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Abstract   

In positron emission tomography (PET) imaging, binding is typically estimated by fitting 

pharmacokinetic models to the series of measurements of radioactivity in the target tissue 

following intravenous injection of a radioligand.  However, there are multiple different 

models to choose from and numerous analytical decisions which must be made when 

modelling PET data. Therefore, full communication of all the steps involved is often not 

feasible within the confines of a scientific publication. As such, there is a need to improve 

analytical transparency. Kinfitr, written in the open-source programming language R, is a tool 

developed for flexible and reproducible kinetic modelling of PET data, i.e. performing all 

steps using code which can be publicly shared in analysis notebooks. In this study, we 

compared outcomes obtained using kinfitr with those obtained using PMOD: a widely-used 

commercial tool.  

Using previously-collected test-retest data obtained with four different radioligands, a total of 

six different kinetic models were fitted to time-activity curves derived from different brain 

regions. We observed high agreement between the two kinetic modelling tools both for 

binding estimates and for microparameters. Likewise, no substantial differences were 

observed in the test-retest reliability estimates between the two tools. 

In summary, we showed excellent agreement between the open source R package kinfitr, and 

the widely-used commercial application PMOD. We therefore conclude that kinfitr is a valid 

and reliable tool for kinetic modelling of PET data. 
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Background 

Positron emission tomography (PET) is an imaging modality with high sensitivity and 

specificity for biochemical markers and metabolic processes in vivo [1]. It is an important tool 

in the study of psychiatric and neurological diseases, as well as for evaluating novel and 

established pharmacological treatments [2–4]. In PET imaging, study participants receive an 

intravenous injection of a radioligand, which binds specifically to a target molecule [5]. The 

concentration of radioligand in a region of interest (ROI) is measured over time to produce a 

time-activity curve (TAC) [6]. Radioligand binding, and thereby the concentration of the 

target molecule, can then be estimated using quantitative kinetic models [7, 8], of which there 

are many.  

Importantly, the choice of a certain kinetic modelling approach should be based on several 

considerations, including the pharmacokinetic properties of the radioligand, the signal-to-

noise ratio of the TAC, the availability of arterial blood sampling and the biological research 

question. Furthermore, there are various other analytical decisions that must be made in 

conjunction with modelling, such as the selection of statistical weighting. The sheer number 

of options available for kinetic modelling, in addition to those in prior pre-processing of 

image data [9] and blood data [10, 11] means that the communication of all analytical steps 

may not be feasible within the confines of a scientific publication. This limitation  may, in 

turn, impede replication efforts and obscure potential errors [12]. Such problems have been 

described in numerous fields, and reproducible research practices have been proposed as a 

solution: this means increasing transparency by exposing more of the research workflow to 

the scientific community, through sharing of code and (when possible) data [12–14]. 

Several tools, both commercial and open-source, have been developed to facilitate the 

analysis of PET data [15–18]. These tools differ in their focus on various levels of analysis 
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such as image reconstruction, image processing or high-throughput quantification. Kinfitr is 

an open source software package specifically developed for the purpose of performing PET 

kinetic modelling in a flexible and reproducible fashion. It is written in the R programming 

language [19], which provides access to a rich ecosystem of tools for reproducible research. 

The overall aims of kinfitr are to provide researchers with a high degree of flexibility during 

modelling as well as to provide the user with the ability to report all the steps taken during 

this process in a transparent manner [20].  This software  package has been used in several 

scientific publications [21–24], however, it has not yet been formally evaluated against other 

software. This is an important safeguard for open-source software, as bugs can otherwise go 

unnoticed (e.g. [25]).  

The purpose of this study was to validate kinfitr by comparing its estimates to those obtained 

with the widely-used commercially available software PMOD [17], which for the purposes of 

this analysis was considered to be the gold standard within the field. Making use of previously 

collected test-retest data for four different radioligands, we evaluated the agreement between 

these tools, using three different kinetic models each. 

