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Abstract

Invasive lobular breast carcinoma (ILC), one of the major breast cancer histological subtypes,
exhibits unique clinical and molecular features compared to the other well-studied ductal cancer
subtype (IDC). The pathognomonic feature of ILC is loss of E-cadherin, mainly caused by
inactivating mutations within the CDH1 gene, but the extent of contribution of this genetic
alteration to ILC-specific molecular characteristics remains largely understudied. To profile
these features transcriptionally, we conducted single cell RNA sequencing on a panel of IDC and
ILC cell lines, as well as an IDC cell line (T47D) with CRISPR-Cas9-mediated knock out (KO)
of CDHI. Inspection of intra-cell line heterogeneity illustrated genetically and transcriptionally
distinct subpopulations in multiple cell lines and highlighted rare populations of MCF7 cells
highly expressing an apoptosis-related signature, positively correlated with a pre-adaptation
signature to estrogen deprivation. Investigation of CDH1 KO-induced alterations showed
transcriptomic membranous systems remodeling, elevated resemblance to ILCs in regulon
activation, and suggests /RFI as a potential mediator of reduced proliferation and increased

cytokine-mediated immune-reactivity in ILCs.
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Introduction

Among subtyping systems of breast cancer, histological classification remains an essential
criterion due to distinctive features of the major two subtypes—invasive lobular breast
carcinoma (ILC) and invasive ductal breast carcinoma (IDC). ILC is the 6" most common cancer
in women, with an estimated 40,000 new cases in 2019, despite accounting for a smaller
proportion of breast cancer cases (~15%) compared to IDC (~75%)!. ILC shows distinct
signaling in pathways essential for breast cancer growth and proliferation compared to IDC —
such as the WNT4 signaling in response to estrogen stimulus or blockade??, increased PI3K/Akt
signaling®®, enhanced IGF1-IGFIR activation®, and dependency on ROS17, which suggest that
ILC could benefit from unique treatment strategies. The most distinguishing molecular feature of
ILC is loss of E-cadherin, largely arising from inactivating CDH I mutations. E-cadherin loss
disrupts adherens junctions® and leads to cells with a smaller and rounder morphology, a more
scattered alignment within tumor stroma, and greater metastatic tropisms to ovaries, peritoneum
or gastrointestinal (GI) tracts compared to IDC®. Such loss often couples with other molecular
features, including the aberrant cytosolic localization of p120'°. Meanwhile, E-cadherin-null
tumor models also exhibit certain ILC resemblance: in vivo, the TP53 CDH1 dual KO mouse
model showed elevated anoikis resistance and angiogenesis as well as GI tract or peritoneum
dissemination similarly to human cases'!; while in vitro, hypersensitized PI3K/Akt signaling via
GFR-dependent response was identified in both human and mouse ILC cell lines compared to
their E-cadherin positive counterparts*. Despite numerous clinical observations and biological

models, it is currently unclear how E-cadherin loss leads to many of the lobular-specific features.
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Intra-tumor heterogeneity (ITH) is a hallmark of treatment resistance and mortality in cancer!2.
Multiple genetically distinct populations of cancer cells within the same tumor — typically arising
from a series of mutational events—are dynamically selected by both intrinsic and external
pressures and potentially preserve subclones with high invasiveness and/or drug resistance!3-1°,
In addition to genetic diversity, transcriptional heterogeneity is also a major driver of ITH in
multiple cancer types!’2. Such transcriptional variation, defined as cell states, appear transient
and flexible in respon'se to environmental stimuli while partially influenced by DNA alterations.
Although ITH is frequently considered under in-vivo context, previous studies have shown there
is considerable heterogeneity even for cell lines grown in culture. However, the extent of this

intra-cell line heterogeneity in breast cancer models has not yet been comprehensively

characterized?!-22,

To quantify ITH between cell lines, referred to as ICH (Inter-Cellular Heterogeneity), and
investigate differences between IDC and ILC, we performed single cell RNA sequencing
(scRNA-seq) on a panel of eight cell lines. We first investigated ICH in general: most cell lines
consist of genetic subclones with unique copy number alterations (CNAs). Transcriptomic
heterogeneity was shown for MCF7 cells specifically, revealing that it is dominated by cell
cycle, in which cells dynamically transit through several well-defined phases. Despite the
majority of cycling cells, a rare population exists distinctively outside the cell cycle with a non-
transiting ‘dormant’ state. Characterization of such ‘outliers’ uncovered a unique apoptotic
signature, which correlates with other functionally related signatures of dormancy in other cell

lines and tumors.

We further inspected transcriptomic alterations induced by loss of E-cadherin, using CRISPR-

mediated CDHI KO in a commonly used IDC line, T47D. Simple deletion of CDH1 caused cells
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to cluster independently from wild type (WT) T47D cells in two-dimensional (2D) UMAP
embedding. Given such distinctive and systemic differences are likely mediated by
transcriptional factors (TFs)?, we deduced regulon activation states from scRNA-seq data,
which illustrated elevated resemblance towards two out of the three ILCs in CDHI KO versus
WT cells. Among the TFs identified, we found a regulon of IRF1 activated by CDHI KO, which
also show higher expression in luminal A ILC tumors than IDCs. While the mechanism whereby
loss of E-cadherin activates IRF1 is not known, IRF1 regulon activation conforms to the less-

proliferative, and potentially more immune-enriched?* features of the lobular subtype.
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Results

scRNA-seq of breast cancer cell lines

To investigate the effect of loss of E-cadherin in ILC, we generated T47D cells with CDHI KO
using CRISPR-Cas9, and ensured its depletion at the protein level. scRNA-seq was performed on
this T47D KO strain and its parental WT strain, along with seven additional groups of cells: the
IDC cell line MCF7, MCF7 with ESRI Y537S mutation, referred to as MCF7-mut; three ILC
cell lines: MDA-MB-134-VI, SUM44-PE, BCK4; as well as two immortalized but non-
cancerous cell lines: the breast MCF10A, and human embryonic kidney 293 (HEK293) cells.
Each cell line was cultured separately in standardized conditions, mixed at similar number for
standard 10X chemistry v3 library preparation, and sequenced with NovaSeq 6000 system (Fig.

la).

