supplementary Table 3), among the IDC and 

ILC in TCGA LumA cases. The majority of down-regulated gene sets (10 out of the 16 

deduplicated gene sets) and some up-regulated ones (2 out of the 13 deduplicated gene sets) 

showed significant differences between ILC and IDC tumors, consistent with the trend in CDH1 

KO and WT models (Fig. 4d).  

 

An IRF1 regulon is activated following loss of E-cadherin, and is elevated in 

ILC 

Loss of E-cadherin in epithelial cells has been reported to induce expression of multiple 

transcript factors (TFs) and trigger profound downstream phenotypic changes, such as metastasis 

promotion through epithelial-mesenchymal transition (EMT)33. While EMT does not seem to be  

a classical feature of ILCs34,35, the vast transcriptomic changes in CDH1 KO cells strongly 

suggest involvement of downstream TFs. We therefore searched for TF regulatory modules 

(regulons) which are increased or decreased in activity following CDH1 deletion in T47D cells 

and investigated their expressions in ILC vs IDC tumors. Regulon activation profiles in each cell 

line was calculated using pySCENIC36. Commonly deduced regulons were binarized with an 

optimized threshold on AUC distribution and merged for all cell lines, which were used for 

hierarchical clustering (Fig. 5a,b, Supplementary Table 4). To more specifically quantify inter-
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cell line regulon activation differences, we measured the Jaccard Index between individual cells 

(Fig. 5c), where larger value indicates higher resemblance. Notably, T47D CDH1 KO cells 

showed higher similarity to two out of three ILC cells (MDA-MB-134-VI, BCK4) than the two 

IDC cell lines (MCF7, T47D WT), (Fig. 5c, FDRs < 0.01 based on two sample K-S test, BH 

adjustment). This observation further supported that CDH1 KO in IDC cells initiates an ILC 

specific TF regulon activation. 

We next identified regulons specifically activated following CDH1 KO. Fourteen TFs were 

identified in this manner, which were further investigated regarding expression differences in 

LumA IDC and ILC in TCGA. Only IRF1 and CTCF showed significant differences 

(FDR<0.05), and only IRF1 exhibits higher expression in ILC (Supplementary Figure 5). 

Intriguingly, IRF1 expression was also negatively correlated with CDH1 in tumors (Fig. 5d), 

which further supports its activation in a lobular specific and E-cadherin associated manner. 

Similar observations were obtained in cell lines where ILCs generally have lower CDH1 and 

higher IRF1 or IRF1 regulon activation levels while IDCs show the opposite (except IRF1 

regulon score of SUM44-PE, which is potentially due to influence of small sample size input to 

algorithm performance) (Supplementary Figure 5). 

IRF1 is a canonical target of IFNγ, and in a pathway known to affect cell survival and 

proliferation. We next therefore examined co-expression of IRF1 regulon activation with 

selected MSigDB hallmark signatures with relevant functions in both tumors and cell lines (Fig. 

5g, Supplementary Figure 5). Hierarchical clustering illustrated two distinct blocks, where IRF1 

regulon positively correlates with IFNγ response, apoptosis, and signaling of TNFa, TGFb and 

IL-6; while showing a negative association with cell cycle (Fig. 5g, Supplementary Figure 5). 

Most pathways (4 out of 6) which were positively correlated showed enriched expression in ILC 
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tumors given the difference is significant while all the three pathways with negative correlation 

showed the opposite (Fig. 5f).  
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Discussion 

scRNA-seq allows for single cell resolution of the transcriptome and is fundamentally altering 

our understanding of normal development and cancer. In this report, we used scRNA-seq to 

investigate inter-cellular heterogeneity of breast cancer cell lines, and specifically the unique 

features of ILC. scRNA-seq readily discerned differences between the cell lines, and genetic 

subclones were identified in most cell lines. Transcriptomic changes faithfully predicted the 

transition of cells through the cell cycle. However, in MCF7, a minor subpopulation of cells exist 

outside of the cell cycle, and these cells showed a dormancy related phenotype previously 

reported by other group29. ILC cell lines were distinct from IDC cell lines, and genetic deletion 

of CDH1 caused transcriptional modeling in T47D as to be more similar to ILC than IDC cell 

lines. An investigation of activated regulons following loss of CDH1 identified IRF1, which was 

also activated in LumA ILC. 

