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ABSTRACT

Mechanisms-of-resistance to decitabine and 5-azacytidine, mainstay treatments for myeloid malignancies,
require investigation and countermeasures. Both are nucleoside analog pro-drugs processed by pyrimidine
metabolism into a nucleotide analog that depletes the key epigenetic regulator DNA methyltranseferase 1
(DNMT1). We report here that DNMT1 protein, although substantially depleted (~50%) in patients’ bone marrows
at response, rebounded at relapse, and explaining this, we found pyrimidine metabolism gene expression shifts
averse to the processing of each pro-drug. The same metabolic shifts observed clinically were rapidly
recapitulated in leukemia cells exposed to the pro-drugs in vitro. Pyrimidine metabolism is a network that senses
and preserves nucleotide balances: Decitabine, a deoxycytidine analog, and 5-azacytidine, a cytidine analog,
caused acute and distinct nucleotide imbalances, by off-target inhibition of thymidylate synthase and
ribonucleotide reductase respectively. Resulting expression changes in key pyrimidine metabolism enzymes
peaked 72-96 hours later. Continuous pro-drug exposure stabilized metabolic shifts generated acutely,
preventing DNMT1-depletion and permitting exponential leukemia out-growth as soon as day 40. Although
dampening to activity of the pro-drug initially applied, adaptive metabolic responses primed for activity of the
other. Hence, in xenotransplant models of chemorefractory AML, alternating decitabine with 5-azacytidine, timed
to exploit compensating metabolic shifts, and addition of an inhibitor of a catabolic enzyme induced by
decitabine/5-azacytidine, extended DNMT1-depletion and time-to-distress by several months versus either pro-
drug alone. In sum, resistance to decitabine and 5-azacytidine emerges from adaptive responses of the

pyrimidine metabolism network; these responses can be anticipated and thus exploited.
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INTRODUCTION

The deoxycytidine analog pro-drug decitabine and the cytidine analog pro-drug 5-azacytidine can increase life-
spans of patients with myeloid malignancies, shown by randomized trials in patients with myelodysplastic
syndromes (MDS) and acute myeloid leukemia (AML)(reviewed in). Both pro-drugs are processed by pyrimidine
metabolism into a deoxycytidine triphosphate (dCTP) analog, Aza-dCTP, that depletes the key epigenetic
regulator DNA methyltransferase 1 (DNMT1) in dividing cells2. DNMT1-depletion terminates malignant self-
replication but maintains normal hematopoietic stem cell self-replication®* — a vital therapeutic index when
treating myeloid malignancies, since recovery by functional hematopoiesis is needed to reverse low blood
counts, the cause of morbidity and death. Also clinically significant, the cell cycle exits induced by DNMT1-
depletion do not require the p53 apoptosis axis, and can hence occur even in TP53-mutated, chemotherapy-
resistant malignant cells (reviewed in'®): Accordingly, decitabine or 5-azacytidine can benefit even patients with
high risk, chemorefractory disease!. Nevertheless, only ~40% of treated patients benefit overall, and even in
responders, relapse is typical. There is therefore a need to understand the mechanisms by which malignant cells
resist decitabine or 5-azacytidine, and to use such knowledge to improve response rates and durations. An
important piece of this puzzle could be how these pro-drugs are processed into DNMT1 targeting Aza-dCTP.
Decitabine and 5-azacytidine have an identical pyrimidine base modification - replacement of carbon at
position 5 with nitrogen - but the sugar moiety is deoxyribose in decitabine and ribose in 5-azacytidine. This
channels their metabolism differently, with critical roles for the following enzymes: deoxycytidine kinase (DCK),
uridine cytidine kinase 2 (UCK2), cytidine deaminase (CDA), and carbamoyl-phosphate synthetase (CAD). The
initial, rate-limiting step in the processing of decitabine toward Aza-dCTP is its phosphorylation by DCK6:17,
DCK-null AML cells thus resisted decitabine, even at a concentration of 360uM?*8, and sensitivity was restored
by transfection with an expression vector for DCK!®1°. The initial phosphorylation of 5-azacytidine on the other
hand is by UCK22921, Thus, AML cell lines resistant to >50uM of 5-azacytidine contained inactivating mutations
in UCK222, and sensitivity was restored by transfection with an expression vector for UCK2%2, Despite such in
vitro data, contributions of altered DCK and/or UCK2 to clinical relapse has been minimally investigated: one

study of 14 decitabine-treated patients measured DCK expression in peripheral blood or bone marrow at relapse
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vs diagnosis, with inconclusive results?®; another study of 8 decitabine-treated patients did find that DCK
expression was significantly decreased at relapse?*.

CDA is another pyrimidine metabolism enzyme shown to mediate resistance to decitabine or 5-
azacytidine in vitro: CDA rapidly catabolizes both pro-drugs into uridine counterparts that do not deplete
DNMT1% and that instead cause off-target anti-metabolite effects, e.g., by misincorporating into DNA?®. Thus,
introduction of expression vectors for CDA into malignant cells conferred decitabine-resistance?’-?¢, High CDA
expression in tissues such as the liver underlies the brief in vivo plasma half-lives of decitabine and 5-azacytidine
of ~15 minutes vs 9-16 hours in vitro at 37°C?%%%, In a pre-clinical in vivo model, CDA-rich tissue micro-
environments (e.g., liver) provided sanctuary to AML cells from decitabine®!. In clinical analyses, higher CDA
expression in males appeared to contribute to inferior responses of their MDS to decitabine or 5-azacytidine®*
34 Nevertheless, as for DCK and UCK2, a contribution of CDA to clinical relapse is neither established nor
addressed by current clinical practice.

CAD is the first enzyme in the de novo pathway that synthesizes dCTP from glutamine and aspartate: de
novo synthesized dCTP can compete with Aza-dCTP for incorporation into DNA, and CAD upregulation has
been implicated in resistance to 5-azacytidine in vitro?36, Again, however, a contribution of CAD to clinical
resistance/relapse has not been examined. Altogether therefore, DCK, UCK2, CDA and CAD expression
changes are known to mediate resistance to decitabine or 5-azacytidine in vitro, but there is little information and
no countermeasures for their individual or collective contributions to clinical resistance. Here, upon a first serial
analyses of DNMT1 levels in patients’ bone marrows on clinical decitabine or 5-azacytidine therapy, we found
that this target was not being engaged at clinical relapse and showing why, bone marrows at relapse exhibited
shifts in DCK, UCK2, CDA and CAD expression in directions adverse to pro-drug conversion to Aza-dCTP.
Pyrimidine metabolism is a network that senses and regulates nucleotide levels®’, and we found that decitabine
and 5-azacytidine cause distinct nucleotide imbalances, that in turn trigger specific, adaptive changes in
expression of key pyrimidine metabolism enzymes. The consistency and predictability of pyrimidine metabolism
network responses to decitabine or 5-azacytidine perturbations enabled their anticipation and exploitation to
instead enhance pro-drug effects: simple, practical treatment modifications, evaluated in pre-clinical in vivo

models of aggressive chemo-refractory AML, preserved the favorable therapeutic index of non-cytotoxic DNMT 1-

depletion and markedly improved efficacy.
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METHODS

Study approvals. Bone marrow samples for research were obtained from patients with AML with written
informed consent on a study protocol approved by the Cleveland Clinic Institutional Review Board (Cleveland,
Ohio). Murine experiments were approved by the Cleveland Clinic Institutional Animal Care and Use Committee

(Cleveland, Ohio).