Methods 

Data and study participants 

This study was performed using data from four previous studies carried out at the Centre for 

Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, 

Sweden. In all studies, the data collection was approved by the Regional Ethics and Radiation 

Safety Committee of the Karolinska Hospital, and all subjects had provided written informed 

consent prior to their participation. All participants were young (aged 20-35 years), healthy 

individuals who underwent two PET measurements each with the same radioligand. The 
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radioligands used were [
11

C]SCH23390 [26],  [
11

C]AZ10419369 [27], [
11

C]PBR28 [28] and 

(R)- [
11

C]PK11195 [29]. Data from two target ROIs were selected as representative for each 

dataset. The two ROIs correspond to a region with higher and a region with lower specific 

binding for the radioligand used. 

The [
11

C]SCH23390 cohort consisted of fifteen male subjects [30]. [
11

C]SCH23390 binds to 

the dopamine D1 receptor, which is highly concentrated in the striatum, with a lower 

concentration in cortical regions and negligible expression in the cerebellum [31]. In this 

study, the target ROIs were the striatum and the frontal cortex.  

The [
11

C]AZ10419369 cohort consisted of eight male subjects [32]. [
11

C]AZ10419369 binds 

to the serotonin 5-HT1B receptor, which is highly concentrated in the occipital cortex, with a 

moderate concentration in the frontal cortex and negligible expression in the cerebellum.  The 

occipital and frontal cortices were selected as the target ROIs for [
11

C]AZ10419369 [32].  

The [
11

C]PBR28 cohort consisted of 6 males and 6 females[33] and the (R)-[
11

C]PK11195 

cohort was comprised of 6 male individuals[34]. Both [
11

C]PBR28 and (R)- [
11

C]PK11195 

bind to the 18 kDa translocator protein (TSPO), a proposed marker of glial cell activation 

[35–37]. TSPO has a widespread distribution across the whole brain, predominantly in grey 

matter [38]. In this study, the ROIs used for both TSPO ligands were the thalamus and the 

frontal cortex. Furthermore, arterial blood sampling, plasma measurements and plasma 

metabolite analysis were performed and used in the analysis for the [
11

C]PBR28 and (R)- 

[
11

C]PK11195 cohorts as described previously [33, 34], as no true reference region is 

available for these radioligands.   
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Kinetic modelling 

In total, a total of six commonly-used kinetic models were used to quantify radioligand 

binding in the different datasets. For each analysis, both kinfitr (version 0.4.3) and PMOD 

(version 3.704, PMOD Technologies LLC., Zürich, Switzerland) was used. These estimates 

were subsequently compared to assess the agreement between the two kinetic modelling tools. 

The same investigator (JT) performed the analysis with both tools. 

For the quantification of [
11

C]SCH23390 and [
11

C]AZ10419369, the Simplified Reference 

Tissue Model (SRTM) [39], Ichise's Multilinear Reference Tissue Model 2 (MRTM2) [40] 

and the non-invasive Logan plot [41] were used, with the cerebellum as a reference region for 

both radioligands. These models will be referred to as the “reference tissue models”, whose 

main outcome was the binding potential (BPND). Prior to performing MRTM2, k2’ was 

estimated by fitting MRTM1 [40] for the TAC of the higher-binding region for each subject, 

the result of which was used as an input when fitting MRTM2 for all regions of that particular 

subject. 

For the quantification of (R)- [
11

C]PK11195 and [
11

C]PBR28, the two-tissue compartment 

model (2TCM) [42–44], the Logan plot [45] and Ichise’s Multilinear Analysis 1 (MA1) [46] 

were used to estimate the distribution volume (VT) using the metabolite-corrected arterial 

plasma (AIF) as an input function. These will henceforth be referred to as the “invasive 

models”. The delay between the TACs and arterial input function was fitted by the 2TCM 

using the TAC for the whole brain ROI. The default values in PMOD for the blood volume 

fraction (vB) were maintained throughout all analyses, which amounted to a vB = 0 for MA1 

and the invasive Logan plot and vB = 0.05 for 2TCM.  