scRNA-seq of cell lines revealed genetic and transcriptomic subpopulations within cell lines. A 

previous report of scRNA-seq in cell lines identified genetic and transcriptomic subpopulations 

in many cell lines, but not MCF722. This inconsistency is unlikely due to strain artefacts, as our 

cell lines clustered correctly using CNA with the same cell lines from two other independent 

datasets, including the dataset which didn’t identify subclones in MCF722. A possible reason is 

that we sequenced around five times the number of cells and thus had more power to find 

subpopulations. We found that MCF7 cells contained a subpopulation of non-cycling cells (Apop 

cells) with a dormancy phenotype reported by others29. Importantly, Apop cells corresponded to 

a subpopulation with pre-adaptation (PA) to endocrine therapy – also identified through scRNA-

seq. The PA signatures are reported to support cancer survival in acute hormone deprivation. 
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This strengthens the concept of transcriptionally-distinct minor subpopulations, which are 

present at all times, but in case of a harsh environment (e.g. hormone starvation), use their 

dormant phenotypes to survive and ultimately cause endocrine resistance. 

scRNA-seq showed that IDC and ILC cell lines have distinct transcriptional programs, similar to 

tumors in TCGA; and that genetic loss of CDH1 in an IDC cell line causes extensive 

transcriptional remodeling to make the resultant IDC CDH1 KO cell line to resemble ILC, in 

both morphology and pathways. E-cadherin deficiency in lobular breast cancer was shown to be 

functionally associated with other structural proteins, e.g., elevated reliance on p120 in 

cytokinesis regulation7. From our data, we also observed structure-related transcriptomic changes 

after CDH1 KO, such as junctional disruption; along with other features as expression 

increasement in endomembrane system, stress response and certain exocytosis pathways. These 

phenotypes from cell models were similarly identified when comparing clinical IDC and ILC 

LumA tumors. 

The depletion of E-cadherin RNA and protein has been recognized in the majority of ILC tumors 

while promoter methylation is not associated with histological types37. This on one hand, 

justifies our use of cell lines for modeling ILC tumors, where MDA-MB-134-VI, SUM44-PE 

and T47D all harbor little methylation at CDH1 promoter region (BCK4 had not been 

investigated)38; and on the other hand, suggests post-transcriptional modifications as potential 

driver of E-cadherin depletion. Our observation of alterations in CDH1 spliced RNA, but not 

unspliced RNA in ILC from scRNA-seq data, provides evidence supporting this hypothesis. This 

was validated in TCGA bulk RNA-seq data via an approximation method of split exon/intron 

quantification, where we show more comparable intron RNA coverage in ILC as in IDC than 

exons. Notably, CDH1 in T47D KO and ILCs all bear a pre-mature termination codon (PTC) 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 23, 2020. ; https://doi.org/10.1101/2020.02.21.959023doi: bioRxiv preprint 

https://doi.org/10.1101/2020.02.21.959023
http://creativecommons.org/licenses/by-nc-nd/4.0/


17 
 

while not necessarily contain disruptive mutations at splicing site (BCK4 mutation is currently 

unknown). In this context, loss of spliced mRNA is likely to result from the PTC-induced non-

sense mediated decay, the main driver of E-cadherin transcript depletion as described in PTC-

bearing gastric cancers39.  

While E-cadherin is a membrane protein, its loss causes distinct transcriptional reprogramming, 

likely an indirect effect on TF activity, for example through inhibiting Kaiso’s TF activity as 

shown in mouse models23. To investigate this further, we examined regulon activation and 

identified an IRF1 regulon as being activated following CDH1 KO, meanwhile showing higher 

RNA expression in ILC cell lines or tumors. As a tumor suppressor, IRF1 inhibits proliferation 

and prompts cell death. In breast cancer, IRF1 depletion could well indicate endocrine resistance, 

while its induction by IFNg sensitize cancer cells to endocrine therapy40. These traits conform to 

multiple ILC phenotypes compared to IDC, e.g., being less proliferative and more apoptotic41,42; 

and showing a better response to as well as a better outcome upon adjuvant endocrine 

therapy43,44. Specifically, IRF1 mediates antiestrogen-induced apoptosis, by increasing 

expression of pro-apoptotic genes (BAK, BAX, BIK) while reducing that of anti-apoptotic genes 

