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Abstract 
Approximately 30% of older adults exhibit the neuropathologic features of 

Alzheimer’s disease (AD) without signs of cognitive impairment. Yet, little is known 

about the genetic factors that allow these potentially resilient individuals to remain 

cognitively normal in the face of substantial neuropathology. We performed a large, 

genome-wide association study (GWAS) of two previously validated metrics of cognitive 

resilience quantified using a latent variable modeling approach and representing better-

than-predicted cognitive performance for a given level of neuropathology. Data were 

harmonized across 5,108 participants from a clinical trial of AD and three longitudinal 

cohort studies of cognitive aging. All analyses were run across all participants and 

repeated restricting the sample to individuals with normal cognition to identify variants at 

the earliest stages of disease. As expected, all resilience metrics were genetically 

correlated with cognitive performance and education attainment traits (p-

values<2.5x10-20), and we observed novel correlations with neuropsychiatric conditions 

(p-values<7.9x10-4). Notably, neither resilience metric was genetically correlated with 

clinical AD (p-values>0.42) nor associated with APOE (p-values>0.13). In single variant 

analyses, we observed a genome-wide significant locus among participants with normal 

cognition on chromosome 18 upstream of ATP8B1 (index SNP rs2571244, MAF=0.08, 

p=2.3x10-8). The top variant at this locus (rs2571244) was significantly associated with 

methylation in prefrontal cortex tissue at multiple CpG sites, including one just upstream 

of ATPB81 (cg19596477; p=2x10-13). Overall, this comprehensive genetic analysis of 

resilience implicates a putative role of vascular risk, metabolism, and mental health in 

protection from the cognitive consequences of neuropathology, while also providing 

evidence for a novel resilience gene along the bile acid metabolism pathway. 
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Furthermore, the genetic architecture of resilience appears to be distinct from that of 

clinical AD, suggesting that a shift in focus to molecular contributors to resilience may 

identify novel pathways for therapeutic targets. 

Keywords: Alzheimer’s disease, Amyloid, Resilience, GWAS 
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Introduction 

Alzheimer’s disease (AD) is characterized by the presence of neuritic plaques 

and neurofibrillary tangles in the brain at autopsy. Clinically, it presents with progressive 

cognitive impairment. Yet, due to the long prodromal period of AD and unknown 

biological factors, not everyone with AD neuropathology presents with cognitive 

impairment. In fact, among cognitively normal volunteers agreeing to autopsy at the 

time of death, 70% have varying degrees of AD pathology (Sonnen et al., 2011), and 

30% have sufficient neuropathology in their brain to meet neuropathological criteria for 

AD (i.e., “Asymptomatic AD”) (Rahimi and Kovacs, 2014). Identifying the molecular 

factors that underlie the resilience observed in asymptomatic AD may provide novel 

therapeutic targets for clinical intervention and provide additional insight into the genetic 

architecture of AD. 

While there has been some prior discovery work using genomic data (Mostafavi 

et al., 2018; Yu et al., 2018), previous work characterizing the genetic contributors to 

asymptomatic AD has primarily focused on candidate genes (Monsell et al., 2013; 

Monsell et al., 2017; Franzmeier et al., 2019) due to the lack of sufficient sample size to 

complete full genome-wide analyses. A major barrier in moving analyses forward has 

been the categorical definitions of asymptomatic AD that drastically reduce the number 

of participants available for analysis. In the last decade, residual approaches to 

quantifying continuous metrics of “resilience” have emerged as potential 

endophenotypes for genetic analyses (Yu et al., 2015; White et al., 2017; Boyle et al., 

2019). The basic approach is to deconvolve cognitive scores into components that are 

explained and unexplained by proxy or direct measures of neuropathology (Reed et al., 
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2010). These residual approaches model better-than and worse-than predicted 

cognitive performance to represent higher vs. lower resilience (Yu et al., 2015; Boyle et 

al., 2019). Recently, our group has extended these residual approaches to quantify and 

validate continuous metrics of “cognitive resilience” (representing better-than-predicted 

cognitive performance given an individual’s burden of AD neuropathology) and “brain 

resilience” (representing better-than-predicted brain volumes given an individual’s 

burden of AD neuropathology) (Hohman et al., 2016b). These continuous metrics are 

strong predictors of future cognitive decline and cognitive impairment (Hohman et al., 

2016b). The goal of the present analysis was to evaluate genetic predictors of cognitive 

resilience across the genome. 