Dimensional reduction in 2D UMAP revealed eight distinct clusters (Fig. 1b). We deconvoluted
single cell identities by mapping transcriptomes of each cluster to six cell lines with available
bulk-RNA reference. Except for cluster 2, every cluster showed distinctive similarity to a
specific bulk transcriptome, and thus identity was confidently assigned (Supplementary Figure
1). Cluster 2 was by default assigned as BCK4, which has no bulk RNA-seq data, and this
identity was further confirmed by the exclusively high mucin expression in this cell line
(Supplementary Figure 1). T47D CDHI KO and WT cells were two proximal but discrete
clusters and showed altered E-cadherin expression as expected (Supplementary Figure 1). In
contrast, the MCF7-mut and WT cells, despite being equally mixed, did not cluster separately,
indicating limited transcriptomic differences when grown in standard media without estrogen
deprivation. As these cells couldn’t be separated, we refer to them hereafter as MCF7 cells. After
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data pre-processing, the final single cell library consisted of 4,614 cells, approximately 500 cells
for each cluster except MCF7 and HEK?293, both of which contain approximately 900 cells (Fig.

1b).

Expression of key breast cancer genes were examined (Supplementary Figure 1), including
hormone receptors (ESR1 for estrogen receptor, PGR for progesterone receptor, ERBB2 for
human epidermal growth factor receptor 2), histology marker (CDH1 for E-cadherin) and
proliferation indicator (MKI67 for Ki67). Consistent with the previous characterizations? 27,
ESR1 was expressed higher in the six breast cancer cell lines compared to MCF10A or HEK293;
PGR showed high expression in T47D and BCK4 cells and low to medium in others; and
ERBB?2 expression was higher in BCK4 than other cell lines. Consistent with histological
classification, CDHI was highly expressed in IDC cell lines (MCF7, T47D WT) and MCF10A,
compared to ILC cell lines or HEK293. All cell lines had abundant expression of MKI67.
Despite cell-line specific expression, all markers showed a large variation in RNA abundance.
Such heterogeneity is also reflected in PAMS0 subtypes, calculated for each single cell with the

subgroup-specific gene-centering method?® (Fig. 1f) — each cell line exhibits several PAMS50

calls in spite of the luminal subtype dominance.

To quantify inter and intra-cell line differences, we calculated Euclidean distance among all pairs
of single cells (Fig. 1d). Cells from each cell line showed greater similarity to each other, and
T47D WT and KO were highly similar to each other. This analysis highlighted the intrinsic inter-
cell line distinctions. Intra-cell line distances were also selected and compared, revealing intra-
cell line heterogeneity which was highest in MCF10A, relatively consistently among breast

cancer cells, and lowest in HEK293 (Fig. le).
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Inferred copy number aberrations (CNAs) reveal intra-cell line

subpopulations that in part account for transcriptional heterogeneity

Cell lines are the most widely used laboratory model of cancer. However, studies have shown
dissimilarities among breast cancer cell lines from different laboratories, potentially as a result of
different culture conditions and/or intrinsic evolution of cells with genomic instability?!. Even
within a single cell line, transcriptomic subpopulations exist — composing a small or median

proportion of the whole population, and are only partially explained by CNAZ.

We examined genetic heterogeneity in cell lines using CNA inferred from scRNA-seq, a method
described in multiple previous studies'®??. To test robustness and accuracy of this method, we
incorporated two external 10X scRNA-seq datasets, which investigated the same cell lines
(MCF7 and T47D cells cultured in standard media®, plus three different MCF7 strains!).
Different strains of the same cell type exhibited high resemblance to each other, as shown by co-
clustering of T47D CDHI WT and KO cells with the external T47D dataset (Fig. 2a). Similarly,
our MCF7 cells clustered with MCF7 strains from two other studies, in a different hierarchical
branching to T47Ds. Three ILC cell lines (MDA-MB-134-VI, BCK4 and SUM44-PE) clustered

together in a third independent branch from the hierarchical tree.

To characterize genetic ICH, we identified subpopulations from CNA using selected
chromosome arms as described by Kinker et al.?? (Fig. 2b,c; Supplementary Figure 2). For cell
lines exhibiting CNA subclones, we compared the genetic subclones with transcriptomic
subclones (derived from Louvain clustering from normalized RNA expression, and annotated by
phases deduced from cell cycle gene expression) (Fig. 2d). Most of the cell lines investigated (5

out of 8) showed distinct genetic subpopulations not attributed to the cell cycle or scRNA-seq
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library quality (Fig. 2d, Supplementary Figure 2). Some but not all CNA clusters (CNA cluster 1
in MCF7, CNA cluster 3 in T47D WT and MCF10A), taking up a minority of the total
population, corresponded to a transcriptomic subcluster based on both 2D layout and Louvain

clustering (Fig. 2d).

Apoptotic signature derived from a dormant-like MCF7 subpopulation

To investigate transcriptomic ICH, we focused on MCF7 cells, which had sufficient cell numbers
in favor of statistical analysis. To cluster cells and select indicative features simultaneously, we
used non-negative matrix factorization (NMF), which generated a matrix highlighting three
major blocks of cells with corresponding genes, referred to as NMF clusters/genes (Fig. 3a,

Supplementary Table 2).

Most cells belonged to NMF cluster 1 or 3, which overlapped with the two major RNA clusters
(1 and 2 in Fig. 3a) or CNA subclusters (2 and 3 in Fig. 3a). A comparison with cell cycle
showed that NMF cluster 1 correspond to the mitotic phase, while cluster 3 majorly consist of
cells in G1/S, further supported by Gene Ontology (GO) enrichment (Fig. 3a, Supplementary
Figure 3). The major effect of the cell cycle on transcriptional variation in MCF7 cells was
demonstrated by highlighting the cell cycle phase of each cell (Fig. 3c), and the transition

through different states predicted by RNA velocity analysis (Fig. 3d).