(BCL2, BCLW, survivin)45. This corresponds to our observation of positive correlation of IRF1 

regulon with hallmark apoptotic or p53 pathways, and the preferential activation of both 

pathways in ILC than IDC among LumA tumors. Apart from IFNg, IRF1 can also be induced by 

other factors, such as IL-6, tumor necrosis factor (TNF) α and TGFβ40,46,47. Consistently, these 

pathways also correlate with IRF1 regulon through GSVA analysis (Fig. 5g, Supplementary 

Figure 5) while most of them showed enhanced signaling in ILCs (Fig. 5f), e.g., TNFa and IL-6 

pathways. While pro-inflammatory signalings in tumor microenvironment has a complicated role 

in prognosis due to the pleiotropy of cytokines, they could reflect a coordination of enriched 
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immune infiltration and/or enhanced immune reactivity in ILC tumors. Such immune signature 

enrichment, as has been shown previouslys24, might be predisposed by the E-cadherin mediated 

IRF1 activation within tumor cells and may suggest immune-sensitizing therapies in lobular 

breast cancer treatment. 

In summary, scRNA-seq of breast cancer cell lines has revealed significant intra-cell line genetic 

and transcriptomic heterogeneity, with identification of dormant cells likely primed for anti-

estrogen resistance. Knockout of CDH1 in IDC mimics features of ILC and highlights the power 

of single cell sequencing to reveal unique features of breast cancer.   
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Figure Legends 
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Fig. 1 scRNA-seq of breast cancer and non-cancerous cell lines 

a. Schematic pipeline of scRNA-seq. 

b. UMAP embeddings of 4,614 single cells in 8 clusters. Deconvoluted cell line identities are 

displayed in the same row as c. Number of cells: MCF7 (n=977), T47D WT (n=509), T47D KO 

(n=491), MM134 (n=439), SUM44 (n=314), BCK4 (n=512), MCF10A (n=491), HEK293 

(n=881). 

c. Marker gene expression of each cell line. Top three differentially expressed genes were plotted 

for each cell cluster which had the smallest FDR when compared with all other clusters 

(Wilcoxon test, Benjamini-Hochberg (BH) adjustment). Every dot is colored by average 

expression of the gene and sized by the fraction of cells expressing the gene within that cell line.  

d. Hierarchical clustering (Euclidean distance, Ward’s method) of intercellular distances. X%,' in 

the matrix represents the Euclidean distance between cell i and cell j using the top 30 principle 

components from the original expression matrix. Corresponding cell lines are colored on side 

bars, with the same color scheme as in b, c. 

e. Intercellular distances between every two single cells (calculated as Euclidean distance in d) 

within cell lines.  

f. Prediction Analysis of Microarray 50 (PAM50) subtypes scores (left) and assignment (right) of 

every single cell, using typical cell lines (upper) or estrogen-positive tumors (lower) as reference. 

Corresponding cell lines are colored on top bar of heatmap. Bar plots showed both absolute 

number of cells or the ratio of each PAM50 subtypes. LumA: luminal A, LumB: luminal B, 

Her2: HER2-enriched, Basal: basal-like, Normal: normal-like. 
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Fig. 2 Intra-cell line subpopulations from inferred CNA 

a. Copy number alteration (CNA) inferred from scRNA-seq of in-house and external cell lines 

(MCF7*, T47D*: MCF7 and T47D cells cultured in regular media29; MCF7-WT3/4/5: three 

MCF7 strains21), using average CNA of MCF10A as reference. 300 randomly selected cells for 

each cell strain were illustrated with hierarchical clustering (Euclidean distance, Ward’s 

method). 

b. Inferred CNA averaged at chromosome arm level. Only arms with more than 100 genes 

expression were selected. 

c. Cell lines with identifiable intra-cell line CNA subpopulations based on selected chromosome 

arms, colored on heatmap side bars.  

d. Intra-cell line RNA and CNA subpopulations, and cell cycle of cell lines in c. Clusters 

recurrently identified by both CNA and RNA are marked with squares. 
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Fig. 3 Transcriptomic heterogeneity in MCF7 cells 

a. Clustering by Non-negative Matrix Factorization (NMF) in MCF7 cells (n=977). The first 

three rows of top bar showed respectively: cell cycle (row 1), RNA clusters (Louvain method, 

three clusters at resolution=0.4) (row 2) and CNA clusters (row 3). NMF clusters of cells and 

corresponding genes are shown in row 4 of top bar and the side bar. 

