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Abstract

In positron emission tomography (PET) imaging, binding is typically estimated by fitting
pharmacokinetic models to the series of measurements of radioactivity in the target tissue
following intravenous injection of a radioligand. However, there are multiple different
models to choose from and numerous analytical decisions which must be made when
modelling PET data. Therefore, full communication of all the steps involved is often not
feasible within the confines of a scientific publication. As such, there is a need to improve
analytical transparency. Kinfitr, written in the open-source programming language R, is a tool
developed for flexible and reproducible kinetic modelling of PET data, i.e. performing all
steps using code which can be publicly shared in analysis notebooks. In this study, we
compared outcomes obtained using kinfitr with those obtained using PMOD: a widely-used
commercial tool.

Using previously-collected test-retest data obtained with four different radioligands, a total of
six different kinetic models were fitted to time-activity curves derived from different brain
regions. We observed high agreement between the two kinetic modelling tools both for
binding estimates and for microparameters. Likewise, no substantial differences were
observed in the test-retest reliability estimates between the two tools.

In summary, we showed excellent agreement between the open source R package kinfitr, and
the widely-used commercial application PMOD. We therefore conclude that kinfitr is a valid

and reliable tool for kinetic modelling of PET data.
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Background

Positron emission tomography (PET) is an imaging modality with high sensitivity and
specificity for biochemical markers and metabolic processes in vivo [1]. It is an important tool
in the study of psychiatric and neurological diseases, as well as for evaluating novel and
established pharmacological treatments [2-4]. In PET imaging, study participants receive an
intravenous injection of a radioligand, which binds specifically to a target molecule [5]. The
concentration of radioligand in a region of interest (ROI) is measured over time to produce a
time-activity curve (TAC) [6]. Radioligand binding, and thereby the concentration of the
target molecule, can then be estimated using quantitative kinetic models [7, 8], of which there

are many.

Importantly, the choice of a certain kinetic modelling approach should be based on several
considerations, including the pharmacokinetic properties of the radioligand, the signal-to-
noise ratio of the TAC, the availability of arterial blood sampling and the biological research
question. Furthermore, there are various other analytical decisions that must be made in
conjunction with modelling, such as the selection of statistical weighting. The sheer number
of options available for kinetic modelling, in addition to those in prior pre-processing of
image data [9] and blood data [10, 11] means that the communication of all analytical steps
may not be feasible within the confines of a scientific publication. This limitation may, in
turn, impede replication efforts and obscure potential errors [12]. Such problems have been
described in numerous fields, and reproducible research practices have been proposed as a
solution: this means increasing transparency by exposing more of the research workflow to

the scientific community, through sharing of code and (when possible) data [12—14].

Several tools, both commercial and open-source, have been developed to facilitate the

analysis of PET data [15-18]. These tools differ in their focus on various levels of analysis
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such as image reconstruction, image processing or high-throughput quantification. Kinfitr is
an open source software package specifically developed for the purpose of performing PET
kinetic modelling in a flexible and reproducible fashion. It is written in the R programming
language [19], which provides access to a rich ecosystem of tools for reproducible research.
The overall aims of kinfitr are to provide researchers with a high degree of flexibility during
modelling as well as to provide the user with the ability to report all the steps taken during
this process in a transparent manner [20]. This software package has been used in several
scientific publications [21-24], however, it has not yet been formally evaluated against other
software. This is an important safeguard for open-source software, as bugs can otherwise go

unnoticed (e.g. [25]).

The purpose of this study was to validate kinfitr by comparing its estimates to those obtained
with the widely-used commercially available software PMOD [17], which for the purposes of
this analysis was considered to be the gold standard within the field. Making use of previously
collected test-retest data for four different radioligands, we evaluated the agreement between

these tools, using three different kinetic models each.

Methods

Data and study participants

This study was performed using data from four previous studies carried out at the Centre for
Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm,
Sweden. In all studies, the data collection was approved by the Regional Ethics and Radiation
Safety Committee of the Karolinska Hospital, and all subjects had provided written informed
consent prior to their participation. All participants were young (aged 20-35 years), healthy

individuals who underwent two PET measurements each with the same radioligand. The
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radioligands used were [**C]SCH23390 [26], [**C]AZ10419369 [27], [*C]PBR28 [28] and
(R)- [*'C]PK11195 [29]. Data from two target ROIs were selected as representative for each
dataset. The two ROIs correspond to a region with higher and a region with lower specific

binding for the radioligand used.