Despite the majority of cells apparently transiting through the cell cycle, there existed a minor
population (NMF cluster 2) exhibiting a ‘dormant-like’ non-transiting state. This is consistently

indicated by high latent time values from RNA velocity analysis (Fig. 3e). An inspection of
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highly expressed genes in this cluster revealed an enrichment of apoptosis-related pathways. We
thus refer to this cluster of cells as Apop cells and their corresponding genes as ApopSig
(signature). Interestingly, a recent report revealed that MCF7 cells contain a rare 'pre-adapted
endocrine resistant’ sub-population even when grown in regular media (DMEM, 10% fetal calf
serum)®. A pre-adaptation signature (highly-expressed PA Up genes or lowly-expressed PA
Down genes), derived from these cells, revealed a negative correlation with cell cycle and was
indicative of dormancy. It is hypothesized that these pre-adapted cells may evade growth
inhibition by anti-estrogens via exhibiting the less-aggressive dormant-like features. Motivated
by this discovery, we investigated the association of the ApopSig with the pre-adapted signature.
Despite a limited overlap in genes present in these two signatures (Supplementary Figure 3),
ApopSig showed a significant correlation with both the PA Up (r=0.611, p<0.01) and PA Down
signatures (r=-0.657, p<0.01) (Fig. 3f) in MCF7 cells. This correlation is similarly observed in
TCGA breast tumors (Fig. 3g) or other breast cell lines (Supplementary Figure 3). Expression
correlation with other functionally-relevant tumor signatures'® further illustrated a positive
correlation of ApopSig with partial EMT (epithelial-mesenchymal transition), stress and hypoxia
(Fig. 3h, Supplementary Figure 3). ApopSig showed enrichment in Luminal A tumors, which has
the best prognosis among all PAMS50 subtypes (Fig. 31). High expression of ApopSig also
indicates good prognosis, possibly due to its less aggressive manifestations, which holds true
even when restricted to the estrogen receptor positive and LumA cohort (HR = 0.18, p = 0.022

by log rank test) (Supplementary Figure 3).

10


https://doi.org/10.1101/2020.02.21.959023
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.02.21.959023; this version posted February 23, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

CDH 1 point mutation results in loss of spliced E-cadherin RNA and alters

expression programs related to the ILC phenotype

CRISPR-Cas9-mediated CDHI KO is induced by a single base pair deletion, which generated a
premature stop codon, mimicking missense mutaitons found in ILC tumors and in genetically
characterized ILC cell lines*°. This point mutation led to depletion of both E-cadherin RNA and
protein (Fig. 4a, Supplementary Figure 4), caused cells to lose cell-cell adhesion (Fig. 4a) and
induced a profound effect on the transcriptome landscape, illustrated by distinct clustering of
CDH1 KO and WT cells (Supplementary Figure 4). When specifically examining spliced versus
unspliced E-cadherin RNA abundance, the three ILC cell lines and T47D CDHI KO showed
depleted spliced RNA abundance but comparable unspliced RNA distribution compared to
MCEF7 and T47D WT cells (Supplementary Figure 4). This suggests that CDHI mutation does
not affect the nascent RNA transcript but post-transcriptional events, e.g., causing insufficient
splicing or rapid degradation®'. This result was mirrored in human tumors from TCGA3?, in
which IDC vs ILC showed a difference in exon RNA sequeuncing coverage than intron regions

of CDHI (Supplementary Figure 4).

We explored what genes and pathways were differentially expressed (DE) after CDHI KO. As
expected, cell junction-related components were down-regulated following loss of E-cadherin,
along with some less specific pathways such as developmental or cytosolic processes (Fig. 4c).
This is consistent with morphology changes in CDHI KO cells, which were more round with

brighter margins, indicating decreased cell-cell contacts (Fig. 4a). Components in membranous

system, endomembrane in particular, as well as stress response-related genes, were up-regulated
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in CDH1 KO cells (Fig. 4c). Interestingly, extracellular vesicle-related pathways were enriched

in both up and down regulated genes (Fig. 4c).

To investigate whether the transcriptomic changes in CDHI KO cells versus WT truly reflect
ILC-IDC differences in tumors, we analyzed the expression of DE programs, refined by the
overlap of DE genes with the original GO program (Supplementary Table 3), among the IDC and
ILC in TCGA LumA cases. The majority of down-regulated gene sets (10 out of the 16
deduplicated gene sets) and some up-regulated ones (2 out of the 13 deduplicated gene sets)
showed significant differences between ILC and IDC tumors, consistent with the trend in CDH1

KO and WT models (Fig. 4d).

An IRF1 regulon is activated following loss of E-cadherin, and is elevated in

ILC

Loss of E-cadherin in epithelial cells has been reported to induce expression of multiple
transcript factors (TFs) and trigger profound downstream phenotypic changes, such as metastasis
promotion through epithelial-mesenchymal transition (EMT)3. While EMT does not seem to be
a classical feature of ILCs**3°, the vast transcriptomic changes in CDHI KO cells strongly
suggest involvement of downstream TFs. We therefore searched for TF regulatory modules
(regulons) which are increased or decreased in activity following CDHI deletion in T47D cells
and investigated their expressions in ILC vs IDC tumors. Regulon activation profiles in each cell
line was calculated using pySCENIC?*®. Commonly deduced regulons were binarized with an
optimized threshold on AUC distribution and merged for all cell lines, which were used for
hierarchical clustering (Fig. 5a,b, Supplementary Table 4). To more specifically quantify inter-
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cell line regulon activation differences, we measured the Jaccard Index between individual cells
(Fig. 5¢), where larger value indicates higher resemblance. Notably, T47D CDHI KO cells
showed higher similarity to two out of three ILC cells (MDA-MB-134-VI, BCK4) than the two
IDC cell lines (MCF7, T47D WT), (Fig. 5c, FDRs < 0.01 based on two sample K-S test, BH
adjustment). This observation further supported that CDH KO in IDC cells initiates an ILC

specific TF regulon activation.

