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Abstract 
 
Central carbon metabolism produces energy and precursor metabolites for biomass in 

heterotrophs. Carbon overflow yields metabolic byproducts and, here, we examined 

its dependency on nutrient and growth using the unicellular eukaryotic model 

organism Saccharomyces cerevisiae. We performed quantitative proteomics analysis 

together with metabolic modeling and found that proteome overabundance enabled 

respiration, and variation in energy efficiency caused distinct composition of biomass 

at different carbon to nitrogen ratio and growth rate. Our results showed that ceullar 

resource allocation for ribosomes was determinative of growth rate, but energy 

constrains on protein synthesis incepted carbon overflow by prioritizing abundance of 

ribosomes and glycolysis over mitochondria. We proved that glycolytic efficiency 

affected energy metabolism by making a trade-off between low and high energy 

production pathways. Finally, we summarized cellular energy budget underlying 

nutrient-responsive and growth rate-dependent carbon overflow, and suggested 

implications of results for bioprocesses and pathways relevant in cancer metabolism 

in humans. 
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Introduction 
 
Nutrient sensing and signaling is essential for proliferation and differentiation of cells. 

In prokaryotes and unicellular eukaryotes, nutrient act not only as substrate but also as 

signal for control of proliferation which requires an appreciation of the role of nutrient 

as signaling molecule and metabolite (Broach, 2012). Our study focuses on 

unicellular eukaryote, budding yeast Saccharomyces cerevisiae, which is considered a 

model organism for investigating eukaryal regulations as well as an industrial 

workhorse in biotechnology. In particular, we focus on the role of macronutrient 

carbon and nitrogen in carbon overflow metabolism in yeast. Carbon overflow is a 

metabolic response to diverse stimuli and, in the most prominent example, is 

described by the Warburg effect where respiring healthy mammalian cells shift 

metabolism to fermentation in cancer cells (Warburg, 1956). However, a different 

mechanism results carbon overflow in the Crabtree effect wherein presence of excess 

glucose represses respiration allowing aerobic glycolysis to be the main source of 

energy supply in several species of yeast (Crabtree, 1928; De Deken, 1966).  Besides 

biomass and carbon dioxide (CO2) carbon overflow result in formation of metabolic 

byproducts such as organic acids in bacteria, ethanol in yeast and lactate in cancer 

cells (Vander Heiden et al., 2009). From a biosustainability viewpoint, investigating 

the role of macronutrients is important because e.g., nitrogen limitation is implicated 

in lipid metabolism that provides precursors for the production of oleochemicals such 

as biofuels (Yu et al., 2018). 

 

Carbon overflow can be onset by a diverse set of stimuli in cells. A common reason 

for its onset is fast growth rate (e.g., bacteria and yeasts),  but it can also be induced in 

slow growing cells (e.g., healthy human cells) confronting adverse conditions such as 

defect in nutrient sensing and signaling pathways, genetic or epigenetic modifications 

and environmental stress (Kumar et al., 2014; Lahtvee et al., 2016; Torrence and 

Manning, 2018). Carbon overflow shows a pathway preference for production of the 

cellular energy adenosine triphosphate (ATP) from glycolysis, a substrate level 

phosphorylation pathway with low ATP yield, over the electron transport chain 

(ETC), an oxidative phosphorylation pathway with high ATP yield (Vander Heiden et 
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al., 2009). Together glycolysis, the tricarboxylic acid (TCA) cycle and the ETC 

constitute so called energy metabolism that is evolutionary conserved across 

organisms (Chen and Nielsen, 2019). The total ATP generated in energy metabolism 

is spent either on growth-associated energy costs (GAEC) or on energetic costs of 

non-growth associated maintenance (NGAM) (Chen and Nielsen, 2019). In a fully 

respiratory metabolism the ATP produced by consuming a catabolic substrate is 

mostly coupled to anabolic processes enabling growth by formation of biomass 

(GAEC) and relatively less energy expenditure occurs on NGAM as compared to 

fermentation (Chen and Nielsen, 2019; Molenaar et al., 2009; Shimizu and Matsuoka, 

2019).  

 

Glucose is the most common carbon source for S. cerevisiae and its biochemical 

breakdown produces ATP in glycolysis, a key biochemical pathway in the central 

carbon metabolism (CCM) that is involved both in energy generation but also 

provides precursor molecules for formation of biomass. In yeast, an uncoupling of 

ATP supply-demand for synthesis of biomass can occur over a range of nutrient and 

growth conditions causing respirofementative metabolism and formation of 

byproducts (Larsson et al., 1993). In our previous studies, we showed that at the same 

growth rate (i.e., at physiological steady state), changes in carbon to nitrogen ratio 

(C:N ratio) can shift metabolism from respiration to fermentation in bacteria and yeast 

(Kumar and Shimizu, 2010; Zhang et al., 2011). A physiological steady state for 

suspension cells is obtained by using chemostats where constant parameters can be 

maintained during cultivation (Kumar and Shimizu, 2011). Such steady states provide 

a model system for studying cellular regulation and, previously, allowed us to map 

interaction of evolutionary conserved nutrient-responsive pathways, that are also 

implicated in cancer, namely, sucrose fermenting type 1 (Snf1), an AMP-activated 

kinase (AMPK), and the target of rapamycin complex (TORC1) in S. cerevisiae 

(Zhang et al., 2011).  

 

In recent reports one of differences in respiration and growth rate-dependent carbon 

overflow is attributed to cellular resource allocation strategy in bacteria and yeast 

(Basan et al., 2015; Metzl-Raz et al., 2017; Peebo et al., 2015). Since our previous 

studies indicate a crucial role of nutrient in the onset of carbon overflow, we asked 

whether different resource allocation strategy might also be important at the same 
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growth rate when changes in cellular environment shift metabolism from respiration 

to fermentation (Kumar and Shimizu, 2011; Zhang et al., 2011). Further, a 

comparison of carbon overflow at the same growth rate caused in response to changes 

in cellular environment (nutrient-responsive) with one caused by changes in growth 

rate (growth rate-dependent) can allow us to uncover underlying diversity in 

metabolism as well identify potential mechanisms that control energy budget in yeast. 

In essence, we focused on the role of nutrient in relation to carbon overflow at 

different growth rates due to its relevance in biotechnology applications and 

fundamental importance in metabolic disorders, such as cancer and diabetes.   

 

We performed quantitative proteomics analysis together with metabolic modeling 

approach using data from the physiological steady states of S. cerevisiae cultures. 

Briefly, our results showed that proteome overabundance enabled respiration, and 

variation in energy efficiency caused distinct composition of biomass at different 

carbon to nitrogen ratio and growth rate. Our results showed that cellular resource 

allocation for ribosomes was determinative of growth rate, but it was energy 

constrains on protein synthesis that led to onset of carbon overflow by prioritizing 

abundances of ribosome and glycolysis over mitochondria. We proved that glycolytic 

flux impinged on energy metabolism by making trade-off between high and low 

energy yield pathways in the buddying yeast. Finally, we summarized cellular energy 

budget underlying diversity of metabolism in the both nutrient-responsive and growth 

rate-dependent carbon overflows in comparison to fully respiring conditions in S. 

cerevisiae, and suggested practical implications of our results in one carbon 

metabolism, aspartate biosynthesis and fatty acid biosynthesis for bioprocesses and 

pathways in cancer. 

 

Results 

Diversity in carbon overflow: nutrient-responsive vs growth rate-dependent 

We used the budding yeast S. cerevisiae CEN.PK 113-7D, a prototypic strain, to 

conduct 21 steady state chemostats at a dilution rate (D) of 0.1 h-1 (Figure 1, S1A). 

The experiments were performed in biological triplicates under seven different step-

wise nitrogen gradients and thus changing the culture environment from nitrogen 

excess (C:N ratio, 4) to limitation (C:N ratio, 75) while maintaining a constant 
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glucose concentration (10 g/l) (Figure 1A, S1A). This allowed us to identify the 

critical C:N ratio of 22 and a further increase in C:N ratio resulted in a nutrient-

responsive shift of metabolism from respiration to fermentation at the same growth 

rate (D, 0.1 h-1) (Figure 1B, S1A). The metabolic shift at slow growth (D, 0.1 h-1) 

resulted in production of metabolic byproducts at C:N ratio (≥22) (Figure 1B, S1A). 