A few genome-wide analyses have been completed that focus on resilience in 

asymptomatic AD, although with limited sample sizes (Hohman et al., 2014a; Hohman 

et al., 2014b; Hohman et al., 2016a; White et al., 2017). Recently, approximately 3,000 

samples with both whole-genome genetic data and in vivo brain measures of amyloid 

burden from the Anti-Amyloid Treatment in Asymptomatic AD (A4) clinical trial were 

made publicly available, providing an unmatched resource for exploring the genetics of 

resilience to AD. We performed the largest (N=5,108) genome-wide association study 

(GWAS) of cognitive resilience in AD by leveraging harmonized resilience metrics 

across the cross-sectional A4 study and three longitudinal cohort studies of AD. 

Validation of identified genomic candidates was completed using gene expression data 

from post mortem brain tissue and genotype data from large-scale case/control datasets 

of AD. Importantly, we also performed comprehensive genetic correlation and pathway 
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analyses to provide critical information about the fundamental biological pathways that 

may protect the brain from the downstream consequences of AD neuropathology. 

Materials and Methods 

Participants 

 Participant data was acquired from multiple cohort studies including screening 

data from the Anti-Amyloid Treatment in Asymptomatic Alzheimer’s Disease (A4) Study, 

the Alzheimer’s Disease Neuroimaging Initiative (ADNI), the Religious Orders Study and 

Rush Memory & Aging Project (ROS/MAP), and the Adult Changes in Thought (ACT) 

Study. The A4 Study screening data were acquired as part of a clinical trial that began 

in 2014 (Sperling et al., 2014). All participants were recruited with normal cognition, and 

amyloid Positron Emission Tomography (PET) imaging was performed at screening. 

Additionally, participants with a Delayed Logical Memory score less than 6 or greater 

than 18 were excluded from PET scans and are not included in the present analysis. 

ADNI was launched in 2003 and over the four phases of the study now includes >1,800 

individuals age 55-90 (www.adni-info.org). Recruitment was designed to mimic clinical 

trials and therefore included individuals with normal cognition, mild cognitive 

impairment, and AD at baseline. Data from ADNI-1, ADNI-2, and ADNI-GO are included 

in the present analyses. ACT began in 1994 and recruited a random sample of 

nondemented older adults from the Seattle metropolitan area (Kukull et al., 2002). A 

subset of participants in ACT agreed to brain donation and are included in these 

analyses. ROS launched in 1994 and recruited Catholic nuns, priests, and brothers from 

across the United States, and MAP launched in 1997 and recruited cognitively normal 
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older adults from the Chicago metropolitan area (Bennett et al., 2018). Those who 

agreed to brain donation are included in the present analysis. 

Amyloid PET Acquisition 

 For ADNI and A4 participants, amyloid burden was quantified using amyloid PET. 

PET procedures in ADNI are described at the ADNI website (http://www.adni-info.org). 

A4 and ADNI are both largescale multi-site studies for which PET amyloid acquisition 

was completed on multiple platforms, including GE, Philips, and Siemens. In all cases, 

PET data were acquired using a dynamic 3D scan with four 5-minute frames acquired 

50-70 minutes post injection. A subset of ADNI participant data were acquired using 

11C-PiB, but the majority of ADNI and all of A4 was acquired using 18F-Florbetapir. 

Standardized uptake value ratios (SUVR) were quantified relative to whole cerebellum, 

and a composite mean SUVR was quantified across cortical regions as a summary 

metric of amyloid burden. 

Amyloid PET Processing and Harmonization 

Harmonization of amyloid PET levels was performed using composite cortical 

values calculated within ADNI and A4 separately. We applied a Gaussian Mixture Model 

(GMM) within each dataset to place values on the same scale using a recently 

developed harmonization algorithm (Properzi et al., 2019). GMMs were estimated 

among cognitively normal individuals using a two-component model fit and applied to 

the entire sample. Mean SUVRs were scaled and normalized using the mean and 

standard deviation estimated from the predicted amyloid negative gaussian distribution. 

A more comprehensive assessment of this and alternative harmonization approaches 

was recently published by our group (Raghavan et al., 2020), but we used the present 
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approach because it makes the fewest assumptions about the data and was more 

robust to outliers than alternative approaches. The final scaled score represents a z-

score based on the predicted amyloid negative distribution among cognitively normal 

older adults. 

Postmortem Assessment of Neuropathology 

 For ACT and ROS/MAP participants, neuritic plaque burden was quantified with 

CERAD scores. A comprehensive neuropathological evaluation was completed at each 

site, including full CERAD staging as previously described (Mirra et al., 1991).  