We next identified regulons specifically activated following CDHI KO. Fourteen TFs were
identified in this manner, which were further investigated regarding expression differences in
LumA IDC and ILC in TCGA. Only IRF1 and CTCF showed significant differences
(FDR<0.05), and only IRF1 exhibits higher expression in ILC (Supplementary Figure 5).
Intriguingly, /RF'1 expression was also negatively correlated with CDH1 in tumors (Fig. 5d),
which further supports its activation in a lobular specific and E-cadherin associated manner.
Similar observations were obtained in cell lines where ILCs generally have lower CDHI and
higher /IRFI or IRF1 regulon activation levels while IDCs show the opposite (except IRF1
regulon score of SUM44-PE, which is potentially due to influence of small sample size input to

algorithm performance) (Supplementary Figure 5).

IRF1 is a canonical target of IFNy, and in a pathway known to affect cell survival and
proliferation. We next therefore examined co-expression of IRF1 regulon activation with
selected MSigDB hallmark signatures with relevant functions in both tumors and cell lines (Fig.
5g, Supplementary Figure 5). Hierarchical clustering illustrated two distinct blocks, where IRF1
regulon positively correlates with IFNy response, apoptosis, and signaling of TNFo,, TGF3 and
IL-6; while showing a negative association with cell cycle (Fig. 5g, Supplementary Figure 5).
Most pathways (4 out of 6) which were positively correlated showed enriched expression in ILC
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tumors given the difference is significant while all the three pathways with negative correlation

showed the opposite (Fig. 5f).
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Discussion

scRNA-seq allows for single cell resolution of the transcriptome and is fundamentally altering
our understanding of normal development and cancer. In this report, we used scRNA-seq to
investigate inter-cellular heterogeneity of breast cancer cell lines, and specifically the unique
features of ILC. scRNA-seq readily discerned differences between the cell lines, and genetic
subclones were identified in most cell lines. Transcriptomic changes faithfully predicted the
transition of cells through the cell cycle. However, in MCF7, a minor subpopulation of cells exist
outside of the cell cycle, and these cells showed a dormancy related phenotype previously
reported by other group?. ILC cell lines were distinct from IDC cell lines, and genetic deletion
of CDHI1 caused transcriptional modeling in T47D as to be more similar to ILC than IDC cell
lines. An investigation of activated regulons following loss of CDH1 identified /RF 1, which was

also activated in LumA ILC.

scRNA-seq of cell lines revealed genetic and transcriptomic subpopulations within cell lines. A
previous report of scRNA-seq in cell lines identified genetic and transcriptomic subpopulations
in many cell lines, but not MCF722, This inconsistency is unlikely due to strain artefacts, as our
cell lines clustered correctly using CNA with the same cell lines from two other independent
datasets, including the dataset which didn’t identify subclones in MCF7%2. A possible reason is
that we sequenced around five times the number of cells and thus had more power to find
subpopulations. We found that MCF7 cells contained a subpopulation of non-cycling cells (Apop
cells) with a dormancy phenotype reported by others?”. Importantly, Apop cells corresponded to
a subpopulation with pre-adaptation (PA) to endocrine therapy — also identified through scRNA-

seq. The PA signatures are reported to support cancer survival in acute hormone deprivation.
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This strengthens the concept of transcriptionally-distinct minor subpopulations, which are
present at all times, but in case of a harsh environment (e.g. hormone starvation), use their

dormant phenotypes to survive and ultimately cause endocrine resistance.

scRNA-seq showed that IDC and ILC cell lines have distinct transcriptional programs, similar to
tumors in TCGA; and that genetic loss of CDHI in an IDC cell line causes extensive
transcriptional remodeling to make the resultant IDC CDHI KO cell line to resemble ILC, in
both morphology and pathways. E-cadherin deficiency in lobular breast cancer was shown to be
functionally associated with other structural proteins, e.g., elevated reliance on p120 in
cytokinesis regulation’. From our data, we also observed structure-related transcriptomic changes
after CDHI KO, such as junctional disruption; along with other features as expression
increasement in endomembrane system, stress response and certain exocytosis pathways. These
phenotypes from cell models were similarly identified when comparing clinical IDC and ILC

LumA tumors.

The depletion of E-cadherin RNA and protein has been recognized in the majority of ILC tumors
while promoter methylation is not associated with histological types®’. This on one hand,
justifies our use of cell lines for modeling ILC tumors, where MDA-MB-134-VI, SUM44-PE
and T47D all harbor little methylation at CDHI promoter region (BCK4 had not been
investigated)*®; and on the other hand, suggests post-transcriptional modifications as potential
driver of E-cadherin depletion. Our observation of alterations in CDH1 spliced RNA, but not
unspliced RNA in ILC from scRNA-seq data, provides evidence supporting this hypothesis. This
was validated in TCGA bulk RNA-seq data via an approximation method of split exon/intron
quantification, where we show more comparable intron RNA coverage in ILC as in IDC than

exons. Notably, CDHI in T47D KO and ILCs all bear a pre-mature termination codon (PTC)
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while not necessarily contain disruptive mutations at splicing site (BCK4 mutation is currently
unknown). In this context, loss of spliced mRNA is likely to result from the PTC-induced non-
sense mediated decay, the main driver of E-cadherin transcript depletion as described in PTC-

bearing gastric cancers.

While E-cadherin is a membrane protein, its loss causes distinct transcriptional reprogramming,
likely an indirect effect on TF activity, for example through inhibiting Kaiso’s TF activity as
shown in mouse models?*. To investigate this further, we examined regulon activation and
identified an IRF1 regulon as being activated following CDHI KO, meanwhile showing higher
RNA expression in ILC cell lines or tumors. As a tumor suppressor, IRF1 inhibits proliferation
and prompts cell death. In breast cancer, IRF1 depletion could well indicate endocrine resistance,
while its induction by IFNy sensitize cancer cells to endocrine therapy*’. These traits conform to
multiple ILC phenotypes compared to IDC, e.g., being less proliferative and more apoptotic*!#%;
and showing a better response to as well as a better outcome upon adjuvant endocrine
therapy****. Specifically, IRF1 mediates antiestrogen-induced apoptosis, by increasing
expression of pro-apoptotic genes (BAK, BAX, BIK) while reducing that of anti-apoptotic genes
(BCL2, BCLW, survivin)*. This corresponds to our observation of positive correlation of IRF1
regulon with hallmark apoptotic or p53 pathways, and the preferential activation of both
pathways in ILC than IDC among LumA tumors. Apart from IFNy, IRF1 can also be induced by
other factors, such as IL-6, tumor necrosis factor (TNF) a and TGFB**4647_ Consistently, these
pathways also correlate with IRF1 regulon through GSVA analysis (Fig. 5g, Supplementary
Figure 5) while most of them showed enhanced signaling in ILCs (Fig. 5f), e.g., TNFa and IL-6
pathways. While pro-inflammatory signalings in tumor microenvironment has a complicated role

in prognosis due to the pleiotropy of cytokines, they could reflect a coordination of enriched
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immune infiltration and/or enhanced immune reactivity in ILC tumors. Such immune signature
enrichment, as has been shown previouslys®*, might be predisposed by the E-cadherin mediated
IRF1 activation within tumor cells and may suggest immune-sensitizing therapies in lobular

breast cancer treatment.