To compare diverse carbon overflow, i.e., nutrient-responsive vs growth rate-

dependent, we conducted four independent steady state experiments: two at D = 0.26 

h-1 and two at D = 0.32 h-1 (further referred to as fast growth) using the reference C:N 

ratio (4) (Figure 1A, S1A). The fast growth rate were chosen based on previous 

studies characterizing carbon overflow conditions (Larsson et al., 1993). The dilution 

rate 0.1 h-1 resulted in a slow growth representing only about 25% of maximum 

specific growth rate, while fast growth (0.26 h-1 and 0.32 h-1) reached up to 65-80% of 

maximum specific growth rate (approximately 0.4 h-1) achieved using the same 

minimal medium and cultivation conditions for S. cerevisiae (Canelas et al., 2010). 

The data from slow growth (C:N ratio 4 to 10) and fast-growth (both dilution rates) 

conditions were separately combined due to their similarities in physiology (Figure 

1B-D, S1A). Both, slow growth (C:N ratio ≥22) and fast growth rates (C:N ratio 4) 

showed a decrease in biomass yield that was accompanied by formation of byproducts 

(e.g., ethanol, acetate) and a metabolic shift from respiration to fermentation was 

indicated by the respiratory quotient (RQ >1) (Figure 1B-D). The proteome yield 

(protein (g)/ dry cellular weight (dcw) (g)) at the reference condition (D, 0.1 h-1; C:N 

ratio 4) was 0.50±0.08 g/g (50%), but yield was reduced to 0.27±0.03 g/g (27%) at 

the highest C:N ratio (75) (Figure 1C). The critical C:N ratio (22) showed 20% less 

biomass, but a similar proteome yield (g/g) as the reference (Figure 1C). Moreover, 

no detectable ethanol concentration was detected and a fully respiratory metabolism 

was maintained (RQ 1) at the critical C:N ratio (Figure 1B, 1D). At fast growth (C:N 

ratio 4) biomass yield was reduced by about 20% and unlike the critical C:N ratio (22) 

at slow growth here was 18% decrease (Student’s t-test, 0.0001) in proteome content 

i.e., 0.41±0.05 g/g dcw (41%) compared to the reference that showed a 

respirofermentative metabolism (RQ >1) (Figure 1C-D, S1A). A reduction in biomass 

but not in proteome as well lack of ethanol prompted us to examine the total carbon 

balance in all our experiments (S1A). We found that at the critical C:N ratio (22) 

condition approximately 9% carbon was missing in the measured fluxes at the slow 

growth (D, 0.1 h-1). To understand distribution of this missing carbon the flux balance 
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analysis (FBA) was performed that predicted distribution of extracellular carbon 

fluxes over several metabolic byproducts, namely formate (C1), glycerol, pyruvate 

(C3), and 2-oxaloacetate (C5) (Figure 1B, S1A, S1B). Among these byproducts, 

formate was suggested with the highest concentration probability (S1B). Because of 

this, we re-analyzed our extracellular metabolome samples using formate in the 

standards and detected production of formate (C1) at the critical and higher C:N ratios 

(≥22) at the slow growth rate conditions thereby validating the model prediction 

(Figure 1B, S1A, S1B). We did not find formate either at the slow growth (C:N ratio 

4-10) or at the fast growth (C:N ratio 4) (Figure 1B, S1A). This indicates that at the 

slow growth (D, 0.1 h-1) the critical C:N ratio (22) provides a poised nutrient status as 

at the higher C:N ratios (≥22) nitrogen was insufficient to consume all available 

glucose as indicated by the residual glucose in the culture environment (Figure 1D, 

S1A). We determined that a specific glucose uptake rate (mmol/dcw(g)/h) higher than 

2.0±0.3 incepted respirofermentative metabolism while at a lower rate a fully 

respiratory metabolism was maintained (Figure 1B-D, S1A). The cut-off specific 

glucose uptake rate value for carbon overflow was consistent with our previous study 

where respirofermentative metabolism was induced by environmental stress (Lahtvee 

et al., 2016). Overall, both nutrient-responsive and growth rate-dependent carbon 

overflow exhibit a limitation of available proteome, as indicated by reduced protein 

yields, while sustaining respirofermentative metabolism (Figure 1C).  

 

Distinct proteome profiles underline diversity in carbon overflow 

We selected four different C:N ratio conditions (4, 22, 38, 75) in biological triplicate 

at the slow growth and three biological triplicate samples at the fast growth rate (C:N 

ratio 4) for a quantitative proteome analysis (Figure 2A). Due to the high similarity in 

physiology data with C:N ratio 4, we did not consider samples from C:N ratio 5-10 

for the proteome analysis (S1A). We focused on five distinct physiology conditions, 

namely, reference (C:N ratio 4), the critical C:N ratio (22), nutrient-responsive carbon 

overflow (C:N ratios 38 and 75) at slow growth rate and growth rate-dependent 

carbon overflow (C:N ratio 4) at fast growth rate (Figure 2A, 2B). Further, in pairwise 

analysis, we selected C:N ratio (38) as representative condition for a nutrient-

responsive carbon overflow as changes in C:N ratio (75) samples were similar but 

often showed a greater magnitude of change, and our focus was on identifying 
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changes immediately adjacent to the critical C:N ratio that potentially onset nutrient-

responsive carbon overflow (Figure 2C-D, S2A, S2B).  

 

A systems level analysis of absolute quantitative proteome abundances was 

performed by determining variances in our data using previously reported method 

(Lahtvee et al., 2017). The results in principal component analysis (PCA) showed 

most of variance (59%) on principal component (PC) 1 allowing a separation based 

on respiration (reference, C:N ratio of 22) or fermentation (fast growth, C:N ratio of 

38 and 75) (Figure 2B). Additional variance (30%) in data on PC2 distinguished 

experiments mainly based on growth rate (Figure 2B). We used proteome-normalized 

data (protein molecules/ picogram proteome) to understand allocation differences and 

biomass-normalized data (molecules / picogram dcw) to understand abundance 

changes in each condition (Figure 2C-D, S2A, S2B). In both pairwise comparisons, 

the same filtering criteria were used to determine significant protein differences 

relative to the reference i.e., first, based only on the adjusted p-value (padj. <0.005), 

and, second, based on a combination of the adjusted p-value (padj. <0.005) and log2 

fold change (log2FC >1 or < -1.0) (Figure 2C-D, S2A, S2B). The allocation analysis 

showed significant (padj. <0.005) changes for 700 proteins or 25% of total identified 

proteins (Figure 2C, S2A). The abundance analysis suggested significant changes 

(padj. <0.005) for 1168 proteins or 42% of total identified proteins (Figure 2D, S2B). 

In the both analyses more proteins showed a decrease (padj. <0.005, log2 FC < -1.0) 

than an increase (padj. <0.005, log2 FC >1.0) suggesting a general overabundance of 

proteome at the slow growth reference condition (Figure 2C-D, S2A, S2B). Among 

all the conditions least changes for allocation or abundances were found at the critical 

C:N ratio (22) that showed a respiratory metabolism similar to the reference (Figure 

1B, 2C-D). In the instances of carbon overflow a contrast was noticed between 

proteins allocation and abundance changes between C:N ratio (38) vs fast growth (4) 

indicating that these conditions might implicate different mechanisms in the onset of 

overflow metabolism (Figure 2C-D). In allocation analysis, the nutrient-responsive 

carbon overflow showed less protein changes (padj. <0.005) than the growth rate-

dependent carbon overflow while reverse was the case for in abundance analysis 

(Figure 2C-D). This contrast was a reflection of protein yield (g/g) differences 

between nutrient-responsive and growth rate-dependent-carbon overflow as compared 

with the reference (Figure 1C, 2C-D). 
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As a significant part of proteome is considered regulated by post-translational 

modifications (PTMs), the most prominently by phosphorylation (Vlastaridis et al., 

2017), and therefore we performed a relative phosphoproteome analysis using the 

same samples as in the quantitative abundance analysis (Figure 2E-G, S2C). We 

identified a total of 5348 phosphosites in 1242 different proteins confirming previous 

reports of the presence of large-scale phosphorylation modification in S. cerevisiae 

(Figure 2E, S2C) (Vlastaridis et al., 2017). Most of the phosphoproteome contained 1-

5 phosphosites per protein and only a very few proteins were associated with more 

than 20 phosphosites in yeast (Figure 2E, S2C). A comparative analysis of absolute 

quantitative proteome and phosphoproteome showed that nearly 60% of 

phosphoproteins were also detected in our abundance data (Figure 2F). Further, we 

performed a gene-set enrichment analysis using quantitative proteome and 

phosphoproteome data, and identified the significant GO terms (Figure 2F, S2D). In 

analysis of relative changes in proteome allocation to kinases, phosphorylating 

enzyme proteins, based on quantitative proteomics data, and relative changes in total 

phosphorylation, based on intensities in phosphoproteome data, we found that kinase-

phosphorylation correlation was present only for the C:N ratio of 75 at slow growth, 

but not for other conditions in our experiments (Figure 2G, S2A, S2C). It suggested 

that global phosphorylation levels were not likely determinants for onset of carbon 

overflow but, as previously reported, individual enzyme phosphorylation events might 

be pertinent for such regulation (Oliveira and Sauer, 2012).  