Neuropsychological Composites 

 Harmonization of cognitive tests in ADNI and A4 was completed using the 

Preclinical Alzheimer Cognitive Composite (PACC), calculated in each dataset 

individually using item level data from Logical Memory Immediate and Delayed Recall, 

WAIS-R Digit Symbol Substitution Test, the Mini-Mental State Exam, and the Selective 

Reminding Test or the delayed word recall from the ADAS-Cog. In all four datasets, a 

previously published protocol to harmonize neuropsychological scores in the domains of 

memory and executive function was used (Crane et al., 2017). A memory composite 

was calculated in all four datasets, and an executive function composite was quantified 

in ACT, ADNI, and ROS/MAP (there was insufficient item level data in A4). A detailed 

description of the item level data and model that was included in these composite 

metrics is presented in Supplementary Methods. 
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Quantification of Resilience Metrics 

 Resilience metrics were quantified using established procedures (Hohman et al., 

2016b) and the model is presented in Fig. 1. Briefly, individual regression models 

estimated amyloid pathology associations with cognition covarying for age and sex. A 

robust weighted least squares estimator in a confirmatory factor analysis was quantified 

using Mplus (Muthén and Muthén, 1998-2015) (version 7.31) to summarize residuals 

from the linear regression models into composite measures representing the degree to 

which an individual performed better or worse than predicted given their age, sex, and 

amyloid load (note that years of education was integrated into the second order latent 

trait). The outcomes of interest were Residual Cognitive Resilience and Combined 

Resilience where Residual Cognitive Resilience was quantified from residuals and 

Combined Resilience was summarized as the covariance of educational attainment with 

Residual Cognitive Resilience. A detailed description of the methodology and quantified 

resilience metrics is presented in Supplementary Methods. 

Genotype Processing and Quality Control 

 Genotyping in all cohorts was performed using DNA extracted from whole blood 

or brain tissue on different genotyping arrays. For A4, the Illumina Global Screening 

Array was used for genotyping. ACT participants were genotyped on an Illumina 

Human660W-Quad. Three Illumina platforms were used in ADNI: Human610-Quad, 

HumanOmniExpress, and Omni 2.5M. ROSMAP genotypes were also obtained on 

three platforms: Affymetrix Genechip 6.0, Illumina Human1M, and Illumina Global 

Screening Array. In ADNI and ROSMAP, sample sets genotyped on different arrays 

were processed and imputed in parallel and merged after imputation. Quality control 
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(QC) was performed using standard procedures, including removal of SNPs and 

samples with >5% genotype missingness, removal of SNPs with <1% minor allele 

frequency (MAF) or Hardy-Weinberg Equilibrium (HWE) p-values <10-6, and removal of 

samples with sex discrepancies, cryptic relatedness (pi-hat >0.25), or who were not 

non-Hispanic White by self-report or by population principal component (PC) analysis. 

 Genotypes were then imputed with Minimac3 on the Michigan Imputation Server 

(https://imputationserver.sph.umich.edu) using the HRC r1.1 2016 reference panel. 

Post-imputation QC steps included removal of SNPs with imputation quality score R2 

<0.90, call rate <95%, MAF <1%, or HWE p-value <10-6. Imputed datasets were then 

merged for the two autopsy cohorts (ACT and ROS/MAP) and the two PET imaging 

cohorts (A4 and ADNI). Non-overlapping SNPs (i.e., those with missingness >95%) 

were excluded. A total of 4,840,740 SNPs remained and were included in the analysis. 

Statistical Analyses 

 Our analysis workflow is presented in Fig. 2. Following phenotype harmonization 

and calculation of resilience metrics (i.e., Residual Cognitive Resilience and Combined 

Resilience) for each cohort, genome-wide association analyses were completed using 

linear regression in PLINK (version 1.9, https://www.cog-genomics.org/plink/1.9). 

GWAS was performed in the combined autopsy dataset and the combined PET dataset. 

For each dataset, two models were run. The first model estimated resilience among 

individuals across the spectrum of dementia, including individuals with normal cognition, 

mild cognitive impairment, and AD. The second model restricted the sample to 

individuals with normal cognition to focus on resilience during the preclinical phase of 

disease. In all models, covariates included age, sex, and the first three population PCs. 
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The genome-wide threshold for statistical significance was set a priori at α=5x10-8. 

Summary statistics at each marker across the autopsy dataset and the PET dataset 

were then combined in a fixed-effect meta-analysis using the GWAMA software 

program (Mägi and Morris, 2010). 