The manner by which the analysis was performed was based on the explicit instructions 

provided along with each tool. However, when no explicit instructions were available, we 
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resorted to making inferences based on the instructions for previous analytical steps and the 

design of the user interface of each kinetic modelling tool to emulate best how users might 

actually use each tool. For instance, one difference between how both tools are used relates to 

the selection of t*, which is required when fitting the linearized models (MA1, MRTM2 and 

both invasive and non-invasive Logan plots). These linearized models rely on asymptotic 

approximations, and t* is the time point after which these approximations apply. In kinfitr, a 

single t* value was selected and used across individuals, while in PMOD, a unique t* value 

was selected for each individual PET measurement. In both cases, the design of the software 

makes it more difficult and time-consuming to do this the other way (more details provided in 

Supplementary Materials S1), and in the former case this was a deliberate design decision to 

prevent over-fitting [20]. Importantly, the decision to focus on how the tools might be used in 

practice, rather than simply optimising the similarity of processing, provides more 

information about the extent to which outcomes might differ between tools, rather than the 

extent to which they might be made to be the same. We believe that this is of greater 

relevance to the research community. 

Statistics 

The primary aim of this study was to assess the agreement between estimates of BPND (for 

reference tissue models) or VT (for invasive models) obtained using kinfitr or PMOD, using a 

total of 6 different kinetic models. By using test-retest data, we were also able to evaluate the 

secondary aim of comparing the test-retest reliability within individuals for each tool. 

The agreement between kinfitr and PMOD was evaluated using the intraclass correlation 

coefficient (ICC), the Pearson correlation coefficient, and bias.  

The ICC represents the proportion of the total variance which is not attributable to 

measurement error, or noise.  Therefore, an ICC of 1 represents perfect agreement, while an 
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ICC of 0 represents no signal and only noise. We used the ICC(A,1) [47], which is computed 

using the following equation: 

     
       

              
 
          

  

 

where MSR is the mean sum of squares of the rows, MSE is the mean sum of squares of the 

error and MSC is the mean sum of squares of the columns; and where k refers to the number 

of raters or observations per subject (in this case 2), and n refers to the number of subjects 

[48]. 

Bias was defined as the percentage change in the means of the values of the binding 

estimates. This measure was calculated as follows: 

      
              

     
        

where X represents estimates of radioligand binding.  

To compare the performance of each tool for assessing within- and between-subject 

variability, we calculated the mean, coefficient of variation (CV), ICC, within-subject 

coefficient of variation (WSCV) and absolute variability (AV). 

The CV is calculated as a measure of dispersion.  It is defined as follows: 

   
  

  
      % 

Where    represents the sample standard deviation and    the sample mean of the binding 

estimate value.  
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The ICC was calculated as above, since inter-rater agreement and test-retest reliability are 

both most appropriately estimated using the two-way mixed effects, absolute agreement, 

single rater/measurement ICC, the ICC(A,1) [49]. 

The within-subject coefficient of variation was calculated as a measure of repeatability and 

expresses the error as a percentage of the mean.  It is calculated as follows: 

      
   
  

        

where     represents the standard error of the binding estimate value, which is analogous to the 

square root of the within subject mean sum of squares (MSW), which is also used in the 

calculation of the ICC above.    is the sample mean of the binding estimate value. 

Finally, we also calculated the absolute variability (AV). This metric can be considered as an 

approximation of the WSCV above. While not as useful as the WSCV [50], AV has 

traditionally been applied within the PET field, and is included for historical comparability. 

   
                    

                
      

Where “X” refers to the value of the binding estimate and “PET 1” and “PET 2” refer to the 

first and second PET measurements in a test-retest experiment (in chronological order).  

Exclusions and Deviations 

All subjects in the [
11

C]SCH23390, [
11

C]AZ10419369 and (R)- [
11

C]PK11195 cohorts were 

included in the final analysis. However, one study participant belonging to the [
11

C]PBR28 

cohort, was excluded due to exhibiting a poor fit in the PMOD analysis which resulted in an 

abnormally high VT estimate (>5 standard deviations from the mean of the rest of the sample, 

and a >500% increase from the other measurement of the same individual) (Supplementary 
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Materials S2). We were unable to resolve this problem using different starting, upper and 

lower limits. 

Moreover, in the analysis of the [
11

C]PBR28 cohort, kinfitr returned warnings about high 

values of k3 and k4 for some fits. When parameter estimates are equal to upper or lower limit 

bounds, the software recommends either altering the bounds, or attempting to use multiple 

starting points to increase the chance of finding the global minimum as opposed to a local 

minimum. Since in this case we deemed the values to be abnormally high, we opted for the 

latter strategy using the multiple starting point functionality of kinfitr using the nls.multstart 

package [51]. This entails fitting each curve a given number of times (we selected 100) using 

randomly sampled starting parameters from across the parameter space. This process led to 

negligible changes in the VT estimates, but yielded microparameter estimates whose values 

were no longer equal to the upper or lower limit bounds. 

