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Abstract

Central carbon metabolism produces energy and precursor metabolites for biomassin
heterotrophs. Carbon overflow yields metabolic byproducts and, here, we examined
its dependency on nutrient and growth using the unicellular eukaryotic model
organism Saccharomyces cerevisiae. We performed quantitative proteomics anaysis
together with metabolic modeling and found that proteome overabundance enabled
respiration, and variation in energy efficiency caused distinct composition of biomass
at different carbon to nitrogen ratio and growth rate. Our results showed that ceullar
resource alocation for ribosomes was determinative of growth rate, but energy
constrains on protein synthesis incepted carbon overflow by prioritizing abundance of
ribosomes and glycolysis over mitochondria. We proved that glycolytic efficiency
affected energy metabolism by making a trade-off between low and high energy
production pathways. Finally, we summarized cellular energy budget underlying
nutrient-responsive and growth rate-dependent carbon overflow, and suggested
implications of results for bioprocesses and pathways relevant in cancer metabolism

in humans.
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Introduction

Nutrient sensing and signaling is essential for proliferation and differentiation of cells.
In prokaryotes and unicellular eukaryotes, nutrient act not only as substrate but also as
signal for control of proliferation which requires an appreciation of the role of nutrient
as signaling molecule and metabolite (Broach, 2012). Our study focuses on
unicellular eukaryote, budding yeast Saccharomyces cerevisiae, which is considered a
model organism for investigating eukaryal regulations as well as an industrial
workhorse in biotechnology. In particular, we focus on the role of macronutrient
carbon and nitrogen in carbon overflow metabolism in yeast. Carbon overflow is a
metabolic response to diverse stimuli and, in the most prominent example, is
described by the Warburg effect where respiring healthy mammalian cells shift
metabolism to fermentation in cancer cells (Warburg, 1956). However, a different
mechanism results carbon overflow in the Crabtree effect wherein presence of excess
glucose represses respiration allowing aerobic glycolysis to be the main source of
energy supply in several species of yeast (Crabtree, 1928; De Deken, 1966). Besides
biomass and carbon dioxide (CO,) carbon overflow result in formation of metabolic
byproducts such as organic acids in bacteria, ethanol in yeast and lactate in cancer
cells (Vander Heiden et a., 2009). From a biosustainability viewpoint, investigating
the role of macronutrients is important because e.g., nitrogen limitation is implicated
in lipid metabolism that provides precursors for the production of oleochemicals such
as biofuels (Yu et al., 2018).

Carbon overflow can be onset by a diverse set of stimuli in cells. A common reason
for its onset is fast growth rate (e.g., bacteria and yeasts), but it can also be induced in
slow growing cells (e.g., healthy human cells) confronting adverse conditions such as
defect in nutrient sensing and signaling pathways, genetic or epigenetic modifications
and environmental stress (Kumar et al., 2014; Lahtvee et al., 2016; Torrence and
Manning, 2018). Carbon overflow shows a pathway preference for production of the
cellular energy adenosine triphosphate (ATP) from glycolysis, a substrate level
phosphorylation pathway with low ATP yield, over the electron transport chain
(ETC), an oxidative phosphorylation pathway with high ATP yield (Vander Heiden et
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al., 2009). Together glycolysis, the tricarboxylic acid (TCA) cycle and the ETC
constitute so called energy metabolism that is evolutionary conserved across
organisms (Chen and Nielsen, 2019). The total ATP generated in energy metabolism
is spent either on growth-associated energy costs (GAEC) or on energetic costs of
non-growth associated maintenance (NGAM) (Chen and Nielsen, 2019). In a fully
respiratory metabolism the ATP produced by consuming a catabolic substrate is
mostly coupled to anabolic processes enabling growth by formation of biomass
(GAEC) and relatively less energy expenditure occurs on NGAM as compared to
fermentation (Chen and Nielsen, 2019; Molenaar et al., 2009; Shimizu and Matsuoka,
2019).

Glucose is the most common carbon source for S. cerevisiae and its biochemical
breakdown produces ATP in glycolysis, a key biochemical pathway in the central
carbon metabolism (CCM) that is involved both in energy generation but also
provides precursor molecules for formation of biomass. In yeast, an uncoupling of
ATP supply-demand for synthesis of biomass can occur over a range of nutrient and
growth conditions causing respirofementative metabolism and formation of
byproducts (Larsson et al., 1993). In our previous studies, we showed that at the same
growth rate (i.e., at physiological steady state), changes in carbon to nitrogen ratio
(C:N ratio) can shift metabolism from respiration to fermentation in bacteria and yeast
(Kumar and Shimizu, 2010; Zhang et al., 2011). A physiological steady state for
suspension cells is obtained by using chemostats where constant parameters can be
maintained during cultivation (Kumar and Shimizu, 2011). Such steady states provide
a model system for studying cellular regulation and, previously, allowed us to map
interaction of evolutionary conserved nutrient-responsive pathways, that are also
implicated in cancer, namely, sucrose fermenting type 1 (Snfl), an AMP-activated
kinase (AMPK), and the target of rapamycin complex (TORC1) in S cerevisiae
(Zhang et d., 2011).

In recent reports one of differences in respiration and growth rate-dependent carbon
overflow is attributed to cellular resource allocation strategy in bacteria and yeast
(Basan et al., 2015; Metzl-Raz et al., 2017; Peebo et al., 2015). Since our previous
studies indicate a crucial role of nutrient in the onset of carbon overflow, we asked

whether different resource allocation strategy might also be important a the same
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growth rate when changes in cellular environment shift metabolism from respiration
to fermentation (Kumar and Shimizu, 2011; Zhang et a., 2011). Further, a
comparison of carbon overflow at the same growth rate caused in response to changes
in cellular environment (nutrient-responsive) with one caused by changes in growth
rate (growth rate-dependent) can alow us to uncover underlying diversity in
metabolism as well identify potential mechanisms that control energy budget in yeast.
In essence, we focused on the role of nutrient in relation to carbon overflow at
different growth rates due to its relevance in biotechnology applications and

fundamental importance in metabolic disorders, such as cancer and diabetes.

We performed quantitative proteomics analysis together with metabolic modeling
approach using data from the physiological steady states of S. cerevisiae cultures.
Briefly, our results showed that proteome overabundance enabled respiration, and
variation in energy efficiency caused distinct composition of biomass a different
carbon to nitrogen ratio and growth rate. Our results showed that cellular resource
alocation for ribosomes was determinative of growth rate, but it was energy
constrains on protein synthesis that led to onset of carbon overflow by prioritizing
abundances of ribosome and glycolysis over mitochondria. We proved that glycolytic
flux impinged on energy metabolism by making trade-off between high and low
energy yield pathways in the buddying yeast. Finally, we summarized cellular energy
budget underlying diversity of metabolism in the both nutrient-responsive and growth
rate-dependent carbon overflows in comparison to fully respiring conditions in S.
cerevisiae, and suggested practical implications of our results in one carbon
metabolism, aspartate biosynthesis and fatty acid biosynthesis for bioprocesses and

pathways in cancer.

Results

Diversity in carbon overflow: nutrient-responsive vs growth rate-dependent

We used the budding yeast S. cerevisiae CEN.PK 113-7D, a prototypic strain, to
conduct 21 steady state chemostats at a dilution rate (D) of 0.1 h™* (Figure 1, S1A).
The experiments were performed in biological triplicates under seven different step-
wise nitrogen gradients and thus changing the culture environment from nitrogen

excess (C:N ratio, 4) to limitation (C:N ratio, 75) while maintaining a constant
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glucose concentration (10 g/l) (Figure 1A, S1A). This alowed us to identify the
critical C:N ratio of 22 and a further increase in C:N ratio resulted in a nutrient-
responsive shift of metabolism from respiration to fermentation at the same growth
rate (D, 0.1 h™) (Figure 1B, S1A). The metabolic shift at slow growth (D, 0.1 h'")
resulted in production of metabolic byproducts at C:N ratio (>22) (Figure 1B, S1A).
To compare diverse carbon overflow, i.e, nutrient-responsive vs growth rate-
dependent, we conducted four independent steady state experiments: two at D = 0.26
h™* and two at D = 0.32 h* (further referred to as fast growth) using the reference C:N
ratio (4) (Figure 1A, S1A). The fast growth rate were chosen based on previous
studies characterizing carbon overflow conditions (Larsson et al., 1993). The dilution
rate 0.1 h™ resulted in a slow growth representing only about 25% of maximum
specific growth rate, while fast growth (0.26 h™ and 0.32 h™) reached up to 65-80% of
maximum specific growth rate (approximately 0.4 h™') achieved using the same
minima medium and cultivation conditions for S cerevisiae (Canelas et al., 2010).
The data from slow growth (C:N ratio 4 to 10) and fast-growth (both dilution rates)
conditions were separately combined due to their similarities in physiology (Figure
1B-D, S1A). Both, slow growth (C:N ratio >22) and fast growth rates (C:N ratio 4)
showed a decrease in biomass yield that was accompanied by formation of byproducts
(e.g., ethanol, acetate) and a metabolic shift from respiration to fermentation was
indicated by the respiratory quotient (RQ >1) (Figure 1B-D). The proteome yield
(protein (g)/ dry cellular weight (dew) (g)) at the reference condition (D, 0.1 h*; C:N
ratio 4) was 0.50+0.08 g/g (50%), but yield was reduced to 0.27+0.03 g/g (27%) at
the highest C:N ratio (75) (Figure 1C). The critical C:N ratio (22) showed 20% less
biomass, but a similar proteome yield (g/g) as the reference (Figure 1C). Moreover,
no detectable ethanol concentration was detected and a fully respiratory metabolism
was maintained (RQ 1) at the critical C:N ratio (Figure 1B, 1D). At fast growth (C:N
ratio 4) biomass yield was reduced by about 20% and unlike the critical C:N ratio (22)
at slow growth here was 18% decrease (Student’s t-test, 0.0001) in proteome content
i.e, 041+0.05 g¢g/g dcw (41%) compared to the reference that showed a
respirofermentative metabolism (RQ >1) (Figure 1C-D, S1A). A reduction in biomass
but not in proteome as well lack of ethanol prompted us to examine the total carbon
balance in all our experiments (S1A). We found that at the critical C:N ratio (22)
condition approximately 9% carbon was missing in the measured fluxes at the slow
growth (D, 0.1 h'%). To understand distribution of this missing carbon the flux balance
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analysis (FBA) was performed that predicted distribution of extracellular carbon
fluxes over several metabolic byproducts, namely formate (C1), glycerol, pyruvate
(C3), and 2-oxaloacetate (C5) (Figure 1B, S1A, S1B). Among these byproducts,
formate was suggested with the highest concentration probability (S1B). Because of
this, we re-analyzed our extracellular metabolome samples using formate in the
standards and detected production of formate (C1) at the critical and higher C:N ratios
(>22) at the slow growth rate conditions thereby validating the model prediction
(Figure 1B, S1A, S1B). We did not find formate either at the slow growth (C:N ratio
4-10) or at the fast growth (C:N ratio 4) (Figure 1B, S1A). This indicates that at the
slow growth (D, 0.1 h'™) the critical C:N ratio (22) provides a poised nutrient status as
at the higher C:N ratios (>22) nitrogen was insufficient to consume all available
glucose as indicated by the residual glucose in the culture environment (Figure 1D,
S1A). We determined that a specific glucose uptake rate (mmol/dcw(g)/h) higher than
2.0+0.3 incepted respirofermentative metabolism while at a lower rate a fully
respiratory metabolism was maintained (Figure 1B-D, S1A). The cut-off specific
glucose uptake rate value for carbon overflow was consistent with our previous study
where respirofermentative metabolism was induced by environmental stress (Lahtvee
et al., 2016). Overall, both nutrient-responsive and growth rate-dependent carbon
overflow exhibit a limitation of available proteome, as indicated by reduced protein

yields, while sustaining respirofermentative metabolism (Figure 1C).