 We first summarized genetic signal across the genome using summary statistics 

from our resilience GWAS to estimate genetic correlations between resilience 

phenotypes and 67 complex traits with publicly accessible GWAS summary statistics 

using the Genetic Covariance Analyzer (GNOVA) program (Lu et al., 2017). Details 

about the source of summary statistics for each trait are presented in Supplementary 

Table 1. This provided a first level of validation that the genetic signal in our analysis 

was correlated with common phenotypes (e.g., cognitive performance and educational 

attainment) while also providing insight into novel resilience associations. Additionally, 

we replicated our top genomic correlation results leveraging the BADGERS program 

(Yan et al., 2018) and quantified correlation across 1,738 traits in the UK Biobank 

(http://biobank.ndph.ox.ac.uk/showcase/). To aid in interpretation of genetic covariance 

results, we also quantified heritability estimates using the Genome-wide Complex Trait 

Analysis (GCTA) tool (Yang et al., 2011). Heritability of each resilience phenotype was 

quantified within the PET and Autopsy datasets separately, and within a combined 

dataset including all samples. Estimates were quantified across all participants and 

when restricting the sample to individuals with normal cognition. 

 Next, we performed gene- and pathway-level analyses using VEGAS2 (Liu et al., 

2010; Mishra and Macgregor, 2015; Mishra and MacGregor, 2017) and PrediXcan 

(Gamazon et al., 2019). PrediXcan models were estimated for 44 tissues in the GTEx 
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Portal and for additional disease relevant tissues, including prefrontal cortex from 

CommonMind and monocytes from the Multi-Ethnic Study of Atherosclerosis (MESA). 

Correction for multiple comparisons in gene-level analyses was quantified using the 

false discovery rate (FDR) procedure, which accounted for all 258,562 gene-tissue 

combinations. The a priori threshold for significance of the VEGAS pathway results was 

p<1x10-5, which was based on a simulation-derived 95% empirical significance 

threshold taking into account the multiple testing of 6,213 correlated pathways (Mishra 

and MacGregor, 2017). 

 Finally, single variant GWAS loci were mapped to genes and functionally 

annotated leveraging INFERNO (http://inferno.lisanwanglab.org/) (Amlie-Wolf et al., 

2018) and the Brain xQTL Serve database (http://mostafavilab.stat.ubc.ca/xqtl/) (Ng et 

al., 2017). INFERNO integrates hundreds of publicly available functional genomics 

databases, including databases of transcription factor binding sites, expression 

quantitative trail loci (eQTL), and enhancer activity. The Brain xQTL Serve database 

includes additional eQTL, methylation-QTL (mQTL), and histone-QTL (hQTL) analyses.  

Results 

 In total, 5,108 individuals across the four cohorts (A4 n=2,982; ROS/MAP 

n=1,031; ADNI n=688; ACT n=407) had both genome-wide genotype and resilience 

phenotype data, 3,820 (75%) of whom were cognitively normal. Participant 

characteristics are presented in Table 1. In general, participants were mostly female 

(with the exception of ADNI) and were well-educated. Individuals in the PET cohorts 

tended to be younger than individuals in the autopsy cohorts. 
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Genetic Covariance Results 

 Heritability estimates for each resilience phenotype are presented in 

Supplementary Table 2. Briefly, we observed larger heritability estimates when 

restricting the sample to individuals with normal cognition (Residual Cognitive 

Resilience h2=0.20-0.28, Combined Resilience h2=0.23-0.99) compared to the entire 

sample (Residual Cognitive Resilience h2=0.00-0.08, Combined Resilience h2=0.19-

0.67). 

 Using the summary statistics from the resilience GWAS, we performed genetic 

covariance analyses to gain insight into any shared genetic basis of relevant biological 

processes. Pair‐wise genetic covariances between Combined Resilience GWAS results 

in all participants and 67 health-related phenotypes are depicted in Fig 3 and presented 

in Supplementary Table 3. Ten genetic correlation analyses survived correction for 

multiple testing. We observed strong and expected positive correlations with cognitive 

performance and educational attainment (p<1.4x10-19), validating our metric and 

providing strong evidence of consistency in the observed polygenic signal across 

comparable measures from independent datasets. 