Data and Code Availability 

All analysis code is available at https://github.com/tjerkaskij/agreement_kinfitr_pmod. The 

data are pseudonymized according to national (Swedish) and EU legislation and cannot be 

fully anonymized, and therefore cannot be shared openly within this repository due to current 

institutional restrictions. Metadata can be openly published, and the underlying data can 

instead be made available upon request on a case by case basis as allowed by the legislation 

and ethical permits. Requests for access can be made to the Karolinska Institutet’s Research 

Data Office at rdo@ki.se. 
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Results  

 

ICC Pearson's r Bias (%) 

Ligand Model Region 1 Region 2 Region 1 Region 2 Bias 1 Bias 2 

Invasive 

[
11

C]PBR28 

       2TCM 0.99 1.00 1.00 1.00 2.01 1.19 

Logan 0.99 0.99 1.00 1.00 1.06 0.37 

MA1 0.95 0.97 1.00 1.00 10.53 10.06 

[
11

C]PK11195 

       2TCM 1.00 0.98 1.00 0.98 1.16 0.69 

Logan 0.99 0.94 1.00 0.97 -3.26 -5.68 

MA1 0.97 0.89 0.99 0.95 5.07 9.63 

Non-Invasive 

[
11

C]AZ10419369 

   SRTM 1.00 1.00 1.00 1.00 -0.17 0.13 

ref Logan 0.93 0.92 0.99 0.99 -2.93 -3.53 

MRTM2 0.87 0.81 0.97 0.96 -3.84 -5.24 

[
11

C]SCH23390 

   SRTM 1.00 1.00 1.00 1.00 0.24 0.53 

ref Logan 0.90 0.97 0.99 0.99 -4.81 -4.02 

MRTM2 0.99 0.99 1.00 1.00 -1.27 -1.49 

Table 1: Agreement between kinfitr and PMOD. Region 1 corresponds to the occipital cortex for the radioligand 

[
11

C]AZ10419369, the striatum for [
11

C]SCH23390 and the thalamus for both (R)- [
11

C]PK11195 and [
11

C]PBR28. Region 2 

corresponds to the frontal cortex for all four radioligands which were used in this study. Abbreviations: “2TCM” = Two-

tissue compartmental model, “Logan” = Invasive Logan plot, “MA1” = Ichise’s Multilinear Analysis 1, “SRTM” = simplified 

reference tissue model, “ref Logan” = reference tissue Logan plot, “MRTM2” = Ichise's Multilinear Reference Tissue Model 2 

(MRTM2), “ICC” = intra-class correlation coefficient, “Pearson’s r” = Pearson’s correlation coefficient. 
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We found excellent agreement between binding estimates computed using both tools, with a 

median ICC of 0.98 (range: 0.81-1.00) (Table 1, Supplementary Materials S3) [50]. Likewise, 

we found high correlations between kinfitr and PMOD, with a median correlation coefficient 

of 0.99 (range: 0.95-1.00) (Table 1). It was observed that the linearized methods (i.e. MA1, 

MRTM2 and both invasive and non-invasive Logan plots) generally exhibited lower 

agreement than the non-linear models.   

We also found strong correlations between the binding estimates of the different kinetic 

models that were estimated using kinfitr and PMOD (Supplementary Materials S4). When 

comparing the binding estimates of the three reference tissue models within kinfitr and 

PMOD respectively, there was a median Pearson’s correlation coefficient of 0.99 for both 

tools. For the invasive models, there was a median Pearson’s correlation coefficient of 0.79 

for PMOD and 0.99 for kinfitr. 
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Test-retest reliability 

Ligand Software Model Mean CV (%) ICC WSCV (%) AV (%) 