The [*'C]SCH23390 cohort consisted of fifteen male subjects [30]. [**C]SCH23390 binds to
the dopamine D1 receptor, which is highly concentrated in the striatum, with a lower
concentration in cortical regions and negligible expression in the cerebellum [31]. In this

study, the target ROIs were the striatum and the frontal cortex.

The [M'C]AZ10419369 cohort consisted of eight male subjects [32]. [*'C]AZ10419369 binds
to the serotonin 5-HT;g receptor, which is highly concentrated in the occipital cortex, with a
moderate concentration in the frontal cortex and negligible expression in the cerebellum. The

occipital and frontal cortices were selected as the target ROls for [*'C]AZ10419369 [32].

The [*'C]PBR28 cohort consisted of 6 males and 6 females[33] and the (R)-[*'C]PK11195
cohort was comprised of 6 male individuals[34]. Both [''C]PBR28 and (R)- ['C]PK 11195
bind to the 18 kDa translocator protein (TSPO), a proposed marker of glial cell activation
[35-37]. TSPO has a widespread distribution across the whole brain, predominantly in grey
matter [38]. In this study, the ROIs used for both TSPO ligands were the thalamus and the
frontal cortex. Furthermore, arterial blood sampling, plasma measurements and plasma
metabolite analysis were performed and used in the analysis for the ["'*C]PBR28 and (R)-
["'C]PK 11195 cohorts as described previously [33, 34], as no true reference region is

available for these radioligands.
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Kinetic modelling

In total, a total of six commonly-used kinetic models were used to quantify radioligand
binding in the different datasets. For each analysis, both kinfitr (version 0.4.3) and PMOD
(version 3.704, PMOD Technologies LLC., Zirich, Switzerland) was used. These estimates
were subsequently compared to assess the agreement between the two kinetic modelling tools.

The same investigator (JT) performed the analysis with both tools.

For the quantification of [**C]SCH23390 and [*'C]AZ10419369, the Simplified Reference
Tissue Model (SRTM) [39], Ichise's Multilinear Reference Tissue Model 2 (MRTM2) [40]
and the non-invasive Logan plot [41] were used, with the cerebellum as a reference region for
both radioligands. These models will be referred to as the “reference tissue models”, whose
main outcome was the binding potential (BPnp). Prior to performing MRTM2, ky* was
estimated by fitting MRTML1 [40] for the TAC of the higher-binding region for each subject,
the result of which was used as an input when fitting MRTM2 for all regions of that particular

subject.

For the quantification of (R)- [*'C]PK11195 and [*'C]PBR28, the two-tissue compartment
model (2TCM) [42-44], the Logan plot [45] and Ichise’s Multilinear Analysis 1 (MA1) [46]
were used to estimate the distribution volume (V1) using the metabolite-corrected arterial
plasma (AIF) as an input function. These will henceforth be referred to as the “invasive
models”. The delay between the TACs and arterial input function was fitted by the 2TCM
using the TAC for the whole brain ROI. The default values in PMOD for the blood volume
fraction (vg) were maintained throughout all analyses, which amounted to a vg = 0 for MA1

and the invasive Logan plot and vg = 0.05 for 2TCM.

The manner by which the analysis was performed was based on the explicit instructions

provided along with each tool. However, when no explicit instructions were available, we


https://doi.org/10.1101/2020.02.20.957738
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.02.20.957738; this version posted February 20, 2020. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY 4.0 International license.

resorted to making inferences based on the instructions for previous analytical steps and the
design of the user interface of each kinetic modelling tool to emulate best how users might
actually use each tool. For instance, one difference between how both tools are used relates to
the selection of t*, which is required when fitting the linearized models (MA1, MRTM2 and
both invasive and non-invasive Logan plots). These linearized models rely on asymptotic
approximations, and t* is the time point after which these approximations apply. In kinfitr, a
single t* value was selected and used across individuals, while in PMOD, a unique t* value
was selected for each individual PET measurement. In both cases, the design of the software
makes it more difficult and time-consuming to do this the other way (more details provided in
Supplementary Materials S1), and in the former case this was a deliberate design decision to
prevent over-fitting [20]. Importantly, the decision to focus on how the tools might be used in
practice, rather than simply optimising the similarity of processing, provides more
information about the extent to which outcomes might differ between tools, rather than the
extent to which they might be made to be the same. We believe that this is of greater

relevance to the research community.