Distinct proteome profiles underline diversity in carbon overflow

We selected four different C:N ratio conditions (4, 22, 38, 75) in biological triplicate
at the slow growth and three biological triplicate samples at the fast growth rate (C:N
ratio 4) for a quantitative proteome analysis (Figure 2A). Due to the high similarity in
physiology data with C:N ratio 4, we did not consider samples from C:N ratio 5-10
for the proteome analysis (S1A). We focused on five distinct physiology conditions,
namely, reference (C:N ratio 4), the critical C:N ratio (22), nutrient-responsive carbon
overflow (C:N ratios 38 and 75) at slow growth rate and growth rate-dependent
carbon overflow (C:N ratio 4) at fast growth rate (Figure 2A, 2B). Further, in pairwise
analysis, we selected C:N ratio (38) as representative condition for a nutrient-
responsive carbon overflow as changes in C:N ratio (75) samples were similar but

often showed a greater magnitude of change, and our focus was on identifying
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changes immediately adjacent to the critical C:N ratio that potentially onset nutrient-
responsive carbon overflow (Figure 2C-D, S2A, S2B).

A systems level analysis of absolute quantitative proteome abundances was
performed by determining variances in our data using previously reported method
(Lahtvee et a., 2017). The results in principal component analysis (PCA) showed
most of variance (59%) on principal component (PC) 1 allowing a separation based
on respiration (reference, C:N ratio of 22) or fermentation (fast growth, C:N ratio of
38 and 75) (Figure 2B). Additional variance (30%) in data on PC2 distinguished
experiments mainly based on growth rate (Figure 2B). We used proteome-normalized
data (protein molecules/ picogram proteome) to understand allocation differences and
biomass-normalized data (molecules / picogram dcw) to understand abundance
changes in each condition (Figure 2C-D, S2A, S2B). In both pairwise comparisons,
the same filtering criteria were used to determine significant protein differences
relative to the reference i.e,, first, based only on the adjusted p-value (pa. <0.005),
and, second, based on a combination of the adjusted p-value (pag. <0.005) and log2
fold change (log,FC >1 or < -1.0) (Figure 2C-D, S2A, S2B). The alocation analysis
showed significant (p.g. <0.005) changes for 700 proteins or 25% of total identified
proteins (Figure 2C, S2A). The abundance analysis suggested significant changes
(Pagj. <0.005) for 1168 proteins or 42% of total identified proteins (Figure 2D, S2B).
In the both analyses more proteins showed a decrease (P, <0.005, log, FC < -1.0)
than an increase (pag. <0.005, log, FC >1.0) suggesting a genera overabundance of
proteome at the slow growth reference condition (Figure 2C-D, S2A, S2B). Among
al the conditions least changes for allocation or abundances were found at the critical
C:N ratio (22) that showed a respiratory metabolism similar to the reference (Figure
1B, 2C-D). In the instances of carbon overflow a contrast was noticed between
proteins allocation and abundance changes between C:N ratio (38) vs fast growth (4)
indicating that these conditions might implicate different mechanisms in the onset of
overflow metabolism (Figure 2C-D). In allocation analysis, the nutrient-responsive
carbon overflow showed less protein changes (pj. <0.005) than the growth rate-
dependent carbon overflow while reverse was the case for in abundance analysis
(Figure 2C-D). This contrast was a reflection of protein yield (g/g) differences
between nutrient-responsive and growth rate-dependent-carbon overflow as compared
with the reference (Figure 1C, 2C-D).
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As a significant part of proteome is considered regulated by post-translational
modifications (PTMs), the most prominently by phosphorylation (Vlastaridis et al.,
2017), and therefore we performed a relative phosphoproteome analysis using the
same samples as in the quantitative abundance analysis (Figure 2E-G, S2C). We
identified a total of 5348 phosphosites in 1242 different proteins confirming previous
reports of the presence of large-scale phosphorylation modification in S cerevisiae
(Figure 2E, S2C) (Vlastaridis et al., 2017). Most of the phosphoproteome contained 1-
5 phosphosites per protein and only a very few proteins were associated with more
than 20 phosphosites in yeast (Figure 2E, S2C). A comparative analysis of absolute
quantitative proteome and phosphoproteome showed that nearly 60% of
phosphoproteins were also detected in our abundance data (Figure 2F). Further, we
performed a gene-set enrichment analysis using quantitative proteome and
phosphoproteome data, and identified the significant GO terms (Figure 2F, S2D). In
analysis of relative changes in proteome allocation to kinases, phosphorylating
enzyme proteins, based on quantitative proteomics data, and relative changes in total
phosphorylation, based on intensities in phosphoproteome data, we found that kinase-
phosphorylation correlation was present only for the C:N ratio of 75 at slow growth,
but not for other conditions in our experiments (Figure 2G, S2A, S2C). It suggested
that global phosphorylation levels were not likely determinants for onset of carbon
overflow but, as previously reported, individual enzyme phosphorylation events might
be pertinent for such regulation (Oliveiraand Sauer, 2012).

In the main, our systems level analysis of quantitative proteome data showed that a
fully respiratory metabolism was characterized by protein overabundances. In the next
section, we focus on functional anaysis of proteome allocation (molecules/ pg
protein) and follow it by functional abundance analysis (molecules/ pg dcw) in the
later section.

Proteome allocation to ribosomes is deter minative of growth rate
In the previous section, we showed that the two types of carbon overflow exhibit
distinct proteome profiles (Figure 2). To understand the functional significance of this

distinction, we categorized the proteome allocation (molecules /pg protein) anaysis
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data into the GO terms, namely, amino acid biosynthesis, glycolysis, ribosome and
mitochondrion (Figure 3A, S2A). The proteome allocation for these GO terms
covered more than 65% of quantified proteins (Figure 3A). The large-scale proteome
alocation differences were driven by ribosomes and pertained to the growth rates
(Figure 3A). However, at the same growth rate proteome allocation to the GO terms
remained almost steady even as proteome yield (g/g) decreased up to 40% compared
to the reference condition in the instances of nutrient-responsive carbon overflow
(Figure 3A-B). Thus, proteome allocation differences were mostly implicated in the
growth rate-dependent carbon overflow but the decrease in protein abundances was
important in the nutrient-responsive carbon overflow (Figure 3A-B). The proteome
allocation to the GO terms glycolysis: mitochondrion: ribosome showed aratio of 1:
1.6: 1.4 at the slow growth but changed to 1: 2: 2.7 at fast growth rate (Figure 3A).
The increase in the specific glucose uptake rates was independent of proteome
alocation for glycolysis as the alocation remained nearly constant despite a
significant reduction in protein yield (g/g) at higher C:N ratio (>22), suggesting it to
be maximum possible allocation for glycolysis, at the slow growth rate and was
significantly reduced at fast growth-rate (Figure 3C). Thus, the increase in the specific
glucose uptake rate occurred despite reduced proteome allocation and decreased total
protein yield indicating control of glycolysis was not solely dependent on allocation
or abundances but on some other constrains and as has been previously reported
implicates posttranscriptional regulation (Figure 3A-C) (Daran-Lapujade et al., 2007).
Ribosomes reflected translation capacity for protein synthesis but an increase in their
alocation at the faster growth did not lead to a similar increase in mitochondrion that
would have been required for the ATP generation through respiration (Figure 3A).
The increase in translation capacity was instead utilized for amost 3-fold increase in
the specific growth rate compared with the reference by likely generating additional
required ATP through the glycolysis resulting in carbon overflow and reduced protein
yield (Figure 3A-C). At higher C:N ratio (>22), although total protein amount
decreased up to 40% compared to the reference conditions, proteins allocated for
ribosomes reduced only by few percentage points, resulting in slightly lower
translation capacity (Figure 3A-C). At the fast growth rate an increase in the
translation capacity was mainly directed towards maintaining growth as proteome
allocation for both ATP generating pathways, namely glycolysis and mitochondrion
was reduced significantly causing reduced protein yield and incepting carbon
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overflow (Figure 3A-C, 1B). The inception of the both nutrient-responsive and
growth rate-dependent carbon overflow was marked by a reduction in proteome
allocation to mitochondrion (Figure 3A-C). A further analysis of mitochondrion
proteome allocation changes, using the child GO terms, showed that allocation for
mitochondrial translation reduced nearly 40% under nitrogen limitation at slow
growth but increased over 40% at the fast growth compared with the reference
implicating it in growth (Figure 3C-D). The proteome allocation to the GO terms Fe-S
cluster binding, vacuole (and its child terms), nitrogen metabolism and fatty
biosynthesis increased in response to nitrogen limitation (Figure 3E-F). The increase
in proteome allocation to the vacuole GO term (and associated child terms) suggested
its potential role in replenishing nitrogen by protein turnover under nitrogen limitation
conditions and is consistent with its previously reported function in yeast (Martin-
Perez and Villen, 2017). The proteome allocation to GO terms, namely vacuole,
nitrogen metabolism and fatty acid biosynthesis but not for except Fe-S culture
binding reduced more than 50% under nitrogen excess at the fast growth rate (Figure
3E-F). These results indicate that nitrogen limitation and slow growth could be
beneficial for production of fatty acids derived biochemicals, e.g., biofuels (Buijs et
al., 2015).