 Additionally, we observed multiple novel correlations, including two smoking 

behavior phenotypes: age at smoking initiation (genetic correlation=0.033; p=2.0x10-7) 

and number of cigarettes per day (genetic correlation=-0.021; p=8.0x10-4). Additional 

novel correlations included two neuropsychiatric conditions, whereby increased genetic 

risk of obsessive compulsive disorder (OCD) was correlated with higher levels of 

resilience (p=7.9x10-4) while increased genetic risk of attention deficit hyperactivity 

disorder (ADHD) was associated with lower levels of resilience (p=4.7x10-6). 
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Interestingly, older age at first birth was associated with higher levels of resilience 

(p=1.1x10-8). Genetic correlations with Residual Cognitive Resilience were very similar 

to those observed for Combined Resilience and were similar when restricting the 

sample to cognitively normal individuals (Supplementary Tables 3-4). 

 As a second level of validation, we also quantified genetic correlations with 

phenotypes in the UK Biobank leveraging a recently published method to perform 

phenome-wide association analyses leveraging summary statistics (Yan et al., 2018). 

Consistent with GNOVA results, we observed strong correlations with numerous 

education and cognitive phenotypes (Supplementary Tables 5-6). We also verified 

correlations with age at first birth (p=6.2x10-12) and observed some intriguing novel 

correlations. 

 Interestingly, there was no evidence for genetic correlation between resilience 

phenotypes and clinical AD (p=0.45). Similarly, when evaluating the 40 previously 

identified AD risk variants from approximately 25 loci (Lambert et al., 2013; Jansen et 

al., 2019; Kunkle et al., 2019), only three SNPs showed nominal evidence of association 

with either resilience phenotype (Supplementary Table 7). Similar results were also 

observed when fully analyzing the APOE haplotype, whereby increasing numbers of 

APOE ε4 alleles or number of APOE ε2 alleles were not associated with either 

resilience phenotype (p-values>0.13). Together these results suggest the polygenic 

signal underlying the resilience phenotypes is distinct from clinical AD. 

Gene-Level and Pathway Results 

 Next, we continued to explore the genetic architecture of resilience on both a 

gene and pathway level. Gene-level results in individual tissues and cross-tissue, based 
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on predicted gene expression associations with resilience, are reported in 

Supplementary Tables 8-11. Resilience metrics were not associated with predicted 

gene expression among individual tissues or across tissues after Bonferroni correction 

for multiple testing. The most significant gene in the cross-tissue analyses was ZNF451, 

which was associated with Combined Resilience in individuals with normal cognition at 

p<6.6x10-6 (Supplementary Table 9). 

 In pathway-level analyses using VEGAS2, no molecular pathways remained 

significant when correcting for multiple comparisons. However, when restricting to 

cognitively normal participants in the Combined Resilience analysis, there was nominal 

evidence of enrichment in the dehydrogenase pathway (p=2.5x10-5; PANTHER 

database) and the amino acid metabolism pathway (8.7x10-5; PANTHER database). 

Single-Variant Associations with Resilience 

 Finally, we focused on single variant level analyses to identify novel genetic loci 

associated with resilience. Genome-wide significant results are presented in Fig. 4a, 

and detailed results for all models are presented in Supplementary Tables 12-15. 

When including all diagnoses in the GWAS, we did not observe any variants that 

reached statistical significance in either Residual Cognitive Resilience or Combined 

Resilience analyses. When restricting analyses to individuals with normal cognition, we 

identified a locus on chromosome 18 just upstream of the ATP8B1 gene that reached 

genome-wide significance in Combined Resilience analyses (Fig. 4b). More specifically, 

the minor allele of the index SNP at this locus (rs2571244; MAF=0.08) was associated 

with lower levels of Combined Resilience (β=-0.11, p=2.3x10-8), and the direction of 

association was consistent across the PET and Autopsy datasets (Fig. 4c). No 
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genome-wide associations were observed in the Residual Cognitive Resilience 

analyses among participants with normal cognition. 

Single-Variant Gene Mapping and Functional Annotation  

 To better characterize the molecular mechanisms of the genome-wide 

associated loci identified above, we utilized hundreds of functional genomics data sets 

to test for tissue-specific regulatory activity of these novel variants. The index SNP at 

the chromosome 18 locus (rs2571244) was strongly associated with prefrontal cortex 

methylation at multiple sites (Fig. 4a) and the minor allele was associated with 

hypomethylation at a CpG site just upstream of ATPB81 (cg19596477; p=2x10-13; 

Fig. 4b). SNPs in this region also showed statistically significant enrichment for 

enhancer sites in the Roadmap dataset in across multiple tissues, including brain and 

liver (adjusted p-values=0.001). However, there was no evidence that rs2571244 

functioned as an eQTL or hQTL in any of the databases.  

