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Abstract

The rumen is the hallmark organ of ruminants and hosts a diverse ecosystem of
microorganisms that facilitates efficient digestion of plant fibers. We used 897
transcriptomes from three Cetartiodactyla lineages: ruminants, camels and cetaceans,
as well as data from ruminant comparative genomics and functional assays to explore
the genetic basis of rumen origin and evolution. Comparative analyses reveal that the
rumen and the first-chamber stomachs of camels and cetaceans shared a common
tissue origin from the esophagus. The rumen recruited genes from other tissues/organs
and up-regulated many esophagus genes to aquire functional innovations involving
epithelium absorption, improvement of the ketone body metabolism and regulation of
microbial community. These innovations involve such genetic changes as
ruminant-specific conserved elements, newly evolved genes and positively selected
genes. Our in vitro experiements validate the functions of one enhancer, one
positively selected gene and two newly evolved antibacterial genes. Our study

provides novel insights into the origin and evolution of a complex organ.
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Evolutionary biology has a long history of trying to understand how complex organs
evolvel. The origin of some notable organs has been central to animal evolution, e.g.
the eyes of animals??3, electric organs of fishes*, mammalian placenta>® and ruminant
headgear’. Another remarkable organ innovation found in mammals are the
multi-chambered stomachs found in the Cetartiodactyla lineages, including Tylopoda
(e.g. camels), Tayassuidae (e.g. peccaries), Hippopotamidae (e.g. hippos), Cetacea
(e.g. whales) and Ruminantia (Fig. 1). Among these, ruminants have the most complex
digestive system in herbivores, allowing efficient uptake of nutrients from plant
material by providing a microbial fermentation ecosystem in the highly specialized
rumen®. Camels (Tylopoda) have three-chambered stomachs and are also sometimes
called "pseudo-ruminants™ due to their similar ruminating behavior and microbial
fermentation taking place in their first-chamber (FC) stomach®. The whales (Cetacea)
form the sister group of the Ruminantial®, however the FC of their four-chambered
stomach is mainly used as a temporary storage chamber for ingested food and for
mechanical grinding of food items*!. With the rumen, ruminants obtained a unique
evolutionary advantage through superior utilization of short chain fatty acids (SCFAS)
from microbial fermentation, which significantly promoted the expansion and
diversification of ruminant taxa'2. The evolutionary innovation of the rumen is
therefore interesting not only in its functional complexity and uniqueness, but also
because it has greatly benefited humans by providing high-quality nutrition in the shape
of highly productive ruminant livestock species!34,

The anatomical predecessor from which the rumen evolved has been proposed to
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be the esophagus?®, yet the two organs are highly divergent in morphology and
physiology. The stratified squamous epithelium of the esophagus is smooth and
non-keratinized, and mainly serves a barrier function, but in contrast the rumen
stratified squamous epithelium is keratinized and lined with papillae, which facilitates
nutrient uptake and antibacterial peptide production!®!’. These features allow the
absorption of SCFAs and sustain the homeostasis of microorganisms. The origin and
evolution of new organs involve structural and functional innovations that were
proposed to be driven by several types of genetic reprogramming: recruitment of
genes usually expressed in other organs, transformation of regulatory elements such
as promoters and enhancers, mutations in protein-coding genes and
post-transcriptional mechanisms®®. Given the substantial structural and physiological
changes involved in the transition from esophagus to rumen, significant genetic
reprogramming must have occurred during the process.

Usually, it is challenging to obtain detailed insights into the genetic
reprogramming associated with organ evolution due to the rarity of such occurrences
and the lack of intermediate evolutionary states®. However, in the case of the rumen,
we can take advantage of two important points allowing “triangulation” of the
changes leading to the rumen: the availability of synapomorphic stomach chambers in
Cetartiodactyla and the likely ancestral relation between the esophagus and the rumen.
Here, we conducted a comprehensive comparison using 897 transcriptomes of
different tissues from three Cetartiodactyla lineages and multiple genomes to

investigate the genetic basis of gene programming evolution and functional
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95 innovations in rumen, together with validation of some cases using in vitro