Distinct translation constrains control diversity in carbon overflow

Further, to statistically demonstrate significant differences in proteome allocation we
performed gene-set analysis that has been previously reported (Varemo et al., 2013).
This allowed us to identify significant (pag < 0.05) GO terms and TFs, including their
directionalities (Figure 3G, S3). These results confirmed the discussion in previous
paragraph but provided a few additional insights concerning protein translation and
uniqueness of the critical C:N ratio proteome (Figure 3G, S3). The allocation
differences in ribosomes appeared determinative for growth rate (Figure 3G).
However, an absence of significant decrease in cytoplasmic translation and
corresponding regulator TF 1fhll, a coactivator that regulates transcription of
ribosomal protein (RP) genes, distinguished the critical C:N ratio from nutrient-
responsive carbon overflow at the slow growth and the latter from the growth rate-
dependent carbon overflow (Figure 3G, S3). The increase in proteome allocation to
vacuole, under nitrogen limitation, was accompanied by the increase in TFs (Met4

and Met32) that regulate sulfur amino acid pathways (e.g., cysteine, methionine) and
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is consistent with previous results, under nitrogen limitation, where transcriptional
upregulation of methionine and sulfur amino acid pathways was reported (Figure 3G,
S3) (Kresnowati et al., 2006). The increase in proteome alocation to vacuole, along
with the GO term Fe-S binding discussed above (Figure 3E), was interesting as iron
and amino acid homeostasis together with vacuole are considered important for the
maintenance of mitochondrial functions that is crucia for the cellular energy budget
in yeast (Hughes et a., 2020; Shen, 2020; Weber et al., 2020). In addition, as many
vacuolar processes are evolutionary conserved and implicated in diseases such as
cancer, diabetes and neurodegeneration further investigation under these conditions
could be pertinent for identifying underlying molecular mechanisms in S. cerevisiae
(Lawrence and Zoncu, 2019; Reggiori and Klionsky, 2013). Overal, our results
revealed distinct proteome alocation and synthesis constraints in nutrient-responsive
and growth rate-dependent carbon overflow as yeast adapted differently to changes in
nutrient environment and growth rate, respectively.

Energy metabolism trade-off controls proteome abundance and efficiency

As carbon overflow is an integrated readout of cellular metabolism we focused on
evaluating the impact of protein abundances (molecules/ pg dcw) on metabolic fluxes
in yeast (Figure 4, S1B). First, we evauated changes in protein abundances
constituting the GO terms involved in energy metabolism and protein synthesis,
namely glycolysis, the ETC and ribosome (Figure 4A, S2B). We found decrease in
the glycolytic protein abundances with the increase in specific glucose uptake rate,
except for the critical C:N ratio where total proteome level was maintained similar to
the reference but glycolytic abundance increased (Figure 4A, 1C, S1A). A thirty
percent increase in the specific glucose uptake rate while maintaining respiration at
the critical C:N ratio was achieved differently than 80% increase causing the nutrient
responsive-carbon overflow and 385% increase leading to growth rate-dependent
carbon overflow indicating diversity in underlying mechanisms causing metabolic
overflow (Figure 4A, S1). The glycolytic proteome abundances were likely at their
maximum capacity at the critical C:N ratio where increased glycolytic capacity was
responsible for increase in the specific glucose uptake rate as compared to the
reference (Figure 4A). However, a significant increase in the specific glucose uptake

rate, despite a sharp decrease in abundances, under nutrient-responsive and growth
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rate-dependent carbon overflow was likely achieved by changing other proteome

attributes such as the efficiency of glycolytic enzymes (Figure 4A).

Second, to understand the impact of changes in the specific glucose uptake rate and
corresponding proteome abundances on metabolism we analyzed the distribution of
metabolic fluxes using a S. cerevisiae genome-scae metabolic model (GEM) by
constraining it with experimentally measured fluxes and maximizing for ATP
hydrolysisin metabolism (Figure 4B). This analysis was followed by a flux variability
estimation, that allows evaluation of the minimum and maximum range flux for each
reaction, using random sampling approach (n=5000) at 95% of the maximal ATP
hydrolysis value (Bordel et al., 2010) (Figure 4B, S1B, $4A, $4B). Previously,
similar computational approaches have been used to infer changes in efficiency of
proteome due to such factors such translation, abundances, metabolites and enzyme
catalysis (Bordel et a., 2010; Chen and Nielsen, 2019; Hackett et al., 2016; Tuller et
al., 2007). We found that the glycolytic flux increased in synergy with the specific
glucose uptake rate, but flux decreased towards the TCA cycle, the ETC and the ATP
synthase which together are necessary for aerobic respiration (Figure 4B, S1B, $4A).
The increase in the glycolytic flux affected the net contribution of the low ATP yield
pathway (glycolysis) and high ATP yield pathway (the ETC) towards cellular energy
budget (Figure 4C, $4B). The efficiency of glycolysis measured in terms of its ability
to produce ATP increased with the increase in the specific glucose uptake rate despite
reduced abundances for the glycolytic proteome at the onset of carbon overflow
(Figure 4A-C). The efficiency of the ETC initially increased with the change in the
C:N ratio until it reached the critical level where further increase in the C:N ratio
reduced the ATP yield in this pathway (Figure 4C). Interestingly, almost similar
proteome abundance ratio for ribosome and the ETC was present both at the critical
C:N ratio, at the slow growth, and the reference C:N ratio, at the fast growth, but
resulted in much lower ATP yield for the latter indicating a reduced ATP contribution
from respiration to the cellular energy budget at the fast growth rate (Figure 4C, S4B).
This implored us to look at the energy expenditure and we found that the ATP spent
on the NGAM was much higher at the critical C:N ratio, at slow growth, compared
with the reference C:N ratio at fast growth rate (Figure 4D, $4B). The high NGAM
cost might also explain why the critical C:N ratio showed less biomass but similar

protein content compared with the reference at the slow rate (Figure 1C, 4D). The
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efficiency of the ETC was reduced and glycolysis was increased under nitrogen
limitation (above the critical C:N ratio) causing nutrient responsive carbon overflow
as much of the produced energy was spent on the NGAM instead on the GAEC
leading to reduced ribosome abundances and protein content in the biomass (Figure
4A-D, 1B-C, 4B).

Third, we investigated potential pathways used in incepting diverse carbon overflow
in yeast (Figure 4B, S1B, $4B). The model predicted different underlying
mechanisms causing the nutrient-responsive carbon overflow compared with the
growth rate-dependent carbon overflow (Figure 4B, S1B, $4B). It suggested that
nitrogen limitation besides activating pathways related to nitrogen metabolism aso
activated the tetrahydrofolate (THF) cycle (C1 metabolism) affecting folate and
methionine biosynthesis together with the precursor metabolite pathways (serine,
chorismate) which important as these changes are reported to influence mitochondrial
dynamics and play an important role in cancer metabolism (Figure 4B, S1B, $4A)
(Gao et al., 2018; Roy et a., 2020). The activation of these pathways led to not just
C2 overflow (ethanol) but also C1 overflow (formate) under nitrogen limitation which
we validated by measuring formate in culture samples (Figure 4B, S1B, $4A). The
likely reason for activation of the THF pathway was redox balance and replenishment
of nitrogen (Figure 4B, S1B, S4A). The model aso predicted a miniscule carbon
overflow of C3 (glycerol, pyruvate) and C5 (2-oxaloactetate) compounds for the
critical C:N ratio, a condition which, interestingly, did not show any detectable C2
(ethanol) carbon overflow in our experimental data (Figure 1B, 4B, S1A, S1B). The
model predictions were consistent with carbon balance data from bioreactors where
about 9% carbon remained missing at the critical C:N ratio and formate
measurements allowed carbon balance at higher C:N ratio (Figure 1B, S1B). In the
model prediction, the aspartate biosynthesis pathway, that provides backbone for
biosynthesis of nucleotides, was also suggested to be C:N ratio dependent where
mitochondrial aspartate aminotransferase, Aatl, was preferred at the high C:N ratios
(>22) while cytosolic aspartate aminotransferase, Aat2, was utilized at the reference
C:N ratios (Figure 4B, S1B, S4A) (Boer et al., 2010). Our results, under nitrogen
limitation, obtained using proteome and metabolic modeling response are consistent

with previous reports showing, at metabolomics and transcriptome levels, that adrain
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of adenine pool is accompanied by increase of purine biosynthesis, C1 and sulfur
metabolism (Kresnowati et a., 2006).

Finaly, our results suggested that the cellular energy budget impinged on
compoasition of biomass (Figure 4, 1C). At the slow growth, even as total proteome
abundances decreased due to nitrogen limitation (particularly, ribosome), protein
alocation remained similar to the reference (Figure 4, 3A). This resulted in a
significant decrease in the total ATP and an energy expenditure trade-off in favor of
the NGAM compared with the GAEC causing a nutrient-responsive carbon overflow
(Figure 4). At the fast growth, protein allocation was increased for ribosome but
decreased for the energy metabolism compared with the reference, though abundances
for both the GO terms remained almost similar to the reference (Figure 4, 3A). This
led to areduced efficiency of the ETC due to less available resources for the synthesis
of mitochondria and increased efficiency of the glycolysis that was redox balanced
through growth rate-dependent carbon overflow (Figure 4, 3A). It was interesting to
note that nearly similar protein abundances for ribosomes and the ETC resulted in
respiration at the critical C:N ratio condition at slow growth but fermentation at the
fast growth condition with the reference C:N ratio (Figure 4A-B). Thus,
demonstrating that the fast growth rate-dependent carbon overflow was largely due to
the differences in proteome alocation and consequences thereof in metabolism
(Figure 4, 3A).

Discussion

We conducted experiments a a physiological steady state to eliminate confounding
effects due to changing cellular environment when cells are cultivated in a batch
experiment (Figure 1). This allowed us to infer regulatory effects caused by the
changes in nitrogen concentration while keeping a constant supply of glucose and
compare these effects at the both slow and fast growth rates in model organism S.
cerevisiae (Figure 1, S1A). Our systems level analysis showed how energy
metabolism controls proteome allocation in growth rate-dependent carbon overflow
and proteome abundances in nutrient-responsive carbon overflow in S cerevisiae
(Figure 2-4). Our results also showed how trade-off between the low or high ATP
yielding pathways determines energy production, and the ATP expenditure towards
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the GAEC or the NGAM results in either respiration or fermentation mode of
metabolism (Figure 4). Finally, we illustrated an important role of balance in cellular

energy budget where an imbalance can result in carbon overflow (Figure 5).

Our results demonstrated that a fully respiratory metabolism represents a cellular
energy supply-demand homeostasis a the reference condition (D, 0.1 h™; C:N ratio,
4) where a balance in the catabolic energy supply and anabolic energy demand
resulted in maximum production of biomass (Figure 1, S1A). Such homeostasis
existed only for C:N ratio 4-10 at the slow growth (D, 0.1 h™) that showed a fully
respiratory metabolism (Figure 1, S1A). However, at higher C:N ratio (>22), at slow
growth, and at the reference C:N ratio (4), a the fast growth, the maintenance of
homeostasis that allowed for maximum biomass production was not feasible and these
conditions resulted in nutrient-responsive and growth rate-dependent carbon
overflow, respectively (Figure 1, S1A). These diverse carbon overflows resulted in
distinct cellular composition as observed by the percentage change in proteome as a
fraction of total biomass (Figure 1). We found that, at the slow growth rate, the
maximum ATP efficiency for protein production was not at the reference C:N ratio
(4) but was present at the critical C:N ratio (22) (Figure 1B, 4B). It suggests that the
chemically defined culture medium used for yeast cultivation, commonly referred to
as the Delft medium due to its origin (Verduyn et al., 1992), isrich in nitrogen (5 g/l)
but is limited for glucose (10 g/l) at the reference condition and is optimized for

maximizing formation of biomass.