 

In the main, our systems level analysis of quantitative proteome data showed that a 

fully respiratory metabolism was characterized by protein overabundances. In the next 

section, we focus on functional analysis of proteome allocation (molecules/ pg 

protein) and follow it by functional abundance analysis (molecules/ pg dcw) in the 

later section. 

  

 

Proteome allocation to ribosomes is determinative of growth rate  

In the previous section, we showed that the two types of carbon overflow exhibit 

distinct proteome profiles (Figure 2). To understand the functional significance of this 

distinction, we categorized the proteome allocation (molecules /pg protein) analysis 
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data into the GO terms, namely, amino acid biosynthesis, glycolysis, ribosome and 

mitochondrion (Figure 3A, S2A). The proteome allocation for these GO terms 

covered more than 65% of quantified proteins (Figure 3A). The large-scale proteome 

allocation differences were driven by ribosomes and pertained to the growth rates 

(Figure 3A). However, at the same growth rate proteome allocation to the GO terms 

remained almost steady even as proteome yield (g/g) decreased up to 40% compared 

to the reference condition in the instances of nutrient-responsive carbon overflow 

(Figure 3A-B). Thus, proteome allocation differences were mostly implicated in the 

growth rate-dependent carbon overflow but the decrease in protein abundances was 

important in the nutrient-responsive carbon overflow (Figure 3A-B). The proteome 

allocation to the GO terms glycolysis: mitochondrion: ribosome showed a ratio of 1: 

1.6: 1.4 at the slow growth but changed to 1: 2: 2.7 at fast growth rate (Figure 3A). 

The increase in the specific glucose uptake rates was independent of proteome 

allocation for glycolysis as the allocation remained nearly constant despite a 

significant reduction in protein yield (g/g) at higher C:N ratio (>22), suggesting it to 

be maximum possible allocation for glycolysis, at the slow growth rate and was 

significantly reduced at fast growth-rate (Figure 3C). Thus, the increase in the specific 

glucose uptake rate occurred despite reduced proteome allocation and decreased total 

protein yield indicating control of glycolysis was not solely dependent on allocation 

or abundances but on some other constrains and as has been previously reported 

implicates posttranscriptional regulation (Figure 3A-C) (Daran-Lapujade et al., 2007). 

Ribosomes reflected translation capacity for protein synthesis but an increase in their 

allocation at the faster growth did not lead to a similar increase in mitochondrion that 

would have been required for the ATP generation through respiration (Figure 3A). 

The increase in translation capacity was instead utilized for almost 3-fold increase in 

the specific growth rate compared with the reference by likely generating additional 

required ATP through the glycolysis resulting in carbon overflow and reduced protein 

yield (Figure 3A-C). At higher C:N ratio (>22), although total protein amount 

decreased up to 40% compared to the reference conditions, proteins allocated for 

ribosomes reduced only by few percentage points, resulting in slightly lower 

translation capacity (Figure 3A-C). At the fast growth rate an increase in the 

translation capacity was mainly directed towards maintaining growth as proteome 

allocation for both ATP generating pathways, namely glycolysis and mitochondrion 

was reduced significantly causing reduced protein yield and incepting carbon 
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overflow (Figure 3A-C, 1B). The inception of the both nutrient-responsive and 

growth rate-dependent carbon overflow was marked by a reduction in proteome 

allocation to mitochondrion (Figure 3A-C). A further analysis of mitochondrion 

proteome allocation changes, using the child GO terms, showed that allocation for 

mitochondrial translation reduced nearly 40% under nitrogen limitation at slow 

growth but increased over 40% at the fast growth compared with the reference 

implicating it in growth (Figure 3C-D). The proteome allocation to the GO terms Fe-S 

cluster binding, vacuole (and its child terms), nitrogen metabolism and fatty 

biosynthesis increased in response to nitrogen limitation (Figure 3E-F). The increase 

in proteome allocation to the vacuole GO term (and associated child terms) suggested 

its potential role in replenishing nitrogen by protein turnover under nitrogen limitation 

conditions and is consistent with its previously reported function in yeast (Martin-

Perez and Villen, 2017).  The proteome allocation to GO terms, namely vacuole, 

nitrogen metabolism and fatty acid biosynthesis but not for except Fe-S culture 

binding reduced more than 50% under nitrogen excess at the fast growth rate (Figure 

3E-F). These results indicate that nitrogen limitation and slow growth could be 

beneficial for production of fatty acids derived biochemicals, e.g., biofuels (Buijs et 

al., 2015).  

 

Distinct translation constrains control diversity in carbon overflow  

Further, to statistically demonstrate significant differences in proteome allocation we 

performed gene-set analysis that has been previously reported (Varemo et al., 2013). 

This allowed us to identify significant (padj < 0.05) GO terms and TFs, including their 

directionalities (Figure 3G, S3). These results confirmed the discussion in previous 

paragraph but provided a few additional insights concerning protein translation and 

uniqueness of the critical C:N ratio proteome (Figure 3G, S3). The allocation 

differences in ribosomes appeared determinative for growth rate (Figure 3G). 

However, an absence of significant decrease in cytoplasmic translation and 

corresponding regulator TF Ifh11, a coactivator that regulates transcription of 

ribosomal protein (RP) genes, distinguished the critical C:N ratio from nutrient-

responsive carbon overflow at the slow growth and the latter from the growth rate-

dependent carbon overflow (Figure 3G, S3). The increase in proteome allocation to 

vacuole, under nitrogen limitation, was accompanied by the increase in TFs (Met4 

and Met32) that regulate sulfur amino acid pathways (e.g., cysteine, methionine) and 
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is consistent with previous results, under nitrogen limitation, where transcriptional 

upregulation of methionine and sulfur amino acid pathways was reported (Figure 3G, 

S3) (Kresnowati et al., 2006). The increase in proteome allocation to vacuole, along 

with the GO term Fe-S binding discussed above (Figure 3E), was interesting as iron 

and amino acid homeostasis together with vacuole are considered important for the 

maintenance of mitochondrial functions that is crucial for the cellular energy budget 

in yeast (Hughes et al., 2020; Shen, 2020; Weber et al., 2020). In addition, as many 

vacuolar processes are evolutionary conserved and implicated in diseases such as 

cancer, diabetes and neurodegeneration further investigation under these conditions 

could be pertinent for identifying underlying molecular mechanisms in S. cerevisiae 

(Lawrence and Zoncu, 2019; Reggiori and Klionsky, 2013). Overall, our results 

revealed distinct proteome allocation and synthesis constraints in nutrient-responsive 

and growth rate-dependent carbon overflow as yeast adapted differently to changes in 

nutrient environment and growth rate, respectively. 

 

Energy metabolism trade-off controls proteome abundance and efficiency 

As carbon overflow is an integrated readout of cellular metabolism we focused on 

evaluating the impact of protein abundances (molecules/ pg dcw) on metabolic fluxes 

in yeast (Figure 4, S1B). First, we evaluated changes in protein abundances 

constituting the GO terms involved in energy metabolism and protein synthesis, 

namely glycolysis, the ETC and ribosome (Figure 4A, S2B). We found decrease in 

the glycolytic protein abundances with the increase in specific glucose uptake rate, 

except for the critical C:N ratio where total proteome level was maintained similar to 

the reference but glycolytic abundance increased (Figure 4A, 1C, S1A). A thirty 

percent increase in the specific glucose uptake rate while maintaining respiration at 

the critical C:N ratio was achieved differently than 80% increase causing the nutrient 

responsive-carbon overflow and 385% increase leading to growth rate-dependent 

carbon overflow indicating diversity in underlying mechanisms causing metabolic 

overflow (Figure 4A, S1). The glycolytic proteome abundances were likely at their 

maximum capacity at the critical C:N ratio where increased glycolytic capacity was 

responsible for increase in the specific glucose uptake rate as compared to the 

reference (Figure 4A). However, a significant increase in the specific glucose uptake 

rate, despite a sharp decrease in abundances, under nutrient-responsive and growth 
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rate-dependent carbon overflow was likely achieved by changing other proteome 

attributes such as the efficiency of glycolytic enzymes (Figure 4A).  