In summary, scRNA-seq of breast cancer cell lines has revealed significant intra-cell line genetic
and transcriptomic heterogeneity, with identification of dormant cells likely primed for anti-
estrogen resistance. Knockout of CDH/ in IDC mimics features of ILC and highlights the power

of single cell sequencing to reveal unique features of breast cancer.
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Figure Legends
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Fig. 1 scRNA-seq of breast cancer and non-cancerous cell lines
a. Schematic pipeline of scRNA-seq.

b. UMAP embeddings of 4,614 single cells in 8 clusters. Deconvoluted cell line identities are
displayed in the same row as c. Number of cells: MCF7 (n=977), T47D WT (n=509), T47D KO
(n=491), MM134 (n=439), SUM44 (n=314), BCK4 (n=512), MCF10A (n=491), HEK293

(n=881).

c. Marker gene expression of each cell line. Top three differentially expressed genes were plotted
for each cell cluster which had the smallest FDR when compared with all other clusters
(Wilcoxon test, Benjamini-Hochberg (BH) adjustment). Every dot is colored by average

expression of the gene and sized by the fraction of cells expressing the gene within that cell line.

d. Hierarchical clustering (Euclidean distance, Ward’s method) of intercellular distances. X;; in
the matrix represents the Euclidean distance between cell i and cell j using the top 30 principle
components from the original expression matrix. Corresponding cell lines are colored on side

bars, with the same color scheme as in b, c.

e. Intercellular distances between every two single cells (calculated as Euclidean distance in d)

within cell lines.

f. Prediction Analysis of Microarray 50 (PAMS50) subtypes scores (left) and assignment (right) of
every single cell, using typical cell lines (upper) or estrogen-positive tumors (lower) as reference.
Corresponding cell lines are colored on top bar of heatmap. Bar plots showed both absolute
number of cells or the ratio of each PAMS50 subtypes. LumA: luminal A, LumB: luminal B,

Her2: HER2-enriched, Basal: basal-like, Normal: normal-like.
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Fig. 2 Intra-cell line subpopulations from inferred CNA

a. Copy number alteration (CNA) inferred from scRNA-seq of in-house and external cell lines
(MCF7%*, T47D*: MCF7 and T47D cells cultured in regular media>®; MCF7-WT3/4/5: three
MCF7 strains?!), using average CNA of MCF10A as reference. 300 randomly selected cells for
each cell strain were illustrated with hierarchical clustering (Euclidean distance, Ward’s

method).

b. Inferred CNA averaged at chromosome arm level. Only arms with more than 100 genes

expression were selected.

c. Cell lines with identifiable intra-cell line CNA subpopulations based on selected chromosome

arms, colored on heatmap side bars.

d. Intra-cell line RNA and CNA subpopulations, and cell cycle of cell lines in c. Clusters

recurrently identified by both CNA and RNA are marked with squares.
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Fig. 3 Transcriptomic heterogeneity in MCF7 cells

a. Clustering by Non-negative Matrix Factorization (NMF) in MCF7 cells (n=977). The first
three rows of top bar showed respectively: cell cycle (row 1), RNA clusters (Louvain method,
three clusters at resolution=0.4) (row 2) and CNA clusters (row 3). NMF clusters of cells and

corresponding genes are shown in row 4 of top bar and the side bar.

b. GO enrichment of marker genes of NMF cluster 2 cells (pink side bar in Fig. 3a). Terms
connections based on similarity; nodes colored by enrichment FDR (over-representation test, BH

adjustment) in Cytoscape 3.7.1.

c. Cell cycle phase scores among single cells in MCF7.

d. Dynamical changes of cell states through the cell cycle. Cells are colored by the assigned
phase in the force-directed graph drawing 2D layout. Arrows show directions of cell state

transition from RNA velocity analysis.

e. Latent time among MCF7 cells from RNA velocity analysis, indicating developmental stages.

f. Co-expression of GSVA scores of ApopSig with selected signatures in MCF7 cells (n=977)
(PA SWNE Up: up-regulated gene signature in pre-adaptation?’; PA SWNE Down: down-
regulated gene signature in pre-adaptation®’; Cell Cycle: cell-cycle related genes!®). Correlation

showed by Pearson p and p.

g. Co-expression of GSVA scores of ApopSig with selected signatures (as in f) in TCGA breast

tumors®? (n=817). Correlation showed by Pearson p and p.
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h. Pearson correlation of GSVA scores of ApopSig with selected signatures!®2?° in MCF7 cells
(n=977) and primary breast tumors from TCGA (n=817). Hierarchical clustering was performed

using Euclidean distance and Ward’s method.

i. Single sample GSEA (ssGSEA)*#° scores of ApopSig in different subtypes of breast cancer
from TCGA. (BRCA: breast cancer samples without histological annotation, IDC: invasive
ductal carcinoma, ILC: invasive lobular carcinoma, MDLC: mixed ductal/lobular carcinoma).
ApopSig ssGSEA scores are higher in LumA IDCs (n=200) than each of the other subtypes in
IDC tumors (LumB: n=122, Her2: n=51, Basal: n=107) (FDR < 0.01, Wilcoxon test, BH

adjustment).
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Fig. 4 Differentially activated pathways in CDHI1 KO vs WT T47D cells and ILC vs IDC

tumors

a. Left: western blot showing E-cadherin expression in T47D KO and WT cells. Right:

morphology of WT and KO cells (10X bright field).