We determined the reproducibility of quantitative proteomics data using the PCA and
performed the downstream data analysis by using similar statisticaly relevant
filtering approaches for the both, alocation and abundances of proteins as reported in
our previous study (Figure 2) (Lahtvee et al., 2017). Here, we found that the
differences in the slow and fast growth rates are largely due to differences in cellular
resource allocation among the defined GO term categories, namely glycolysis,
mitochondrion and ribosome (Figure 3A). At the fast growth, the largest protein
alocation shift happens towards ribosome with an increase of 10% compared with the
slow growth, but it comes at the cost of allocation towards the energy generating
pathways, namely mitochondrion (the ETC) and glycolysis (Figure 3A-C). Therefore,

at the slow growth synthesis of mitochondria occurs to the fullest extent possible but
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a the fast growth rate, a large proteome allocation towards ribosome negatively
impacts allocation for mitochondria and thus its contribution towards cellular energy
budget (Figure 4). The most striking similarity between the both nutrient-responsive
and growth rate-dependent carbon overflow concerns the specific glucose uptake rate
that increased almost by 5-fold at the fast growth rate (Figure 4A). At the same time,
glycolytic proteins showed a significant decrease in the both allocation and
abundances but yielded more ATP due to increase in the specific glucose uptake rate
suggesting an increase in efficiency of glycolytic enzymes (Figure 3-4). This suggests
that the catalytic efficiency of glycolytic proteins is not determined by allocation or
abundance differences but controlled by other factors such as the PTMs as indicated
by phosphorylation of glycolytic peptides in our phosphoproteome data (Figure 4,
A, S2C). This is consistent with the previous report suggesting that glycolysis is
mostly regulated at the posttranscriptional levelsin S. cerevisiae (Daran-Lapujade et
a., 2007). As the glycolytic flux increases, more ATP is contributed from the
glycolysis compared with the ETC to the cellular energy budget and it is partialy
because glycolysis can produce more ATP per protein mass as opposed to
mitochondria whose synthesis itself is energy intensive process even though overall
respiratory chain can produce ATP more efficiently but requires more proteins
(Figure 4) (Chen and Nielsen, 2019; Molenaar et al., 2009; Nilsson and Nielsen,
2016). Interestingly, at the slow growth, the critical C:N ratio (22) showed maximum
ATPyield by increasing glycolytic protein abundances without significantly reducing
protein abundances for the ETC (mitochondrion), but compromising on biomass yield
(Figure 1C, 3, 4). Thus, under the condition of slow growth and a relatively low flux
the increase in glycolytic protein abundances added spare enzyme capacity to
glycolysis (Figure 4). The additional glycolytic enzyme capacity allowed ribosomes
to continue the synthesis of mitochondrial proteome almost at the reference level
making it near-equilibrium condition for the energy and protein production (Figure 3-
4). This observation is consistent with a recent report showing that at relatively slow
fluxes multiple steps in glycolysis operate at near equilibrium and reflect spare
enzyme capacity (Park et a., 2019). The reduced biomass at the critical ratio was due
to higher energy expenditure on the NGAM and less on the GAEC compared with the
reference (Figure 4D). At the slow growth and high C:N ratio (>22) the total protein
content reduced by nearly 40% compared with the reference (Figure 3). At the C:N

ratio (>22) protein allocation for ribosomal proteins remained similar to the critical
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C:N ratio (22) but reduced by about 2% compared with the reference (4), (Figure 3)
indicating that a certain threshold translation capacity was necessary for the
maintenance growth rate (0.1 h™). However, at the C:N ratio (>22), ribosome
abundances decreased significantly and may explain reduction in total protein content
under these conditions as the cellular energy budget mainly relied on glycolysis,
reducing mitochondrial synthesis and therefore, the ETC contribution, and spent
available energy on the NGAM resulting in nutrient-responsive carbon overflow
(Figure 4). This supports the idea that constant growth rate can be maintained by
reduced total energy flux by increasing carbon overflow (Slavov et al., 2014). The
significant increase in the NGAM at the high C:N ratios suggests activation of cellular
homeostasis mechanisms, such as autophagy, to replenish nitrogen by protein
turnover as indicated by increased protein allocation for vacuole where previous
reports found presence of low intracellular amino acids and high nucleotides in S
cerevisiae (Figure 3) (Boer et a., 2010; Marshall et al., 2016). Interestingly, asimilar
nutrient stress condition also shows the active lysosomal v-ATPase-Ragulator
complex, a common activator for AMPK and mTORC1, acting as a switch between
catabolism and anabolism in higher eukaryotes (Efeyan et al., 2012; Zhang et al.,
2014). From the viewpoint of biotechnology application activation of the
Clmetabolism and switching of aspartate biosynthesis pathways under nitrogen
limitation at slow growth are particularly relevant (Figure 3-4). For example, the THF
cycle has been demonstrated for developing bioprocesses in S. cerevisiae (Gonzalez
delaCruz et d., 2019). Also, the both C1 metabolism and aspartate biosynthesis are
potential anticancer targets as rapidly proliferating mammalian cells can rely upon
these metabolites for respiration (Koseki et al., 2018; Meiser et al., 2016; Morscher et
a., 2018; Sullivan et al., 2015).

In conclusion, we demonstrated the role of cellular energy budget in respiration, and
nutrient-responsive and growth rate-dependent carbon overflow in S cerevisiae
(Figure 5). At fast growth, a large resource allocation towards ribosomes constrained
resource availability for the synthesis of mitochondrion (respiration) resulting in a
growth rate-dependent carbon overflow (Figure 5). At slow growth, total proteome
decreased at higher C:N ratios due nitrogen limitation while maintaining a similar
cellular resource alocation and growth rate as the reference (Figure 5). The decrease

in proteome resulted in a significant reduction in total ATP available for biomass
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formation which was mostly spent on the NGAM causing a nutrient-responsive
carbon overflow (Figure 5). Our results will have practical implications in the both
basic science research as well for developing metabolic engineering strategies in

biotechnology.

Materials and M ethods
Strain, media and cultivation conditions

We used yeast Saccharomyces cerevisiae CEN.PK113- 7D in this research which has
been extensively characterized for laboratory research and was also used in our
previous studies (Lahtvee et al., 2016; Nijkamp et al., 2012; Zhang et al., 2011). All
experiments were performed from the same set of glycerol stocks that were prepared
at the beginning of this study. A typical inoculum sample was prepared by reviving
an aliquot of glycerol culture stock by passing through two pre-culture stages in a
chemical defined medium before being collected at the exponential phase to be used
in an experiment. The chemically defined medium, commonly referred to as the Delft
medium in laboratories due to origin (Verduyn et al., 1992), used contained per liter
glucose (20 g in pre-culture and batch bioreactors; 10 g in feed medium of chemostat
experiments), ammonium sulfate (5 g), potassium dihydrogen phosphate (3 g) and
magnesium sulfate heptahydrate (0.5 g). It was supplemented with 1 ml each of trace
metals and vitamins stock solutions similar to our previous studies (Lahtvee et a.,
2016; Zhang et al., 2011). In bioreactor experiments 50 ul of Antifoam 204 (Sigma-
Aldrich, USA) per liter was added to the culture medium. All experiments were
conducted in triplicate using 1 | bioreactors (Applikon BIOTECHNOLOGY) with a
0.5 | working volume. The bioreactors controls were used to maintain a constant
volume, pH (at 5.5 by use of 2 M KOH), and fully aerobic conditions (1 volume per
volume per minute, vvm) throughout the experiments. Dilution rates (D) were used to
control growth rates in chemostat experiments and data were collected after at least
three residence times (1/D) passed at steady state which was monitored for stability
by online sensors for off-gas (CO, and residual O,), dissolved oxygen (DO) culture
medium, and biomass (also cross-checked offline). Chemostat experiments were
performed on an average of six residence times and samples for analysis were
collected at a steady state only after lapse of at least three residence times. A steady

state was determined by constancy of gaseous exchanges online and optical
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density/biomass measurements offline. In all chemostat experiments glucose
concentration (carbon) was aimed to be constant while ammonium sulfate (nitrogen)
concentration was varied to obtain a range of C:N ratios. Biological triplicate data
were collected for dry cell weight (biomass), metabolites, quantitative proteome and
phosphoproteome as described in our previous publications (Lahtvee et al., 2017,
Zhang et al., 2011).

M etabolites measur ements

Culture broth samples from the steady state experiments and feed bottles were
collected in sterile Eppendorf tubes (2 ml) for quantification of extracellular
metabolites. The collected samples were centrifuged at 14,800 rpm at 4°C for 10 min
to remove biomass and stored at -20°C until analysis using a high-performance liquid
chromatography (HPLC). Extracellular metabolites were quantified using an Aminex
HPX-87H chromatography column (Bio-Rad) with the recommended settings for
elution of sugars and organic acids (temperature 45°C; flow rate 0.6 ml/min using
mobile phase of 5 mM sulfuric acid) in arefractive index and UV detector containing
HPLC instrument (Prominence-1, LC-2030 C Plus, SHIMADZU).

Total yeast proteome: extraction and quantification

All biomass samples were normalized to equal concentrations (1 g/l) and 600 ug of
biomass per sample was resuspended in a commercially available protein extraction
solution (Y-PER™ Yeast, Thermofisher). This biomass suspension in a vial (2 ml,
Eppendorf) was thoroughly mixed with pipette and all vials were incubated at 30°C
for 45 min under moderate agitation conditions. After incubation biomass suspension
from each vial was transferred to a glass-beads containing cells lysing tube
(Precellys). The cells lysing tubes were repeatedly agitated for 10 cycles, with an
interval of 5 min after each cycle (4 m/s for 20 s), in a FastPrep-24 device. These
agitated tubes were centrifuged at 14,800 rpm at 4°C for 10 min and supernatant was
carefully removed from each tube. A fraction of biomass remained leftover amid glass
beads in the lysing tubes and an equa volume of Y -PER reagent was added to repeat
(without 45 min incubation period) disruption and extraction using a FastPrep-24
device. This step was repeated until total proteome was extracted from yeast biomass.
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For each step proteome was quantified using a commercially available assay kit
(Micro BCA™ Protein Assay Kit, Thermofisher) and samples were diluted to be in
the linear range of BSA protein standard range (0.5 to 20 ug/ml). Proteome assays
were performed in triplicate to ensure reproducibility of data and cumulative

proteome obtained from each step reflects total proteome of yeast.