 

Second, to understand the impact of changes in the specific glucose uptake rate and 

corresponding proteome abundances on metabolism we analyzed the distribution of 

metabolic fluxes using a S. cerevisiae genome-scale metabolic model (GEM) by 

constraining it with experimentally measured fluxes and maximizing for ATP 

hydrolysis in metabolism (Figure 4B). This analysis was followed by a flux variability 

estimation, that allows evaluation of the minimum and maximum range flux for each 

reaction, using random sampling approach (n=5000) at 95% of the maximal ATP 

hydrolysis value (Bordel et al., 2010) (Figure 4B, S1B, S4A, S4B). Previously, 

similar computational approaches have been used to infer changes in efficiency of 

proteome due to such factors such translation, abundances, metabolites and enzyme 

catalysis (Bordel et al., 2010; Chen and Nielsen, 2019; Hackett et al., 2016; Tuller et 

al., 2007). We found that the glycolytic flux increased in synergy with the specific 

glucose uptake rate, but flux decreased towards the TCA cycle, the ETC and the ATP 

synthase which together are necessary for aerobic respiration (Figure 4B, S1B, S4A). 

The increase in the glycolytic flux affected the net contribution of the low ATP yield 

pathway (glycolysis) and high ATP yield pathway (the ETC) towards cellular energy 

budget (Figure 4C, S4B). The efficiency of glycolysis measured in terms of its ability 

to produce ATP increased with the increase in the specific glucose uptake rate despite 

reduced abundances for the glycolytic proteome at the onset of carbon overflow 

(Figure 4A-C). The efficiency of the ETC initially increased with the change in the 

C:N ratio until it reached the critical level where further increase in the C:N ratio 

reduced the ATP yield in this pathway (Figure 4C). Interestingly, almost similar 

proteome abundance ratio for ribosome and the ETC was present both at the critical 

C:N ratio, at the slow growth, and the reference C:N ratio, at the fast growth, but 

resulted in much lower ATP yield for the latter indicating a reduced ATP contribution 

from respiration to the cellular energy budget at the fast growth rate (Figure 4C, S4B). 

This implored us to look at the energy expenditure and we found that the ATP spent 

on the NGAM was much higher at the critical C:N ratio, at slow growth, compared 

with the reference C:N ratio at fast growth rate (Figure 4D, S4B). The high NGAM 

cost might also explain why the critical C:N ratio showed less biomass but similar 

protein content compared with the reference at the slow rate (Figure 1C, 4D). The 
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efficiency of the ETC was reduced and glycolysis was increased under nitrogen 

limitation (above the critical C:N ratio) causing nutrient responsive carbon overflow 

as much of the produced energy was spent on the NGAM instead on the GAEC 

leading to reduced ribosome abundances and protein content in the biomass (Figure 

4A-D, 1B-C, S4B).  

 

Third, we investigated potential pathways used in incepting diverse carbon overflow 

in yeast (Figure 4B, S1B, S4B). The model predicted different underlying 

mechanisms causing the nutrient-responsive carbon overflow compared with the 

growth rate-dependent carbon overflow (Figure 4B, S1B, S4B). It suggested that 

nitrogen limitation besides activating pathways related to nitrogen metabolism also 

activated the tetrahydrofolate (THF) cycle (C1 metabolism) affecting folate and 

methionine biosynthesis together with the precursor metabolite pathways (serine, 

chorismate) which important as these changes are reported to influence mitochondrial 

dynamics and play an important role in cancer metabolism (Figure 4B, S1B, S4A) 

(Gao et al., 2018; Roy et al., 2020). The activation of these pathways led to not just 

C2 overflow (ethanol) but also C1 overflow (formate) under nitrogen limitation which 

we validated by measuring formate in culture samples (Figure 4B, S1B, S4A). The 

likely reason for activation of the THF pathway was redox balance and replenishment 

of nitrogen (Figure 4B, S1B, S4A). The model also predicted a miniscule carbon 

overflow of C3 (glycerol, pyruvate) and C5 (2-oxaloactetate) compounds for the 

critical C:N ratio, a condition which, interestingly, did not show any detectable C2 

(ethanol) carbon overflow in our experimental data (Figure 1B, 4B, S1A, S1B). The 

model predictions were consistent with carbon balance data from bioreactors where 

about 9% carbon remained missing at the critical C:N ratio and formate 

measurements allowed carbon balance at higher C:N ratio (Figure 1B, S1B). In the 

model prediction, the aspartate biosynthesis pathway, that provides backbone for 

biosynthesis of nucleotides, was also suggested to be C:N ratio dependent where 

mitochondrial aspartate aminotransferase, Aat1, was preferred at the high C:N ratios 

(>22) while cytosolic aspartate aminotransferase, Aat2, was utilized at the reference 

C:N ratios (Figure 4B, S1B, S4A) (Boer et al., 2010). Our results, under nitrogen 

limitation, obtained using proteome and metabolic modeling response are consistent 

with previous reports showing, at metabolomics and transcriptome levels, that a drain 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 20, 2020. ; https://doi.org/10.1101/2020.02.20.957662doi: bioRxiv preprint 

https://doi.org/10.1101/2020.02.20.957662
http://creativecommons.org/licenses/by/4.0/


 14

of adenine pool is accompanied by increase of purine biosynthesis, C1 and sulfur 

metabolism (Kresnowati et al., 2006).  

  

Finally, our results suggested that the cellular energy budget impinged on 

composition of biomass (Figure 4, 1C). At the slow growth, even as total proteome 

abundances decreased due to nitrogen limitation (particularly, ribosome), protein 

allocation remained similar to the reference (Figure 4, 3A). This resulted in a 

significant decrease in the total ATP and an energy expenditure trade-off in favor of 

the NGAM compared with the GAEC causing a nutrient-responsive carbon overflow 

(Figure 4). At the fast growth, protein allocation was increased for ribosome but 

decreased for the energy metabolism compared with the reference, though abundances 

for both the GO terms remained almost similar to the reference (Figure 4, 3A). This 

led to a reduced efficiency of the ETC due to less available resources for the synthesis 

of mitochondria and increased efficiency of the glycolysis that was redox balanced 

through growth rate-dependent carbon overflow (Figure 4, 3A). It was interesting to 

note that nearly similar protein abundances for ribosomes and the ETC resulted in 

respiration at the critical C:N ratio condition at slow growth but fermentation at the 

fast growth condition with the reference C:N ratio (Figure 4A-B). Thus, 

demonstrating that the fast growth rate-dependent carbon overflow was largely due to 

the differences in proteome allocation and consequences thereof in metabolism 

(Figure 4, 3A). 

 
 
Discussion 
 
We conducted experiments at a physiological steady state to eliminate confounding 

effects due to changing cellular environment when cells are cultivated in a batch 

experiment (Figure 1). This allowed us to infer regulatory effects caused by the 

changes in nitrogen concentration while keeping a constant supply of glucose and 

compare these effects at the both slow and fast growth rates in model organism S. 

cerevisiae (Figure 1, S1A). Our systems level analysis showed how energy 

metabolism controls proteome allocation in growth rate-dependent carbon overflow 

and proteome abundances in nutrient-responsive carbon overflow in S. cerevisiae 

(Figure 2-4). Our results also showed how trade-off between the low or high ATP 

yielding pathways determines energy production, and the ATP expenditure towards 
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the GAEC or the NGAM results in either respiration or fermentation mode of 

metabolism (Figure 4). Finally, we illustrated an important role of balance in cellular 

energy budget where an imbalance can result in carbon overflow (Figure 5). 

  

Our results demonstrated that a fully respiratory metabolism represents a cellular 

energy supply-demand homeostasis at the reference condition (D, 0.1 h-1; C:N ratio, 

4) where a balance in the catabolic energy supply and anabolic energy demand 

resulted in maximum production of biomass (Figure 1, S1A). Such homeostasis 

existed only for C:N ratio 4-10 at the slow growth (D, 0.1 h-1) that showed a fully 

respiratory metabolism (Figure 1, S1A). However, at higher C:N ratio (≥22), at slow 

growth, and at the reference C:N ratio (4), at the fast growth, the maintenance of 

homeostasis that allowed for maximum biomass production was not feasible and these 

conditions resulted in nutrient-responsive and growth rate-dependent carbon 

overflow, respectively (Figure 1, S1A). These diverse carbon overflows resulted in 

distinct cellular composition as observed by the percentage change in proteome as a 

fraction of total biomass (Figure 1). We found that, at the slow growth rate, the 

maximum ATP efficiency for protein production was not at the reference C:N ratio 

(4) but was present at the critical C:N ratio (22) (Figure 1B, 4B). It suggests that the 

chemically defined culture medium used for yeast cultivation, commonly referred to 

as the Delft medium due to its origin (Verduyn et al., 1992), is rich in nitrogen (5 g/l) 

but is limited for glucose (10 g/l) at the reference condition and is optimized for 

maximizing formation of biomass.  