Detailed methods in Supplement

RESULTS

DNMTL1 is not depleted at clinical relapse or with in vitro resistance

We measured DNMT1 protein levels in patients’ bone marrows before and during therapy with decitabine or 5-
azacytidine (39 serial bone marrow samples from 13 patients, median treatment duration 372 days, range 170-
1391). Serial bone marrow biopsies from the same patient were cut onto the same glass slide and stained
simultaneously to facilitate time-course comparison of DNMT1 protein levels quantified by immunohistochemistry
and ImagelQ imaging and software (Figure 1A). At time-of-response, DNMT1 protein was markedly and
significantly decreased by ~50% compared to pre-treatment (Figure 1A). At the time-of-relapse on-therapy,
however, DNMT1 protein levels had rebounded to levels comparable to or exceeding pre-treatment levels
(Figure 1A).

Since the pyrimidine metabolism enzymes DCK, UCK2, CDA and CAD are well-documented to mediate
DNMT1-depleting capacity of decitabine and 5-azacytidine in vitro, we used quantitative polymerase chain
reaction (QRT-PCR) to measure their expression in MDS patients’ bone marrows pre-treatment and at relapse
on-therapy with decitabine (n=13, median treatment-duration 175 days, range 97-922) or 5-azacytidine (n=14,
median treatment-duration 433 days, range 61-1155) (Figure 1B). At relapse on decitabine, expression of UCK2
and CDA increased ~8-fold and ~3-fold respectively, while DCK was decreased by ~50% vs pre-treatment levels
(Figure 1B). By contrast, at relapse on 5-azacytidine, DCK expression increased ~8-fold while UCK2 and CDA

expression decreased by ~50% (Figure 1B). Observed at relapse on both decitabine or 5-azacytidine, but not
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in all patients, were ~8-fold increases in expression of de novo pyrimidine synthesis enzyme CAD (Figure 1B).
The proliferation marker MKI67 was increased at relapse in almost all the patients, consistent with active
progression of disease (Figure 1B).

We then evaluated if AML cells resist clinically relevant concentrations of decitabine in vitro in a similar
way. AML cells (THP1, K562, OCI-AML3, MOLM13) were cultured in the presence of decitabine 0.5 — 1.5uM.
AML cells that proliferated exponentially in the presence of decitabine emerged as early as 40 days after the first
addition of decitabine (Figure 1C). As per clinical relapse, DNMT1 was not depleted from the decitabine-
resistant AML cells despite the presence of decitabine (Figure 1D). UCK2 and CDA protein levels were markedly
elevated in decitabine-resistant vs vehicle-treated parental AML cells (Figure 1D). Also upregulated was CAD,
by total protein levels and by S1856 phosphorylation, a post-translational modification linked with its functional

activation (Figure 1D). In contrast, DCK protein levels were suppressed (Figure 1D). In short, the in vitro

resistance resembled the clinical resistance, with preserved DNMT1 and reconfigured pyrimidine metabolism.

Decitabine and 5-azacytidine cause acute nucleotide imbalances and metabolic shifts

Pyrimidine metabolism is a network that senses and regulates nucleotide levels®’. Therefore, we examined
whether decitabine and 5-azacytidine cause nucleotide imbalances. AML cells (MOLM13, OCI-AML3, THP1)
were treated with a single dose of vehicle, natural deoxycytidine 0.5 uM, decitabine 0.5 uM, natural cytidine 5
UM, or 5-azacytidine 5 uM in vitro, and effects on nucleotide levels and pyrimidine metabolism gene expression
were measured 24 to 72 hours later (Figure 2A). Vehicle, natural deoxycytidine and cytidine did not impact
proliferation of the AML cells, while a single treatment with either decitabine or 5-azacytidine significantly
decreased AML cell proliferation as expected (Figure 2B). Decitabine decreased dTTP and increased dCTP at
24 hours (Figure 2C). By contrast, 5-azacytidine decreased dCTP (Figure 2C). Decitabine consistently and
significantly increased UCK2 and CDA mRNA (>2-fold), while 5-azacytidine consistently increased DCK and
CDA mRNA (Figure 2D). Protein levels tracked the mRNA expression changes: decitabine upregulated UCK2
and downregulated DCK, with changes peaking between 48-96 hours (Figure 2E, S1). 5-azacytidine did the
opposite: upregulated DCK and downregulated UCK2. Both pro-drugs upregulated CDA (Figure 2E).
Thymidylate synthase (TYMS) is the major mediator of deoxythymidine triphosphate (dTTP) production38-4°,
TYMS was downregulated by both pro-drugs, but to a noticeably greater extent by decitabine than 5-azacytidine
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(Figure 2E, S1). 5-azacytidine, but not decitabine, decreased levels of the ribonucleotide reductase sub-unit
RRM1 (Figure 2E). 5-azacytidine inconsistenly decreased levels of the ribonucleotide reductase sub-unit
RRM2A (Figure S1). Neither pro-drug changed total CAD or CTPSL1 levels (CTPS1 executes a late step in de
novo pyrimidine synthesis) (Figure 2E, S1). Both pro-drugs did, however, decrease phosphorylation of CAD at
serine 1856 (S1856)(Figure 2E) — a modification linked with functional upregulation of CAD-mediated de novo
pyrimidine synthesis - thus, the pro-drugs acutely downregulated CAD function. Both decitabine (0.25uM) and

5-azacytidine (2.5uM) depleted DNMT1 as expected (Figure 2E, S1).

DCK is important for maintaining dCTP and UCK2 for maintaining dTTP levels
To examine DCK and UCK2 roles in dCTP and/or dTTP maintenance, we measured nucleotide levels in DCK
knock-out (KO), UCK2 KO and wild-type control leukemia cells (HAP1). Knock-out of DCK significantly
decreased dCTP but not dTTP (Figure 3A, B). Thus, DCK is important to dCTP maintenance, consistent with
DCK upregulation as a response to dCTP suppression by 5-azacytidine (Figure 2). Knock-out of UCK2
significantly decreased dTTP (Figure 3A, B). Thus, UCK2 is important to dTTP maintenance, consistent with
UCK?2 upregulation as a response to dTTP suppression by decitabine (Figure 2).

We also examined sensitivity of DCK- and UCK2-KO cells to decitabine or 5-azacytidine mediated growth
inhibition. DCK-KO leukemia cells were relatively resistant to decitabine (concentrations for 50% growth inhibition
[GI50] 12uM vs 3uM for wild-type), but more sensitive to 5-azacytidine (GI50 2uM vs 4uM for wild-type)(Figure

3C). UCK2-KO leukemia cells were relatively resistant to 5-azacytidine (G150 15uM vs 4uM for wild-type), but

more sensitive to decitabine (GI50 0.1uM vs 3uM for wild-type)(Figure 3C).

