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Abstract

Approximately 30% of older adults exhibit the neuropathologic features of
Alzheimer’s disease (AD) without signs of cognitive impairment. Yet, little is known
about the genetic factors that allow these potentially resilient individuals to remain
cognitively normal in the face of substantial neuropathology. We performed a large,
genome-wide association study (GWAS) of two previously validated metrics of cognitive
resilience quantified using a latent variable modeling approach and representing better-
than-predicted cognitive performance for a given level of neuropathology. Data were
harmonized across 5,108 participants from a clinical trial of AD and three longitudinal
cohort studies of cognitive aging. All analyses were run across all participants and
repeated restricting the sample to individuals with normal cognition to identify variants at
the earliest stages of disease. As expected, all resilience metrics were genetically
correlated with cognitive performance and education attainment traits (p-
values<2.5x102%), and we observed novel correlations with neuropsychiatric conditions
(p-values<7.9x104). Notably, neither resilience metric was genetically correlated with
clinical AD (p-values>0.42) nor associated with APOE (p-values>0.13). In single variant
analyses, we observed a genome-wide significant locus among participants with normal
cognition on chromosome 18 upstream of ATP8B1 (index SNP rs2571244, MAF=0.08,
p=2.3x102%). The top variant at this locus (rs2571244) was significantly associated with
methylation in prefrontal cortex tissue at multiple CpG sites, including one just upstream
of ATPB81 (cg19596477; p=2x10-13). Overall, this comprehensive genetic analysis of
resilience implicates a putative role of vascular risk, metabolism, and mental health in
protection from the cognitive consequences of neuropathology, while also providing

evidence for a novel resilience gene along the bile acid metabolism pathway.
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Furthermore, the genetic architecture of resilience appears to be distinct from that of
clinical AD, suggesting that a shift in focus to molecular contributors to resilience may
identify novel pathways for therapeutic targets.
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Introduction

Alzheimer’s disease (AD) is characterized by the presence of neuritic plaques
and neurofibrillary tangles in the brain at autopsy. Clinically, it presents with progressive
cognitive impairment. Yet, due to the long prodromal period of AD and unknown
biological factors, not everyone with AD neuropathology presents with cognitive
impairment. In fact, among cognitively normal volunteers agreeing to autopsy at the
time of death, 70% have varying degrees of AD pathology (Sonnen et al., 2011), and
30% have sufficient neuropathology in their brain to meet neuropathological criteria for
AD (i.e., “Asymptomatic AD”) (Rahimi and Kovacs, 2014). Identifying the molecular
factors that underlie the resilience observed in asymptomatic AD may provide novel
therapeutic targets for clinical intervention and provide additional insight into the genetic
architecture of AD.

While there has been some prior discovery work using genomic data (Mostafavi
et al., 2018; Yu et al., 2018), previous work characterizing the genetic contributors to
asymptomatic AD has primarily focused on candidate genes (Monsell et al., 2013;
Monsell et al., 2017; Franzmeier et al., 2019) due to the lack of sufficient sample size to
complete full genome-wide analyses. A major barrier in moving analyses forward has
been the categorical definitions of asymptomatic AD that drastically reduce the number
of participants available for analysis. In the last decade, residual approaches to
guantifying continuous metrics of “resilience” have emerged as potential
endophenotypes for genetic analyses (Yu et al., 2015; White et al., 2017; Boyle et al.,
2019). The basic approach is to deconvolve cognitive scores into components that are

explained and unexplained by proxy or direct measures of neuropathology (Reed et al.,
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2010). These residual approaches model better-than and worse-than predicted
cognitive performance to represent higher vs. lower resilience (Yu et al., 2015; Boyle et
al., 2019). Recently, our group has extended these residual approaches to quantify and
validate continuous metrics of “cognitive resilience” (representing better-than-predicted
cognitive performance given an individual’'s burden of AD neuropathology) and “brain
resilience” (representing better-than-predicted brain volumes given an individual’s
burden of AD neuropathology) (Hohman et al., 2016b). These continuous metrics are
strong predictors of future cognitive decline and cognitive impairment (Hohman et al.,
2016b). The goal of the present analysis was to evaluate genetic predictors of cognitive
resilience across the genome.