Discussion 

We completed a large genetic analysis of resilience to AD neuropathology and 

identified a number of variants, genes, and functional pathways that are associated with 

protection from the downstream consequences of neuropathology. Our results implicate 

genetic drivers of educational attainment, smoking behaviors, and neuropsychiatric 

phenotypes in AD resilience; highlight a novel resilience locus on chromosome 18; and 

implicate metabolism in the liver as a molecular contributor to resilience. Notably, the 

genetic architecture of resilience appears to be distinct from the genetic architecture of 

clinical AD, with no observed genetic correlation and nominal contributions of APOE on 
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resilience, suggesting that a focus on the molecular contributors to resilience may 

highlight novel pathways for therapeutic development. 

Resilience Scores are Genetically Correlated with Education, 

Neuropsychiatric, and Smoking Phenotypes 

Results from genetic correlation analyses provided validation of the genetic 

signals we observed in this analysis and highlighted a number of important biological 

processes in the etiology of resilience. As expected, we observed strong genetic 

correlations with educational attainment, cognitive performance, and a number of 

education-related traits. It is also interesting that we observed some hormone and 

smoking related traits, although both may be confounded by educational attainment 

making interpretation challenging. In the case of the smoking traits, genetic risk for 

smoking and a younger age of initiating smoking was associated with lower levels of 

resilience, consistent with epidemiological associations between smoking and dementia 

(Tyas et al., 2003; Peters et al., 2008). In the case of hormone-related phenotypes, an 

older age of first birth, last birth, and menopause (nominal association in GNOVA and 

UK Biobank) was correlated with higher resilience scores. Similar associations at the 

phenotypic level have been reported previously, with an older age at menopause 

correlated with protection from cognitive decline (Robert N. McLay et al., 2003; Ryan et 

al., 2009; Ryan et al., 2014). Interestingly, we and others have published extensively on 

sex differences in the downstream consequences of neuropathology (Buckley et al., 

2018; Deming et al., 2018; Hohman et al., 2018; Dumitrescu et al., 2019a; Dumitrescu 

et al., 2019b). The present results suggest that hormone changes in older adulthood 

may contribute to susceptibility to cognitive decline, but more work is needed to 
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disentangle the potential contribution of educational attainment on these observed 

genetic correlations.  

 In addition, we observed notable genetic correlations with neuropsychiatric 

phenotypes including ADHD and OCD. Interestingly, genetic risk for OCD was 

associated with higher resilience scores, while genetic risk for ADHD was associated 

with lower resilience. Although there is some literature suggesting a potential link 

between ADHD and dementia, it is challenging because of the symptomatic overlap of 

the two conditions in adulthood (Callahan et al., 2017). Even less work has 

characterized the association between OCD and dementia, but the limited literatures 

suggests OCD is a risk factor for dementia (Dondu et al., 2015). Thus, it is quite 

interesting that we observe a positive genetic correlation between OCD and resilience 

here, suggesting a potential protective role. Past work has highlighted a strong negative 

genetic correlation between OCD and metabolic phenotypes including body mass index, 

hip circumference, smoking, triglycerides, and insulin levels (Dondu et al., 2015). OCD 

and ADHD also show a similar opposing genetic correlation with educational attainment, 

so it may be that the genetic correlation between these psychiatric conditions and 

resilience is secondary to metabolic or educational attainment phenotypes, but it is an 

area ripe for future investigation. 

Variants near ATP8B1 are Associated with Resilience 

Our top variant level association was observed on Chromosome 18 in relation to 

the Combined Resilience score that pools information from residual and proxy 

measures of reserve. The cluster of SNPs associated with Combined Resilience 

localized just upstream of ATP8B1, and the top SNP was robustly associated with 
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methylation at a site also just upstream of ATP8B1. Interestingly, prefrontal cortex 

methylation at this site was strongly associated with Combined Resilience scores in the 

ROS/MAP dataset, particularly among rs2571244 minor allele carriers, further 

implicating methylation as a potential biological driver at this locus. ATP8B1 is a protein 

coding gene that encodes an aminophospholipid translocase that is critical for 

maintaining bile acid homeostasis in the liver (Bull et al., 1998). For that reason, we also 

performed post-hoc analyses using recently quantified metabolomic measures of 15 bile 

acids from serum samples in ADNI and observed that the variant was nominally 

associated with five bile acids, including TCA, GLCA, GCA, TDCA, and TCDCA 

(p<0.05; see Supplementary Table 16). Moreover, we observed significant 

associations between GLCA and TDCA on Combined Resilience, whereby higher levels 

of these bile acids were associated with lower levels of resilience (Supplementary 