M ass-spectrometric quantification of proteome and phosphoproteome

Quantification of absolute proteome and identification of phosphoproteome in
samples was done similar to our previous study using a Nano-LC/MS-MS analysisin
combination with extensively used MaxQuant 1.4.08 software package (Cox and
Mann, 2008; Lahtvee et al., 2017). Briefly, modifications to our previous studies on
both quantification of absolute proteome and phosphoproteome are described here
(Lahtvee et a., 2017; Zhang et al., 2011). Sample biomass pellets were lysed in glass
beads containing Eppendorf tubes a pH 8.0 buffer (6 M guanidine HCIl, 100 mM
TrissHCl, 20 mM dithiothreitol) and homogenized using FastPrep24 (MB
Biomedicals) cells disruptor with two cycles (4 m/s for 30s). Supernatant was
removed by centrifuge (17000 g, 10 min, 4°C), precipitated overnight with 10%
trichloroacetic acid (TCA) at 4°C, and assayed for protein concentration as described
above in the total yeast proteome section. Both absolute protein quantification and
phosphoproteome sample preparations were similar to previous descriptions except
phosphoproteome samples were not mixed with heavy standards and were digested
with trypsin instead of Lys-C enzyme (Humphrey et al., 2015; Lahtvee et al., 2017).
For phosphoproteome enrichment 500 ug of sample protein was used and
reconstituted in 0.5% trifluoroacetic acid (TFA) similar to samples for quantification
of absolute proteome. For phosphoproteome total enriched sample and for absolute
quantification 2 ug of protein sample were used in Nano-LC/MS-MS analysis
(Lahtvee et al., 2017). Peptides were separated at 200 nL/min for absolute proteome
and 250 nL/min for phosphoproteome with a 5-40% B 240 min gradient for spiked
time point and 480 min gradient for heavy standard samples. For phosphopeptides a
90 min separating gradient was used in 5-15% for 60 min and 15-30% for 30 min
steps. Normalized collision energies of 26 for normal peptides and 27 for
phosphopeptides were used in higher-energy collisional fragmentation process. For

absolute proteome analysis the ion target and injection times for the MS were 3x 10°
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(50 ms) while for the MS/MS were 3x 10° (50 ms). The same parameters for
phosphopeptides were at 1x 10° (60 ms) and 2x 10* (60 ms), respectively. Dynamic
exclusion time was limited to 110, 70 and 45s for heavy standard samples, spiked
time point and phosphopeptides, respectively. Only charge states +2 and +6 were
targeted to MS/MS and additionally a fixed first mass of 95 m/z was set for
phosphopeptides. All heavy standards were analyzed as technical triplicates while
single replicate analysis was performed for biological triplicate samples. For phospho-
analysis serine/threonine phosphorylation was used as additional variable
modification in addition to previously described variable modifications for absolute
proteome quantification (Lahtvee et al., 2017). Saccharomyces cerevisiae reference
proteome database (version July 2016) was accessed a the UniProt

(www.uniprot.org) and was searched using the LysC/P (absolute proteome) and the

trypsin/P (phosphoproteome) digestion rules. Raw data quantification was carried out
by dividing protein intensities from heavy standard with the number of theoretically
observable peptides, log-transformed and plotted against log-transformed UPS2 mix
(48 human proteins) with known protein abundances. This regression was then used
to derive al other protein absolute quantities using their iBAQ intensities. Normalized
H/L ratios (by shifting median peptide log H/L ratio to zero) were used for all
downstream quantitative analyses (Cox and Mann, 2008). For biomass normalized
and protein normalized absolute quantities, total protein amount in dcw (g) was either
considered or not, respectively. This resulted in quantities of molecules of individual
protein per pg dew in case of biomass normalized data, and molecules of individual
protein per pg of total protein in sample in case of protein normalized data. The mass
spectrometry  proteomicsdatahave been deposited to the ProteomeXchange
Consortium via the PRIDE partner repository with the dataset identifier PXD016854
(Perez-Riverol et a., 2019).

Data analysis pipeline for absolute proteome and phosphopr oteome

Differential expression analysis for absolute proteins and phosphoproteome was
carried out in R, statistical differences were calculated using Student’s t-test and false
discovery rate (FDR) according to Benjamini—Hochberg procedure. Gene set analysis
was performed with the biomass and protein normalized proteomics data using Piano,

with the mean of the gene-level statistics, ignoring gene-sets smaller than 5 and larger
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than 500 genes, sampling 5,000 times and corrected for multiple testing using FDR
(Varemo et a., 2013). Same platform was used for TF analysis, with TF-gene
relationships acquired from the yeastract (http://www.yeastract.com). Principal
Component Analysis was carried out in ClustVis (Metsalu and Vilo, 2015).

Flux balance analysis (FBA)

Intracellular distribution of metabolic fluxes was investigated with the S. cerevisiae
genome-scale metabolic model yeast-GEM version 8.3.4 (Sanchez et a., 2019).
Calculations were performed with Cobra Toolbox (Schellenberger et al., 2011) on
MATLAB (The MathWorks Inc., Natick, MA, USA) using Gurobi solver (Gurobi
Optimization Inc., Houston, TX, USA). First, ATP hydrolysis, representing non-
growth associated maintenance energy, was maximized to calculate the unique pattern
of intracellular fluxes. To determine the variability of fluxes, random sampling
agorithm in RAVEN was used with 5000 samplings a the 95% previously
determined ATP drain value (Bordel et al., 2010). This resulted in an average flux
with the standard deviation, representing the flux variability.
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Figure Legends

Figure 1: Diversity in carbon overflow: nutrient-responsive vs growth r ate-dependent
(A) Schematic of chemostat experiments. Primary x- axis represents number of conditions.
Primary y- axis shows glucose to ammonium sulfate molar ratio (C:N ratio). C:N ratio (molar)
for each condition is represented on secondary x- axis. Chemostat dilution rate (h™) is shown
on secondary y- axis. The dilution rate 0.1 h™ represents slow growth and indicated by a
circle. The dilution rate 0.26 and 0.32 h™* together indicate fast growth as marked by the circle.
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Each slow growth is experiment is conducted in biological triplicate and the fast growth is
average of four experiments (two biological duplicates at 0.26 h™ and two at 0.32 h™).

(B) Measured extra-cellular fluxes showing specific metabolite production rate (mmol/dcw(g)/h).
Primary x- axis shows specific glucose uptake rate (ryy), primary y- axis shows specific
ethanol production rate (rg,), Secondary y- axis shows specific glycerol, acetate and formate
production rates, respectively (rgy, race, and riy). C:N ratio (molar) for each condition is
indicated on secondary x- axis.

(C) Biomass yield on glucose (dew(g)/glu(g)) and protein yield in biomass (protein (g)/biomass
(9)) is plotted on primary y- axis and secondary y- axis, respectively, with respect to specific
glucose uptake rate on primary x- axis.

(D) Specific oxygen uptake rate (roz) on primary y- axis and respiratory quotient on secondary y-
axis are plotted as a function of specific glucose uptake rate (rg,) on primary x- axis.
Respiratory quotient (RQ). Residual glucose (g/l) is indicated for C:N ratio 38 and 75 on
secondary y- axis.

Data are mean £SD. See also supplementary S1A and S1B.

Figure 2: Distinct proteome pr ofiles under line diversity in carbon over flow

(A) Describes design elements of the figure that are used throughout this manuscript where open
circles with distinct colors indicate different C:N ratio at slow growth and filled circle
indicates fast growth at the reference C:N ratio.

(B) Principal component analysis (PCA) plot of quantitative proteomics data from biological
triplicate experiments. The PC1 covers 59% of the variance in proteome abundances and
separates experiments based on a fully respiratory or respirofementative metabolism. The
PC2 covers additional 30% of the variance separating conditions based on growth rate. Since
the C:N ratio 38 and 75 indicate biological similarity the C:N ratio 38 is shown as a
representative of the both for visual clarity in some of the figures.

(C) Schematic of comparison of protein molecules in the unit amount of proteome (molecules /
picogram protein) represents protein allocation across the conditions. The first Venn diagram
indicates significant proteins for each condition relative to the reference based on adjusted p-
value (pa. <0.005). The second Venn diagrams shows proteins with log2 fold changes (> 1
or < -1) within the significant proteome (ps. <0.005) as considered in the first Venn
diagram. See also supplementary S2A.

(D) Schematic of comparison of protein molecules in the unit amount of biomass (measured as
dry cellular weight, dcw) (molecules / picogram dcw) describes the protein abundances
across the conditions. The same filtering criteria as described above (2C) is used. See also
supplementary S2B.

(BE) Total phosphoproteome detected is categorized based on number of phosphosites per protein.
Only phosphoproteins with more than 2 peptides in the MS data were considered in the
analysis. The primary x- axis shows number of phosphosites per protein indicating most

phosphoproteins in S. cerevisiae contain 1-5 phosphorylation modifications. The primary y-
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axis represents bars indicates total number of phosphoproteins while secondary y- axis
represents line indicating total number of phosphosites. Bar represents primary y- axis and
line indicates secondary y- axis. See also supplementary S2C.

(F) The Venn diagram represents an evaluation of total estimated quantitative proteome and
phosphoproteome and shows the coverage of phosphorylation in the proteome of S.
cerevisiae. See also supplementary S2D.

(G) Analysis of relative changes in proteome alocation to kinases, phosphorylating enzyme
proteins, based on quantitative proteomics data (S2A) and relative changes in total
phosphorylation based on intensities in phosphoproteome data (S2C).

Figure 3: Proteome allocation to ribosomes is determinative of growth rate, but distinct
translation constrains contr ol diversity in carbon overflow

(A) Cellular resource allocation is indicated based on proteome normalized data (molecules / pg
protein). The GO terms amino acid biosynthesis (GO:0008652), glycolysis (GO:0006096),
ribosome (GO:0005840), and mitochondrion (GO:0005739) are accessed through the yeast
genome database (yeastgenome.org) and cover over 65% of total estimated proteome. Each
condition isillustrated by small empty or filled circle and described undernesth the pie charts.

(B) Percent protein yield in biomass across the conditions. Data are mean +SD. Each condition is
illugtrated by small empty or filled circle. See also supplementary S1A.

(C) Relative log, fold changes in protein allocation (y- axis) for the GO terms glycolysis
(G0O:0006096), ribosome (GO:0005840), and mitochondrion (GO:0005739) compared with
the reference plotted against the specific glucose uptake rate (mmol/dcw(g)/h) on the x-axis.
Each condition isillustrated by small empty or filled circle.

(D) Relative proteome allocation (%) to the mitochondrion child GO terms. mitochondrial
trandation (GO:0032543), the TCA cycle (GO:0006099), the electron transfer chain (ETC)*
(constituted by the child GO terms — complex I-IV in 3E), ATP synthase (GO:0015986) and
others indicate relative changes in the remainder of mitochondrial proteome. Each condition is
illustrated by small empty or filled circle.

(E) Relative proteome allocation (%) to the GO terms. iron-sulfur (Fe-S) cluster binding

(G0:0051536), complex | - GO:0005747, complex IlI- GO:0005749, complex IlI-
GO0:0005750, complex IV - GO:0005751. Each condition is illustrated by small empty or
filled circle.

(F) Relative proteome allocation (%) to some of the GO terms in the proteome fraction
categorized as “others’ in 3A: vacuole (GO:0005773), nitrogen metabolism* -(GO:0006537,
GO:0006542, GO0:0015696, GO:0019740, GO:0006807) and fatty biosynthesis*
(G0:0006631, GO:0006633). Each condition isillustrated by small empty or filled circle.