96  experiments.


https://doi.org/10.1101/2020.02.19.955872
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.02.19.955872; this version posted February 20, 2020. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

97  Results

98  Gene expression features of the rumen

99  We sequenced transcriptomes of 33 samples across 14 adult tissues from Bactrian
100  camels, eight adult tissues from one species in Mysticeti (Bryde’s whale) and one
101 species in Odontoceti (Indo-Pacific Finless Porpoise) from Cetacea, 852 samples (210
102 sequenced in this study and 642 published in previous studies’31°) from 50 tissues of
103 two representative ruminants (sheep and roe deer) within Ruminantia (Supplementary
104  Table 1). The global gene expression patterns of all the FC stomachs are consistently
105  most similar to the esophagus in all species (Fig. 2a, Fig. S1). To investigate the
106 specifically expressed genes in the three types of FC stomachs, we defined those that
107  the rank of expression is less than or equal to a E50 index threshold with type I error
108  less than 0.05 (Supplementary Note) in the FC stomachs of ruminants, camels, and
109  cetaceans compared to other conspecific tissues/organs. We identified 655, 593, and
110 375 such specifically expressed genes in the FC stomachs of ruminants, camels, and
111  cetaceans, respectively (Supplementary Table 2-4; Supplementary Note).
112 Comparisons of gene expression profiles between rumen and the first-chamber stomach
113  of camels and cetaceans
114 Among these FC-specific genes, the three FC stomachs shared 18 genes which are
115  co-expressed in the esophagus in all species (Supplementary Table 5). The 18 genes
116 were significantly enriched in keratinocyte differentiation (Supplementary Table 6,
117  Fisher’s exact test, adjusted P value = 9.85x107%). This is consistent with the fact that

118  the FC stomachs all share a basic stratified squamous epithelium with the
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esophagus?®-??, which is markedly different from other stomach chambers (e.g. the
abomasum of the ruminants, the third-chamber stomachs of camels and cetaceans).
Notably, PAX9%, a known key transcription factor during esophagus differentiation, is
highly expressed in all three FC stomachs and may play a role in the origin of the FC
stomachs from their anatomic origin (Supplementary Table 5). Our results therefore
indicate that the FC stomachs in Cetartiodactyla share a common developmental origin
from the esophagus, and that changes in epidermis development may be an ancestral
feature in this proto-rumen.

Despite the shared features of epithelial histology found in all Cetartiodactyla FC
stomachs, the rumen also has a series of unique structural and functional innovations.
Among the 655 rumen specifically expressed genes, we identified 448 up-regulated and
79 down-regulated genes when compared to the FC stomachs of camels (Fig. 2b;
Supplementary Table 7), and 563 up-regulated and 29 down-regulated genes when
compared to the FC stomachs of cetaceans (Fig. 2b; Supplementary Table 8;
Supplementary Note). Among these, the majority (427, 65.2%) are up-regulated in
rumen relative to both the FC stomach of camels and cetaceans (Fig. 2b;
Supplementary Table 9). These exclusively rumen-specific (i.e., not specifically
expressed in other FC stomachs) genes are significantly associated with the synthesis
and degradation of ketone bodies (Fisher’s exact test, adjusted P value = 1.21x1073)
(Fig. 2c; Supplementary Table 10). Unlike monogastric animals, in which
ketogenesis mainly occurs in the liver and the intestinal tract?*2°, the rumen is the main

site of ketogenesis in adult ruminants, and the occurrence of ketogenesis is regarded as

7
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141  adiagnostic feature of rumen maturity®. In addition to ketogenesis genes , seven genes
142  from the KEGG pathway Staphylococcus aureus infection were also highly expressed
143 inthe rumen compared to the FC stomachs of camels and cetaceans (Fisher’s exact test
144  for KEGG pathway enrichment, adjusted P value = 1.35x107?) (Supplementary Table
145  10). These results indicate that improved ketone body metabolism and microbial

146  regulation were important features in the evolution of the rumen from a proto-rumen
147  origin shared with other Cetartiodactyls.