b. Normalized unspliced and spliced CDHI RNA abundance among single cells.

c. Enriched Gene Ontology terms of down (red linked) and up (green linked) regulated genes
after CDHI KO in T47D cells. Terms connections based on similarity; nodes colored by

enrichment FDR (over-representation test, BH adjustment) in Cytoscape 3.7.1.

d. Cumulative distribution of GSVA scores of selected signatures in TCGA LumA IDC (n=200)

and ILC (n=106) tumors. Right shifted curve indicates distribution of higher score values.
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Fig. 5 Regulon activation states in breast cell lines and TCGA tumors

a. Binarized regulon/TF activation profiles of each breast single cell deduced from scRNA-seq.

b. Binarized regulon/TF activation profile for each breast cell line, based on the majority of

single cell states in a. Hierarchical clustering by Jaccard distance, Ward method.

c. Regulon activation similarity between each ILC cell line (reference) to MCF7, T47D WT and
T47D KO (queries), quantified by Jaccard Index. For each reference cell line (per row, labeled
on y axis), Jaccard Index was calculated between individuals in the reference population and
every single cell of the three query breast cell lines respectively, depicted in cumulative

distribution. Larger Jaccard Index indicates higher similarity.

d. Co-expression patterns of CDH1, IRF1 (log normalized) and IRF1 regulon (ssGSEA score) in

TCGA LumA IDC and ILCs (p, Pearson correlation coefficient).

e. Expression of CDH1, IRFI (log normalized RNA abundance) and IRF1 regulon (ssGSEA
score) in TCGA LumA cases (BRCA: n=52, IDC: n=200, ILC: n=106, MDLC: n=57).

Difference between IDCs and ILCs are significant (FDR<0.05) in all the three cases.

f. ssGSEA scores of selected signatures in Fig. 5g which showed significant difference between

TCGA LumA IDC (n=200) and ILC (n=106) tumors.

g. Pearson correlation of ssGSEA scores of IRF1 regulon with relevant functional signatures in
TCGA tumors (n=817). Signatures are divided to IRF1 co-block, which show positive
correlation with IRF1 regulon; or IRF1 anti-block, which show negative correlation with IRF1

regulon.
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Methods

Generation of T47D CDH1 KO cells

Knockout of CDHI was performed using CRISPR-Cas9 with the Gene Knockout Kit (V1) from
Synthego (Redwood City, California). Four potential sgRNAs
(1.CCGGTGTCCCTGGGCGGAGT, 2.CCTCTCTCCAGGTGGCGCCQG,
3.GGCGTCAAAGCCAGGGTGGC, 4.CTCTTGGCTCTGCCAGGAGC) were selected based
on sequence screening to target exons or introns of CDH1 and introduce a protein truncating
indel. Each sgRNA was introduced as an oligonucleotide with Cas9 2NLS Nuclease using
nucleofection. Following a brief incubation period of each sgRNA with the Cas9, the
ribonucleoprotein complex was nucleofected into T47D cells using the Lonza 4D-Nucleofector.
72 hours post nucleofection, half of the cell population was subjected to PCR for CDH]I (F:
5’AGGAGACTGAAAGGGAACGGTG and R: 5’GTGCCCTCAACCTCCTCTTCTT) and
sanger sequencing was used to confirm the presence of an indel. sgRNA 2 population turned out
to induce the most complete protein depletion than other pools, and was thus chosen based on the
sequencing results; demonstrating a 1bp deletion at exon 2 (c.321delC, in NM_004360.5), which

caused a frameshift with a pre-mature stop codon at exon 16. To select pure KO clones, the
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sgRNA 2 cell population was single cell sorted into 96 wells by FACS, and supplemented with
filtered T47D conditioned media. Upon colony formation, clones were expanded, and knockout
success was examined by Sanger sequencing and Western blot to confirm protein loss (anti-
CDH|1 antibody, BD #610182). 8 clones with the least E-cadherin protein expression by
immunoblot were then pooled in equal ratio and named T47D CDH1 KO. Images of KO and
parental WT cells were obtained with 10X bright field using Olympus IX83 Inverted

Microscope.

Cell line preparation

MCF7, T47D, MDA-MB-134-VI, SUM44-PE, MCF10A and HEK293 were all purchased from
American Type Culture Collection (ATCC) and identity authenticated by DNA fingerprinting
(University of Arizona). Cells were routinely tested for mycoplasma and were negative at all
times. MCF7 with ESR1-Y537S were generated previously’’. BCK4 was a gift from Brita
Jacobson (University of Colorado). Cells were maintained in media described in Supplementary

Table 1.

Single-cell RNA sequencing

Nine groups of cells, each with viability > 90% based upon Trypan Blue staining and Invitrogen
automated cell counting, were fixed separately at equal number (round 1,000,000 cells per
group) in 90% methanol at 4°C for 15 minutes and temporarily stored at -80°C. The cell
suspension was rehydrated, mixed and processed following 10X Genomics 3' Chromium v3.0
protocol at University of Pittsburgh Genomics Core. The library was sequenced with NovaSeq

6000 S1 flow cell at the UPMC Genome Center, getting around 400 million paired reads in total.

scRNA-seq data pre-processing
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Raw FASTQ data was aligned and quantified using GRCh38 reference with Cell Ranger (v3.0.2)
(https://support.10xgenomics.com/single-cell-gene
expression/software/pipelines/latest/using/count) and velocyto CLI (v0.17.17)°L. The resulting
loom files were loaded with scVelo (v0.1.25)>? and processed with Scanpy (v1.4.4)33. Doublet
removal was performed using Srublet®*. Low quality cells and genes were filtered out by
selecting cells expressing more than 2000 genes, having UMIs between 8000 and 10,000 with a
mitochondrial gene percentage of less than 15%; and selecting genes with detectable expression
in at least 2 cells, resulting in a final library of 4,614 cells and 21,888 genes. Quality metrics of
the single cell library (number of genes, number of UMIs, and mitochondria reads percent for

each cell) are depicted in Supplementary Figure 1.