A few genome-wide analyses have been completed that focus on resilience in
asymptomatic AD, although with limited sample sizes (Hohman et al., 2014a; Hohman
et al., 2014b; Hohman et al., 2016a; White et al., 2017). Recently, approximately 3,000
samples with both whole-genome genetic data and in vivo brain measures of amyloid
burden from the Anti-Amyloid Treatment in Asymptomatic AD (A4) clinical trial were
made publicly available, providing an unmatched resource for exploring the genetics of
resilience to AD. We performed the largest (N=5,108) genome-wide association study
(GWAS) of cognitive resilience in AD by leveraging harmonized resilience metrics
across the cross-sectional A4 study and three longitudinal cohort studies of AD.
Validation of identified genomic candidates was completed using gene expression data
from post mortem brain tissue and genotype data from large-scale case/control datasets

of AD. Importantly, we also performed comprehensive genetic correlation and pathway
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analyses to provide critical information about the fundamental biological pathways that

may protect the brain from the downstream consequences of AD neuropathology.

Materials and Methods

Participants

Participant data was acquired from multiple cohort studies including screening
data from the Anti-Amyloid Treatment in Asymptomatic Alzheimer’s Disease (A4) Study,
the Alzheimer’s Disease Neuroimaging Initiative (ADNI), the Religious Orders Study and
Rush Memory & Aging Project (ROS/MAP), and the Adult Changes in Thought (ACT)
Study. The A4 Study screening data were acquired as part of a clinical trial that began
in 2014 (Sperling et al., 2014). All participants were recruited with normal cognition, and
amyloid Positron Emission Tomography (PET) imaging was performed at screening.
Additionally, participants with a Delayed Logical Memory score less than 6 or greater
than 18 were excluded from PET scans and are not included in the present analysis.
ADNI was launched in 2003 and over the four phases of the study now includes >1,800
individuals age 55-90 (www.adni-info.org). Recruitment was designed to mimic clinical
trials and therefore included individuals with normal cognition, mild cognitive
impairment, and AD at baseline. Data from ADNI-1, ADNI-2, and ADNI-GO are included
in the present analyses. ACT began in 1994 and recruited a random sample of
nondemented older adults from the Seattle metropolitan area (Kukull et al., 2002). A
subset of participants in ACT agreed to brain donation and are included in these
analyses. ROS launched in 1994 and recruited Catholic nuns, priests, and brothers from

across the United States, and MAP launched in 1997 and recruited cognitively normal
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older adults from the Chicago metropolitan area (Bennett et al., 2018). Those who

agreed to brain donation are included in the present analysis.

Amyloid PET Acquisition

For ADNI and A4 participants, amyloid burden was quantified using amyloid PET.
PET procedures in ADNI are described at the ADNI website (http://www.adni-info.org).
A4 and ADNI are both largescale multi-site studies for which PET amyloid acquisition
was completed on multiple platforms, including GE, Philips, and Siemens. In all cases,
PET data were acquired using a dynamic 3D scan with four 5-minute frames acquired
50-70 minutes post injection. A subset of ADNI participant data were acquired using
11C-PiB, but the majority of ADNI and all of A4 was acquired using ®F-Florbetapir.
Standardized uptake value ratios (SUVR) were quantified relative to whole cerebellum,
and a composite mean SUVR was quantified across cortical regions as a summary

metric of amyloid burden.