Table 17). Bile acids have emerged as a potential biological contributor to AD, with 

recent work reporting differential abundance in AD cases compared to controls in both 

blood and brain (MahmoudianDehkordi et al., 2019), and other work reporting 

associations with biomarkers of AD neuropathology (Nho et al., 2019). Notably, both 

GLCA and TDCA were reported to have robust associations with hippocampal atrophy 

and glucose hypometabolism. The present findings therefore suggest genetic variation 

that predisposes some individuals towards a more detrimental bile acid state may also 

increase susceptibility to cognitive decline. The exact causal pathway of such bile acid 

effects is difficult to infer. Notably, the methylation QTL that we observed for rs2571244 

was in prefrontal cortex, suggesting effects could be through brain, but there is a 

pressing need to better understand the gut-liver-brain axis and determine whether 
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associations with cognitive aging and dementia are driven by metabolic processes in 

liver, gut, brain, or all three tissues. 

Pathway Analyses Highlight Metabolism  

 While variant-level results implicate the metabolic processes in the liver, 

enrichment results highlight the related branched chain amino acid (BCAA) and 

dehydrogenase molecular pathways. Although the role of BCAAs in AD onset and 

progression is unclear, several studies have supported a connection. A previous GWAS 

study showed that SNPs associated with increased isoleucine plasma levels were also 

associated with AD (Larsson and Markus, 2017). However, metabolomic studies have 

shown that increased serum concentration of BCAAs are associated with decreased AD 

risk (Tynkkynen et al., 2018). Particularly, increased serum valine was associated with 

decreased rates of cerebral atrophy and cognitive decline (Toledo et al., 2017). Deficits 

in brain BCAA metabolism have been proposed to contribute to the onset and 

progression of AD in mice, and increased circulating BCAAs have been hypothesized to 

increase neuronal mTOR signaling, leading to hyperphosphorylated tau pathology (Li et 

al., 2018). 

 Several components of dehydrogenase pathways have been implicated to play a 

role in dysfunctional oxidative stress handling in AD (Martins et al., 1986). Inhibition of 

alpha-ketoglutarate, pyruvate, and alcohol dehydrogenases by amyloid beta is thought 

to contribute to mitochondrial and metabolic dysfunction associated with AD (Casley et 

al., 2002; Yan and Stern, 2005). Alpha-ketoglutarate dehydrogenase complex 

expression and activity is reduced in the temporal cortex of AD brains and is thought to 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 21, 2020. ; https://doi.org/10.1101/2020.02.19.954651doi: bioRxiv preprint 

https://doi.org/10.1101/2020.02.19.954651
http://creativecommons.org/licenses/by-nc-nd/4.0/


Genetic Markers of Resilience 22 

reduce energy metabolism, contributing to neurodegeneration (Mastrogiacoma et al., 

1996).  

Strengths and Limitations 

 This project has multiple strengths including the large, well characterized cohorts, 

the deep phenotypic data that allowed for a quantification of residual cognitive 

performance given level of amyloidosis, and the comprehensive follow-up analyses 

highlighting novel genes and pathways contributing to resilience. The study is not 

without limitations. Our sample was restricted to non-Hispanic white individuals who 

were healthy and highly educated, limiting generalizability beyond such populations. 

Additionally, while we were able to fully harmonize cognitive data within the autopsy and 

PET analyses separately, subtle differences in the scores across autopsy and PET 

remain possible due to limited availability of item anchors across all cohorts. Further, we 

were limited to cross-sectional analyses, which leave open the possibility that some 

individuals will later develop more severe pathology or cognitive impairment. Additional 

measures of neuropathology, particularly tau and cerebrovascular pathology, may have 

explained additional variance in cognitive performance and is an important area for 

future work. Moreover, the lack of extensive neuropsychological protocols in some 

datasets limited our ability to investigate other cognitive domains (e.g., language or 

visuospatial abilities).  Finally, while this is the largest analysis of the genetic predictors 

of residual cognition completed to date, we remained underpowered to detect single 

variant effects, particularly at a low minor allele frequency. Continued efforts to pool, 

harmonize, and analyze biomarker, autopsy, and neuropsychological data from larger, 
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more representative cohorts will be needed to more fully characterize the genetic 

architecture of resilience. 