From the filtered matrix, spliced and unspliced reads were normalized, converted to log scale,
and imputed respectively by scVelo (v0.1.25)2, using scvelo.pp.normalize per cell,
scvelo.pp.loglp and scvelo.pp.moments. The top 30 principle components were calculated using
the 3000 most variable genes. This was followed by dimensional reduction using UMAP
(scanpy.tl.umap) and clustering with Louvain method (scanpy.tl.louvain, resolution=0.2), which

demonstrated eight distinct clusters in 2D UMAP embedding.

Cell line identification

Bulk RNA-seq data were acquired from public database (MCF7, T47D, MDA-MB-134-VI from
CCLE®; SUM44-PE>%; MCF10A>7; HEK293°®). No bulk RNA-seq data of BCK4 was available.
For the five breast cell lines, FASTQ files were obtained from Sequence Read Archive
(SRP186687, SRP026537, SRP064259), quantified using Salmon (v0.12.0)> using GRCh38
reference. For HEK293, RNA counts from GSM1867011 and GSM 1867012 were directly

downloaded and the average expression for all genes of these two sample were used
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subsequently. 1,444 genes were present in all the three data sources (breast cell lines, HEK293 as
reference cell lines; and scRNA-seq (3,000 genes by 4,614 cells) as query cells), which were

selected for further analysis.

Pearson correlation was calculated between each single cell in the 8 clusters and each reference
cell line using log normalized counts. The reference with the most significantly right-skewed
coefficient distribution was assigned to the query cluster (Supplementary Figure 1). Every cluster
was successfully assigned except cluster 2, which was by default BCK4. This was further
confirmed by the high levels of MUC2 expression (Supplementary Figure 1). WT and KO T47D

cells were distinguished by CDH1I expression (Supplementary Figure 1).
PAMS0 assignment

The six breast cancer cell lines (cell lines except MCF10A and HEK293) were classified with
PAMS50 subtypes with subgroup-specific gene-centering method?®, using either tumor or cell line
as reference. Normalized expression of genes in scCRNA-seq data that overlapped with the
PAMS50 panel were selected and centered with the pre-calculated ER+ group-specific quantiles,
as described by Zhao et al.?® For each single cell, a Spearman’s rank correlation coefficient was
calculated between the centered expression vector and four PAMS0 subtype (LumA, LumB,
HER2, Basal) centroids, using either tumor data from the original University of Northern
Carolina dataset, or bulk RNA-seq of representative cell lines generated as described above
(LumA: MCF7, LumB: BT-474, HER2: SK-BR-3; Basal: MDA-MB-231, selected according to
Roden et al.®%). These correlation coefficients were standardized in each cell using z-score, and
the subtype with highest correlation coefficient was assigned to this cell, which showed

LumA/LumB dominance (Fig. 1f).
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CNA Inference

Two external datasets with sScRNA-seq data of cell lines were integrated with our in-house data
for CNA inference - MCF7 and T47D cells from Hong et al.?°, and three MCF7 strains (WT-
3,4,5) from Ben-David et al.?! A raw count matrix from Hong et al.?’ was directly downloaded
from GSE122743 while FASTQ files from Ben-David et al.?! were reprocessed to derive the
count matrix, following steps described in the scRNA-seq data pre-processing section. The

average expression vector of the in-house MCF10A cells was utilized as reference.

Expression count matrix of each cell strain was first log normalized, sorted by genes'
chromosomal coordinates, and then merged with others using commonly detected genes. 300
cells were randomly selected from each strain. Only chromosome arms containing more than 100
genes were kept, and single cell expression was averaged with a moving 100 gene window. This
averaged expression was used to fit a linear regression model against the MCF10A reference

vector, and the residual value was assigned as the inferred CNA (Fig. 2a).

Identify cell subclusters from inferred CNA

To identify intra-cell line CNA subclusters we adopted a similar method as reported by Kinker et
al.?? For each cell line, the log normalized expression matrix was centered for each gene and
moving average of 100 gene window was calculated along the genome. For each chromosome
arm, a gaussian mixture model (GMM, implemented in scikit-learn®!) was fitted to the
distribution. Selected chromosome arms should best fit with more than one component in GMM,
each of which having more than 20 cells with confidence higher than 95%. These selected

chromosome arms were then used for hierarchical clustering to identify subcluster of cells
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(Euclidean distance, Ward method) (Fig. 2c). The top three hierarchical branching were

extracted and differentially colored as the potential CNA subpopulation.

Identify cell subclusters from RNA

To identify intra-cell line transcriptomic subpopulations, RNA counts of each cell line were
extracted from raw data, filtered, log normalized and imputed, using the top 5000 variable genes
following steps described in the scRNA-seq data pre-processing section. Cells were laid out in a
force-directed graph drawing implemented in Scanpy?>. Louvain clustering was conducted in
each cell line with resolution=1 in Fig. 2d as an empirical value; and with resolution = 0.4 for
MCF7 in Fig. 3a, as to generate 3 clusters in correspondence to the 3 clusters via other

classification methods.

Cell cycle scoring

Five lists of phase marker genes (M/G1, G1/S, S, G2, G2/M) of the cell cycle were obtained®?.
Log normalized expression of each cell line was acquired as described in the last section. For
each cell line and phase, correlation coefficients were calculated between each gene and the
average gene set expression. Genes with the highest (the upper 40% quantile) coefficients were
selected as the refined cell cycle markers for that cell line. A score for each phase was calculated
for each cell, as the average expression of cell cycle markers minus that of a randomly selected
gene set of the same size (implemented in Scanpy>?), which is standardized firstly in each cell

then in each phase by z-score (Fig. 3¢). The phase with the highest score was assigned to the cell.