Amyloid PET Processing and Harmonization

Harmonization of amyloid PET levels was performed using composite cortical
values calculated within ADNI and A4 separately. We applied a Gaussian Mixture Model
(GMM) within each dataset to place values on the same scale using a recently
developed harmonization algorithm (Properzi et al., 2019). GMMs were estimated
among cognitively normal individuals using a two-component model fit and applied to
the entire sample. Mean SUVRs were scaled and normalized using the mean and
standard deviation estimated from the predicted amyloid negative gaussian distribution.
A more comprehensive assessment of this and alternative harmonization approaches

was recently published by our group (Raghavan et al., 2020), but we used the present
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approach because it makes the fewest assumptions about the data and was more
robust to outliers than alternative approaches. The final scaled score represents a z-
score based on the predicted amyloid negative distribution among cognitively normal

older adults.

Postmortem Assessment of Neuropathology
For ACT and ROS/MAP participants, neuritic plaque burden was quantified with
CERAD scores. A comprehensive neuropathological evaluation was completed at each

site, including full CERAD staging as previously described (Mirra et al., 1991).

Neuropsychological Composites

Harmonization of cognitive tests in ADNI and A4 was completed using the
Preclinical Alzheimer Cognitive Composite (PACC), calculated in each dataset
individually using item level data from Logical Memory Immediate and Delayed Recall,
WAIS-R Digit Symbol Substitution Test, the Mini-Mental State Exam, and the Selective
Reminding Test or the delayed word recall from the ADAS-Cog. In all four datasets, a
previously published protocol to harmonize neuropsychological scores in the domains of
memory and executive function was used (Crane et al., 2017). A memory composite
was calculated in all four datasets, and an executive function composite was quantified
in ACT, ADNI, and ROS/MAP (there was insufficient item level data in A4). A detailed
description of the item level data and model that was included in these composite

metrics is presented in Supplementary Methods.
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Quantification of Resilience Metrics

Resilience metrics were quantified using established procedures (Hohman et al.,
2016b) and the model is presented in Fig. 1. Briefly, individual regression models
estimated amyloid pathology associations with cognition covarying for age and sex. A
robust weighted least squares estimator in a confirmatory factor analysis was quantified
using Mplus (Muthén and Muthén, 1998-2015) (version 7.31) to summarize residuals
from the linear regression models into composite measures representing the degree to
which an individual performed better or worse than predicted given their age, sex, and
amyloid load (note that years of education was integrated into the second order latent
trait). The outcomes of interest were Residual Cognitive Resilience and Combined
Resilience where Residual Cognitive Resilience was quantified from residuals and
Combined Resilience was summarized as the covariance of educational attainment with
Residual Cognitive Resilience. A detailed description of the methodology and quantified

resilience metrics is presented in Supplementary Methods.

Genotype Processing and Quality Control

Genotyping in all cohorts was performed using DNA extracted from whole blood
or brain tissue on different genotyping arrays. For A4, the lllumina Global Screening
Array was used for genotyping. ACT participants were genotyped on an lllumina
Human660W-Quad. Three lllumina platforms were used in ADNI: Human610-Quad,
HumanOmniExpress, and Omni 2.5M. ROSMAP genotypes were also obtained on
three platforms: Affymetrix Genechip 6.0, Illumina Humanl1M, and lllumina Global
Screening Array. In ADNI and ROSMAP, sample sets genotyped on different arrays

were processed and imputed in parallel and merged after imputation. Quality control
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(QC) was performed using standard procedures, including removal of SNPs and
samples with >5% genotype missingness, removal of SNPs with <1% minor allele
frequency (MAF) or Hardy-Weinberg Equilibrium (HWE) p-values <10, and removal of
samples with sex discrepancies, cryptic relatedness (pi-hat >0.25), or who were not
non-Hispanic White by self-report or by population principal component (PC) analysis.
Genotypes were then imputed with Minimac3 on the Michigan Imputation Server

(https://imputationserver.sph.umich.edu) using the HRC r1.1 2016 reference panel.

Post-imputation QC steps included removal of SNPs with imputation quality score R?
<0.90, call rate <95%, MAF <1%, or HWE p-value <10°. Imputed datasets were then
merged for the two autopsy cohorts (ACT and ROS/MAP) and the two PET imaging
cohorts (A4 and ADNI). Non-overlapping SNPs (i.e., those with missingness >95%)

were excluded. A total of 4,840,740 SNPs remained and were included in the analysis.