Statistics

The primary aim of this study was to assess the agreement between estimates of BPyp (for
reference tissue models) or V1 (for invasive models) obtained using kinfitr or PMOD, using a
total of 6 different kinetic models. By using test-retest data, we were also able to evaluate the

secondary aim of comparing the test-retest reliability within individuals for each tool.

The agreement between kinfitr and PMOD was evaluated using the intraclass correlation

coefficient (ICC), the Pearson correlation coefficient, and bias.

The ICC represents the proportion of the total variance which is not attributable to

measurement error, or noise. Therefore, an ICC of 1 represents perfect agreement, while an
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ICC of 0 represents no signal and only noise. We used the ICC(A,1) [47], which is computed

using the following equation:

MSR - MSE

ICC = T

where MSg, is the mean sum of squares of the rows, MSg is the mean sum of squares of the
error and MS¢ is the mean sum of squares of the columns; and where k refers to the number
of raters or observations per subject (in this case 2), and n refers to the number of subjects

[48].

Bias was defined as the percentage change in the means of the values of the binding

estimates. This measure was calculated as follows:

Xkingier — Xpmon

Bias = X 100%

XPMOD

where X represents estimates of radioligand binding.

To compare the performance of each tool for assessing within- and between-subject
variability, we calculated the mean, coefficient of variation (CV), ICC, within-subject

coefficient of variation (WSCV) and absolute variability (AV).

The CV is calculated as a measure of dispersion. It is defined as follows:

CV == x 100%

=1

Where G represents the sample standard deviation and /i the sample mean of the binding

estimate value.
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The ICC was calculated as above, since inter-rater agreement and test-retest reliability are
both most appropriately estimated using the two-way mixed effects, absolute agreement,

single rater/measurement ICC, the ICC(A,1) [49].

The within-subject coefficient of variation was calculated as a measure of repeatability and

expresses the error as a percentage of the mean. It is calculated as follows:

A

e

0
WSCV = ﬁ X 100%

where &, represents the standard error of the binding estimate value, which is analogous to the
square root of the within subject mean sum of squares (MSw), which is also used in the

calculation of the ICC above. fi is the sample mean of the binding estimate value.

Finally, we also calculated the absolute variability (AV). This metric can be considered as an
approximation of the WSCV above. While not as useful as the WSCV [50], AV has
traditionally been applied within the PET field, and is included for historical comparability.

_ 2 X |Xppr1 — Xper2l

AV = x 100
|Xper1 + Xper2l

Where “X” refers to the value of the binding estimate and “PET 1” and “PET 2” refer to the

first and second PET measurements in a test-retest experiment (in chronological order).

Exclusions and Deviations

All subjects in the ["*C]SCH23390, [*'C]AZ10419369 and (R)- [*'C]PK 11195 cohorts were
included in the final analysis. However, one study participant belonging to the [**C]PBR28
cohort, was excluded due to exhibiting a poor fit in the PMOD analysis which resulted in an
abnormally high Vtestimate (>5 standard deviations from the mean of the rest of the sample,

and a >500% increase from the other measurement of the same individual) (Supplementary
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Materials S2). We were unable to resolve this problem using different starting, upper and

lower limits.

Moreover, in the analysis of the [*!C]JPBR28 cohort, kinfitr returned warnings about high
values of k3 and k, for some fits. When parameter estimates are equal to upper or lower limit
bounds, the software recommends either altering the bounds, or attempting to use multiple
starting points to increase the chance of finding the global minimum as opposed to a local
minimum. Since in this case we deemed the values to be abnormally high, we opted for the
latter strategy using the multiple starting point functionality of kinfitr using the nls.multstart
package [51]. This entails fitting each curve a given number of times (we selected 100) using
randomly sampled starting parameters from across the parameter space. This process led to
negligible changes in the V1 estimates, but yielded microparameter estimates whose values

were no longer equal to the upper or lower limit bounds.