Resistance countermeasures evaluated in vivo

We then examined solutions to resistance in a patient-derived xenotransplant (PDX) model of chemorefractory
AML (summarized in Table 1):

Schedule decitabine administration to avoid DCK troughs: Immune-deficient mice were tail-vein innoculated with
1 million human AML cells each obtained from a patient with AML that was refractory/relapsed to decitabine then
cytarabine. On Day 9 after innoculation, mice were randomised to treatment with (i) vehicle; (ii) decitabine timed

to avoid DCK troughs (Day 1 and Day 2 each week — decitabine-Day1/2); or (iii) decitabine timed to coincide
8
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with DCK troughs (Day 1 and Day 4 each week — decitabine-Day1/4) (Figure S2A). Vehicle-treated mice showed
distress on Day 45, at which point all mice were euthanized or sacrificed for analyses. The bone marrows of
vehicle and also decitabine-Day1/4-treated mice, were replaced by AML cells by light microscope examination,
but normal murine myelopoiesis was evident with decitabine-Day1/2 treatment (Figure S2B). This impression
was confirmed by flow cytometry analyses of the bone marrows: human CD45+ (hCD45+) cells were ~92% with
PBS, ~63% with decitabine-Day1/4 and ~26% with decitabine-Dayl/2 treatment (Figure S2C). Spleens were
enlarged and had effaced histology with vehicle or decitabine-Day1/4 treatment but had mostly preserved
histology with decitabine-Day1/2 (Figure S2D,E). Spleen weights as another measure of AML burden were >5-
fold greater with vehicle vs decitabine-Dayl/4 but were lowest with decitabine-Dayl1/2 treatment (Figure S2F).

These two schedules of decitabine administration were compared again but with waiting for signs of
distress rather than sacrifice at day 45 (Figure S3A). Median survival (time-to-distress) was significantly greater
with decitabine-Day1/2 (75 days) vs decitabine-Day1/4 (60 days) or vehicle (40 days) (Figure S3B). Spleen AML
burden was again lowest with decitabine-Dayl/2 (~0.13 g) vs decitabine-Dayl1/4 (~0.59 g) or vehicle (~0.61

g)(Figure S3C,D). Thus, scheduling decitabine administration to avoid DCK troughs was superior to scheduling

that coincided with these troughs.

Inhibit CDA / Inhibit ribonucleotide reductase in the de novo pyrimidine synthesis pathway / Schedule decitabine
administrations to increase overlaps between drug exposure windows and malignant cell S-phase entries: CDA
can be inhibited by THU, while de novo pyrimidine synthesis can be inhibited with deoxythymidine (dT) that
inhibits ribonucleotide reductase in this pathway*!. NSG mice tail-vein innoculated with 1 million AML cells each
were randomised to (i) vehicle; (ii) THU+dT, (iii) decitabine; (iv) THU+decitabine; or (v) THU+dT+decitabine
(Figure 4A). PBS and THU/dT-treated mice developed signs of distress, and were euthanized, on day 42. Mice
receiving other treatments were sacrificed 3 weeks later (day 63) to increase chances of seeing differences in
AML burden between these treatments (Figure 4A). Visual inspection of femoral bones of vehicle or THU/dT
treated mice showed replacement of reddish functional hematopoiesis with whitish leukemia (Figure 4B),
whereas femurs from THU/decitabine or THU/dT/decitabine-treated mice retained a normal reddish appearance
(Figure 4B). Accordingly, flow cytometry demonstrated replacement by human AML cells in PBS and THU/dT-

treated mice (>90% hCDA45+), that was improved to some extent by decitabine alone (~85% hCD45+) but and

9
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even greater extent by either THU/decitabine (~35% hCD45+) or THU/dT/decitabine (~42% hCD45+)(Figure
4C)(dT did not add further to the benefit from THU). Murine hematopoiesis was completely suppressed with PBS
and THU/dT (0% murine Cd45+), almost completely suppressed with decitabine-alone (~5% mCd45+) but
similarly preserved with THU/decitabine (~40% Cd45+) or THU/dT/decitabine treatment (~27% Cd45+)(Figure
4C). Hemoglobin and platelet levels were most suppressed, and white cell (peripheral leukemia) counts most
elevated, with vehicle or THU/dT treatment, but only mildly to moderately suppressed with any of the decitabine
containing regimens (Figure 4D). Spleen weights as a measure of AML burden were ~4-fold greater with vehicle
or THU/T vs decitabine-alone treatment, and lowest with THU/decitabine- or THU/dT/decitabine (Figure 4E).
Spleen histology confirmed replacement by AML cells (with necrotic areas) with vehicle or THU/dT (Figure 4E),
AML infiltration with decitabine-alone, but normal-appearance with THU/decitabine or THU/dT/decitabine
treatment (Figure 4E). We also evaluated the use of hydroxyurea to inhibit ribonucleotide reductase:
hydroxyurea 100 mg/kg IP was administered on Day 1 before THU/decitabine on days 2 and 3 - hydroxyurea
addition did not add benefit (Figure S4). Thus, using THU to inhibit CDA augmented decitabine anti-AML activity
but incorporation of dT or hydroxyurea to inhibit de novo pyrimidine synthesis did not.

DNMT1-depletion by decitabine or 5-azacytidine is S-phase dependent, suggesting frequent, distributed
administration, to increase chances of overlap between malignant S-phase entries and drug exposures, could
be better than historical pulse-cycled administration. Accordingly, bone marrow AML burden was lowest with

frequent, distributed administration of THU/decitabine 2X/week (Day 1,2) compared to pulse-cycled

administration of THU/decitabine for 5 days every 4 weeks (Figure S4).

Alternate THU/decitabine with THU/5-azacytidine (to exploit priming by Dec for 5Aza and vice-versa): We
compared head-to-head THU/decitabine vs THU/5-azacytidine and found no differences in efficacy between
these two treatments (Figure 5, S5). Then, since decitabine appears to cross-prime for 5-azacytidine activity by
upregulating UCK2, while 5-azacytidine cross-primes for decitabine activity by upregulating DCK (Figure 1-3,
S1), we alternated THU/decitabine with THU/5-azacytidine, and examined different schedules for alternation.
Mice tail-vein innoculated with patient-derived AML cells (1x10%cells/mouse) were randomized to (i)
vehicle; (ii) decitabine alone; (iii) THU+decitabine; or (iv) THU+decitabine alternating with THU+5-azacytidine

week-to-week (Figure 6A). Median survival (time-to-distress) was impressive and greatest with

10


https://doi.org/10.1101/2020.02.20.958405
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.02.20.958405; this version posted February 20, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

THU/decitabine/5-azacytidine (221 days) vs THU/decitabine (180 days), decitabine-alone (111 days) or vehicle
treatment (50 days) (Figure 6B). Stability of hemoglobin, platelet and white cell counts in mice receiving
treatment every week for several months indicated a non-cytotoxic mechanism-of-action of the therapies (also
previously shown?®314245)(Figure 6C). There were eventual declines in hemoglobin and platelets, and increases
in white cell counts (peripheral leukemia), caused by progressive leukemia (Figure 6C). Progressive leukemia
as the cause of distress was confirmed by flow cytometry of bone marrows harvested after euthanasia which
showed >95% hCDA45+ cells with vehicle and 42-90% with the other treatments, with corresponding inverse
amounts of murine myelopoiesis (Figure 6D,S6). Alternating THU/decitabine with THU/5-azacytidine in 4 week

cycles, or simultaneous administration of THU/decitabine/5-azacytidine, did not add benefit over THU/decitabine

alone or THU/5-azacytidine alone (Figure 5, S5). Thus, timing of alternation is critical.