 

We determined the reproducibility of quantitative proteomics data using the PCA and 

performed the downstream data analysis by using similar statistically relevant 

filtering approaches for the both, allocation and abundances of proteins as reported in 

our previous study (Figure 2) (Lahtvee et al., 2017). Here, we found that the 

differences in the slow and fast growth rates are largely due to differences in cellular 

resource allocation among the defined GO term categories, namely glycolysis, 

mitochondrion and ribosome (Figure 3A). At the fast growth, the largest protein 

allocation shift happens towards ribosome with an increase of 10% compared with the 

slow growth, but it comes at the cost of allocation towards the energy generating 

pathways, namely mitochondrion (the ETC) and glycolysis (Figure 3A-C). Therefore, 

at the slow growth synthesis of mitochondria occurs to the fullest extent possible but 
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at the fast growth rate, a large proteome allocation towards ribosome negatively 

impacts allocation for mitochondria and thus its contribution towards cellular energy 

budget (Figure 4). The most striking similarity between the both nutrient-responsive 

and growth rate-dependent carbon overflow concerns the specific glucose uptake rate 

that increased almost by 5-fold at the fast growth rate (Figure 4A). At the same time, 

glycolytic proteins showed a significant decrease in the both allocation and 

abundances but yielded more ATP due to increase in the specific glucose uptake rate 

suggesting an increase in efficiency of glycolytic enzymes (Figure 3-4). This suggests 

that the catalytic efficiency of glycolytic proteins is not determined by allocation or 

abundance differences but controlled by other factors such as the PTMs as indicated 

by phosphorylation of glycolytic peptides in our phosphoproteome data (Figure 4, 

S4A, S2C). This is consistent with the previous report suggesting that glycolysis is 

mostly regulated at the posttranscriptional levels in S. cerevisiae (Daran-Lapujade et 

al., 2007). As the glycolytic flux increases, more ATP is contributed from the 

glycolysis compared with the ETC to the cellular energy budget and it is partially 

because glycolysis can produce more ATP per protein mass as opposed to 

mitochondria whose synthesis itself is energy intensive process even though overall 

respiratory chain can produce ATP more efficiently but requires more proteins 

(Figure 4) (Chen and Nielsen, 2019; Molenaar et al., 2009; Nilsson and Nielsen, 

2016). Interestingly, at the slow growth, the critical C:N ratio (22) showed maximum 

ATP yield by increasing glycolytic protein abundances without significantly reducing 

protein abundances for the ETC (mitochondrion), but compromising on biomass yield 

(Figure 1C, 3, 4). Thus, under the condition of slow growth and a relatively low flux 

the increase in glycolytic protein abundances added spare enzyme capacity to 

glycolysis (Figure 4). The additional glycolytic enzyme capacity allowed ribosomes 

to continue the synthesis of mitochondrial proteome almost at the reference level 

making it near-equilibrium condition for the energy and protein production (Figure 3-

4). This observation is consistent with a recent report showing that at relatively slow 

fluxes multiple steps in glycolysis operate at near equilibrium and reflect spare 

enzyme capacity (Park et al., 2019). The reduced biomass at the critical ratio was due 

to higher energy expenditure on the NGAM and less on the GAEC compared with the 

reference (Figure 4D). At the slow growth and high C:N ratio (>22) the total protein 

content reduced by nearly 40% compared with the reference (Figure 3). At the C:N 

ratio (>22) protein allocation for ribosomal proteins remained similar to the critical 
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C:N ratio (22) but reduced by about 2% compared with the reference (4), (Figure 3) 

indicating that a certain threshold translation capacity was necessary for the 

maintenance growth rate (0.1 h-1). However, at the C:N ratio (>22), ribosome 

abundances decreased significantly and may explain reduction in total protein content 

under these conditions as the cellular energy budget mainly relied on glycolysis, 

reducing mitochondrial synthesis and therefore, the ETC contribution, and spent 

available energy on the NGAM resulting in nutrient-responsive carbon overflow 

(Figure 4). This supports the idea that constant growth rate can be maintained by 

reduced total energy flux by increasing carbon overflow (Slavov et al., 2014). The 

significant increase in the NGAM at the high C:N ratios suggests activation of cellular 

homeostasis mechanisms, such as autophagy, to replenish nitrogen by protein 

turnover as indicated by increased protein allocation for vacuole where previous 

reports found presence of low intracellular amino acids and high nucleotides in S. 

cerevisiae (Figure 3) (Boer et al., 2010; Marshall et al., 2016). Interestingly, a similar 

nutrient stress condition also shows the active lysosomal v-ATPase-Ragulator 

complex, a common activator for AMPK and mTORC1, acting as a switch between 

catabolism and anabolism in higher eukaryotes (Efeyan et al., 2012; Zhang et al., 

2014).   From the viewpoint of biotechnology application activation of the 

C1metabolism and switching of aspartate biosynthesis pathways under nitrogen 

limitation at slow growth are particularly relevant (Figure 3-4). For example, the THF 

cycle has been demonstrated for developing bioprocesses in S. cerevisiae (Gonzalez 

de la Cruz et al., 2019). Also, the both C1 metabolism and aspartate biosynthesis are 

potential anticancer targets as rapidly proliferating mammalian cells can rely upon 

these metabolites for respiration (Koseki et al., 2018; Meiser et al., 2016; Morscher et 

al., 2018; Sullivan et al., 2015).  

 

In conclusion, we demonstrated the role of cellular energy budget in respiration, and 

nutrient-responsive and growth rate-dependent carbon overflow in S. cerevisiae 

(Figure 5). At fast growth, a large resource allocation towards ribosomes constrained 

resource availability for the synthesis of mitochondrion (respiration) resulting in a 

growth rate-dependent carbon overflow (Figure 5). At slow growth, total proteome 

decreased at higher C:N ratios due nitrogen limitation while maintaining a similar 

cellular resource allocation and growth rate as the reference (Figure 5). The decrease 

in proteome resulted in a significant reduction in total ATP available for biomass 
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formation which was mostly spent on the NGAM causing a nutrient-responsive 

carbon overflow (Figure 5). Our results will have practical implications in the both 

basic science research as well for developing metabolic engineering strategies in 

biotechnology. 

 

Materials and Methods  
 
Strain, media and cultivation conditions  
 
We used yeast Saccharomyces cerevisiae CEN.PK113- 7D in this research which has 

been extensively characterized for laboratory research and was also used in our 

previous studies (Lahtvee et al., 2016; Nijkamp et al., 2012; Zhang et al., 2011).  All 

experiments were performed from the same set of glycerol stocks that were prepared 

at the beginning of this study.  A typical inoculum sample was prepared by reviving 

an aliquot of glycerol culture stock by passing through two pre-culture stages in a 

chemical defined medium before being collected at the exponential phase to be used 

in an experiment.  The chemically defined medium, commonly referred to as the Delft 

medium in laboratories due to origin (Verduyn et al., 1992), used contained per liter 

glucose (20 g in pre-culture and batch bioreactors; 10 g in feed medium of chemostat 

experiments), ammonium sulfate (5 g), potassium dihydrogen phosphate (3 g) and 

magnesium sulfate heptahydrate (0.5 g). It was supplemented with 1 ml each of trace 

metals and vitamins stock solutions similar to our previous studies (Lahtvee et al., 

2016; Zhang et al., 2011). In bioreactor experiments 50 μl of Antifoam 204 (Sigma-

Aldrich, USA) per liter was added to the culture medium. All experiments were 

conducted in triplicate using 1 l bioreactors (Applikon BIOTECHNOLOGY) with a 

0.5 l working volume. The bioreactors controls were used to maintain a constant 

volume, pH (at 5.5 by use of 2 M KOH), and fully aerobic conditions (1 volume per 

volume per minute, vvm) throughout the experiments. Dilution rates (D) were used to 

control growth rates in chemostat experiments and data were collected after at least 

three residence times (1/D) passed at steady state which was monitored for stability 

by online sensors for off-gas (CO2 and residual O2), dissolved oxygen (DO) culture 

medium, and biomass (also cross-checked offline). Chemostat experiments were 

performed on an average of six residence times and samples for analysis were 

collected at a steady state only after lapse of at least three residence times. A steady 

state was determined by constancy of gaseous exchanges online and optical 
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density/biomass measurements offline. In all chemostat experiments glucose 

concentration (carbon) was aimed to be constant while ammonium sulfate (nitrogen) 

concentration was varied to obtain a range of C:N ratios. Biological triplicate data 

were collected for dry cell weight (biomass), metabolites, quantitative proteome and 

phosphoproteome as described in our previous publications (Lahtvee et al., 2017; 

Zhang et al., 2011). 