Data and Code Availability

All analysis code is available at https://github.com/tjerkaskij/agreement_kinfitr_pmod. The
data are pseudonymized according to national (Swedish) and EU legislation and cannot be
fully anonymized, and therefore cannot be shared openly within this repository due to current
institutional restrictions. Metadata can be openly published, and the underlying data can
instead be made available upon request on a case by case basis as allowed by the legislation
and ethical permits. Requests for access can be made to the Karolinska Institutet’s Research

Data Office at rdo@Ki.se.
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Results
ICC Pearson's r Bias (%)
Ligand Model Region1 Region2 Regionl Region2 Bias1l Bias?2
Invasive
2TCM 0.99 1.00 1.00 1.00 2.01 1.19
[*'C]PBR28 Logan 0.99 0.99 1.00 1.00 1.06  0.37
MA1 0.95 0.97 1.00 1.00 10.53 10.06
2TCM 1.00 0.98 1.00 0.98 1.16 0.69
[*C]PK11195 Logan 0.99 0.94 1.00 0.97 -3.26 -5.68
MA1 0.97 0.89 0.99 0.95 5.07 9.63
Non-Invasive
SRTM 1.00 1.00 1.00 1.00 -0.17 0.13
[*'C]AZ10419369 ref Logan 0.93 0.92 0.99 0.99 293 -353
MRTM2  0.87 0.81 0.97 0.96 -3.84 524
SRTM 1.00 1.00 1.00 1.00 0.24 0.53
[*'C]SCH23390 ref Logan 0.90 0.97 0.99 0.99 -4.81  -4.02
MRTM2  0.99 0.99 1.00 1.00 -1.27  -1.49

Table 1: Agreement between kinfitr and PMOD. Region 1 corresponds to the occipital cortex for the radioligand

[''C1AZ10419369, the striatum for [*'CISCH23390 and the thalamus for both (R)- [*'C]PK11195 and [''C]PBR28. Region 2
corresponds to the frontal cortex for all four radioligands which were used in this study. Abbreviations: “2TCM” = Two-
tissue compartmental model, “Logan” = Invasive Logan plot, “MA1” = Ichise’s Multilinear Analysis 1, “SRTM” = simplified
reference tissue model, “ref Logan” = reference tissue Logan plot, “MRTM2” = Ichise's Multilinear Reference Tissue Model 2

(MRTMZ2), “ICC” = intra-class correlation coefficient, “Pearson’s r” = Pearson’s correlation coefficient.

11
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We found excellent agreement between binding estimates computed using both tools, with a
median ICC of 0.98 (range: 0.81-1.00) (Table 1, Supplementary Materials S3) [50]. Likewise,
we found high correlations between kinfitr and PMOD, with a median correlation coefficient
of 0.99 (range: 0.95-1.00) (Table 1). It was observed that the linearized methods (i.e. MA1,
MRTM2 and both invasive and non-invasive Logan plots) generally exhibited lower

agreement than the non-linear models.

We also found strong correlations between the binding estimates of the different kinetic
models that were estimated using kinfitr and PMOD (Supplementary Materials S4). When
comparing the binding estimates of the three reference tissue models within kinfitr and
PMOD respectively, there was a median Pearson’s correlation coefficient of 0.99 for both
tools. For the invasive models, there was a median Pearson’s correlation coefficient of 0.79

for PMOD and 0.99 for kinfitr.
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Test-retest reliability

Ligand Software Model Mean CV (%) ICC WSCV (%) AV (%)
Invasive
kinfitr 2TCM 0.76 27.1 0.75 139 18.9
PMOD 2TCM 0.75 27.4 0.72 15.0 20.0
kinfitr ~ Logan 0.76 27.2 0.79 129 17.2