Invasive 

[
11

C]PK11195 

       kinfitr 2TCM 0.76 27.1 0.75 13.9 18.9 

PMOD 2TCM 0.75 27.4 0.72 15.0 20.0 

kinfitr Logan 0.76 27.2 0.79 12.9 17.2 

PMOD Logan 0.79 26.2 0.80 12.2 16.2 

kinfitr MA1 0.84 26.4 0.73 14.1 17.9 

PMOD MA1 0.80 28.2 0.67 16.6 19.2 

[
11

C]PBR28 

       kinfitr 2TCM 3.84 59.6 0.91 18.4 25.1 

PMOD 2TCM 3.73 57.3 0.89 19.1 26.7 

kinfitr Logan 3.75 57.4 0.91 17.7 24.4 

PMOD Logan 3.68 54.8 0.88 19.4 26.5 

kinfitr MA1 4.00 58.4 0.91 18.0 24.0 

PMOD MA1 3.54 53.1 0.91 16.7 23.7 

Non-Invasive 

[
11

C]AZ10419369 

       kinfitr SRTM 1.59 10.7 0.67 6.3 5.9 

PMOD SRTM 1.60 11.0 0.67 6.5 5.9 

kinfitr ref Logan 1.45 8.1 0.61 5.2 4.8 

PMOD ref Logan 1.49 8.3 0.62 5.3 5.5 

kinfitr MRTM2 1.42 8.2 0.52 5.9 4.7 

PMOD MRTM2 1.48 8.0 0.59 5.2 5.5 
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Ligand Software Model Mean CV (%) ICC WSCV (%) AV (%) 

[
11

C]SCH23390 

       kinfitr SRTM 1.49 11.1 0.83 4.6 5.0 

PMOD SRTM 1.49 11.2 0.83 4.6 5.0 

kinfitr ref Logan 1.48 11.3 0.82 4.8 5.3 

PMOD ref Logan 1.56 12.3 0.80 5.6 7.0 

kinfitr MRTM2 1.49 11.1 0.83 4.6 4.9 

PMOD MRTM2 1.51 11.3 0.82 4.9 5.4 

 

Table 2: Assessment of test-retest reliability of kinfitr and PMOD for a single high-binding ROI for each radioligand. The 

occipital cortex region was used for the radioligand [
11

C]AZ10419369, the striatum for [
11

C]SCH23390 and the thalamus for 

both (R)- [
11

C]PK11195 and [
11

C]PBR28. Abbreviations: “2TCM” = Two-tissue compartmental model, “Logan” = Invasive 

Logan plot, “MA1” = Ichise’s Multilinear Analysis 1, “SRTM” = simplified reference tissue model, “ref Logan” = reference 

tissue Logan plot, “MRTM2” = Ichise's Multilinear Reference Tissue Model 2 (MRTM2), “ICC” = intra-class correlation 

coefficient, “CV” = Coefficient of variance, “WSCV” = within-subject coefficient of variance, “AV” = absolute variability. 

 

 

 

In general, both tools performed similarly, with no substantial differences seen in the mean 

values, dispersion (CV), reliability (ICC), or variability (WSCV and AV) (Table 2; Figure 1).   
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Figure 1: Binding estimate values comparing the first and second PET measurements. Each colour corresponds to a 

different individual, and the lines connect both of their two measurements. The ROI used in making this figure were the 

higher-binding regions for each radioligand in this study, i.e. the occipital cortex for [
11

C]AZ10419369, the striatum for 

[
11

C]SCH23390 and the thalamus for both TSPO ligands. The kinetic models represented here are SRTM for the estimation 

of BPND (above two rows), and the invasive model 2TCM for the estimation of VT. 
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Microparameters 

We also compared the values of microparameters (i.e. individual rate constants) estimated 

using the nonlinear methods. Figure 2 shows a comparison between the values of R1 and k2 

obtained using SRTM for [
11

C]AZ10419369 and [
11

C]SCH23390. We observed Pearson’s 

correlation coefficients of >0.99 for both R1 and k2 estimated by kinfitr and PMOD. 

Similarly, the relationships between the microparameter estimates obtained using 2TCM for 

[
11

C]PBR28 and (R)- [
11

C]PK11195 were assessed (Figure 3). We found high correlations 

between kinfitr and PMOD estimates of K1, k2, k3 and k4 (mean Pearson’s correlation 

coefficients of >0.99, 0.81, 0.80 and 0.88 respectively).  
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Figure 2: Microparameter comparison for the simplified reference tissue model (SRTM). The relationship between the 

values of individual rate constants calculated by either kinfitr or PMOD. The results for the radioligand [
11

C]AZ10419369 are 

derived from the occipital cortex ROI, whereas the results for [
11

C]SCH23390 correspond to the striatum. The diagonal line 

represents the line of identity. Each colour corresponds to a different subject, and the dotted lines connect both 

measurements from the same subject.  
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Figure 3: Microparameter comparison for the two-tissue compartment model (2TCM). The relationship between the 

values of individual rate constants calculated by either kinfitr or PMOD. All results were derived from the thalamus region. 
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The diagonal line represents the line of identity. Each colour corresponds to a different subject, and the dotted lines 

connect both measurements from the same subject. 