RNA velocity analysis

For each cell line, the union of the refined cell cycle markers were selected to illustrate cell state

transitioning dynamics, following the RNA velocity pipeline implemented in scVelo®? using

36



stochastic mode, with latent time calculated under the same setting. Stream arrows indicating

transition dynamics were depicted on the force-directed graph drawing of individual cell line.
NMF clustering

NMF was performed as described by Puram, et al.!® in MCF7 cells. The log normalized
expression matrix of 5000 genes and 977 cells was centered for each gene to obtain the relative
expression (E; ;) for every gene i in each single cell j. Negative values was replaced by 0 and
NMF was then conducted with k ranging from 5 to 15 (implemented in
sklearn.decomposition.NMF). For each k, top 50 genes with highest D score®® were defined as a
gene set. Recurrent gene sets, which have Jaccard Index > 0.6 with at least one another gene set,
were selected and merged as indicative features (101 genes). E; ; of these 101 genes among
MCEF7 cells were standardized for each cell by cell-wise z-score and showed in heatmap,
clustered for both genes and cells (Euclidean distance, Ward method) (Fig. 3a). Clades from the

top three hierarchical branching were selected as NMF clusters.
Differentially expressed genes

Differentially expressed genes (DEGs) for each cell line were derived by comparing this cell line
versus all other cells using Wilcoxon test (BH adjustment, implemented in Scanpy>?) (Fig. Ic).
To calculate DEGs in T47D CDH1 KO versus WT cells, the two groups were extracted from raw
data, filtered, log normalized and imputed, using the top 3000 variable genes following steps
described in the scRNA-seq data pre-processing section. DEGs were calculated comparing
between each other (Wilcoxon test, BH adjustment). The top 100 genes with the smallest FDR

were selected as marker genes for each group.

Gene set enrichment analysis
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Gene lists of interest (marker genes of MCF7 NMF clusters in Fig. 3; T47D WT and KO DEGs
in Fig. 4) were submitted to the gProfiler website®* (https://biit.cs.ut.ee/gprofiler/) for pathway
enrichment analysis using over representation test with default parameters. Enriched terms of
GO dataset (Biological Process and Cellular Component) were selected as input in Cytoscape
(v3.7.1)% Enrichment Map, in GeneMANIA Force Directed Layout (similarity coefficient

mode) colored by FDR.
Public gene sets

Gene sets used for GSVA scoring were obtained as follows: ApopSig derives from genes
corresponding to NMF cluster 2 (Fig. 3a); PA SWNE Up or Down signatures, representing pre-
adaption features, were accessed from Hong et al.?’; hallmark gene sets in Fig. 5g were from
MSigDB hallmark dataset®®; and other intrinsic tumor signatures in Fig. 3h were from Puram et
al.!8 Refined GO terms in Fig. 4d are the overlap of the original GO term with DEGs between
T47D WT and KO cells. Target genes in IRF1 regulon from ChEA or ENCODE datasets were

downloaded from Enrichr libraries®”-% (ChEA_ 2016, ENCODE_TF_ChIP-seq_2015).

GSVA scoring in TCGA and METABRIC

Expression count matrix of TCGA breast cancer dataset was obtained from cBioportal®®:7°

(meta_RNA_Seq_v2_expression_median.txt) and log normalized as E;; = log, ZX% for sample 1
1)

and gene j; corresponding breast cancer subtypes (PAMS50, histology) were obtained from
Ciriello et al.*” METABRIC’! RNA microarray data was downloaded from Synapse and log
normalized. Gene set variation analysis (GSVA) of selected gene set was performed with GSVA
R package*®#°, in ssgsea or gsva mode with default parameters. Comparisons between TCGA ILC
versus IDC cases are all limited to LumA population unless otherwise specified.
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For survival analysis, only estrogen receptor positive (ER+) and LumA patients were selected to
avoid influence caused alone by PAMS50 subtype. ApopSig ssGSEA scores were stratified into
low and high levels with optimized threshold using in surv_cutpoint and surv_categorize
implemented in R survminer package (https://cran.r-
project.org/web/packages/survminer/index.html). Kaplan-Meier curve were plotted for each
group using disease free survival, with p value from log-rank test, and hazard ratio (HR)
calculated using univariate Cox regression (coxph in R survival package, https://cran.r-

project.org/web/packages/survival/index.html).
CDH]1 exon and intron coverage

TCGA RNA BAM files were accessed from The Pittsburgh Genome Resource Repository
(https://www.pgrr.pitt.edu/). Bulk RNA-seq BAM files of breast cancer cell lines were generated
as described in Tasdemir et al.”> RNA counts of each exon and intron of CDH1 was quantified
with bedtools (v2.29.1) counts mode and normalized by dividing the total number of counts
within the sample (Supplementary Figure 4). One representative ILC and IDC patient from
TCGA?’, along with one cell sample from each cell line, were selected for visualization using
Integrative Genome Viewer’?, showing CDH1 coverage from intron 11 to exon16 with GRCh38

as reference genome (Supplementary Figure 4).
Regulon activation profiles

Regulon activities were inferred from raw expression counts of each cell line following the
default pySCENIC?® pipeline (https://github.com/aertslab/pySCENIC). Each cell was eventually
assigned with an AUC score for every regulon, indicating its activation status. These scores were

then binarized into either “on” or “off” states, by setting an optimized threshold on the
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distribution of each regulon among all cells using the skimage.filters.threshold minimum
function. Target genes of each regulon were selected if it is commonly deduced under that TF in
at least two of the following cell lines: T47D KO, MDA-MB-134-VI, SUM44-PE and BCK4

(Supplementary Table 4).
Jaccard index

For every pair of cells, a Jaccard index was calculated using the two corresponding binarized
regulon activation vector of the two cells, X and Y, as J(X,Y) = %, a large value of which

indicates higher similarity. For every two cell lines, the Jaccard index of all pairwise
combinations between the two population was selected and plotted as the cumulative distribution

(Fig. 5c¢).
Statistical analyses

All the analyses and plots were generated in Python (v3.7) (http://www.python.org) or R (v3.6)

(www.r-project.org). All statistical tests are two-sided, unless specified otherwise.
Code availability

Codes and important intermediate data will be available on github

(https://github.com/leeoesterreich?tab=repositories) upon publication.
Data availability

Processed files are deposited in Gene Expression Omnibus (GSE144320) and raw FASTQ files
are deposited at SRP245420, which will be available upon publication. Processed data can also
be accessed interactively through our server, implemented by SCelVis’, at

hitp://167.172.151.214:8050/dash/viz/CellLines.
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