In vivo treatment-resistance

Bone marrow cells harvested at day 63 when the AML-innoculated mice were doing well on-therapy
demonstrated DNMT1-depletion, with the greatest DNMT1-depletion with THU/decitabine alternating with
THU/5-azacytidine week-to-week (~65% DNMT 1-depletion) vs THU/decitabine alone (~50%) or decitabine alone
(~35%) or vehicle (~15%) (Figure 6E, S7). By contrast, bone marrow AML cells harvested after euthanasia for
distress while receiving these same therapies demonstrated preserved DNMT1 levels measured by flow-
cytometry (Figure 6E). These in vivo treatment-resistant AML cells demonstrated significant upregulations of
CDA and CAD vs AML cells from mice treated with vehicle, with the greatest upregulations in cells from mice
that received the alternating regimen and survived the longest (Figure 6F). Thus, in vivo treatment-resistance

was again by pyrimidine metabolism shifts adverse to DNMT1 target-engagement (Figure S8).

DISCUSSION

Malignant myeloid cells proliferating through decitabine or 5-azacytidine therapy in vitro, in mice and in patients,
evaded DNMT1-depletion via pyrimidine metabolism shifts adverse to pro-drug processing into the DNMT1-
depleting nucleotide Aza-dCTP. Critically, the protective metabolic shifts are induced acutely - decitabine added

to AML cells rapidly suppressed DCK and upregulated UCK2 and CDA, and 5-azacytidine rapidly suppressed
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UCK2 and upregulated DCK and CDA, with the protein expression changes peaking 72-96 hours after a single
pro-drug exposure. Others have reported that decitabine upregulated CDA in leukemia and solid cancer cells by
6 to 1000-fold within 96 hours*¢#’, while 5Aza upregulated DCK in leukemia cells by ~30% within 48 hours?,
These acute reconfigurations of pyrimidine metabolism arise from off-target actions of the agents that cause
nucleotide imbalances: Decitabine inhibition of TYMS has been previously reported®°, and here we found that
TYMS protein is acutely depleted. A portion of administered decitabine (Aza-dC), after phosphorylation by DCK
to Aza-dCMP, is deaminated by deoxycytidine deaminase (DCTD) into a deoxyuridine monophosphate (dUMP)
analog Aza-dUMP. dUMP is the substrate for TYMS that rate-limits dTTP production. Aza-dUMP depletes TYMS
(TYMS, like DNMT1, methylates carbon #5 of the pyrimidine ring that is substituted with a nitrogen in decitabine).
In this way, decitabine decreases dTTP that in turn increases dCTP (via less dTTP inhibition of ribonucleotide
reductase-mediated reduction of CDP into dCDP384%), 5-azacytidine on the other hand depletes RRM1 protein
and decreases dCTP*, presumably again as a result of the active nitrogen-substitution in the pyrimidine ring,
although this has not been definitively evaluated. Stated simply, decitabine and 5-azacytidine drive dCTP levels
in opposite directions, triggering distinct adaptive responses by pyrimidine metabolism, a network that senses
and regulates nucleotide amounts®. DCK is particularly important for preserving dCTP levels, as shown by the
decrease in dCTP in DCK-KO cells (shown also by others*), consistent with DCK upregulation as an appropriate
adaptive metabolic reponse to dCTP suppression by 5-azacytidine. UCK2 on the other hand is particularly
important for dTTP maintenance, shown by the decrease in dTTP in UCK2-KO cells, consistent with UCK2
upregulation as a metabolic adaptation to dTTP suppression by decitabine. Both decitabine and 5-azacytidine
acutely upregulated CDA, and acutely downregulated CAD. CAD, however, was upregulated in patients’ and
murine bone marrows at MDS/AML relapse/progression, the only discrepancy we found between pyrimidine
metabolism patterns induced acutely versus found in stable resistant cells.

This mode of learned resistance, emerging from adaptive responses of the pyrimidine metabolism
network to pro-drug perturbations, does not require mutation at the genetic level, perhaps explaining why several
studies that have looked for correlations between MDS/AML genetics and decitabine/5-azacytidine resistance
have generated inconclusive and even contradictory results**%-°¢. Given that resistance-causing metabolic

reconfigurations appear emergent, pre-treatment pyrimidine metabolism expression levels may also not

necessarily predict response*®°-°8, Consistent and predictable, however, were the automatic adaptive responses
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of pyrimidine metabolism to pro-drug exposures, enabling anticipation, outmaneuvering and even exploitation:
first, serial administrations of decitabine scheduled to avoid decitabine-induced troughs in DCK expression was
strikingly superior to schedules that coincided with DCK troughs, and alternating decitabine with 5-azacytidine
week-to-week, timed (at least approximately) to exploit priming of each agent for activity of the other (UCK2 and
DCK are maximally upregulated ~96 hrs after decitabine and 5-azacytidine respectively), was significantly
superior to administration of either pro-drug alone. The timing of alternation was crucial — alternating the pro-
drugs in 4 week cycles, or their simultaneous administration, did not add benefit.

Second, frequent, distributed schedules of administration, as a strategy to increase chances for overlap
between malignant cell S-phase entries and drug exposure windows, were superior to conventional pulse-cycled
scheduling. Such frequent, metronomic administration is feasible in mice and humans because we selected pro-
drug doses to deplete DNMT1 without off-target cytotoxicity®>#°°. Consistent with these observations, RNA-
sequencing analysis of patients’ baseline bone marrows found that a gene expression signature of low cell cycle
fraction predicted non-response to standard 5-azacytidine therapy®’, and regulatory approval of decitabine and
5-azacytidine to treat myeloid malignancies involved lowering doses from initially evaluated, toxic high doses,
and the administration of these lower doses more frequently?.

Third, combining THU, to inhibit the catabolic enzyme CDA, with decitabine and/or 5-azacytidine
produced substantial extensions in anti-AML efficacy in vivo — an important detail in such combinations was that
the decitabine and 5-azacytidine doses were reduced to preserve a non-cytotoxic DNMT1-targeting mode of
action3314445 Stated another way, simple dose-escalations of decitabine or 5-azacytidine are not a solution for
resistance since this compromises the therapeutic-index foundation for success: high Cmax Of these agents is
cytotoxic via off-target anti-metabolite effects including depletion of TYMS (reviewed in?), and while AML cells
that survive initial pro-drug exposures get progressively educated for resistance as they indefinitely self-
replicate/proliferate, polyclonal normal myelopoiesis proliferates then differentiates in successive waves, each
exposure-naive and hence potentially vulnerable to the anti-metabolite effects of high doses of decitabine or 5-
azacytidine.