 

Metabolites measurements 
 
Culture broth samples from the steady state experiments and feed bottles were 

collected in sterile Eppendorf tubes (2 ml) for quantification of extracellular 

metabolites. The collected samples were centrifuged at 14,800 rpm at 40C for 10 min 

to remove biomass and stored at -200C until analysis using a high-performance liquid 

chromatography (HPLC). Extracellular metabolites were quantified using an Aminex 

HPX-87H chromatography column (Bio-Rad) with the recommended settings for 

elution of sugars and organic acids (temperature 450C; flow rate 0.6 ml/min using 

mobile phase of 5 mM sulfuric acid) in a refractive index and UV detector containing 

HPLC instrument (Prominence-I, LC-2030 C Plus, SHIMADZU). 

 

 
Total yeast proteome: extraction and quantification 
 
All biomass samples were normalized to equal concentrations (1 g/l) and 600 μg of 

biomass per sample was resuspended in a commercially available protein extraction 

solution (Y-PERTM Yeast, Thermofisher). This biomass suspension in a vial (2 ml, 

Eppendorf) was thoroughly mixed with pipette and all vials were incubated at 300C 

for 45 min under moderate agitation conditions. After incubation biomass suspension 

from each vial was transferred to a glass-beads containing cells lysing tube 

(Precellys). The cells lysing tubes were repeatedly agitated for 10 cycles, with an 

interval of 5 min after each cycle (4 m/s for 20 s), in a FastPrep-24 device. These 

agitated tubes were centrifuged at 14,800 rpm at 40C for 10 min and supernatant was 

carefully removed from each tube. A fraction of biomass remained leftover amid glass 

beads in the lysing tubes and an equal volume of Y-PER reagent was added to repeat 

(without 45 min incubation period) disruption and extraction using a FastPrep-24 

device. This step was repeated until total proteome was extracted from yeast biomass. 
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For each step proteome was quantified using a commercially available assay kit 

(Micro BCATM Protein Assay Kit, Thermofisher) and samples were diluted to be in 

the linear range of BSA protein standard range (0.5 to 20 μg/ml). Proteome assays 

were performed in triplicate to ensure reproducibility of data and cumulative 

proteome obtained from each step reflects total proteome of yeast. 

 

Mass-spectrometric quantification of proteome and phosphoproteome 
 
Quantification of absolute proteome and identification of phosphoproteome in 

samples was done similar to our previous study using a Nano-LC/MS-MS analysis in 

combination with extensively used MaxQuant 1.4.08 software package (Cox and 

Mann, 2008; Lahtvee et al., 2017). Briefly, modifications to our previous studies on 

both quantification of absolute proteome and phosphoproteome are described here 

(Lahtvee et al., 2017; Zhang et al., 2011). Sample biomass pellets were lysed in glass 

beads containing Eppendorf tubes at pH 8.0 buffer (6 M guanidine HCl, 100 mM 

Tris-HCl, 20 mM dithiothreitol) and homogenized using FastPrep24 (MB 

Biomedicals) cells disruptor with two cycles (4 m/s for 30s). Supernatant was 

removed by centrifuge (17000 g, 10 min, 40C), precipitated overnight with 10% 

trichloroacetic acid (TCA) at 40C, and assayed for protein concentration as described 

above in the total yeast proteome section. Both absolute protein quantification and 

phosphoproteome sample preparations were similar to previous descriptions except 

phosphoproteome samples were not mixed with heavy standards and were digested 

with trypsin instead of Lys-C enzyme (Humphrey et al., 2015; Lahtvee et al., 2017). 

For phosphoproteome enrichment 500 μg of sample protein was used and 

reconstituted in 0.5% trifluoroacetic acid (TFA) similar to samples for quantification 

of absolute proteome. For phosphoproteome total enriched sample and for absolute 

quantification 2 μg of protein sample were used in Nano-LC/MS-MS analysis 

(Lahtvee et al., 2017). Peptides were separated at 200 nL/min for absolute proteome 

and 250 nL/min for phosphoproteome with a 5-40% B 240 min gradient for spiked 

time point and 480 min gradient for heavy standard samples. For phosphopeptides a 

90 min separating gradient was used in 5-15% for 60 min and 15-30% for 30 min 

steps. Normalized collision energies of 26 for normal peptides and 27 for 

phosphopeptides were used in higher-energy collisional fragmentation process. For 

absolute proteome analysis the ion target and injection times for the MS were 3x 106 
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(50 ms) while for the MS/MS were 3x 106 (50 ms). The same parameters for 

phosphopeptides were at 1x 106 (60 ms) and 2x 104 (60 ms), respectively. Dynamic 

exclusion time was limited to 110, 70 and 45s for heavy standard samples, spiked 

time point and phosphopeptides, respectively. Only charge states +2 and +6 were 

targeted to MS/MS and additionally a fixed first mass of 95 m/z was set for 

phosphopeptides. All heavy standards were analyzed as technical triplicates while 

single replicate analysis was performed for biological triplicate samples. For phospho-

analysis serine/threonine phosphorylation was used as additional variable 

modification in addition to previously described variable modifications for absolute 

proteome quantification (Lahtvee et al., 2017). Saccharomyces cerevisiae reference 

proteome database (version July 2016) was accessed at the UniProt 

(www.uniprot.org) and was searched using the LysC/P (absolute proteome) and the 

trypsin/P (phosphoproteome) digestion rules. Raw data quantification was carried out 

by dividing protein intensities from heavy standard with the number of theoretically 

observable peptides, log-transformed and plotted against log-transformed UPS2 mix 

(48 human proteins) with known protein abundances. This regression was then used 

to derive all other protein absolute quantities using their iBAQ intensities. Normalized 

H/L ratios (by shifting median peptide log H/L ratio to zero) were used for all 

downstream quantitative analyses (Cox and Mann, 2008). For biomass normalized 

and protein normalized absolute quantities, total protein amount in dcw (g) was either 

considered or not, respectively. This resulted in quantities of molecules of individual 

protein per pg dcw in case of biomass normalized data, and molecules of individual 

protein per pg of total protein in sample in case of protein normalized data. The mass 

spectrometry proteomics data have been deposited to the ProteomeXchange 

Consortium via the PRIDE partner repository with the dataset identifier PXD016854 

(Perez-Riverol et al., 2019). 

 

Data analysis pipeline for absolute proteome and phosphoproteome 

 

Differential expression analysis for absolute proteins and phosphoproteome was 

carried out in R, statistical differences were calculated using Student’s t-test and false 

discovery rate (FDR) according to Benjamini–Hochberg procedure. Gene set analysis 

was performed with the biomass and protein normalized proteomics data using Piano, 

with the mean of the gene-level statistics, ignoring gene-sets smaller than 5 and larger 
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than 500 genes, sampling 5,000 times and corrected for multiple testing using FDR 

(Varemo et al., 2013). Same platform was used for TF analysis, with TF-gene 

relationships acquired from the yeastract (http://www.yeastract.com). Principal 

Component Analysis was carried out in ClustVis (Metsalu and Vilo, 2015).  

 
Flux balance analysis (FBA) 
 

Intracellular distribution of metabolic fluxes was investigated with the S. cerevisiae 

genome-scale metabolic model yeast-GEM version 8.3.4 (Sánchez et al., 2019). 

Calculations were performed with Cobra Toolbox (Schellenberger et al., 2011) on 

MATLAB (The MathWorks Inc., Natick, MA, USA) using Gurobi solver (Gurobi 

Optimization Inc., Houston, TX, USA). First, ATP hydrolysis, representing non-

growth associated maintenance energy, was maximized to calculate the unique pattern 

of intracellular fluxes. To determine the variability of fluxes, random sampling 

algorithm in RAVEN was used with 5000 samplings at the 95% previously 

determined ATP drain value (Bordel et al., 2010). This resulted in an average flux 

with the standard deviation, representing the flux variability. 
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Figure Legends 
 
Figure 1: Diversity in carbon overflow: nutrient-responsive vs growth rate-dependent 

(A)  Schematic of chemostat experiments. Primary x- axis represents number of conditions. 