148  Gene recruitment by the rumen

149 Among the 655 rumen specifically expressed genes, the rumen co-expressed 96
150  (14.7%) genes with the esophagus (Fig. 2d; Supplementary Table 2). The 96 genes
151 were enriched in the cornified envelope (adjusted P = 4.11x10*4) and epidermal cell
152 differentiation processes (adjusted P = 3.77x10%) (Supplementary Table 11).

153  Meanwhile, we also found that the rumen recruited genes from a range of other tissues
154  and biological pathways (Fig. 2d), e.g. keratinocyte differentiation (Supplementary
155  Table 12, 88 genes co-expressed with keratinization-associated tissues), urea cycle
156  (Supplementary Table 13, 24 genes co-expressed with liver), monocarboxylic acid
157  transport (Supplementary Table 14, 61 genes co-expressed with intestine), skeletal
158  muscle contraction (Supplementary Table 15, 23 genes co-expressed with muscle),
159  urea transport (Supplementary Table 16, 19 genes co-expressed with kidney) and

160  saliva secretion (Supplementary Table 17, 10 genes co-expressed with salivary

161  gland). These pathways are all strongly associated with known rumen functions. For

162  instance, enhanced urea recycling is an important characteristic of the rumen leading to

8
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163  increased nitrogen utilization for ruminants?’. Collectively, these results suggest that
164  the rumen—in addition to up-regulating genes expressed in the esophagus—recruited
165  genes from different tissues to evolve its unique structure and complex functions.

166 Identification of genes functioning in early rumen development

167 The above rumen specifically expressed genes are identified in postnatal rumen,
168  but the development of the rumen structure mainly occurs during early embryo

169  stages?®?. In order to identify genes functioning in this critical stage, we performed
170  five RNA sequencing from the ruminal and esophageal epithelium cells of four 60
171 days’ sheep embryos, the stage at which the ruminal epithelium starts to

172 differentiate?®?® (Supplementary Table 1). We identified 285 rumen up-regulated
173 differentially expressed genes (DEGs) compared to the esophagus (Supplementary
174  Table 18). These are enriched in cell-cell junction (adjusted P value = 8.33x107%) and
175  desmosome organization (adjusted P value = 1.47x10°®%) (Supplementary Table 19).
176 We also found 1,840 rumen down-regulated DEGs which are enriched in anatomical
177  structure morphogenesis (adjusted P value = 1.39x101°) (Supplementary Table 18,
178  20). These results indicate that the specific epithelial histology of the rumen wall

179  constitutes the most significant developmental genetic reprogramming as the organ
180  forms and grows in the embryo. After filtering redundancy, we combined the 655

181  rumen specifically expressed genes with the 285 rumen up-regulated DEGs compared
182  to the esophagus at the key development stage and eventually obtain 846 rumen key
183  genes which we consider crucial for rumen development and evolution.

184
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Evolutionary analyses on the rumen key genes
Based on the data from ruminant comparative genomics®, we employed evolutionary
genomic analyses on the 846 rumen key genes in the evolutionary context of 51
ruminants and 12 other mammals, by identifying ruminant-specific conserved
nonexonic elements (RSCNEs) (> 20 bp), newly evolved genes and positively selected
genes (PSGs) to systematically investigate the genetic changes associated with these
rumen key genes. In the common ancestor of Ruminantia, we identified 657 genes with
RSCNEs (Supplementary Table 21), two newly evolved genes and 28 PSGs
(Supplementary Table 22) among the 846 rumen key genes. They are mainly
involved in keratin filament binding, serine-type peptidase activity, ketone body
metabolism and detection of bacterium.
Improved ketone body synthesis in rumen

In the pathway of synthesis and degradation of ketone bodies, HMGCS2 and
SLC16A1 were under positive selection in the common ancestor of ruminants (Fig. 2c,
3a; Supplementary Table 9, 10, 22), and had ruminant-specific mutations when
compared to non-ruminant mammals (Fig. 3b). Of the five ruminant-specific amino
acid changes in the HMGCS2 protein, four are located in the HMG-CoA synthase
domain (PF01154) (Fig. 3b). To further examine the effects of these mutations on the
enzyme structure, we conducted three-dimensional (3D) structure simulations, and
found that mutations in HMG-CoA synthase domain could induce a change of the
protein 3D structure when compared to the human HMGCS?2 protein (Fig. 3c). We also

noted that the SLC16A1 gene, which participates in the transportation of ketone bodies