(G) Gene-set analysis using proteome normalized data (S2A) shows significant GO terms (P,
<0.05). Direction of arrows indicate relative up or down regulation for a particular GO term
relative to the reference. Each condition is illustrated by small empty or filled circle. ** See
also supplementary S3.
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*The GO terms manually curated using the child GO terms.
** Includes detailed list and also significant GO terms and TF analysis from the gene-set analysis.

Figure 4: Energy metabolism trade-off contr ols proteome abundance and efficiency

(A) Relative log, fold changesin protein abundances for the GO terms glycolysis (GO:0006096),
ribosome (G0:0005840), and the ETC* compared with the reference on the y-axis are plotted
against measured specific glucose uptake rate (mmol/dcw(g)/h) for specified conditions on the
x-axis. Each condition is illustrated by an empty or filled circle, description is noted in the
figure legend (B).

(B) Schematic illustration of changes in the metabolic fluxes in the central carbon and nitrogen
metabolism. Figure legend explains design elements of the schematic, where each circle
represents an experimental condition and number inside abracket indicates C:N ratio.

(A) Cellular energy efficiency in the high energy (ETC) and low energy (glycolysis) yielding
pathways represented by metabolic flux directed at specific ATP production (mmol/dcw(g)/h),
shown on primary y-axis, and resulting ATP yield (mmol ATP/ mmol glucose), indicated on
secondary y-axis, that are plotted against the specific glycolytic fluxes as determined by the
model based on experimental data (measured specific glucose upteke rate) on x-axis. Each
condition isillustrated by small empty or filled circle as described (4B).

(B) Cellular energy (ATP) expenditure on growth associated energy costs (GAEC) and non-
growth associated maintenance (NGAM) - rate (mmol/dcw(g)/h) on primary y-axis and yield
(mmol/ mmol glucose) on secondary y-axis. Each condition is illustrated by small empty or
filled circle asindicated in the figure legend (B).

*Explained in the figure 3D legend
See also supplementary SA4A, 4B.

Figure5: Glycolytic flux impinges on cellular ener gy budget

Schematic of energy budget showing ATP production and consumption at the cellular level. Top
illustration shows input and output of cellular energy budget, and is followed by exhibit of budget
distribution at slow and fast growth. Color gradient (light to dark) in the round bounding squares show
increase in the glycolytic flux as indicated in the small inset. Impact of energy budget on cellular
composition is shown by presence of distinct protein fraction in biomass of each condition and is
illustrated by size of pie charts. Numbers on each pie indicate % contribution of each category to
cellular energy budget in S. cerevisiae (light grey — energy produced in electron transport chain; dark
grey — energy produced in glycolysis; light blue— energy spent for non-growth associated maintenance;
dark blue — energy spent for biomass formation). Each condition is illustrated by small empty or filled

circle asindicated in the figure.

Supplementary Captions:
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S1A: Experimental data generated using a chemical defined culture medium (described in the
manuscript). Table metadata is provided in the first two columns of this sheet.

S1B: Flux calculations with the yeast Saccharomyces cerevisiae genome-scale model version 8.3.4.
Flux balance analysis was carried out by constraining measured uptake and production fluxes
(including specific growth rate), while optimizing for ATP synthesis (r_0226), followed by
constraining ATP synthesis at 95% of the maximal value and running random sampling algorithm (n,
5000) for determination of flux variability. Average flux values from random sampling together with
its standard deviation are presented. ID - reaction identification number in the model; Name - reaction
name; EC -number - EC number corresponding to the reaction; Gene Association - reaction associated
genes; REF - reference chemostat experiment (D, 0.1 h, C:N molar ratio of 4); CN22 - chemostat at
D, 0.1 h, C:N molar ratio of 22; CN38 - chemostat at D, 0.1 h*, C:N molar ratio of 38; CN75 -
chemostat at D, 0.1 0.1 h%, C:N molar ratio of 75; Fast growth (FG) - experiments at elevated dilution
rates (D, 0.26 or 0.32 h™, C:N molar ratio of 4).

S2A: Amount of proteome in Saccharomyces cerevisiae chemostat experiments reported in
molecules/pg-protein (used in results/discussion on "protein alocation"). REF - reference chemostat
experiment (D, 0.1 hY, C:N molar ratio of 4); CN22 - chemostat at D, 0.1 h™, C:N molar ratio of 22;
CN38 - chemostat at D, 0.1 h™*, C/N molar ratio of 38; CN75 - chemostat at D, 0.1 h™*, C:N molar ratio
of 75; Fast growth (FG) -experiments at elevated dilution rates (D, 0.26 or 0.32 h™, C:N molar ratio of
4). Adjusted p-values were calculated using the Benjamini-Hochberg procedure.

S2B. Protein abundances in Saccharomyces cerevisiae chemostat experiments reported in
molecules/pg-dcw (used in results/discussion on "protein abundances"). REF - reference chemostat
experiment (D, 0.1 h%, C:N molar ratio of 4); CN22 - chemostat at D, 0.1 h, C:N molar ratio of 22;
CN38 - chemostat at D, 0.1 h™*, C:N molar ratio of 38; CN75 - chemostat at D, 0.1 h*, C:N molar ratio
of 75; Fast growth (FG) -experiments at elevated dilution rates (D, 0.26 or 0.32 h™, C:N molar ratio of
4).

S2C: Phosphoproteome in Saccharomyces cerevisiae chemostat experiments. REF - reference
chemostat experiment (D, 0.1 h™%, C:N molar ratio of 4); CN22 - chemostat at D, 0.1 h™, C:N molar
ratio of 22; CN38 - chemostat a D, 0.1 h™", C:N molar ratio of 38; CN75 - chemostat at D, 0.1 h*, C:N
molar ratio of 75; Fast growth (FG) -experiments at elevated dilution rates (D, 0.26 or 0.32 h™, C:N
molar ratio of 4).

S2D: Gene-set analysis using total quantitative proteome and phosphoproteome data to determine
representative functional groupsin each category.
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S3: Gene-set analysis using absolute quantitative proteome data. (A) biomass normalized, (B)
proteome normalized, (C) summary of significant GO terms and (D) summary of significant

transcription factors (TFs)

SAA: An overview of central metabolism and pathways responding to changes in C:N ratio vs fast
growth driven carbon overflow based on metabolic flux (mmol/g dcw/h) analysis with overlay of
absolute proteome abundances and phosphoproteome data. Absolute proteome abundances are
indicated for the reference by numbers while relative log, fold changes (biomass normalized) are
represented as heatmaps for C:N ratio (22), C:N ratio (38) and fast growth (4). The figure legend
explains design elements of illustration. The directionality of metabolic pathways is based on the
metabolic flux balance analysis. In central carbon metabolism, at slow growth (D, 0.1 h™%), critical C:N
ratio (22) showed an increase or similarity to reference abundances while a sharp decrease for most
abundances was noticed on further limitation of nitrogen at C:N ratio (38) that was similar to fast
growth (C:N ratio, 4) driven carbon overflow. At critical C:N ratio (22) only C1 carbon (formate)
overflow was observed but not that of C2 carbon i.e., ethanol. Overflow of C1 carbon, through the THF
cycle, was observed in nitrogen limiting conditions but was found absent at the reference C:N ratio (4).
Glycolytic proteome showed reduced abundances at the onset of overflow metabolism, but in response
to nitrogen assimilation pathway abundances showed an increase where later was also observed for
critical C:N ratio (4). Based on metabolic flux analysis, a reference vs high C:N ratio distinction was
observed for the biosynthesis of agpartate. Protein abundances for enzymes involved in serine
biosynthesis, mitochondrial glycine decarboxylation and methionine biosynthesis increased at critical
C:N ratio (22). Abbreviations. G-6-P, glucose 6 phosphate; F-6-P, fructose 6 phosphate; F-1,6-P,
fructose 1,6 bisphosphate; DHAP, dihydroxyacetone phosphate; G-3-P, glyceraldehyde 3 phosphate;
3PGP, 3 phosphoglyceroyl phosphate;3PG, 3 phosphoglycerate; 2PG, 2 phosphoglycerate; PEP,
phosphoenolpyruvate; FAS, fatty acids; OAA, oxaloacetic acid; CIT, citric acid; ICIT, iso-citric acid; a-
K G, alpha-ketoglutaric acid; SUC-CoA, succinyl CoA; SUC, succinic acid; FUM, fumaric acid; MAL,
malic acid; 7,8-DHF, a 7,8 dihydrofolate; 5,10-mTHF, a 5,10 methylene tetrahydrofolate; 5-mTHF, 5
methy! tetrahydrofolate; 10-fTHF, a 10 formyl tetrahydrofolate; THF, a tetrahydrofolate; NA, Protein
abundance not measured. Reaction number corresponds to corresponding metabolic reactions in the
supplementary S1B. Reaction number (metabolic reactions, S1B): 1 (r_0534), 2 (r_0467), 3 (r_0886,
r_0449), 4 (r_0450), 5 (r_1054), 6 (r_0486), 7 (r_0892), 8 (r_0893), 9 (r_0366), 10 (r_0962), 11
(r_0959, r_0960), 12 (r_0173), 13 (r_0112), 14 (r_2140, 2141), 15 (r_2115), 16 (r_0891), 17 (r_0961),
18 (r_0958), 19 (r_0719), 20 (r_0300), 21 (r_2305, r_0542, r_4262), 22 (r_0658), 23 (r_0831, r_0832,
r_0505), 24 (r_1022, r_0688), 25 (r_1021), 26 (r_0452), 27 (r_0713), 28 (r_0217), 29 (r_0216), 30
(r_0471), 31 (r_0476), 32 (r_0350, r_0347), 33 (r_0997), 34 (r_0066), 35 (r_1045), 36 (r_0725,
r_0732, r_0446), 37 (r_0501, r_505), 38 (r_0503), 39 (r_0502), 40 (r_0080).

AB: Cellular energy budget data underlying Figure 4C and 4D. Both metadata and data are described
in thetable.

27


https://doi.org/10.1101/2020.02.20.957662
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.02.20.957662; this version posted February 20, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

References

Basan, M., Hui, S., Okano, H., Zhang, Z., Shen, Y., Williamson, JR., and Hwa, T.
(2015). Overflow metabolism in Escherichia coli results from efficient proteome
allocation. Nature 528, 99-104.

Boer, V.M., Crutchfield, C.A., Bradley, P.H., Botstein, D., and Rabinowitz, J.D.
(2010). Growth-limiting intracellular metabolites in yeast growing under diverse
nutrient limitations. Molecular Biology of the Cell 21, 198-211.

Bordel, S., Agren, R., and Nielsen, J. (2010). Sampling the solution space in genome-
scale metabolic networks reveals transcriptional regulation in key enzymes. PLoS
Comput Biol 6, €1000859.

Broach, J.R. (2012). Nutritional control of growth and development in yeast. Genetics
192, 73-1065.

Buijs, N.A., Zhou, Y .J.,, Sewers, V., and Nielsen, J. (2015). Long-chain akane
production by the yeast Saccharomyces cerevisiae. Biotechnol Bioeng 112, 1275-
1279.