The key de novo pyrimidine synthesis enzyme CAD was downregulated in AML cells upon initial

challenge by the pro-drugs but was upregulated in exponentially proliferating stably resistant cells by expression

and by protein S1359 phosphorylation. Although we did not find a benefit from combining decitabine with dT or
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hydroxyurea to inhibit ribonucleotide reductase (that is in the de novo pathway) we and others have found
promise in countering resistance by inhibiting other molecular targets in the pathway, e.g., using PALA to inhibit
CAD or leflunomide to inhibit DHODH®. Thus, in next steps, we plan to evaluate inhibitors for different targets in
the de novo pyrimidine synthesis pathway, and also to increase doses of the CDA inhibitor THU, since eventual
AML progression to the optimized regimen in our pre-clinical in vivo studies here was characterized by even
greater upregulations of CDA.

Thus, decitabine- and 5-azacytidine-resistance emerges from adaptive responses of the pyrimidine
metabolism network to the perturbations caused by these pyrimidine nucleoside analog pro-drugs. These
compensatory metabolic shifts individually and collectively impede engagement of the DNMT1 molecular target
of therapy. These metabolic responses, being pre-programmed and consistent, can be anticipated,

outmaneuvered and even exploited, using simple and practical treatment modifications that preserve the vital

therapeutic index of non-cytotoxic DNMT1-depletion.
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Table 1: Solutions for resistance to decitabine and 5-azacytidine evaluated in vivo

Potential Solution

Rationale

Results

1. | 1Dose

Overwhelm DCK, UCK2, CDA
and/or CAD expression
changes as causes of
resistance

Increasing Dec dose is cytotoxic to normal
sensitive tissues but fails to deplete
DNMT1 in malignant tissues protected by
|DCK and/or 1CDA and/or 1CAD33!

2. | Alternative schedules of
administration

1. Increase overlap between
drug exposure windows and
malignant S-phase entries
2. Avoid troughs in
DCK/UCK2 expression
induced by initial pro-drug
exposures

1. Distributed administration of Dec 2-
3X/week was superior to pulse-cycled
administration for 5 consecutive
days/month (Fig.S4)

2. Scheduling Dec to avoid DCK troughs
(Day 1,2 each week) was superior to
scheduling that coincided with DCK
troughs (Day 1, 4 each week)(Fig.S2, S3).

3. | Add Tetrahydrouridine
(THU)(CDA-inhibitor)

1. CDA severely limits tissue
distribution and half-life of Dec
and 5Aza

2. CDA catabolizes intra-
cellular Dec and 5Aza

1. THU increased Dec or 5Aza
bioavailability ~10-fold**4°

2. THU+Dec or 5Aza was superior to Dec
or 5Aza alone (Dec/5Aza doses were
reduced by 50% when combined with
THU)(Fig.4-6)

4. | Add Hydroxyurea or
thymidine (ribonucleotide
reductase inhibitors)

5. | Add PALA (CAD-inhibitor)
or terifunomide (DHODH-
inhibitor)

De novo pyrimidine synthesis
derived dCTP competes with
Aza-dCTP for incorporation
into DNA

Hydroxyurea or thymidine did not add
benefit to Dec or THU/Dec in vivo (Fig.4,
S4)

PALA or teriflunomide restored DNMT1-
depletion and non-cytotoxic AML
cytoreduction in vitro (in vivo testing
pending) (Fig.3)

6. | Alternate Dec with 5Aza
timed to exploit peaks in
DCK and UCK2
expression

Dec/5Aza cause acute shifts
in DCK and UCK2 expression
that impede the instigating
pro-drug, but favor the other,
peaking at ~96 hrs.

THU+Dec/THU+5Aza alternated week to
week (Fig.6) was superior to THU+Dec or
THU+5Aza alone (Fig.5), or
THU+Dec/THU+5Aza alternated month to
month (Fig.5)
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Figure 1. DNMTL1 is not depleted at clinical relapse or with in vitro resistance. A) Decitabine (Dec) or 5-
azacytidine (5Aza) therapy decreased bone marrow DNMT1 at response (green) but DNMT1 rebounded
to pre-treatment levels (dark blue) at relapse (red). Serial bone marrow biopsies from the same patent were
cut onto the same slide, stained for DNMT1, and the number of DNMT 1-positive nuclei was quantified objectively
using ImagelQ software, in 13 individual patients and positive/negative controls (tissue blocks of HCT116 wild-
type and DNMT1-knockout cells respectively). D = days of therapy. Pre-Rx = pre-treatment; HI = hematologic
improvement; CR = complete remission; SD = stable disease; Rel. = relapse. Mean+SD of >3 image segments
(cellular regions) per sample; p-value paired t-test, 2-sided. B) Expression of key pyrimidine metabolism
enzymes at relapse/progression on Dec vs baseline. Cartoon shows key enzymes favoring (green) or
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impeding (red) Dec or 5Aza conversion into the DNMT1-depleting Aza-dCTP. Bone marrow cells aspirated pre-
treatment and at relapse/progression on Dec (13 patients, median duration of therapy 175 days, range 97-922)
or 5Aza (14 patients, median duration of therapy 433 days, range 61-1155) were analyzed by QRT-PCR.
MeanzSD technical replicatesx3. Paired t-test, 2-sided. C) Time to emergence of AML cells exponentially
proliferating in presence of Dec. Cell counts by automated counter. D) Expression by Western blot of key
pyrimidine metabolism enzymes in Dec-resistant AML cells (THP1, K562, OCI-AML3 and MOLM13), and in
parental THP1 AML cells treated with vehicle, Dec or 5-azacytidine (5Aza). Western blots.
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Figure 2. Dec or 5Aza, but not natural cytosine (C) or deoxycytosine (dC), rapidly altered expression of
key pyrimidine metabolism enzymes UCK2, DCK and CDA in AML cells. A) Experiment schema. Vehicle,
dC 0.5 uM, C5 uM, Dec 0.5 uM, or 5Aza 5 uM were added once to the cells at 0 hours. Cell counts by automated
counter. B) Cell counts. MeanstSD for 3 independent biological replicates for each cell line. C) Dec and 5Aza
have opposite effects on dCTP levels. Measured by LCMS/MS 24 hrs after addition of Dec or 5Aza. Analyses
of 2 or more independent nucleotide extractions from 3 different AML cells lines. Means+SD; p-values paired t-
test, 1-sided. D) Gene expression 72 hours after Dec or 5Aza. Gene expression by QRT-PCR, relative to
average expression in vehicle-treated controls. Means+SD for 3 independent biological replicates in each of 3
AML cell lines; p-values unpaired t-test vs vehicle, 2-sided. E) Western blot 72 hours after Dec or 5Aza. AML
cells THP1, OCI-AML3 and K562. Western blots were reproduced in three independent biological replicates.
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Figure 3. DCK is important for maintaining dCTP and UCK2 for maintaining dTTP levels, and DCK and
UCK2 knock-outs do not create cross-resistance to both Dec and 5Aza. A) Confirming DCK and UCK2
knockout (KO) by Western blot. HAP1 leukemia cells, KO by CRISPR-Cas9. B) DCK-KO lowers dCTP and
UCK2-KO lowers dTTP. Analysis of independent nucleotide extractions. Means+SD; p-values unpaired t-test,
2-sided. C) Concentrations of Dec (left-panel) or 5Aza (right-panel) needed for 50% growth inhibition of