10
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207  into the blood®*, exhibited seven ruminant-specific mutations, six of which are located
208 inthe MFS_1 domain (PF07690), resulting in a domain structure change as revealed by
209  protein structure homology-modeling (Fig. S2, S3). We therefore hypothesized that the
210  changes in HMGCS2 and SLC16A1 may result in a more efficient ketone body

211 metabolism in ruminants. This is supported by HMGCS2 being the key rate-limiting
212 enzyme in the ketogenesis pathway?*. To explore the functional relevance of these

213 mutations, we synthesized sheep and human HMGCS2 orthologs in vitro and tested
214  their enzyme synthetic activities by measuring the activities in a reconstituted system
215  consisting of the enzyme and substrate (Supplementary Note). The sheep HMGCS2
216  (S) protein variant exhibites significantly higher metabolic efficiency than human

217  proteins (H) (~2-fold increase, t-test, P < 0.001) (Fig. 3d). The enzyme activity of

218  human HMGCS?2 containing the five ruminant-specific amino acids replacements

219  (H-5R) is also significantly higher than the regular human protein (~1.5-fold increase,
220 P <0.01), while sheep HMGCS2 with the corresponding five human amino acid

221  replacements (S-5H) exhibites significantly lower enzymatic activities than the sheep
222  protein (~2-fold decrease, P < 0.001) (Fig. 3d). These results confirm that ruminants
223 have evolved a more efficient ketogenesis than that of other mammals.

224 Immune system and microbial regulation

225 We identified one PSG (NOD2) (Supplementary Table 22) and two newly

226  evolved genes (DEFBL1 and LYZ1) in the rumen key gene list that are involved in

227  immune functions. Among these, our transcriptomic data show that NOD2 was

228  co-expressed with the macrophage cells, and highly expressed in the rumen compared

11
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to both the FC stomachs of camels and cetaceans (Supplementary Table 2, 9). We
detected 11 ruminant-unique amino acid changes in NOD2, resulting in domain
structure changes as revealed by protein structure homology-modeling (Fig. S4, S5).
This gene functions in the upstream part of IL17 signaling pathway, activating the
Th17 cells to produce IL17F as part of the gastrointestinal immune system®! (Fig. 4a).
The IL17 signaling pathway protects the host against extracellular pathogens via
activating downstream pathways to induce the expression of antimicrobial peptides®.

Among the newly evolved genes in the ancestor of ruminants, we identified a
rumen key gene, DEFB1, which belongs to the beta-defensin family that have
important roles as antimicrobial peptides in the resistance of epithelial surfaces to
microbial colonization (Supplementary Table 2). In addition, we identified one
newly evolved rumen key gene LYZ1 in the lysozyme ¢ family (Supplementary Table
2), which may protect the rumen epithelium from the activity of pathogenic bacteria®®.
We predicted that the LYZ1 contains a ruminant-specific 20 amino-acid-chain that
encodes a probable transmembrane anchor (Fig. S6, S7), suggesting that the LYZ1 gene
encodes a secreted membrane-anchored protein, which may act on the rumen
environment.

To validate the functions of these two newly evolved genes, we synthesized
DEFB1 and LYZ1 in vitro and tested their antibacterial ability by performing an
inhibition zone assay on agarose plates with Escherichia coli (American Type Culture
Collection, ATCC 25922) and Staphylococcus aureus (ATCC 29213) as representative

of Gram-negative and -positive bacteria (Supplementary Note). The DEFB1 (Fig. 4b)

12
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and LYZ1 (Fig. 4c) protein both showed antibacterial activity to S. aureus, but not E.
coli. This characteristic of selective inhibition of Gram-positive bacteria is similar to
that of monensin, which is commonly used as an antibiotic drug that regulates the
microbiome and increases ruminant feed conversion efficiency®334, Taken together,
these results highlight that several important antibacterial functions are uniquely
evolved in the rumen relative to other similar organs, and that some of these may
work by specifically managing the microbiome composition.
New regulatory elements related to rumen epithelium absorbtion function