b. GO enrichment of marker genes of NMF cluster 2 cells (pink side bar in Fig. 3a). Terms 

connections based on similarity; nodes colored by enrichment FDR (over-representation test, BH 

adjustment) in Cytoscape 3.7.1. 

c. Cell cycle phase scores among single cells in MCF7. 

d. Dynamical changes of cell states through the cell cycle. Cells are colored by the assigned 

phase in the force-directed graph drawing 2D layout. Arrows show directions of cell state 

transition from RNA velocity analysis.  

e. Latent time among MCF7 cells from RNA velocity analysis, indicating developmental stages. 

f. Co-expression of GSVA scores of ApopSig with selected signatures in MCF7 cells (n=977) 

(PA SWNE Up: up-regulated gene signature in pre-adaptation29; PA SWNE Down: down-

regulated gene signature in pre-adaptation29; Cell Cycle: cell-cycle related genes18). Correlation 

showed by Pearson 𝜌 and p. 

g. Co-expression of GSVA scores of ApopSig with selected signatures (as in f) in TCGA breast 

tumors32 (n=817). Correlation showed by Pearson 𝜌 and p. 
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h. Pearson correlation of GSVA scores of ApopSig with selected signatures18,29 in MCF7 cells 

(n=977) and primary breast tumors from TCGA (n=817). Hierarchical clustering was performed 

using Euclidean distance and Ward’s method. 

i. Single sample GSEA (ssGSEA)48,49 scores of ApopSig in different subtypes of breast cancer 

from TCGA. (BRCA: breast cancer samples without histological annotation, IDC: invasive 

ductal carcinoma, ILC: invasive lobular carcinoma, MDLC: mixed ductal/lobular carcinoma). 

ApopSig ssGSEA scores are higher in LumA IDCs (n=200) than each of the other subtypes in 

IDC tumors (LumB: n=122, Her2: n=51, Basal: n=107) (FDR < 0.01, Wilcoxon test, BH 

adjustment). 
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Fig. 4 Differentially activated pathways in CDH1 KO vs WT T47D cells and ILC vs IDC 

tumors 

a. Left: western blot showing E-cadherin expression in T47D KO and WT cells. Right: 

morphology of WT and KO cells (10X bright field). 

b. Normalized unspliced and spliced CDH1 RNA abundance among single cells. 

c. Enriched Gene Ontology terms of down (red linked) and up (green linked) regulated genes 

after CDH1 KO in T47D cells. Terms connections based on similarity; nodes colored by 

enrichment FDR (over-representation test, BH adjustment) in Cytoscape 3.7.1. 

d. Cumulative distribution of GSVA scores of selected signatures in TCGA LumA IDC (n=200) 

and ILC (n=106) tumors. Right shifted curve indicates distribution of higher score values. 
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Fig. 5 Regulon activation states in breast cell lines and TCGA tumors 

a. Binarized regulon/TF activation profiles of each breast single cell deduced from scRNA-seq. 

b. Binarized regulon/TF activation profile for each breast cell line, based on the majority of 

single cell states in a. Hierarchical clustering by Jaccard distance, Ward method. 

c. Regulon activation similarity between each ILC cell line (reference) to MCF7, T47D WT and 

T47D KO (queries), quantified by Jaccard Index. For each reference cell line (per row, labeled 

on y axis), Jaccard Index was calculated between individuals in the reference population and 

every single cell of the three query breast cell lines respectively, depicted in cumulative 

distribution. Larger Jaccard Index indicates higher similarity. 

d. Co-expression patterns of CDH1, IRF1 (log normalized) and IRF1 regulon (ssGSEA score) in 

TCGA LumA IDC and ILCs (𝜌, Pearson correlation coefficient).  

e. Expression of CDH1, IRF1 (log normalized RNA abundance) and IRF1 regulon (ssGSEA 

score) in TCGA LumA cases (BRCA: n=52, IDC: n=200, ILC: n=106, MDLC: n=57). 