[*'C]PK11195

PMOD Logan 0.79 26.2 0.80 12.2 16.2
kinfitr ~ MA1 0.84 26.4 0.73 141 17.9
PMOD MA1 0.80 28.2 0.67 16.6 19.2
kinfitr 2TCM 3.84 59.6 091 184 25.1
PMOD 2TCM 3.73 57.3 0.89 191 26.7
kinfitr ~ Logan 3.75 574 091 17.7 24.4
[*'C]PBR28
PMOD Logan 3.68 54.8 0.88 194 26.5
kinfitr ~ MA1 4.00 584 0.91 18.0 24.0
PMOD MA1 3.54 531 091 16.7 23.7
Non-Invasive
kinfitr SRTM 1.59 10.7 0.67 6.3 5.9
PMOD SRTM 1.60 11.0 0.67 6.5 5.9
kinfitr ~ ref Logan 1.45 8.1 0.61 5.2 4.8
["'C]AZ10419369
PMOD ref Logan 1.49 8.3 0.62 53 5.5
kinfitr - MRTM2 142 8.2 0.52 5.9 4.7
PMOD MRTM2 148 8.0 0.59 5.2 5.5
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Ligand Software Model Mean CV (%) ICC WSCV (%) AV (%)
kinfitr SRTM 149 111 0.83 4.6 5.0
PMOD SRTM 149 11.2 0.83 4.6 5.0
kinfitr ~ ref Logan 1.48 11.3 0.82 4.8 5.3
[*'C]SCH23390
PMOD reflLogan 156 12.3 0.80 5.6 7.0
kinfitr ~ MRTM2 149 111 0.83 4.6 4.9
PMOD MRTM2 1.51 113 0.82 4.9 54

Table 2: Assessment of test-retest reliability of kinfitr and PMOD for a single high-binding ROI for each radioligand. The
occipital cortex region was used for the radioligand [11C]A21O419369, the striatum for [11C]SCH23390 and the thalamus for
both (R)- [*'C]PK11195 and ['C]PBR28. Abbreviations: “2TCM” = Two-tissue compartmental model, “Logan” = Invasive
Logan plot, “MA1” = Ichise’s Multilinear Analysis 1, “SRTM” = simplified reference tissue model, “ref Logan” = reference
tissue Logan plot, “MRTM2” = Ichise's Multilinear Reference Tissue Model 2 (MRTM2), “ICC” = intra-class correlation

coefficient, “CV” = Coefficient of variance, “WSCV” = within-subject coefficient of variance, “AV” = absolute variability.

In general, both tools performed similarly, with no substantial differences seen in the mean

values, dispersion (CV), reliability (ICC), or variability (WSCV and AV) (Table 2; Figure 1).
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Figure 1: Binding estimate values comparing the first and second PET measurements. Each colour corresponds to a
different individual, and the lines connect both of their two measurements. The ROl used in making this figure were the
higher-binding regions for each radioligand in this study, i.e. the occipital cortex for ["'C]AZ10419369, the striatum for
[11C]SCH23390 and the thalamus for both TSPO ligands. The kinetic models represented here are SRTM for the estimation

of BPyp (above two rows), and the invasive model 2TCM for the estimation of V.

15


https://doi.org/10.1101/2020.02.20.957738
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.02.20.957738; this version posted February 20, 2020. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY 4.0 International license.

Microparameters

We also compared the values of microparameters (i.e. individual rate constants) estimated
using the nonlinear methods. Figure 2 shows a comparison between the values of R1 and k;
obtained using SRTM for [*'C]AZ10419369 and [*'C]SCH23390. We observed Pearson’s
correlation coefficients of >0.99 for both R1 and k; estimated by kinfitr and PMOD.
Similarly, the relationships between the microparameter estimates obtained using 2TCM for
["'C]PBR28 and (R)- [**C]PK11195 were assessed (Figure 3). We found high correlations
between kinfitr and PMOD estimates of Ky, ka, k3 and k4 (mean Pearson’s correlation

coefficients of >0.99, 0.81, 0.80 and 0.88 respectively).
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Figure 2: Microparameter comparison for the simplified reference tissue model (SRTM). The relationship between the
values of individual rate constants calculated by either kinfitr or PMOD. The results for the radioligand [11C]A210419369 are
derived from the occipital cortex ROI, whereas the results for [*Cc]ScH23390 correspond to the striatum. The diagonal line
represents the line of identity. Each colour corresponds to a different subject, and the dotted lines connect both

measurements from the same subject.
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Figure 3: Microparameter comparison for the two-tissue compartment model (2TCM). The relationship between the

values of individual rate constants calculated by either kinfitr or PMOD. All results were derived from the thalamus region.
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The diagonal line represents the line of identity. Each colour corresponds to a different subject, and the dotted lines

connect both measurements from the same subject.