We searched among 221,166 RSCNEs to identify candidate regulatory regions in
the vicinity of rumen key genes. We found that 657 of the 846 rumen key genes have
nearby RSCNEs (Supplementary Table 21). To assess the regulatory role of these
RSCNEs in the recruitment of increased gene expression in the rumen, we performed
eight ATAC-seq libraries of the ruminal and esophageal epithelium cells from four 60
days’ sheep embryos (Supplementary Table 23; Supplementary Note). Our analysis
indicates that 243 rumen key genes have nearby RSCNESs overlapping with identified
open accessible peaks (Supplementary Table 24), and these genes are enriched in
epidermal cell differentiation (adjusted P value = 4.82x107°) (Supplementary Table
25). In the comparison of ATAC-seq between the rumen and esophagus, we identified
3,904 rumen-specific and 5,531 esophagus-specific open differentially accessible
peaks (DAPs) (Fig. S8; Supplementary Table 26). Interestingly, we found 267 and
478 RSCNEs (> 20 bp) overlapping with rumen-specific and esophagus-specific

DAPs, which is highly statistically signficant (Fisher’s exact test, both P value = 0.00).

13


https://doi.org/10.1101/2020.02.19.955872
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.02.19.955872; this version posted February 20, 2020. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

Rumen-specific DAP-associated RSCNEs are physically near 22 rumen key genes
(Supplementary Table 27). Among these genes, CRNN is one of the genes in the
epidermal differentiation complex (EDC) locus, which is essential for the cornified cell
envelope in rumen®®, and is implicated in several epithelial malignancies in human®®. A
rumen-specific DAP-associated RSCNE with six ruminant-specific mutations was
found at the 5’ upstream of CRNN of ruminants, which might play a role in regulating
its expression in rumen. Concordantly, DMRT?2 is a key transcriptional factor in the
dermomyotome organization and DMRT2-deficient mice have epithelial morphology
abnormalities®®. We observed that DMRT2 has five rumen-specific DAP-associated
RSCNEs in its 3’ downstream region, potentially causing high DMRT2 expression in
rumen.

Interestingly, WDRG66 is not only highly expressed in the rumen compared with
both the FC stomachs of camels and cetaceans but also under positive selection in the
common ancestor of Ruminantia (Fig. 5a; Supplementary Table 9, 22). It regulates
the expression of occludin, which tightens the intercellular space and enables epithelial
permeability®’. We observed 10 ruminant-specific non-synonymous mutations and one
rumen-specific DAP-associated RSCNE in the intronic region of WDR66 (Fig. 5b; Fig.
S9; Supplementary Table 27). In order to assess the regulatory activity of this
particular RSCNE, we cloned it into a luciferase reporter vector (pGL3-Promoter) and
transfected it into both sheep and goat fibroblasts in vitro. The RSCNE showed
significantly higher luciferase transcriptional activation compared to the

pGL3-Promoter control (t-test, P < 0.05) (Fig. 5c), confirming that it acts as an
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295  enhancer. Therefore, these DAP-associated RSCNEs might plausibly have exerted

296  novel cis-regulation of the rumen key genes, thus providing a mechanistic explanation
297  of how the rumen might have recruited these genes from other tissues. Hence, we

298  propose a central role of such regulatory elements in the development and evolution of
299  rumen structure and function.