Difference between IDCs and ILCs are significant (FDR<0.05) in all the three cases.  

f. ssGSEA scores of selected signatures in Fig. 5g which showed significant difference between 

TCGA LumA IDC (n=200) and ILC (n=106) tumors.  

g. Pearson correlation of ssGSEA scores of IRF1 regulon with relevant functional signatures in 

TCGA tumors (n=817). Signatures are divided to IRF1 co-block, which show positive 

correlation with IRF1 regulon; or IRF1 anti-block, which show negative correlation with IRF1 

regulon. 
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Methods 

Generation of T47D CDH1 KO cells  

Knockout of CDH1 was performed using CRISPR-Cas9 with the Gene Knockout Kit (V1) from 

Synthego (Redwood City, California). Four potential sgRNAs 

(1.CCGGTGTCCCTGGGCGGAGT, 2.CCTCTCTCCAGGTGGCGCCG, 

3.GGCGTCAAAGCCAGGGTGGC, 4.CTCTTGGCTCTGCCAGGAGC) were selected based 

on sequence screening to target exons or introns of CDH1 and introduce a protein truncating 

indel. Each sgRNA was introduced as an oligonucleotide with Cas9 2NLS Nuclease using 

nucleofection. Following a brief incubation period of each sgRNA with the Cas9, the 

ribonucleoprotein complex was nucleofected into T47D cells using the Lonza 4D-Nucleofector. 

72 hours post nucleofection, half of the cell population was subjected to PCR for CDH1 (F: 

5’AGGAGACTGAAAGGGAACGGTG and R: 5’GTGCCCTCAACCTCCTCTTCTT) and 

sanger sequencing was used to confirm the presence of an indel. sgRNA 2 population turned out 

to induce the most complete protein depletion than other pools, and was thus chosen based on the 

sequencing results; demonstrating a 1bp deletion at exon 2 (c.321delC, in NM_004360.5), which 

caused a frameshift with a pre-mature stop codon at exon 16. To select pure KO clones, the 
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sgRNA 2 cell population was single cell sorted into 96 wells by FACS, and supplemented with 

filtered T47D conditioned media. Upon colony formation, clones were expanded, and knockout 

success was examined by Sanger sequencing and Western blot to confirm protein loss (anti-

CDH1 antibody, BD #610182). 8 clones with the least E-cadherin protein expression by 

immunoblot were then pooled in equal ratio and named T47D CDH1 KO. Images of KO and 

parental WT cells were obtained with 10X bright field using Olympus IX83 Inverted 

Microscope.  

Cell line preparation   

MCF7, T47D, MDA-MB-134-VI, SUM44-PE, MCF10A and HEK293 were all purchased from 

American Type Culture Collection (ATCC) and identity authenticated by DNA fingerprinting 

(University of Arizona). Cells were routinely tested for mycoplasma and were negative at all 

times. MCF7 with ESR1-Y537S were generated previously50. BCK4 was a gift from Brita 

Jacobson (University of Colorado). Cells were maintained in media described in Supplementary 

Table 1. 

Single-cell RNA sequencing 

Nine groups of cells, each with viability > 90% based upon Trypan Blue staining and Invitrogen 

automated cell counting, were fixed separately at equal number (round 1,000,000 cells per 

group) in 90% methanol at 4°C for 15 minutes and temporarily stored at -80°C. The cell 

suspension was rehydrated, mixed and processed following 10X Genomics 3' Chromium v3.0 

protocol at University of Pittsburgh Genomics Core. The library was sequenced with NovaSeq 

6000 S1 flow cell at the UPMC Genome Center, getting around 400 million paired reads in total.  

scRNA-seq data pre-processing 
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Raw FASTQ data was aligned and quantified using GRCh38 reference with Cell Ranger (v3.0.2) 

(https://support.10xgenomics.com/single-cell-gene 

expression/software/pipelines/latest/using/count) and velocyto CLI (v0.17.17)51. The resulting 

loom files were loaded with scVelo (v0.1.25)52 and processed with Scanpy (v1.4.4)53. Doublet 

removal was performed using Srublet54. Low quality cells and genes were filtered out by 

selecting cells expressing more than 2000 genes, having UMIs between 8000 and 10,000 with a 

mitochondrial gene percentage of less than 15%; and selecting genes with detectable expression 

in at least 2 cells, resulting in a final library of 4,614 cells and 21,888 genes. Quality metrics of 

the single cell library (number of genes, number of UMIs, and mitochondria reads percent for 

each cell) are depicted in Supplementary Figure 1.  