Primary y- axis shows glucose to ammonium sulfate molar ratio (C:N ratio). C:N ratio (molar) 

for each condition is represented on secondary x- axis. Chemostat dilution rate (h-1) is shown 

on secondary y- axis. The dilution rate 0.1 h-1 represents slow growth and indicated by a 

circle. The dilution rate 0.26 and 0.32 h-1 together indicate fast growth as marked by the circle. 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 20, 2020. ; https://doi.org/10.1101/2020.02.20.957662doi: bioRxiv preprint 

https://doi.org/10.1101/2020.02.20.957662
http://creativecommons.org/licenses/by/4.0/


 23

Each slow growth is experiment is conducted in biological triplicate and the fast growth is 

average of four experiments (two biological duplicates at 0.26 h-1 and two at 0.32 h-1).  

(B) Measured extra-cellular fluxes showing specific metabolite production rate (mmol/dcw(g)/h).  

Primary x- axis shows specific glucose uptake rate (rglu), primary y- axis shows specific 

ethanol production rate (reth), secondary y- axis shows specific glycerol, acetate and formate 

production rates, respectively (rgly, race, and rfor). C:N ratio (molar) for each condition is 

indicated on secondary x- axis.   

(C) Biomass yield on glucose (dcw(g)/glu(g)) and protein yield in biomass (protein (g)/biomass 

(g)) is plotted on primary y- axis and secondary y- axis, respectively, with respect to specific 

glucose uptake rate on primary x- axis.  

(D)  Specific oxygen uptake rate (rO2) on primary y- axis and respiratory quotient on secondary y- 

axis are plotted as a function of specific glucose uptake rate (rglu) on primary x- axis. 

Respiratory quotient (RQ). Residual glucose (g/l) is indicated for C:N ratio 38 and 75 on 

secondary y- axis. 

Data are mean ±SD. See also supplementary S1A and S1B.  

  

Figure 2: Distinct proteome profiles underline diversity in carbon overflow 

(A) Describes design elements of the figure that are used throughout this manuscript where open 

circles with distinct colors indicate different C:N ratio at slow growth and filled circle 

indicates fast growth at the reference C:N ratio.   

(B) Principal component analysis (PCA) plot of quantitative proteomics data from biological 

triplicate experiments. The PC1 covers 59% of the variance in proteome abundances and 

separates experiments based on a fully respiratory or respirofementative metabolism. The 

PC2 covers additional 30% of the variance separating conditions based on growth rate. Since 

the C:N ratio 38 and 75 indicate biological similarity the C:N ratio 38 is shown as a 

representative of the both for visual clarity in some of the figures.  

(C) Schematic of comparison of protein molecules in the unit amount of proteome (molecules / 

picogram protein) represents protein allocation across the conditions. The first Venn diagram 

indicates significant proteins for each condition relative to the reference based on adjusted p-

value (padj. <0.005). The second Venn diagrams shows proteins with log2 fold changes (> 1 

or < -1) within the significant proteome (padj. <0.005) as considered in the first Venn 

diagram. See also supplementary S2A.  

(D) Schematic of comparison of protein molecules in the unit amount of biomass (measured as 

dry cellular weight, dcw) (molecules / picogram dcw) describes the protein abundances 

across the conditions. The same filtering criteria as described above (2C) is used. See also 

supplementary S2B. 

(E) Total phosphoproteome detected is categorized based on number of phosphosites per protein. 

Only phosphoproteins with more than 2 peptides in the MS data were considered in the 

analysis.  The primary x- axis shows number of phosphosites per protein indicating most 

phosphoproteins in S. cerevisiae contain 1-5 phosphorylation modifications. The primary y- 
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axis represents bars indicates total number of phosphoproteins while secondary y- axis 

represents line indicating total number of phosphosites. Bar represents primary y- axis and 

line indicates secondary y- axis. See also supplementary S2C.  

(F) The Venn diagram represents an evaluation of total estimated quantitative proteome and 

phosphoproteome and shows the coverage of phosphorylation in the proteome of S. 

cerevisiae. See also supplementary S2D. 

(G) Analysis of relative changes in proteome allocation to kinases, phosphorylating enzyme 

proteins, based on quantitative proteomics data (S2A) and relative changes in total 

phosphorylation based on intensities in phosphoproteome data (S2C).  

 

Figure 3: Proteome allocation to ribosomes is determinative of growth rate, but distinct 

translation constrains control diversity in carbon overflow 

(A) Cellular resource allocation is indicated based on proteome normalized data (molecules / pg 

protein). The GO terms amino acid biosynthesis (GO:0008652), glycolysis (GO:0006096), 

ribosome (GO:0005840), and mitochondrion (GO:0005739) are accessed through the yeast 

genome database (yeastgenome.org) and cover over 65% of total estimated proteome. Each 

condition is illustrated by small empty or filled circle and described underneath the pie charts.  

(B) Percent protein yield in biomass across the conditions. Data are mean ±SD. Each condition is 

illustrated by small empty or filled circle. See also supplementary S1A.  

(C) Relative log2 fold changes in protein allocation (y- axis) for the GO terms glycolysis 

(GO:0006096), ribosome (GO:0005840), and mitochondrion (GO:0005739) compared with 

the reference plotted against the specific glucose uptake rate (mmol/dcw(g)/h) on the x-axis. 

Each condition is illustrated by small empty or filled circle.   

(D) Relative proteome allocation (%) to the mitochondrion child GO terms: mitochondrial 

translation (GO:0032543), the TCA cycle (GO:0006099), the electron transfer chain (ETC)* 

(constituted by the child GO terms – complex I-IV in 3E), ATP synthase (GO:0015986) and 

others indicate relative changes in the remainder of mitochondrial proteome. Each condition is 

illustrated by small empty or filled circle. 

(E) Relative proteome allocation (%) to the GO terms: iron-sulfur (Fe-S) cluster binding 

(GO:0051536), complex I - GO:0005747, complex II- GO:0005749, complex III- 

GO:0005750, complex IV - GO:0005751. Each condition is illustrated by small empty or 

filled circle. 

(F) Relative proteome allocation (%) to some of the GO terms in the proteome fraction 

categorized as “others” in 3A: vacuole (GO:0005773), nitrogen metabolism* -(GO:0006537, 

GO:0006542, GO:0015696, GO:0019740, GO:0006807) and fatty biosynthesis* 

(GO:0006631, GO:0006633). Each condition is illustrated by small empty or filled circle.   

(G) Gene-set analysis using proteome normalized data (S2A) shows significant GO terms (padj. 

<0.05). Direction of arrows indicate relative up or down regulation for a particular GO term 

relative to the reference. Each condition is illustrated by small empty or filled circle. ** See 

also supplementary S3. 
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*The GO terms manually curated using the child GO terms.  

**Includes detailed list and also significant GO terms and TF analysis from the gene-set analysis. 

 

Figure 4: Energy metabolism trade-off controls proteome abundance and efficiency 

(A) Relative log2 fold changes in protein abundances for the GO terms glycolysis (GO:0006096), 

ribosome (GO:0005840), and the ETC* compared with the reference on the y-axis are plotted 

against measured specific glucose uptake rate (mmol/dcw(g)/h) for specified conditions on the 

x-axis. Each condition is illustrated by an empty or filled circle, description is noted in the 

figure legend (B).   

(B) Schematic illustration of changes in the metabolic fluxes in the central carbon and nitrogen 

metabolism. Figure legend explains design elements of the schematic, where each circle 

represents an experimental condition and number inside a bracket indicates C:N ratio.   

(A) Cellular energy efficiency in the high energy (ETC) and low energy (glycolysis) yielding 

pathways represented by metabolic flux directed at specific ATP production (mmol/dcw(g)/h), 

shown on primary y-axis, and resulting ATP yield (mmol ATP/ mmol glucose), indicated on 

secondary y-axis, that are plotted against the specific glycolytic fluxes as determined by the 

model based on experimental data (measured specific glucose uptake rate) on x-axis. Each 

condition is illustrated by small empty or filled circle as described (4B).   

(B) Cellular energy (ATP) expenditure on growth associated energy costs (GAEC) and non-

growth associated maintenance (NGAM) - rate (mmol/dcw(g)/h) on primary y-axis and yield 

(mmol/ mmol glucose) on secondary y-axis. Each condition is illustrated by small empty or 

filled circle as indicated in the figure legend (B).   