300 Positively selected genes involved in rumen epithelium absorption

301 We observed that eight rumen key genes involved in the cell junction biological
302  process (WDR66, COL7AL, EVPL, KRT14, CLDN23, F2RL1, TMPRSS13 and

303 TMPRSS11A) were under positive selection in ruminants (Fig. 5a; Fig. S9-S16;

304  Supplementary Table 22). Non-synonymous changes in these genes may result in the
305 change of cell junctions, which may break the epithelium barrier and increase the

306  epithelium absorption properties®®-42. COL7A1 is highly expressed in the rumen of fetal
307  sheep, but not in the esophagus (Supplementary Table 18). We detected 17 unique
308 amino acid (aa) changes in COL7AL in ruminants (Fig. S10). COL7ALl is an anchoring
309 fibril between the external epithelia and the underlying basal lamina3°. Amino acid
310  mutations in this gene are associated with epidermolysis bullosa, a condition in which
311 tissue fluid diffuses through the intercellular space into the epidermis®®. In addition,
312 TMPRSS13, a membrane-anchored serine protease gene®!, is highly expressed in rumen
313  compared to esophagus (Supplementary Table 18). Interestingly, we identified five
314  ruminant-specific aa changes in TMPRSS13, four of which are located in the

315  trypsin-like serine protease domain (Fig. S15). It is reported that the deficiency of

316  TMPRSS13 in mice impairs stratum corneum formation and epidermal barrier
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acquisition, accompanied by trans-epidermal fluid loss*. In normal epithelium cells
(e.g., epithelium cells of skin), the epithelium barrier is produced by strong intracellular
protein filaments crossing the cytoplasm and attaching to specialized junctions, which
in turn ties the surfaces of adjacent cells either to each other or to the underlying basal
lamina® (Fig. 5a). Given that the epithelium transportation and absorption functions
are affected by the epithelium barrier, mutations in these cell junction-related genes

may be related to metabolite uptaking function of the rumen.
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324  Discussion

325  Our large quantity of transcriptomic data in adults and an early embryo rumen

326  development stage provide a detailed comparative insight into the distinct gene

327  expression profile of the rumen. Although there has been no consensus about the

328 evolutionary relationship between the FC stomachs of camels, peccaries, cetaceans and
329  ruminants?t# it is unlikely that the multi-chambered stomach evolved independently
330  four times in Cetartiodactyla exclusively. Therefore, the most parsimonious

331  explanation is that they may have a single evolutionary origin, followed by

332  specialization in the different lineages of the Cetartiodactyla due to their specific diets
333  and niches. For instance, the FC stomachs of camels have evolved the ability to store
334  water?s*, the FC stomachs of cetaceans has the capacity to mechanically grind food'?,
335 and the rumen provides efficient fermentation and metabolism of plant material. The
336  gene expression profiles of the FC stomachs in ruminants, camels and cetaceans show
337  that they are all highly similar to the esophagus, suggesting these organs share an

338  anatomical origin from the esophagus (Fig. 2a; Fig. S1).

339 Based on our comparative genomic and functional data, we outline the genetic
340  mechanisms underlying the origin, development and evolution of the rumen from the
341  ancestral esophagus tissue. These genetic innovations are mainly related to epithelium
342  absorption, ketone body metabolism and microbial regulation. Among the 846 rumen
343  key genes (Supplementary Table 2, 18), we found that 657 (77.7%) genes have nearby
344  RSCNEs (Supplementary Table 21), 28 genes are under positive selection

345  (Supplementary Table 22) and two genes newly evolved in the common ancestor of
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ruminants, suggesting these three types of genetic reprogramming all contributed to the
structural and functional evolution of rumen. Notably, the majority of rumen key genes
have RSCNEs nearby and our ATAC-seq validated that 243 rumen key genes had
nearby RSCNESs overlapping with highly accessible chromatin (Supplementary Table
24), suggesting the RSCNEs as regulatory elements may play a crucial role in rumen
gene recruitment. The highly significant association between RSCNESs, rumen key
genes and open accessible peaks is a strong indication of this, although there were also
many RSCNEs that did not overlap with open accessible peaks in our ATAC-seq
analysis. While this suggests that RSCNEs play other roles besides being regulatory
elements, it is also possible that some were false negatives due to the limitations of
development stages sampled in this study, which might have omitted some associations
between rumen key genes and regulatory RSCNEs. Hence, a denser sampling of
different developmental time points might expand the rumen key gene list and reveal
novel regulatory roles of RSCNESs. Nevertheless, our study has revealed the important
genetic mechanisms underlying the key evolutionary innovations of the rumen. The
identified rumen key genes and their specific mutations provide a starting point for
future studies of rumen development, and for understanding the interactions between
rumen and microbiota. This will be key to further improvement of ruminant livestock,

e.g. by providing a framework for manipulating the rumen fermentation process.
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Data availability