From the filtered matrix, spliced and unspliced reads were normalized, converted to log scale, 

and imputed respectively by scVelo (v0.1.25)52, using scvelo.pp.normalize_per_cell, 

scvelo.pp.log1p and scvelo.pp.moments. The top 30 principle components were calculated using 

the 3000 most variable genes. This was followed by dimensional reduction using UMAP 

(scanpy.tl.umap) and clustering with Louvain method (scanpy.tl.louvain, resolution=0.2), which 

demonstrated eight distinct clusters in 2D UMAP embedding.   

Cell line identification  

Bulk RNA-seq data were acquired from public database (MCF7, T47D, MDA-MB-134-VI from 

CCLE55; SUM44-PE56; MCF10A57; HEK29358). No bulk RNA-seq data of BCK4 was available. 

For the five breast cell lines, FASTQ files were obtained from Sequence Read Archive 

(SRP186687, SRP026537, SRP064259), quantified using Salmon (v0.12.0)59 using GRCh38 

reference. For HEK293, RNA counts from GSM1867011 and GSM1867012 were directly 

downloaded and the average expression for all genes of these two sample were used 
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subsequently. 1,444 genes were present in all the three data sources (breast cell lines, HEK293 as 

reference cell lines; and scRNA-seq (3,000 genes by 4,614 cells) as query cells), which were 

selected for further analysis.  

Pearson correlation was calculated between each single cell in the 8 clusters and each reference 

cell line using log normalized counts. The reference with the most significantly right-skewed 

coefficient distribution was assigned to the query cluster (Supplementary Figure 1). Every cluster 

was successfully assigned except cluster 2, which was by default BCK4. This was further 

confirmed by the high levels of MUC2 expression (Supplementary Figure 1). WT and KO T47D 

cells were distinguished by CDH1 expression (Supplementary Figure 1).  

PAM50 assignment 

The six breast cancer cell lines (cell lines except MCF10A and HEK293) were classified with 

PAM50 subtypes with subgroup-specific gene-centering method28, using either tumor or cell line 

as reference. Normalized expression of genes in scRNA-seq data that overlapped with the 

PAM50 panel were selected and centered with the pre-calculated ER+ group-specific quantiles, 

as described by Zhao et al.28 For each single cell, a Spearman’s rank correlation coefficient was 

calculated between the centered expression vector and four PAM50 subtype (LumA, LumB, 

HER2, Basal) centroids, using either tumor data from the original University of Northern 

Carolina dataset, or bulk RNA-seq of representative cell lines generated as described above 

(LumA: MCF7, LumB: BT-474, HER2: SK-BR-3; Basal: MDA-MB-231, selected according to 

Roden et al.60). These correlation coefficients were standardized in each cell using z-score, and 

the subtype with highest correlation coefficient was assigned to this cell, which showed 

LumA/LumB dominance (Fig. 1f). 
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CNA Inference 

Two external datasets with scRNA-seq data of cell lines were integrated with our in-house data 

for CNA inference - MCF7 and T47D cells from Hong et al.29, and three MCF7 strains (WT-

3,4,5) from Ben-David et al.21 A raw count matrix from Hong et al.29 was directly downloaded 

from GSE122743 while FASTQ files from Ben-David et al.21 were reprocessed to derive the 

count matrix, following steps described in the scRNA-seq data pre-processing section. The 

average expression vector of the in-house MCF10A cells was utilized as reference.  

Expression count matrix of each cell strain was first log normalized, sorted by genes' 

chromosomal coordinates, and then merged with others using commonly detected genes. 300 

cells were randomly selected from each strain. Only chromosome arms containing more than 100 

genes were kept, and single cell expression was averaged with a moving 100 gene window. This 

averaged expression was used to fit a linear regression model against the MCF10A reference 

vector, and the residual value was assigned as the inferred CNA (Fig. 2a).  