Discussion  

In this study, we evaluated the performance of kinfitr by comparing radioligand binding 

estimates to those obtained with the established commercial software PMOD. We assessed 

the similarity between these tools using four datasets, each encompassing a different 

radioligand, and employed three kinetic models for invasive and non-invasive applications. 

Mean regional BPND and VT values computed by both tools were similar to those reported in 

previous literature on the same radioligands [32–34, 52]. We observed high agreement 

between estimates of BPND and VT using kinfitr and PMOD. Furthermore, there were no 

substantial differences between the tools in terms of test-retest reliability for these measures. 

We further found that both tools exhibited a high degree of agreement in estimates of the 

microparameters, as well as high agreement between the estimates of the different models 

assessed using each tool separately. While the bias between some outcome measures 

estimated with the two tools was non-negligible (Table 1), the high correlations for all 

outcomes mean that this would not present an issue when using one or the other tool within a 

given dataset.  

Despite the overall high similarity with regard to binding estimates, the linearized models (i.e. 

MA1, MRTM2 and both invasive and non-invasive Logan plots) exhibited a slightly lower 

degree of agreement the nonlinear models (2TCM and SRTM). This observation is most 

likely explained by the fact that the linearized models require the selection of a t* value, 

which was performed differently using the two tools. As described in more detail in the 

Supplementary Material S1, PMOD fits a t* value for the user, whereas kinfitr requires the 

user to specify a t* based on several plots as visual aids with which to select an appropriate 
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value. As such, the PMOD interface makes it more convenient to fit t* values independently 

for each individual, while the kinfitr interface encourages selecting a t* value which is 

generally applicable across all study participants. 

With regard to the user interface of the two tools, the most important difference is that kinfitr 

requires the user to interact with the data using code, while PMOD makes use of a graphical 

user interface (GUI), i.e. the user clicks buttons and selects items from drop-down menus. As 

such, kinfitr requires learning basic R programming before it can be used effectively, while 

PMOD can essentially be used immediately. Therefore, kinfitr may be perceived as having a 

steeper learning curve than PMOD. However, in our experience, kinfitr provides the user with 

greater efficiency once a moderate degree of proficiency has been gained. For instance, as a 

result of the code interface, re-running an analysis using kinfitr on all study participants using 

different parameters (e.g. altering a fixed vB or t* value) or a different model, can be 

performed by modifying only the relevant lines of code. In contrast, performing re-analyses 

using PMOD can require a great deal of manual effort, as all tasks must essentially be 

repeated. This exemplifies the fundamental benefit of computational reproducibility: by 

crystallising all steps in computer code, the results can easily be generated anew from the raw 

input data. This has additional benefits, such as making the detection of potential errors 

substantially easier as all user actions are recorded transparently in the analysis code, and 

allowing others to more quickly and easily adapt, modify or build upon previous work. 

It is important to note that the kinetic modelling was not performed in an identical manner 

between the two tools; rather we performed the modelling in a manner as consistent with the 

way users might actually use the software as possible. This was done in order to emphasize 

ecological validity. While this diminishes the extent to which we can specifically compare the 

outcomes using both of the two tools, our intention was instead to compare how both tools 

would be expected to perform independently in practice. This approach focuses on the extent 
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to which outcomes might potentially differ between these tools, rather than the extent to 

which they can be made similar. It is thus reasonable to assume that even higher agreement 

could be achieved if additional measures were taken to make each analytic step identical.  

In summary, we showed excellent agreement between the open source R package kinfitr, and 

the widely-used commercial application PMOD, which we have treated as a gold standard for 

the purpose of this analysis. We therefore conclude that kinfitr is a valid and reliable tool for 

kinetic modelling of PET data. 
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