parental, DCK-KO and UCK2-KO cells. MeanstSD of 3 independent biological replicates.
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Figure 4. Impact of inhibiting CDA and/or de novo pyrimidine synthesis on Dec efficacy. NSG mice were
tail-vein inoculated with patient-derived AML cells (1x108cells/mouse) and randomized to (i) PBS vehicle control;
(i) CDA-inhibition by intra-peritoneal (IP) tetrahydrouridine (THU) and de novo pyrimidine synthesis inhibition by
IP thymidine (dT); (iii) Dec; (iv) THU and Dec; (v) THU, Dec and dT (n=5/group). PBS, THU+dT mice were
euthanized for distress on D42, and other mice were sacrificed for analysis on D63. A) Experiment schema; B)
Femoral bones (from 2 of 5 mice/group). White = leukemia replacement, reddish = functional hematopoiesis.
C) Bone marrow human (hCD45) and murine (mCd45) myelopoiesis content. Flow-cytometry. MedianIQR.
p-value Mann-Whitney test 2-sided. D) Blood counts before treatment and at euthanasia/sacrifice.
Measured by Hemavet. MediantlQR. E) Spleen AML burden as measured by spleen weights at
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euthanasia/sacrifice. MediantlQR. p-value Mann-Whitney test 2-sided. F) Spleen histology. Hematoxylin-
Eosin stain of paraffin-embedded sections. Magnification 400X. Leica DMR microscope.
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Figure 5. Comparison of THU/Dec alone vs THU/5Aza alone vs THU/Dec alternating with THU/5Aza in 4
week cycles. NSG mice were tail-vein inoculated with patient-derived AML cells (1x108cells/mouse) and on Day
9 after inoculation randomized to the treatments as shown (n=7/group). Mice were euthanized if there were signs
of distress. A) Experiment schema; B) Time-to-distress and euthanasia. C) Bone marrow human (hCD45)
and murine (mCd45) myelopoiesis content. Femoral bones flushed after euthanasia. Measured by flow-
cytometry. MedianzIQR. D) Spleen weights at time-of-distress/euthanasia. MediantlQR. E) Spleens at the
time-of-distress/euthansia.
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Figure 6. Alternating THU/decitabine with THU/5-azacytidine week to week. NSG mice were tail-vein
inoculated with patient-derived AML cells (1x10%cells/mouse) and randomized to the treatments shown
(n=5/group). Blood counts were obtained periodically by tail-vein phlebotomy. Mice were euthanized for signs of
distress. A) Experiment schema; B) Time-to-distress. Log-rank test. C) Serial blood counts. Measured by
Hemavet. MediantIQR. D) Bone marrow replacement by AML. Bone marrow human and murine CD45+ cells
measured by flow-cytometry (Figure S4) after euthanasia (time-points panel B). MedianzIQR. p-value Mann-
Whitney test 2-sided. E) DNMT1 was not depleted from AML cells at progression (time-points panel B) but
was depleted at time-of-response (bone marrow harvested at Day 63 in a separate experiment). Flow
cytometry (Figure S5). F) Pyrimidine metabolism gene expression in bone marrow AML cells. QRT-PCR
using human gene specific primers, bone marrow harvested after euthanasia. p-values vs vehicle, unpaired t-
test, 2-sided.

26


https://doi.org/10.1101/2020.02.20.958405
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.02.20.958405; this version posted February 20, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

SUPPLEMENT
Supplementary Methods

Figure S1. Time-course analyses of pyrimidine metabolism enzyme protein levels after single exposure
to decitabine (Dec) 0.25 uM or 5-azacytidine 2.5 pM.

Figure S2. Impact of decitabine scheduling to avoid vs coincide with DCK troughs.
Figure S3. Impact of decitabine scheduling to avoid or coincide with DCK troughs.

Figure S4. Impact of (a) using hydroxyurea to inhibit ribonucleotide reductase, and (b) scheduling THU-
decitabine for 5 days every 4 weeks instead of 2 days every week.

Figure S5. THU/decitabine vs THU/5-azacytidine vs THU/decitabine/5-azacytidine (given
simultaneously).

Figure S6. Bone marrow AML burden (human CD45) versus murine myelopoiesis (murine Cd45) in bone
marrow cells harvested after euthanasia for distress (time-points as per Figure 7B).

Figure S7. DNMT1 was not depleted from AML cells at progression (time-of-distress as shown in Figure 7B)
but was depleted at time-of-response.

Figure S8. Summary of on-target and off-target pathways, and potential solutions for resistance.
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SUPPLEMENTARY METHODS

Study approvals. Bone marrow samples for research were obtained from patients with AML on a study protocol
approved by the Cleveland Clinic Institutional Review Board (Cleveland, Ohio), with written informed consent
prior to inclusion in the study. Experiments using patient-derived xenotransplant models of AML were approved

by the Cleveland Clinic Institutional Animal Care and Use Committee (Cleveland, Ohio).

Sources of cell lines and animals. AML cell lines OCI-AML3 were purchased from DSMZ (Braunschweig,
Germany), and THP1, K562 and MOLM13 cell lines were purchased from ATCC (Manassas, Virginia). The AML
cell lines, including those selected for resistance to decitabine, were authenticated (Genetica cell line testing,
Burlington, NC). DCK and UCK2 knock-out leukemia (HAP1) cells were engineered via Horizon Discoveries
(Cambridge, United Kingdom). Primary AML cells for inoculation into NSG mice were collected with written
informed consent on Cleveland Clinic Institutional Review Board approved protocol 5024. NSG mice were

purchased from Jackson Laboratories (Bar Harbor, Maine).

DNMT1 Immuno-detection and quantitation: Immunohistochemistry (IHC) was performed on decalcified and
formalin-fixed paraffin embedded bone marrow biopsy sections (4um) and on positive and negative controls
(parental and DNMT1-KO HCT116 cells). Antibodies used were mouse polyclonal anti-Dnmtl (Abcam
#ab19905, Cambridge, MA), 1:200 dilution for 32 minutes at room temperature, performed with Ventana
Discovery using OmniMap detection and a high pH tris-based buffer (Cell Conditioning 1, Ventana #950-124).
Nuclei positive for DNMT1 were identified and quantified in high resolution, large field-of-view images per
ImagelQ algorithms (Image IQ Inc., Cleveland, OH) after segmentation of images and subtraction of bone as we
have previously described*.