Statistical Analyses

Our analysis workflow is presented in Fig. 2. Following phenotype harmonization
and calculation of resilience metrics (i.e., Residual Cognitive Resilience and Combined
Resilience) for each cohort, genome-wide association analyses were completed using

linear regression in PLINK (version 1.9, https://www.cog-genomics.org/plink/1.9).

GWAS was performed in the combined autopsy dataset and the combined PET dataset.
For each dataset, two models were run. The first model estimated resilience among
individuals across the spectrum of dementia, including individuals with normal cognition,
mild cognitive impairment, and AD. The second model restricted the sample to
individuals with normal cognition to focus on resilience during the preclinical phase of

disease. In all models, covariates included age, sex, and the first three population PCs.
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The genome-wide threshold for statistical significance was set a priori at a=5x10,
Summary statistics at each marker across the autopsy dataset and the PET dataset
were then combined in a fixed-effect meta-analysis using the GWAMA software
program (M&agi and Morris, 2010).

We first summarized genetic signal across the genome using summary statistics
from our resilience GWAS to estimate genetic correlations between resilience
phenotypes and 67 complex traits with publicly accessible GWAS summary statistics
using the Genetic Covariance Analyzer (GNOVA) program (Lu et al., 2017). Details
about the source of summary statistics for each trait are presented in Supplementary
Table 1. This provided a first level of validation that the genetic signal in our analysis
was correlated with common phenotypes (e.g., cognitive performance and educational
attainment) while also providing insight into novel resilience associations. Additionally,
we replicated our top genomic correlation results leveraging the BADGERS program
(Yan et al., 2018) and quantified correlation across 1,738 traits in the UK Biobank

(http://biobank.ndph.ox.ac.uk/showcase/). To aid in interpretation of genetic covariance

results, we also quantified heritability estimates using the Genome-wide Complex Trait
Analysis (GCTA) tool (Yang et al., 2011). Heritability of each resilience phenotype was
guantified within the PET and Autopsy datasets separately, and within a combined
dataset including all samples. Estimates were quantified across all participants and
when restricting the sample to individuals with normal cognition.

Next, we performed gene- and pathway-level analyses using VEGAS2 (Liu et al.,
2010; Mishra and Macgregor, 2015; Mishra and MacGregor, 2017) and PrediXcan

(Gamazon et al., 2019). PrediXcan models were estimated for 44 tissues in the GTEX
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Portal and for additional disease relevant tissues, including prefrontal cortex from
CommonMind and monocytes from the Multi-Ethnic Study of Atherosclerosis (MESA).
Correction for multiple comparisons in gene-level analyses was quantified using the
false discovery rate (FDR) procedure, which accounted for all 258,562 gene-tissue
combinations. The a priori threshold for significance of the VEGAS pathway results was
p<1x10-°, which was based on a simulation-derived 95% empirical significance
threshold taking into account the multiple testing of 6,213 correlated pathways (Mishra
and MacGregor, 2017).

Finally, single variant GWAS loci were mapped to genes and functionally

annotated leveraging INFERNO (http://inferno.lisanwanglab.ora/) (Amlie-Wolf et al.,

2018) and the Brain xQTL Serve database (http://mostafavilab.stat.ubc.ca/xqtl/) (Ng et

al., 2017). INFERNO integrates hundreds of publicly available functional genomics
databases, including databases of transcription factor binding sites, expression
guantitative trail loci (eQTL), and enhancer activity. The Brain XQTL Serve database

includes additional eQTL, methylation-QTL (mQTL), and histone-QTL (hQTL) analyses.