*Explained in the figure 3D legend 

See also supplementary S4A, S4B. 

 

Figure 5: Glycolytic flux impinges on cellular energy budget 

Schematic of energy budget showing ATP production and consumption at the cellular level. Top 

illustration shows input and output of cellular energy budget, and is followed by exhibit of budget 

distribution at slow and fast growth. Color gradient (light to dark) in the round bounding squares show 

increase in the glycolytic flux as indicated in the small inset. Impact of energy budget on cellular 

composition is shown by presence of distinct protein fraction in biomass of each condition and is 

illustrated by size of pie charts. Numbers on each pie indicate % contribution of each category to 

cellular energy budget in S. cerevisiae (light grey – energy produced in electron transport chain; dark 

grey – energy produced in glycolysis; light blue – energy spent for non-growth associated maintenance; 

dark blue – energy spent for biomass formation). Each condition is illustrated by small empty or filled 

circle as indicated in the figure. 

 

Supplementary Captions: 
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S1A: Experimental data generated using a chemical defined culture medium (described in the 

manuscript). Table metadata is provided in the first two columns of this sheet. 

 

S1B: Flux calculations with the yeast Saccharomyces cerevisiae genome-scale model version 8.3.4. 

Flux balance analysis was carried out by constraining measured uptake and production fluxes 

(including specific growth rate), while optimizing for ATP synthesis (r_0226), followed by 

constraining ATP synthesis at 95% of the maximal value and running random sampling algorithm (n, 

5000) for determination of flux variability. Average flux values from random sampling together with 

its standard deviation are presented. ID - reaction identification number in the model; Name - reaction 

name; EC -number - EC number corresponding to the reaction; Gene Association - reaction associated 

genes; REF - reference chemostat experiment (D, 0.1 h-1, C:N molar ratio of 4); CN22 - chemostat at 

D, 0.1 h-1, C:N molar ratio of 22; CN38 - chemostat at D, 0.1 h-1, C:N molar ratio of 38; CN75 - 

chemostat at D, 0.1 0.1 h-1, C:N molar ratio of 75; Fast growth (FG) - experiments at elevated dilution 

rates (D, 0.26 or 0.32 h-1, C:N molar ratio of 4). 

 

S2A: Amount of proteome in Saccharomyces cerevisiae chemostat experiments reported in 

molecules/pg-protein (used in results/discussion on "protein allocation"). REF - reference chemostat 

experiment (D, 0.1 h-1, C:N molar ratio of 4); CN22 - chemostat at D, 0.1 h-1, C:N molar ratio of 22; 

CN38 - chemostat at D, 0.1 h-1, C/N molar ratio of 38; CN75 - chemostat at D, 0.1 h-1, C:N molar ratio 

of 75; Fast growth (FG) -experiments at elevated dilution rates (D, 0.26 or 0.32 h-1, C:N molar ratio of 

4). Adjusted p-values were calculated using the Benjamini-Hochberg procedure. 

 

S2B. Protein abundances in Saccharomyces cerevisiae chemostat experiments reported in 

molecules/pg-dcw (used in results/discussion on "protein abundances"). REF - reference chemostat 

experiment (D, 0.1 h-1, C:N molar ratio of 4); CN22 - chemostat at D, 0.1 h-1, C:N molar ratio of 22; 

CN38 - chemostat at D, 0.1 h-1, C:N molar ratio of 38; CN75 - chemostat at D, 0.1 h-1, C:N molar ratio 

of 75; Fast growth (FG) -experiments at elevated dilution rates (D, 0.26 or 0.32 h-1, C:N molar ratio of 

4).  

 

S2C: Phosphoproteome in Saccharomyces cerevisiae chemostat experiments. REF - reference 

chemostat experiment (D, 0.1 h-1, C:N molar ratio of 4); CN22 - chemostat at D, 0.1 h-1, C:N molar 

ratio of 22; CN38 - chemostat at D, 0.1 h-1, C:N molar ratio of 38; CN75 - chemostat at D, 0.1 h-1, C:N 

molar ratio of 75; Fast growth (FG) -experiments at elevated dilution rates (D, 0.26 or 0.32 h-1, C:N 

molar ratio of 4). 

 

S2D: Gene-set analysis using total quantitative proteome and phosphoproteome data to determine 

representative functional groups in each category.  
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S3: Gene-set analysis using absolute quantitative proteome data. (A) biomass normalized, (B) 

proteome normalized, (C) summary of significant GO terms and (D) summary of significant 

transcription factors (TFs) 

 

S4A: An overview of central metabolism and pathways responding to changes in C:N ratio vs fast 

growth driven carbon overflow based on metabolic flux (mmol/g dcw/h) analysis with overlay of 

absolute proteome abundances and phosphoproteome data. Absolute proteome abundances are 

indicated for the reference by numbers while relative log2 fold changes (biomass normalized) are 

represented as heatmaps for C:N ratio (22), C:N ratio (38) and fast growth (4). The figure legend 

explains design elements of illustration. The directionality of metabolic pathways is based on the 

metabolic flux balance analysis. In central carbon metabolism, at slow growth (D, 0.1 h-1), critical C:N 

ratio (22) showed an increase or similarity to reference abundances while a sharp decrease for most 

abundances was noticed on further limitation of nitrogen at C:N ratio (38) that was similar to fast 

growth (C:N ratio, 4) driven carbon overflow. At critical C:N ratio (22) only C1 carbon (formate) 

overflow was observed but not that of C2 carbon i.e., ethanol. Overflow of C1 carbon, through the THF 

cycle, was observed in nitrogen limiting conditions but was found absent at the reference C:N ratio (4). 

Glycolytic proteome showed reduced abundances at the onset of overflow metabolism, but in response 

to nitrogen assimilation pathway abundances showed an increase where later was also observed for 

critical C:N ratio (4). Based on metabolic flux analysis, a reference vs high C:N ratio distinction was 

observed for the biosynthesis of aspartate. Protein abundances for enzymes involved in serine 

biosynthesis, mitochondrial glycine decarboxylation and methionine biosynthesis increased at critical 

C:N ratio (22). Abbreviations: G-6-P, glucose 6 phosphate; F-6-P, fructose 6 phosphate; F-1,6-P, 

fructose 1,6 bisphosphate; DHAP, dihydroxyacetone phosphate; G-3-P, glyceraldehyde 3 phosphate; 

3PGP, 3 phosphoglyceroyl phosphate;3PG, 3 phosphoglycerate; 2PG, 2 phosphoglycerate; PEP, 

phosphoenolpyruvate; FAs, fatty acids; OAA, oxaloacetic acid; CIT, citric acid; ICIT, iso-citric acid; a-

KG, alpha-ketoglutaric acid; SUC-CoA, succinyl CoA; SUC, succinic acid; FUM, fumaric acid; MAL, 

malic acid; 7,8-DHF, a 7,8 dihydrofolate; 5,10-mTHF, a 5,10 methylene tetrahydrofolate; 5-mTHF, 5 

methyl tetrahydrofolate; 10-fTHF, a 10 formyl tetrahydrofolate; THF, a tetrahydrofolate; NA, Protein 

abundance not measured. Reaction number corresponds to corresponding metabolic reactions in the 

supplementary S1B. Reaction number (metabolic reactions, S1B): 1 (r_0534), 2 (r_0467), 3 (r_0886, 

r_0449), 4 (r_0450), 5 (r_1054), 6 (r_0486), 7 (r_0892), 8 (r_0893), 9 (r_0366), 10 (r_0962), 11 

(r_0959, r_0960), 12 (r_0173), 13 (r_0112), 14 (r_2140, 2141), 15 (r_2115), 16 (r_0891), 17 (r_0961), 

18 (r_0958), 19 (r_0719), 20 (r_0300), 21 (r_2305, r_0542, r_4262), 22 (r_0658), 23 (r_0831, r_0832, 

r_0505), 24 (r_1022, r_0688), 25 (r_1021), 26 (r_0452), 27 (r_0713), 28 (r_0217), 29 (r_0216), 30 

(r_0471), 31 (r_0476), 32 (r_0350, r_0347), 33 (r_0997), 34 (r_0066), 35 (r_1045), 36 (r_0725, 

r_0732, r_0446), 37 (r_0501, r_505), 38 (r_0503), 39 (r_0502), 40 (r_0080). 

 

S4B: Cellular energy budget data underlying Figure 4C and 4D. Both metadata and data are described 

in the table. 
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