DNMT 1-protein measurement by flow cytometry was performed as we have previously described * using
unlabeled anti-Dnmtl antibody [EPR 3522] (0.0625 pg/test; Abcam; catalog no. ab92314) as the primary

antibody
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DNA isolation, reverse transcription (RT) and real-time PCR. As we have previously described . Primer

sequences were:

Gene Primer (Forward) Primer (Reverse)

CAD 5-CTGACTTCTACACTGAGCATGG-3 | 5-CACGCATTGACAGGTTAATCAC-3
CDA 5-AAGGGTACAAGGATTTCAGGG-3’ 5-ACAATATACGTACCATCCGGC-3
DCK 5-AAGCTGCCCGTCTTTCTC-3 5-ACCACTTCCCAATCTTCACAC-3’
UCK2 5-ATCCCCGTGTATGACTTTGTC-3 5-CTTCATCTGGAACAGGTCTCG-3’
GAPDH 5-ACATCGCTCAGACACCATG-3 5-TGTAGTTGAGGTCAATGAAGGG-3

1D SDS-polyacrylamide gel electrophoresis and Western blot analysis. Were performed as we have

previously described . Antibodies used were:

Primary Antibodies Used
Catalogue# Name Company
ab13537 DNMT1 antibody Abcam
sc-393098 dCK Antibody (H-5), Mouse Santa Cruz
ab104731 Anti-UCK2 antibody, Rabbit ABCAM
12662 Phospho-CAD (Ser1859) Cell Signaling
11933 CAD Antibody Cell Signaling
GTX108663 DCTD antibody GeneTex
sc-390945 TYMS Antibody (C-5) Santa Cruz
sc-377415 RRM1 Antibody (A-10) Santa Cruz
sc-398294 RRM2A Antibody (A-5) Santa Cruz
PRS2383- Sigma-
100UG Anti-P53R2 antibody (RRM2A) Aldrich
ab82347 Anti-CDA antibody ABCAM
sc-374015
AF488 Lamin B1 Antibody (B-10) Alexa Fluor® 488 SCBT
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sc-47724 AF647 | GAPDH Antibody (0411) Alexa Fluor® 647 SCBT
F3022-.2mL Actin-FITC Sigma-Aldrich
A304-543A Rabbit anti-CTPS1 Antibody Bethyl Lab

Secondary Antibodies Used

Catalogue# Name Company

Goat anti-Rabbit IgG (H+L) Highly Cross-Adsorbed Secondary

A32735 Antibody, Alexa Fluor Plus 800 Invitrogen

Goat anti-Mouse 1gG (H+L) Highly Cross-Adsorbed Secondary

A32730 Antibody, Alexa Fluor Plus 800 Invitrogen
12004158 StarBright™ Blue 700 Goat Anti-Mouse 1gG, 400 pl Biorad
12004161 StarBright™ Blue 700 Goat Anti-Rabbit 1gG, 400 pl Biorad

Fluorescent images were collected using Biorad’s ChemiDoc system and processed with Image lab.

Giemsa staining of cells. As we have previously described ©*.

Flow Cytometry Analyses for human and murine CD45. As we have previously described 162, Antibodies
used were monoclonal anti-human CD45 (clone HI30, cat. No 304016, Biolegend, 1:100) and monoclonal anti-

mouse CD45 (Clone 30-F11, cat. No 1031066, Biolegend, 1:100).

Preparation and analysis of dNTP and NTP extracts: Cells were washed twice with ice-cold 1X PBS, and
counted. To lyse cells, precipitate proteins and extract nucleotides and nucleosides, for each 5-10 million cells,
250 pL of 80% acetonitrile/water was added, and the cells were incubated on ice for 15min. After incubation, the
suspension was centrifuged at 140K rpm for 5min. The supernatant from this first extraction was transferred to
a clean tube. The remaining pellet was extracted again with fresh 80% acetonitrile/water, and supernatant from
both extractions was combined, and then evaporated to dryness using a centrifugal evaporator. LCMS/MS: 1mM
Internal standards (13C9 15N3MP and d 13C9 15N3TP) solution (25mM ammonia acetate, 10mM DMHA, pH

8.0) was used to suspend Nucleotides and nucleosides extract. HPLC separation was carried on an ACQUITY
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UPLC HSS T3 Column, 1004, 1.8 um, 2.1 mm X 150 mm. A stepwise gradient program was applied with mobile
phase A (25mM Ammonia Bicarbonate, 10mM DMHA, pH 8.0) and mobile phase B (60% Acetonitrile/water).
The HPLC was interfaced with Thermofisher Quantiva triple quadruple mass spectrometer. The mass
spectrometer was operated in MRM mode with optimized MRM transitions for each analyte. Data analysis:
Xcalibur was used to process and quantify raw data. Briefly, a processing method was built using MRM
transitions and peak retention times from standards. All samples were processed with the same method to
generate integrated total ion intensity (integrated peak area) for each analyte. Manual inspection was performed

to confirm the peak assignment and integration. The final report value was normalized to the internal standards

and total number of cells used to generate the extract.

Treatment of a patient-derived xenotransplant model of treatment-resistant AML. Patient-derived primary
AML cells from a patient with AML that had progressed on standard chemotherapy then decitabine salvage
therapy, were transplanted by tail-vein injection (1.0 x108/mouse) into non-irradiated 6-8 week old NSG mice.
Mice were anesthetized with isofluorane before transplantation. Mice were randomized to different treatments
on Day 9 after inoculation, with treatments as indicated in each figure and legend. Doses of drugs used were:
intra-peritoneal tetrahydrouridine (THU) 10 mg/kg given intra-peritoneal up to 3X/week; subcutaneous decitabine
0.2 mg/kg up to 3X/week (or 0.1 mg/kg when combined with THU); subcutaneous 5-azacytidine 2 mg/kg up to
3X/week (or 1 mg/kg when combined with THU); intra-peritoneal dT 2 g/kg up to 2X/week. Tail-vein blood
samples for blood count measurement by HemaVet were obtained prior to leukemia inoculation, and at intervals
thereafter as indicated in the figures. Mice were observed daily for signs of pain or distress, e.g., weight loss that
exceeded 20% of initial total body weight, lethargy, vocalization, loss of motor function to any of their limbs, and

were euthanized by an IACUC approved protocol if such signs were noted.

Bioinformatic and statistical analysis. Wilcoxon rank sum, Mann Whitney, and t tests were 2-sided unless
otherwise stated because of apriori literature-based hypotheses (dCTP level analyses) and performed at the
0.05 significance level or lower (Bonferroni corrections were applied for instances of multiple parallel testing).

Standard deviations (SD) and inter-quartile ranges (IQR) for each set of measurements were calculated and

31


https://doi.org/10.1101/2020.02.20.958405
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.02.20.958405; this version posted February 20, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

represented as y-axis error bars on each graph. Graph Prism (GraphPad, San Diego, CA) or SAS statistical

software (SAS Institute Inc., Cary, NC) was used to perform statistical analysis including correlation analyses.
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Figure S1. A time-course analysis suggested that peak changes in pyrimidine metabolism enzyme
protein levels occurred between 48-96 hours after a single exposure to decitabine (Dec) 0.25 puM or 5-
azacytidine (5Aza) 2.5 uM. A) Western blots for DNMT1, UCK2, DCK, CDA, CAD, TYMS and GAPDH before
and up to 96 hours after addition of decitabine (Dec) 0.25 uM or B) 5-azacytidine 2.5 uM to THP1 and OCI-
AML3 cells (added once at 0 hours). C) 5Aza, but not Dec, decreased RRM2A levels. Western blots 72 hours
after addition of a single dose of Dec 0.25 puM or 5Aza 2.5 uM. Western blots were reproduced in biological
replicates.