Results

In total, 5,108 individuals across the four cohorts (A4 n=2,982; ROS/MAP
n=1,031; ADNI n=688; ACT n=407) had both genome-wide genotype and resilience
phenotype data, 3,820 (75%) of whom were cognitively normal. Participant
characteristics are presented in Table 1. In general, participants were mostly female
(with the exception of ADNI) and were well-educated. Individuals in the PET cohorts

tended to be younger than individuals in the autopsy cohorts.
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Genetic Covariance Results

Heritability estimates for each resilience phenotype are presented in
Supplementary Table 2. Briefly, we observed larger heritability estimates when
restricting the sample to individuals with normal cognition (Residual Cognitive
Resilience h?=0.20-0.28, Combined Resilience h?=0.23-0.99) compared to the entire
sample (Residual Cognitive Resilience h?=0.00-0.08, Combined Resilience h?=0.19-
0.67).

Using the summary statistics from the resilience GWAS, we performed genetic
covariance analyses to gain insight into any shared genetic basis of relevant biological
processes. Pair-wise genetic covariances between Combined Resilience GWAS results
in all participants and 67 health-related phenotypes are depicted in Fig 3 and presented
in Supplementary Table 3. Ten genetic correlation analyses survived correction for
multiple testing. We observed strong and expected positive correlations with cognitive
performance and educational attainment (p<1.4x101°), validating our metric and
providing strong evidence of consistency in the observed polygenic signal across
comparable measures from independent datasets.

Additionally, we observed multiple novel correlations, including two smoking
behavior phenotypes: age at smoking initiation (genetic correlation=0.033; p=2.0x107")
and number of cigarettes per day (genetic correlation=-0.021; p=8.0x104). Additional
novel correlations included two neuropsychiatric conditions, whereby increased genetic
risk of obsessive compulsive disorder (OCD) was correlated with higher levels of
resilience (p=7.9x10*) while increased genetic risk of attention deficit hyperactivity

disorder (ADHD) was associated with lower levels of resilience (p=4.7x10).
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Interestingly, older age at first birth was associated with higher levels of resilience
(p=1.1x10®). Genetic correlations with Residual Cognitive Resilience were very similar
to those observed for Combined Resilience and were similar when restricting the
sample to cognitively normal individuals (Supplementary Tables 3-4).

As a second level of validation, we also quantified genetic correlations with
phenotypes in the UK Biobank leveraging a recently published method to perform
phenome-wide association analyses leveraging summary statistics (Yan et al., 2018).
Consistent with GNOVA results, we observed strong correlations with numerous
education and cognitive phenotypes (Supplementary Tables 5-6). We also verified
correlations with age at first birth (p=6.2x101?) and observed some intriguing novel
correlations.

Interestingly, there was no evidence for genetic correlation between resilience
phenotypes and clinical AD (p=0.45). Similarly, when evaluating the 40 previously
identified AD risk variants from approximately 25 loci (Lambert et al., 2013; Jansen et
al., 2019; Kunkle et al., 2019), only three SNPs showed nominal evidence of association
with either resilience phenotype (Supplementary Table 7). Similar results were also
observed when fully analyzing the APOE haplotype, whereby increasing numbers of
APOE ¢4 alleles or number of APOE €2 alleles were not associated with either
resilience phenotype (p-values>0.13). Together these results suggest the polygenic

signal underlying the resilience phenotypes is distinct from clinical AD.

Gene-Level and Pathway Results
Next, we continued to explore the genetic architecture of resilience on both a

gene and pathway level. Gene-level results in individual tissues and cross-tissue, based
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on predicted gene expression associations with resilience, are reported in
Supplementary Tables 8-11. Resilience metrics were not associated with predicted
gene expression among individual tissues or across tissues after Bonferroni correction
for multiple testing. The most significant gene in the cross-tissue analyses was ZNF451,
which was associated with Combined Resilience in individuals with normal cognition at
p<6.6x10°¢ (Supplementary Table 9).

In pathway-level analyses using VEGAS2, no molecular pathways remained
significant when correcting for multiple comparisons. However, when restricting to
cognitively normal participants in the Combined Resilience analysis, there was nominal
evidence of enrichment in the dehydrogenase pathway (p=2.5x10°; PANTHER

database) and the amino acid metabolism pathway (8.7x10°; PANTHER database).