Identify cell subclusters from inferred CNA 

To identify intra-cell line CNA subclusters we adopted a similar method as reported by Kinker et 

al.22 For each cell line, the log normalized expression matrix was centered for each gene and 

moving average of 100 gene window was calculated along the genome. For each chromosome 

arm, a gaussian mixture model (GMM, implemented in scikit-learn61) was fitted to the 

distribution. Selected chromosome arms should best fit with more than one component in GMM, 

each of which having more than 20 cells with confidence higher than 95%.  These selected 

chromosome arms were then used for hierarchical clustering to identify subcluster of cells 
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(Euclidean distance, Ward method) (Fig. 2c). The top three hierarchical branching were 

extracted and differentially colored as the potential CNA subpopulation.  

Identify cell subclusters from RNA 

To identify intra-cell line transcriptomic subpopulations, RNA counts of each cell line were 

extracted from raw data, filtered, log normalized and imputed, using the top 5000 variable genes 

following steps described in the scRNA-seq data pre-processing section. Cells were laid out in a 

force-directed graph drawing implemented in Scanpy53. Louvain clustering was conducted in 

each cell line with resolution=1 in Fig. 2d as an empirical value; and with resolution = 0.4 for 

MCF7 in Fig. 3a, as to generate 3 clusters in correspondence to the 3 clusters via other 

classification methods. 

Cell cycle scoring 

Five lists of phase marker genes (M/G1, G1/S, S, G2, G2/M) of the cell cycle were obtained62.  

Log normalized expression of each cell line was acquired as described in the last section. For 

each cell line and phase, correlation coefficients were calculated between each gene and the 

average gene set expression. Genes with the highest (the upper 40% quantile) coefficients were 

selected as the refined cell cycle markers for that cell line. A score for each phase was calculated 

for each cell, as the average expression of cell cycle markers minus that of a randomly selected 

gene set of the same size (implemented in Scanpy53), which is standardized firstly in each cell 

then in each phase by z-score (Fig. 3c). The phase with the highest score was assigned to the cell.  

RNA velocity analysis 

For each cell line, the union of the refined cell cycle markers were selected to illustrate cell state 

transitioning dynamics, following the RNA velocity pipeline implemented in scVelo52 using 
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stochastic mode, with latent time calculated under the same setting. Stream arrows indicating 

transition dynamics were depicted on the force-directed graph drawing of individual cell line. 

NMF clustering  

NMF was performed as described by Puram, et al.18 in MCF7 cells. The log normalized 

expression matrix of 5000 genes and 977 cells was centered for each gene to obtain the relative 

expression (𝐸*,+) for every gene i in each single cell j. Negative values was replaced by 0 and 

NMF was then conducted with k ranging from 5 to 15 (implemented in 

sklearn.decomposition.NMF). For each k, top 50 genes with highest D score63 were defined as a 

gene set. Recurrent gene sets, which have Jaccard Index > 0.6 with at least one another gene set, 

were selected and merged as indicative features (101 genes). 𝐸*,+ of these 101 genes among 

MCF7 cells were standardized for each cell by cell-wise z-score and showed in heatmap, 

clustered for both genes and cells (Euclidean distance, Ward method) (Fig. 3a). Clades from the 

top three hierarchical branching were selected as NMF clusters. 

Differentially expressed genes  

Differentially expressed genes (DEGs) for each cell line were derived by comparing this cell line 

versus all other cells using Wilcoxon test (BH adjustment, implemented in Scanpy53) (Fig. 1c). 

To calculate DEGs in T47D CDH1 KO versus WT cells, the two groups were extracted from raw 

data, filtered, log normalized and imputed, using the top 3000 variable genes following steps 

described in the scRNA-seq data pre-processing section. DEGs were calculated comparing 

between each other (Wilcoxon test, BH adjustment). The top 100 genes with the smallest FDR 

were selected as marker genes for each group.  

Gene set enrichment analysis 
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Gene lists of interest (marker genes of MCF7 NMF clusters in Fig. 3; T47D WT and KO DEGs 

in Fig. 4) were submitted to the gProfiler website64 (https://biit.cs.ut.ee/gprofiler/) for pathway 

enrichment analysis using over representation test with default parameters. Enriched terms of 

GO dataset (Biological Process and Cellular Component) were selected as input in Cytoscape 

(v3.7.1)65 Enrichment Map, in GeneMANIA Force Directed Layout (similarity_coefficient 

mode) colored by FDR.  