33


https://doi.org/10.1101/2020.02.20.958405
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.02.20.958405; this version posted February 20, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

A B *a s =e ®Nue
Normal mouse Q. . ':.‘-E
3 - 8
s PBS subcutaneous (SC) z i‘ “3' 'e; e "% . ' XN ool a
El Day 1 & 2 every week S % S ,.5' » *Q.’ .‘}.-;(;" -~
5 E = (ﬁ‘ ‘e . R, P 'D ‘6" ,PBS 2 ;0’0:0.;*.%; 5’
© > O T Rl b a =k {’c cove *
=8 Dec 0.3 mpk SC S s o ;-;. ; ';c :5.‘1'.: ~.}
7] < ia “u’-‘f 5% s el
2 5 Day 1 & 2 every week = é 85" 3'd% ‘i’?:’.}"a 3 o
[ g o 5 % .0 4 D1,02 b % ] ‘c. =
3 Dec 0.3 mpk SC g3 s ., s g ’-'_.d‘_,,’ ;
="S Day 1 & 4 every week 5= O 3. 1 ates Peasyt
< — =4 : :.‘ ) °'...p,:u ;
DO Dg D45 .'.:‘,‘"o'.:‘ ‘e 0~. t:'b Dec D1, D4 &
¥ ¥ S D athe s g,
- s 1."' :q et 2 ® §
C D -
Normal ( Z_—“
mouse g_E
100+ =
=0.008 =
2 g0 <o PO 2
g 804 A ; -E-
Q 707 ..I,. £
< 604 B
g 50' E—w
§ 40 ‘ ' s
E 30- S
g 204 ' s
@ 10- ~
1 E— . ' -
2 v =7
&S it
P
E
Dep D12 2Dee DA =
[ ]
p=0.018
A
k 'y
¥ .
] x
M
& &

Figure S2. Impact of decitabine scheduling to avoid vs coincide with DCK troughs. NSG mice were tail-
vein inoculated with patient-derived AML cells (1x108cells/mouse) and randomized on day 9 after inoculation to
(i) PBS vehicle control; (ii) subcutaneous (SC) decitabine (Dec) 0.3 mg/kg (mpk) on Day 1 and 2 of each week
(D1,2); (iii) Dec 0.3 mpk on Day 1 and 4 of each week (D1,4)(n=7/group). Mice were euthanized/sacrificed on
day 45 when PBS treated mice showed signs of distress. A) Experiment schema; B) Bone marrow cell
cytospin and Giemsa-stain at Day 45. Normal = normal NSG mouse bone marrow; Leica DMR microscope,
630X. C) Percentage of human CD45+ (huCD45) positive cells in bone marrow. Flow cytometry. Median +
IQR. p-value Mann-Whitney test 2-sided. 5 mice in each treatment group analyzed. D) Spleens at Day 45.
Normal = spleen from normal NSG mouse. E) Spleen histology. Hematoxylin-Eosin stain of paraffin-embedded
sections. Leica DMR microscope, 400X.F) Spleen weights. Median£IQR. p-value Mann-Whitney test 2-sided.
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Figure S3. Impact of decitabine scheduling to avoid or coincide with DCK troughs. NSG mice were tail-
vein inoculated with patient-derived AML cells (1x10%cells/mouse) and on day 9 after inoculation randomized to
(i) PBS vehicle control; (ii) subcutaneous (SC) decitabine (Dec) 0.2 mg/kg (mpk) on Day 1 and 2 of each week
(D1,2); (iii) Dec 0.2 mpk on Day 1 and 4 of each week (D1,4)(n=4/group). Mice were euthanized for signs of
distress. A) Experiment schema; B) Time-to-distress. p-value Log-rank test. C) Bone marrow human
leukemia cell burden at time-of-distress. Flow cytometry for human CD45+ cells. Median £ IQR. p-value
Mann-Whitney test 2-sided. D) Spleens at time-of-distress. E) Spleen weights at time-of-distress. Median
IQR. p-value Mann-Whitney test 2-sided.
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Figure S4. The addition of hydroxyurea to inhibit ribonucleotide reductase did not augment THU-
decitabine activity; Distributed administration of THU-decitabine 2X/week was superior to pulse-cycled
administration for 5 consecutive days every 4 weeks. NSG mice were tail-vein inoculated with patient-
derived AML cells (1x10%cells/mouse) and on Day 5 after inoculation randomized to the treatments as shown
(n=7/group). Mice were euthanized if there were signs of distress. A) Experiment schema to evaluate
potential benefit of adding hydroxyurea to inhibit ribonucleotide reductase; B) Bone marrow human
(hCD45) and murine (mCd45) myelopoiesis content. Femoral bones flushed after termination of the
experiment at the time PBS-treated mice developed signs of distress. Measured by flow-cytometry.
MedianzIQR. P-value 2-sided Mann-Whitney test. n.s. = not significant. C) Experiment schema to compare
metronomic administration 2X/week versus pulse-cycled administration for 5 consecutive days every 4
weeks; D) Bone marrow human (hCD45) and murine (mCd45) myelopoiesis content. Femoral bones
flushed after termination of the experiment at the time PBS-treated mice developed signs of distress.
Measured by flow-cytometry. MediantIQR. P-value 2-sided Mann-Whitney test. n.s. = not significant.
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Figure S5. THU/decitabine vs THU/5-azacytidine vs THU/decitabine/5-azacytidine. NSG mice were tail-
vein inoculated with patient-derived AML cells (1x108cells/mouse) and on Day 9 after inoculation randomized
to the treatments as shown (n=5/group). All mice were euthanized or sacrificed when the vehicle-treated group
became distressed at Day 45. A) Experiment schema; B) Giemsa stained cytospins of bone marrow cells.
Flushed from femoral bones after euthanasia. Magnification 630X. Leica DMR microscope.. C) Bone marrow
human (hCD45) and murine (mCd45) myelopoiesis content. Measured by flow-cytometry. MedianzIQR. D)
Spleen weights at time-of-distress/euthanasia. MedianzIQR. E) Spleens.
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Figure S6. Bone marrow AML burden (human CD45) versus murine myelopoiesis (murine Cd45) in bone
marrow cells harvested after euthanasia for distress (time-points as per Figure 7B).
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Figure S7. DNMT1 was not depleted from AML cells at progression (time-of-distress as shown in Figure 7B)
but was depleted at time-of-response (bone marrow harvested at Day 63 in a separate experiment). Flow
cytometry. Positive and negative controls for DNMT1 were HCT116 colon cancer cells with wild-type DNMT1
and DNMT1 knock-out (KO).
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Figure S8. Summary of on-target and off-target pathways, and potential solutions for resistance.
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