Canelas, A.B., Harrison, N., Fazio, A., Zhang, J., Pitkanen, J.P., van den Brink, J.,
Bakker, B.M., Bogner, L., Bouwman, J., Castrillo, JI., et al. (2010). Integrated
multilaboratory systems biology reveals differences in protein metabolism between
two reference yeast strains. Nat Commun 1, 145.

Chen, Y., and Nielsen, J. (2019). Energy metabolism controls phenotypes by protein
efficiency and allocation. Proceedings of the National Academy of Sciences of the
United States of America 116, 17592-17597.

Cox, J., and Mann, M. (2008). MaxQuant enables high peptide identification rates,
individualized p.p.b.-range mass accuracies and proteome-wide protein quantification.
Nature Biotechnology 26, 1367-1372.

Crabtree, H.G. (1928). The carbohydrate metabolism of certain pathological
overgrowths. Biochem J 22, 1289-1298.

Daran-Lapujade, P., Rossell, S., van Gulik, W.M., Luttik, M.A.H., de Groot, M.J.L.,
Slijper, M., Heck, AJ.R., Daran, JM., de Winde, JH., Westerhoff, H.V., et al.
(2007). The fluxes through glycolytic enzymes in Saccharomyces cerevisae are
predominantly regulated at posttranscriptional levels. Proceedings of the National
Academy of Sciences of the United States of America 104, 15753-15758.

De Deken, R.H. (1966). The Crabtree effect: a regulatory system in yeast. J Gen
Microbiol 44, 149-156.

Efeyan, A., Zoncu, R., and Sabatini, D.M. (2012). Amino acids and mTORCL1: from
lysosomes to disease. Trends Mol Med 18, 524-533.

Gao, X., Lee, K., Reid, M.A., Sanderson, SM., Qiu, C.P, Li, SQ., Liu, J, and
Locasale, JW. (2018). Serine Availability Influences Mitochondrial Dynamics and
Function through Lipid Metabolism. Cell Reports 22, 3507-3520.

Gonzalez de la Cruz, J., Machens, F., Messerschmidt, K., and Bar-Even, A. (2019).
Core Catalysis of the Reductive Glycine Pathway Demonstrated in Yeast. ACS Synth
Biol 8, 911-917.

Hackett, SR., Zanotdlli, V.R., Xu, W., Goya, J., Park, J.O., Perlman, D.H., Gibney,
P.A., Botstein, D., Storey, J.D., and Rabinowitz, J.D. (2016). Systems-level analysis
of mechanisms regulating yeast metabolic flux. Science 354, 6311.

Hughes, C.E., Coody, T.K., Jeong, M.Y ., Berg, JA., Winge, D.R., and Hughes, A.L.
(2020). Cysteine Toxicity Drives Age-Related Mitochondrial Decline by Altering
Iron Homeostasis. Cell 180, 296-310 e218.

28


https://doi.org/10.1101/2020.02.20.957662
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.02.20.957662; this version posted February 20, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

Humphrey, SJ., Azimifar, S.B., and Mann, M. (2015). High-throughput
phosphoproteomics reveals in vivo insulin signaling dynamics. Nat Biotechnol 33,
990-995.

Koseki, J., Konno, M., Asai, A., Colvin, H., Kawamoto, K., Nishida, N., Sakai, D.,
Kudo, T., Satoh, T., Doki, Y., et al. (2018). Enzymes of the one-carbon folate
metabolism as anticancer targets predicted by survival rate analysis. Scientific reports
8, 303.

Kresnowati, M.T., van Winden, W.A., Almering, M.J., ten Pierick, A., Ras, C,,
Knijnenburg, T.A., Daran-Lapujade, P., Pronk, J.T., Heijnen, J.J., and Daran, JM.
(2006). When transcriptome meets metabolome: fast cellular responses of yeast to
sudden relief of glucose limitation. Molecular systems biology 2, 49.

Kumar, R., Lahtvee, P.-J., and Nielsen, J. (2014). Systems Biology: Developments
and Applications. In Molecular Mechanisms in Y east Carbon Metabolism, J. Piskur,
and C. Compagno, eds. (Berlin, Heidelberg: Springer Berlin Heidelberg), pp. 83-96.
Kumar, R., and Shimizu, K. (2010). Metabolic regulation of Escherichia coli and its
gdhA, ginL, gltB, D mutants under different carbon and nitrogen limitations in the
continuous culture. Microb Cell Fact 9, 8.

Kumar, R., and Shimizu, K. (2011). Transcriptional regulation of main metabolic
pathways of cyoA, cydB, fnr, and fur gene knockout Escherichia coli in C-limited and
N-limited aerobic continuous cultures. Microb Cell Fact 10, 3.

Lahtvee, P.J., Kumar, R., Hallstrom, B.M., and Nielsen, J. (2016). Adaptation to
different types of stress converge on mitochondrial metabolism. Molecular biology of
the cell 27, 2505-2514.

Lahtvee, P.J., Sanchez, B.J., Smialowska, A., Kasvandik, S., Elsemman, |.E., Gatto,
F., and Nielsen, J. (2017). Absolute Quantification of Protein and mRNA Abundances
Demonstrate Variability in Gene-Specific Trandlation Efficiency in Yeast. Cell
systems 4, 495-504 e495.

Larsson, C., von Stockar, U., Marison, |., and Gustafsson, L. (1993). Growth and
metabolism of Saccharomyces cerevisiae in chemostat cultures under carbon-,
nitrogen-, or carbon- and nitrogen-limiting conditions. J Bacteriol 175, 4809-4816.
Lawrence, R.E., and Zoncu, R. (2019). The lysosome as a cellular centre for
signalling, metabolism and quality control. Nat Cell Biol 21, 133-142.

Marshall, R.S., McLoughlin, F., and Vierstra, R.D. (2016). Autophagic Turnover of
Inactive 26S Proteasomes in Yeast Is Directed by the Ubiquitin Receptor Cueb and
the Hsp42 Chaperone. Cell Reports 16, 1717-1732.

Martin-Perez, M., and Villen, J. (2017). Determinants and Regulation of Protein
Turnover in Yeast. Cell systems 5, 283-294 €285.

Meiser, J., Tumanov, S., Maddocks, O., Labuschagne, C.F., Athineos, D., Van Den
Broek, N., Mackay, G.M., Gottlieb, E., Blyth, K., Vousden, K., et al. (2016). Serine
one-carbon catabolism with formate overflow. Sci Adv 2-10, €1601273.

Metsalu, T., and Vilo, J. (2015). ClustVis: a web tool for visualizing clustering of
multivariate data using Principal Component Analysis and heatmap. Nucleic Acids
Res 43-W1, W566-570.

Metzl-Raz, E., Kafri, M., Yaakov, G., Soifer, |., Gurvich, Y., and Barkai, N. (2017).
Principles of cellular resource allocation revealed by condition-dependent proteome
profiling. Elife 6:628034.

Molenaar, D., van Berlo, R., de Ridder, D., and Teusink, B. (2009). Shifts in growth
strategies reflect tradeoffs in cellular economics. Molecular systems biology 5, 323.

29


https://doi.org/10.1101/2020.02.20.957662
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.02.20.957662; this version posted February 20, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

Morscher, R.J.,, Ducker, G.S, Li, SH., Mayer, JA., Gitai, Z., Sperl, W., and
Rabinowitz, J.D. (2018). Mitochondrial translation requires folate-dependent tRNA
methylation. Nature 554, 128-132.

Nijkamp, J.F., van den Broek, M., Datema, E., de Kok, S., Bosman, L., Luttik, M.A.,
Daran-Lapujade, P., Vongsangnak, W., Nielsen, J., Heijne, W.H., et al. (2012). De
novo sequencing, assembly and analysis of the genome of the laboratory strain
Saccharomyces cerevisiae CEN.PK113-7D, a model for modern industrial
biotechnology. Microb Cell Fact 11, 36.

Nilsson, A., and Nielsen, J. (2016). Metabolic Trade-offs in Yeast are Caused by
F1FO-ATP synthase. Scientific reports 6, 22264.

Oliveira, A.P., and Sauer, U. (2012). The importance of post-translational
modifications in regulating Saccharomyces cerevisiae metabolism. FEMS Yeast Res
12, 104-117.

Park, J.O., Tanner, L.B., Wei, M.H., Khana, D.B., Jacobson, T.B., Zhang, Z., Rubin,
SA., Li, SH., Higgins, M.B., Stevenson, D.M., et al. (2019). Near-equilibrium
glycolysis supports metabolic homeostasis and energy yield. Nat Chem Biol 15, 1001-
1008.

Peebo, K., Valgepea, K., Maser, A., Nahku, R., Adamberg, K., and Vilu, R. (2015).
Proteome reallocation in Escherichia coli with increasing specific growth rate. Mol
Biosyst 11, 1184-1193.

Perez-Riverol, Y., Csordas, A., Bai, J.,, Berna-Llinares, M., Hewapathirana, S.,
Kundu, D.J., Inuganti, A., Griss, J., Mayer, G., Eisenacher, M., et al. (2019). The
PRIDE database and related tools and resources in 2019: improving support for
quantification data. Nucleic Acids Res 47, D442-D450.

Reggiori, F., and Klionsky, D.J. (2013). Autophagic processes in yeast: mechanism,
machinery and regulation. Genetics 194, 341-361.

Roy, D.G., Chen, J, Mamane, V., Ma, E.H., Muhire, B.M., Sheldon, R.D., Shorstova,
T., Koning, R., Johnson, R.M., Esaulova, E., et al. (2020). Methionine Metabolism
Shapes T Helper Cell Responses through Regulation of Epigenetic Reprogramming.
Cell Metab 31, 250-266 e259.

Sanchez, B., and, F.L., Lu, H., Kerkhoven, E., and Niesen, J. (2019).
SysBioChalmers/yeast-GEM: yeast 8.3.4. Zenodo v8.3.4.

Schellenberger, J, Que, R., Fleming, R.M., Thiele, 1., Orth, J.D., Feist, A.M.,
Zielinski, D.C., Bordbar, A., Lewis, N.E., Rahmanian, S, et al. (2011). Quantitative
prediction of cellular metabolism with constraint-based models: the COBRA Toolbox
v2.0. Nat Protoc 6, 1290-1307.

Shen, H. (2020). An IRON-clad Connection between Aging Organelles. Cell 180,
214-216.

Shimizu, K., and Matsuoka, Y. (2019). Regulation of glycolytic flux and overflow
metabolism depending on the source of energy generation for energy demand.
Biotechnol Adv 37, 284-305.

Slavov, N., Budnik, B.A., Schwab, D., Airoldi, E.M., and van Oudenaarden, A.
(2014). Constant growth rate can be supported by decreasing energy flux and
increasing aerobic glycolysis. Cell Rep 7, 705-714.

Sullivan, L.B., Gui, D.Y., Hosios, A.M., Bush, L.N., Freinkman, E., and Vander
Heiden, M.G. (2015). Supporting Aspartate Biosynthesis Is an Essential Function of
Respiration in Proliferating Cells. Cell 162, 552-563.