Public gene sets 

Gene sets used for GSVA scoring were obtained as follows: ApopSig derives from genes 

corresponding to NMF cluster 2 (Fig. 3a); PA SWNE Up or Down signatures, representing pre-

adaption features, were accessed from Hong et al.29; hallmark gene sets in Fig. 5g were from 

MSigDB hallmark dataset66; and other intrinsic tumor signatures in Fig. 3h were from Puram et 

al.18 Refined GO terms in Fig. 4d are the overlap of the original GO term with DEGs between 

T47D WT and KO cells. Target genes in IRF1 regulon from ChEA or ENCODE datasets were 

downloaded from Enrichr libraries67,68 (ChEA_2016, ENCODE_TF_ChIP-seq_2015). 

GSVA scoring in TCGA and METABRIC 

Expression count matrix of TCGA breast cancer dataset was obtained from cBioportal69,70 

(meta_RNA_Seq_v2_expression_median.txt) and log normalized as E%,' = log1
23,4
∑ 23,44

 for sample i 

and gene j; corresponding breast cancer subtypes (PAM50, histology) were obtained from 

Ciriello et al.37 METABRIC71 RNA microarray data was downloaded from Synapse and log 

normalized. Gene set variation analysis (GSVA) of selected gene set was performed with GSVA 

R package48,49, in ssgsea or gsva mode with default parameters. Comparisons between TCGA ILC 

versus IDC cases are all limited to LumA population unless otherwise specified. 
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For survival analysis, only estrogen receptor positive (ER+) and LumA patients were selected to 

avoid influence caused alone by PAM50 subtype. ApopSig ssGSEA scores were stratified into 

low and high levels with optimized threshold using in surv_cutpoint and surv_categorize 

implemented in R survminer package (https://cran.r-

project.org/web/packages/survminer/index.html). Kaplan-Meier curve were plotted for each 

group using disease free survival, with p value from log-rank test, and hazard ratio (HR) 

calculated using univariate Cox regression (coxph in R survival package, https://cran.r-

project.org/web/packages/survival/index.html).  

CDH1 exon and intron coverage 

TCGA RNA BAM files were accessed from The Pittsburgh Genome Resource Repository 

(https://www.pgrr.pitt.edu/). Bulk RNA-seq BAM files of breast cancer cell lines were generated 

as described in Tasdemir et al.72 RNA counts of each exon and intron of CDH1 was quantified 

with bedtools (v2.29.1) counts mode and normalized by dividing the total number of counts 

within the sample (Supplementary Figure 4). One representative ILC and IDC patient from 

TCGA37, along with one cell sample from each cell line, were selected for visualization using 

Integrative Genome Viewer73, showing CDH1 coverage from intron 11 to exon16 with GRCh38 

as reference genome (Supplementary Figure 4). 

Regulon activation profiles 

Regulon activities were inferred from raw expression counts of each cell line following the 

default pySCENIC36 pipeline (https://github.com/aertslab/pySCENIC). Each cell was eventually 

assigned with an AUC score for every regulon, indicating its activation status. These scores were 

then binarized into either “on” or “off” states, by setting an optimized threshold on the 



40 
 

distribution of each regulon among all cells using the skimage.filters.threshold_minimum 

function. Target genes of each regulon were selected if it is commonly deduced under that TF in 

at least two of the following cell lines: T47D KO, MDA-MB-134-VI, SUM44-PE and BCK4 

(Supplementary Table 4). 

Jaccard index 

For every pair of cells, a Jaccard index was calculated using the two corresponding binarized 

regulon activation vector of the two cells, X and Y, as 𝐽(𝑋, 𝑌) = ;∩=
;∪	=

, a large value of which 

indicates higher similarity. For every two cell lines, the Jaccard index of all pairwise 

combinations between the two population was selected and plotted as the cumulative distribution 

(Fig. 5c).  

Statistical analyses 

All the analyses and plots were generated in Python (v3.7) (http://www.python.org) or R (v3.6) 

(www.r-project.org). All statistical tests are two-sided, unless specified otherwise. 

Code availability  

Codes and important intermediate data will be available on github 

(https://github.com/leeoesterreich?tab=repositories) upon publication. 

Data availability  

Processed files are deposited in Gene Expression Omnibus (GSE144320) and raw FASTQ files 

are deposited at SRP245420, which will be available upon publication. Processed data can also 

be accessed interactively through our server, implemented by SCelVis74, at 

http://167.172.151.214:8050/dash/viz/CellLines. 
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