The raw reads for all RNA-seq data, the ATAC-seq data from the rumen and the
esophagus have been deposited at the Sequence Read Archive (SRA) under project
number PRINA485657.
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Fig. 2 | Comparisons of gene expression profile among rumen and other tissues. a,
Hierarchical clustering results showing the relationships among 50 tissues of sheep and a heatmap
showing the pairwise Spearman correlations between sheep tissues(the top triangle), between 14
tissues of camels (lower left triangle) and between eight tissues of two cetaceans (lower right
triangle). b, Heatmap of differentially expressed rumen specifically expressed genes among the

rumen and other FC stomachs. The color bars on the left present 136 DEGs of the rumen relative to
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the FC stomach of cetaceans (yellow), 21 DEGs relative to the FC stomach of camels (green), and

427 DEGs relative to the FC stomach of both species (purple). The expression levels were

normalized by Z-scores. ¢, KEGG pathway analysis of 427 rumen up-regulated DEGs relative to

both the FC stomach of camels and cetaceans. d, Heatmap showing the gene expression profiles of

all 655 rumen specifically expressed genes across 43 tissues of sheep. Different colored lines

represent the tissues from which the rumen specifically expressed genes were recruited. Number of

genes from each tissue is shown below the tissue name with the percentage of total genes recruited

in parentheses.
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Fig. 3 | Genetic changes in the rumen ketone body metabolism genes and pathways. a, Genes

annotated in the ketone body metabolism are labeled with different color to indicate rumen

specifically expressed genes (blue), positively selected genes in ruminant (orange) and

differentially expressed genes between rumen and other FC stomachs (purple). The solid arrows

represent ketone body metabolism pathways. The dashed arrows indicate the process of material

transport from rumen to other tissues. b, Top panels: Structural domains of the HMGCS2 protein

and the location of the ruminant specific mutations. Lower panel: Peptide sequence alignment of

HMGCS2. The species is followed a yellow circle belonging to the ruminant. The red highlighting

indicates ruminant-specific amino acid mutations. c, Predicted tertiary structures of the HMGCS2

of ruminant (blue) and other mammals (orange), respectively. d, Enzyme activities of HMGCS2

compared with those of sheep and human in vitro. H: human, H-5R: human HMGCS2 with five

ruminant aa replacements, S: sheep, S-5H: sheep HMGCS2 with five human aa replacements. **

p value < 0.01, *** p value< 0.001 calculated from the t test. Data are shown as meanzs.d.
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435 Fig. 5 | Genetic changes related to rumen epithelium transportation and absorption. a,

436  Diagram of rumen epithelial cell proteins involved in epithelium permeability identified in the

437  common ancestor of the ruminants. Rumen specifically expressed genes (blue), positively selected

438  genes in ruminant (orange), differentially expressed genes between rumen and other FC stomachs

439  (purple), differentially expressed genes between rumen and esophagus (red), and

440  RSCNE-associated rumen key genes (green). Note the junction structure (desmosome) between

441  keratinocytes of the ruminal epithelium has been degraded, instead the enlarged intercellular space

442  with copious blood supply enables metabolites absorption in the ruminal epithelium*’. b, Gene

443  structure of WDR66 based on the NCBI Oar_v4.0 annotation shown above. Green boxes represent

444 exons. Purple bars indicate ruminant-specific conserved non-exonic elements (RSCNEs). Red and

445  blue bars indicate ATAC-seq peaks of the ruminal and esophageal epithelium cell, respectively.

446  The grey rectangle box is the overlapping element of RSCNE and ATAC-seq which is located in

447  the intron region. c, The luciferase activity of the pGL3-Promoter (WT) and the pGL3-Promoter

448  with the RSCNE (@A). * p value < 0.05 calculated from the t test. Data are shown as mean + s.d.
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