Discussion

In this study, we evaluated the performance of kinfitr by comparing radioligand binding
estimates to those obtained with the established commercial software PMOD. We assessed
the similarity between these tools using four datasets, each encompassing a different
radioligand, and employed three kinetic models for invasive and non-invasive applications.
Mean regional BPyp and V-t values computed by both tools were similar to those reported in
previous literature on the same radioligands [32-34, 52]. We observed high agreement
between estimates of BPyp and V1 using kinfitr and PMOD. Furthermore, there were no
substantial differences between the tools in terms of test-retest reliability for these measures.
We further found that both tools exhibited a high degree of agreement in estimates of the
microparameters, as well as high agreement between the estimates of the different models
assessed using each tool separately. While the bias between some outcome measures
estimated with the two tools was non-negligible (Table 1), the high correlations for all
outcomes mean that this would not present an issue when using one or the other tool within a

given dataset.

Despite the overall high similarity with regard to binding estimates, the linearized models (i.e.
MAL, MRTM2 and both invasive and non-invasive Logan plots) exhibited a slightly lower
degree of agreement the nonlinear models (2TCM and SRTM). This observation is most
likely explained by the fact that the linearized models require the selection of a t* value,
which was performed differently using the two tools. As described in more detail in the
Supplementary Material S1, PMOD fits a t* value for the user, whereas kinfitr requires the

user to specify a t* based on several plots as visual aids with which to select an appropriate
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value. As such, the PMOD interface makes it more convenient to fit t* values independently
for each individual, while the kinfitr interface encourages selecting a t* value which is

generally applicable across all study participants.

With regard to the user interface of the two tools, the most important difference is that kinfitr
requires the user to interact with the data using code, while PMOD makes use of a graphical
user interface (GUI), i.e. the user clicks buttons and selects items from drop-down menus. As
such, kinfitr requires learning basic R programming before it can be used effectively, while
PMOD can essentially be used immediately. Therefore, kinfitr may be perceived as having a
steeper learning curve than PMOD. However, in our experience, Kinfitr provides the user with
greater efficiency once a moderate degree of proficiency has been gained. For instance, as a
result of the code interface, re-running an analysis using kinfitr on all study participants using
different parameters (e.g. altering a fixed vg or t* value) or a different model, can be
performed by modifying only the relevant lines of code. In contrast, performing re-analyses
using PMOD can require a great deal of manual effort, as all tasks must essentially be
repeated. This exemplifies the fundamental benefit of computational reproducibility: by
crystallising all steps in computer code, the results can easily be generated anew from the raw
input data. This has additional benefits, such as making the detection of potential errors
substantially easier as all user actions are recorded transparently in the analysis code, and

allowing others to more quickly and easily adapt, modify or build upon previous work.

It is important to note that the kinetic modelling was not performed in an identical manner
between the two tools; rather we performed the modelling in a manner as consistent with the
way users might actually use the software as possible. This was done in order to emphasize
ecological validity. While this diminishes the extent to which we can specifically compare the
outcomes using both of the two tools, our intention was instead to compare how both tools

would be expected to perform independently in practice. This approach focuses on the extent

20


https://doi.org/10.1101/2020.02.20.957738
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.02.20.957738; this version posted February 20, 2020. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY 4.0 International license.

to which outcomes might potentially differ between these tools, rather than the extent to
which they can be made similar. It is thus reasonable to assume that even higher agreement

could be achieved if additional measures were taken to make each analytic step identical.

In summary, we showed excellent agreement between the open source R package kinfitr, and
the widely-used commercial application PMOD, which we have treated as a gold standard for
the purpose of this analysis. We therefore conclude that kinfitr is a valid and reliable tool for

kinetic modelling of PET data.
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