Torrence, M.E., and Manning, B.D. (2018). Nutrient Sensing in Cancer. Annual
Review of Cancer Biology, Vol 2 2, 251-269.

30


https://doi.org/10.1101/2020.02.20.957662
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.02.20.957662; this version posted February 20, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

Tuller, T., Kupiec, M., and Ruppin, E. (2007). Determinants of protein abundance and
tranglation efficiency in S-cerevisiae. Plos Computational Biology 3, 2510-2519.
Vander Heiden, M.G., Cantley, L.C., and Thompson, C.B. (2009). Understanding the
Warburg effect: the metabolic requirements of cell proliferation. Science 324, 1029-
1033.

Varemo, L., Nielsen, J., and Nookaew, |. (2013). Enriching the gene set analysis of
genome-wide data by incorporating directionality of gene expression and combining
statistical hypotheses and methods. Nucleic Acids Res 41, 4378-4391.

Verduyn, C., Postma, E., Scheffers, W.A., and Van Dijken, J.P. (1992). Effect of
benzoic acid on metabolic fluxes in yeasts. a continuous-culture study on the
regulation of respiration and acoholic fermentation. Yeast 8, 501-517.

Vlastaridis, P., Papakyriakou, A., Chaliotis, A., Stratikos, E., Oliver, S.G., and
Amoutzias, G.D. (2017). The Pivotal Role of Protein Phosphorylation in the Control
of Yeast Central Metabolism. G3 (Bethesda, Md) 7, 1239-1249.

Warburg, O. (1956). On the Origin of Cancer Cells. Science 123, 3191.

Weber, R.A., Yen, F.S,, Nicholson, SP.V., Alwaseem, H., Bayraktar, E.C., Alam, M.,
Timson, R.C,, La, K., Abu-Remaileh, M., Molina, H., et al. (2020). Maintaining Iron
Homeostasis Is the Key Role of Lysosomal Acidity for Cell Proliferation. Mol Cell
77, 645-655 e647.

Yu, T., Zhou, Y.J.,, Huang, M., Liu, Q., Pereira, R., David, F., and Nielsen, J. (2018).
Reprogramming Y east Metabolism from Alcoholic Fermentation to Lipogeness. Cell
174, 1549-1558 e1514.

Zhang, C.S,, Jiang, B., Li, M., Zhu, M., Peng, Y., Zhang, Y.L., Wu, Y.Q., Li, T.Y,,
Liang, Y., Lu, Z., et al. (2014). The lysosoma v-ATPase-Ragulator complex is a
common activator for AMPK and mTORC1, acting as a switch between catabolism
and anabolism. Cell Metab 20, 526-540.

Zhang, J., Vaga, S., Chumnanpuen, P., Kumar, R., Vemuri, G.N., Aebersold, R., and
Nielsen, J. (2011). Mapping the interaction of Snfl with TORC1 in Saccharomyces
cerevisiae. Molecular systems biology 7, 545.

31


https://doi.org/10.1101/2020.02.20.957662
http://creativecommons.org/licenses/by/4.0/

>

dew/glu (g/g)

C:N gradient (molar)
N
o

o]
o

[
o

N
o

0.8

0.6

0.4

0.2

0.0

C:N ratio R
4 5 710223875 4 4
® C:N ratio °
Dilution rate e
Slow : /
growth (
[
\k ° Fast
- — growth
—

o o © o o
0123 456 7 8 9 10
Experiments
C:Nratio
4 22 38 75 4

eBiomass yield
Protein yield
x
u -
- ()
-
1 2 3 4 5 6
ry.(mmol/dew(g)/h)

Figure

0.4

0.3

0.2

t 0.1

0.0

0.8

0.6

0.4

0.2

0.0

Dilution rate (h™")

protein/dcw (g/g)

I, (Mmol/dew(g)/h)

@)

5.

4.

3.

2.

rop(mmol/dcw(g)/h)

0

0

0

0

C:N ratio
4 22 38 75 4
® Monanot ™ Tgiycerol T
Tacetate  ® Tformate +
=
. *
*
+« N L
2 3 4 5
rq,{mmol/g.dcw/h)
C:N ratio
4 22 38 .15 4
Toz * RQ
}
o Residual glucose
T
. : I
id
*
2 3 4 5
ry.(mmol/dew(g)/h)

0.8
0.5
0.3

0.0

3,0

rg,y,race,r,or(mmolldcw(g)/h)

RQ; Res. glu (g/l)


https://doi.org/10.1101/2020.02.20.957662
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.02.20.957662; this version posted February 20, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

A Slow growth Fast growth
4 O Ref, C:N ratio 4 ' 0.32
2 O C:N ratio 22 o b
_2_ O C:N ratio 38 D (h)
Ol 750 C:N ratio 75 0.26
Dilution rate,D, 0.1 h' C:N ratio 4
B
1] |
00O o o
9 )
g % o
e
) O
a Qo0
()
i % v
PC1 (59%)
E
«» 1000 2500
£
Q
5 800 2000 5
S <
% 600 1500 &
o
[
2 400 1000 &
e S
T o
2 200 500 °
. 0
1-5 6-10 11-20 21-33

Phosphosites per protein

Unit
proteome il

Figure 2

Protein abundances

O O O
molecules/ pg dew

Protein allocation
fir Total biomass —>|

Non-proteome

—> Wy biomass fraction

O Total Proteome
o O O @

molecules/ pg protein

ﬁ Filtering criteria ﬂ
&% <« py<0005 — A%
AR

«— log2 fold change —»
>1.0|113 174[<-1.0 >1.0|61

AN (77N AR (o

533(<-1.0

F G 140
Nucleosome g120 o
< Cell 2 Ref ]
K’ cycle o
2044 | 728 ) 512 & 80
/ ° 60
- [}
o =
Quantitative © 40
proteome abundances ¢ 20
Total identified 0
phosphoproteome OO0 O e Oo0oO0 e
Protein kinase Total
allocation phosphorylation


https://doi.org/10.1101/2020.02.20.957662
http://creativecommons.org/licenses/by/4.0/

Figure 3

A 14% 15% 16% 1%
Glycolysis
- Mitochondrion
- Ribosome
Amino acid
) ’ 8%
biosynthesis 6% 6%
-Others 4 y 6%
Reference (4 O cCritical C:N ratio (22 Nutrient-responsive ) Growth rate-dependent
O @ (22) O carbon overflow (38) carbon overflow (4)
B C Glycolysis D
» Mitochondrion <140
70 S 061 « Ribosome g
€ 50 . £ 04 § 120 -
< [ ] = — ) ™ —
> i f 38 © 02 5 Ref
3 50 = T 0.0 S 80
1 : <8 - . T 60
c 40 T o —-0.2 c
2 ] 5 g 40
o 30 5 -0.44 . ° 20
= <
. . . . . 0.6 : ’ : & 04 ;
20 4 22 38 4 1 2 4 5 00® " 000
O @) e} [ ) o O O o Mitochondrial TCA cycle ETC ATP synthase Others
Slow growth ~ Fast growth s, (mmol/dew(g)/h) translation
E F G | GO terms (p,, <0.05) O|0|®
5140 B §140 - M Mitochondrial translation| | | | | 4
-120{ _ . = - _ =120 {7 [ Cytoplasmic translation Vit
SRef ] F] SRef - .
g 80 § 80 Ribosome VIib A
= 60 = 60 Vacuole Mt
< 40 £ 40 : :
g 5 8 20 Protein glycosylation A
T o &0 ‘ ‘ ‘ ic reticul 4
00® 00® 00® 008 008 0o0® o00® 00® Endoplasmic reticulum
Fg—S_ cluster | 1l Il v Vacuole Nitrogen Fatty acid Endocytosis A
binding ETC complexes metabolism*biosynthesis



https://doi.org/10.1101/2020.02.20.957662
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.02.20.957662; this version posted February 20, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, wh§ entdd bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

A 1.2 Glycolysis
® ETC
0.8| m Ribosome
[%]
3
S 04
So
ST 008 =
c [
£= @ °
% -0.4
5 ®
-0.8 ]
-1.2 L
1 2 3 4 5 6
O O ®) (@) [
ry, (Mmol/dew(g)/h)
B Glucose (C)

Glycine  NH,+ Serine

Central carbon metabolism

Serine Formate

THF cycle
000

. Methionine
—— > Chorismate—>| C1-overflow |«

Figure Legend
NADP* NADPH| |Slow growth

O Reference (4)
O C:N ratio (22)

Nitrogen metabolism QO C:N ratio (38)
NH,* (N) Glutamine | | O C:N ratio (75)

Pyruvate
(oJeJoL

000

TCA cycle

Glutamate

oejel ) @ Fast growth (4),
lOOO oe Purine/

L7 Pyrimidine  [pecreased flux

2
ADP ATP
Mitochondria < Aspartate >

Fast growth

c ATP production
Electron transport chain (ETC) Glycolysis
(High ATP yield pathway) (Low ATP yield pathway)
. 25 O O O O [ ] 10 73‘ = 8 O O O O [ ] 2,0 ﬁw,‘
K- - Q = L] [e]
20 852 26 . .16 3
R [ LA - 62s § |.° ) 123
= . £ 34 =E
S qol__" o l4 £ 2 . 08a £
= - - r :: & E 2 " * Tate, giycolysis | =
a ATP, ETC 2 X ~ - 04 <(<
= * ATP yield E _’20 * ATPyield 0’0 3
0 . , ; 0 . . . ,
1 2 3 4 5 E 1 2 3 4 5 E
rglu(mmolldcw(g)/h) rg‘u(mmolldcw(g)/h)
D v ATP consumption
Growth associated energy costs Non-growth associated maintenance
(GAEC) (NGAM)
£2500 O 0 ®s 3 16200 © °5 %
= o o = * S
5 20— 6,5 S121— d 4 _3
315 ne 3 . 322
3 . 4<E 3 8 o E
£ 10 of € . 4235
£ 5 (] ] . 2 & E 4 . 1 ,::
‘_E 0 =Marp total ® GAEC 0 <—; LE ol° *Tate, 7ot  NGAM 0 _g
3 4 5 £ T2 3 4 5 g
rg‘u(mmolldcw(g)/h) =~ rglu(mmolldcw(g)/h)


https://doi.org/10.1101/2020.02.20.957662
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.02.20.957662; this version posted February 20, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

Figure 5

Cellular energy budget

ATP production

}

ATP consumption

ETC— ]_N_
Glucose —» Glycolysis -

Slow growth

58%

88%

o L T o)
lCO? Biomass  Protein
Glycolytic flux
O Reference (4)

CO, Formate

O Critical C:N ratio (22)

O

|
|
|
[l GAEC ——> Growth and proliferation

- NGAM —— Carbon overflow products
Fast growth

v

COo

Ethanol
Acetate

CO, Formate, ethanol,

glycerol, acetate

2

Nutrient-responsive

Growth rate-dependent
o carbon overflow (38)

carbon overflow (4)


https://doi.org/10.1101/2020.02.20.957662
http://creativecommons.org/licenses/by/4.0/