Conclusions 

 We completed a large analysis of genetic resilience to AD and highlight several 

novel biological pathways that may protect the brain from the downstream 

consequences of amyloidosis. Our results implicate genetic drivers of bile acid 

homeostasis, vascular and metabolic risk factors, and neuropsychiatric conditions in AD 

resilience.  
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Table 1. Participant Characteristics 
 Autopsy Cohorts PET Cohorts 

Combined  ACT ROSMAP ADNI A4 
 Normal All Normal All Normal All Normal/All Normal All 

Sample Size 284 407 337 1,031 217 688 2980 3818 5108 
Female, n, % 153, 54% 232, 57% 217, 64% 672, 52% 107, 49% 296, 43% 1779, 60% 2258, 59% 2983, 58% 
Age 87.11±6.73 88.28±6.75 86.99±6.62 89.43±6.51 76.46±6.34 74.82±7.58 71.36±4.75 74.20±7.78 76.82±9.67 
Education 14.92±2.99 14.71±3.04 16.56±3.78 16.42±3.61 16.38±2.68 16.19±2.71 16.76±2.68 16.57±2.86 16.44±2.98 

Amyloid Burden 
CERAD, n, %          

None 84, 29% 106, 26% 133, 39% 253, 24% -- -- -- -- 217, 35% 
Sparse 89, 31% 107, 26% 39, 12% 97, 9% -- -- -- -- 128, 21% 
Moderate 63, 22% 94, 23% 115, 34% 374, 36% -- -- -- -- 178, 29% 
Severe 47, 16% 100, 25% 50, 15% 307, 30% -- -- -- -- 97, 26% 

Standardized PET 
Amyloid -- -- -- -- 1.39±2.69 2.19±3.05 1.41±2.52 1.41±2.52 1.41±2.53 

Cognitive Function 
Harmonized Memory 0.31±0.57 -0.09±0.82 0.36±0.47 -0.6±1.01 0.81±0.48 0.3±0.69 0.53±0.22 0.53±0.22 0.52 ± 0.33 
Harmonized Executive 
Function 1.55±0.89 1.13±1.17 1.39±0.82 0.58±1.12 2.89±0.88 2.36±1.16 -- -- 1.83 ± 1.07 

Preclinical Alzheimer 
Cognitive Composite -- -- -- -- -0.31±2.93 -4.39±5.33 0.20±2.5 0.20±2.5 0.17 ± 2.53 

Resilience Phenotypes 
Residual Cognitive 
Resilience -0.04±0.89 0.24±0.82 0±0.8 -0.17±0.9 0.22±1.37 -0.54±1.33 0.06±1.06 0.25±0.63 0.06 ± 1.05 

Combined Resilience -0.19±0.47 -0.13±0.41 0±0.53 -0.04±0.46 0.05±0.56 -0.15±0.46 0.04±0.47 0.09±0.34 0.02 ± 0.49 
Note: Age is age at death for autopsy cohorts and age at visit for PET cohorts. Values are mean ± standard deviation or number of samples, percent 
of the group.
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Figure 1. Quantification of Resilience Metrics. Residuals from linear regression 

models in which a cognitive score was regressed on age, sex, and amyloid levels were 

extracted and entered as indicator variables in a partial least squares path model using 

established procedures. Combined Resilience was quantified as a second order latent 

trait in the model in which educational attainment was included as an additional 

indicator variable. 
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Figure 2. Workflow of Analytical Activities. 
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Figure 3. Genome-Wide Genetic Covariance Results. Genetic covariances between 

Combined Resilience and 67 complex traits. Error bars represent 95% confidence 

intervals. FWE-P: corrected p-value based on the family-wise error rate. 
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Figure 4. Variant-Level Resilience GWAS Results. A) Results from the GWAS 

analysis of Combined Resilience is presented in a Manhattan Plot. GWAS significance 

(5x10-8) is indicated by the red line, while suggestive significance (1x10-5) is indicated by 

the blue line. B) A LocusZoom plot of the GWAS-significant locus on chromosome 18. 

Colors denote linkage disequilibrium with the most statistically significant SNP. C) A 

forest plot for the top SNP on chromosome 18 is presented demonstrating consistent 

direction and magnitude of effect across the autopsy and PET datasets and within the 

component cohorts. The summary estimate at the bottom indicates the meta-analysis of 

the autopsy and PET combined datasets.  
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Figure 5. Functional Annotation of Resilience GWAS Results. A) The most 

significant methylation targets for rs2571244 in dorsolateral prefrontal cortex are 

presented. B) The minor allele of rs2571244 (T) is associated with decreased 

methylation at the CpG site cg19596477. 
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