Single-Variant Associations with Resilience

Finally, we focused on single variant level analyses to identify novel genetic loci
associated with resilience. Genome-wide significant results are presented in Fig. 4a,
and detailed results for all models are presented in Supplementary Tables 12-15.
When including all diagnoses in the GWAS, we did not observe any variants that
reached statistical significance in either Residual Cognitive Resilience or Combined
Resilience analyses. When restricting analyses to individuals with normal cognition, we
identified a locus on chromosome 18 just upstream of the ATP8B1 gene that reached
genome-wide significance in Combined Resilience analyses (Fig. 4b). More specifically,
the minor allele of the index SNP at this locus (rs2571244; MAF=0.08) was associated
with lower levels of Combined Resilience (B=-0.11, p=2.3x108), and the direction of

association was consistent across the PET and Autopsy datasets (Fig. 4c). No
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genome-wide associations were observed in the Residual Cognitive Resilience

analyses among participants with normal cognition.

Single-Variant Gene Mapping and Functional Annotation

To better characterize the molecular mechanisms of the genome-wide
associated loci identified above, we utilized hundreds of functional genomics data sets
to test for tissue-specific regulatory activity of these novel variants. The index SNP at
the chromosome 18 locus (rs2571244) was strongly associated with prefrontal cortex
methylation at multiple sites (Fig. 4a) and the minor allele was associated with
hypomethylation at a CpG site just upstream of ATPB81 (cg19596477; p=2x10-13;
Fig. 4b). SNPs in this region also showed statistically significant enrichment for
enhancer sites in the Roadmap dataset in across multiple tissues, including brain and
liver (adjusted p-values=0.001). However, there was no evidence that rs2571244

functioned as an eQTL or hQTL in any of the databases.

Discussion

We completed a large genetic analysis of resilience to AD neuropathology and
identified a number of variants, genes, and functional pathways that are associated with
protection from the downstream consequences of neuropathology. Our results implicate
genetic drivers of educational attainment, smoking behaviors, and neuropsychiatric
phenotypes in AD resilience; highlight a novel resilience locus on chromosome 18; and
implicate metabolism in the liver as a molecular contributor to resilience. Notably, the
genetic architecture of resilience appears to be distinct from the genetic architecture of

clinical AD, with no observed genetic correlation and nominal contributions of APOE on
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resilience, suggesting that a focus on the molecular contributors to resilience may

highlight novel pathways for therapeutic development.

Resilience Scores are Genetically Correlated with Education,
Neuropsychiatric, and Smoking Phenotypes

Results from genetic correlation analyses provided validation of the genetic
signals we observed in this analysis and highlighted a number of important biological
processes in the etiology of resilience. As expected, we observed strong genetic
correlations with educational attainment, cognitive performance, and a number of
education-related traits. It is also interesting that we observed some hormone and
smoking related traits, although both may be confounded by educational attainment
making interpretation challenging. In the case of the smoking traits, genetic risk for
smoking and a younger age of initiating smoking was associated with lower levels of
resilience, consistent with epidemiological associations between smoking and dementia
(Tyas et al., 2003; Peters et al., 2008). In the case of hormone-related phenotypes, an
older age of first birth, last birth, and menopause (hominal association in GNOVA and
UK Biobank) was correlated with higher resilience scores. Similar associations at the
phenotypic level have been reported previously, with an older age at menopause
correlated with protection from cognitive decline (Robert N. McLay et al., 2003; Ryan et
al., 2009; Ryan et al., 2014). Interestingly, we and others have published extensively on
sex differences in the downstream consequences of neuropathology (Buckley et al.,
2018; Deming et al., 2018; Hohman et al., 2018; Dumitrescu et al., 2019a; Dumitrescu
et al., 2019b). The present results suggest that hormone changes in older adulthood

may contribute to susceptibility to cognitive decline, but more work is needed to
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disentangle the potential contribution of educational attainment on these observed
genetic correlations.

In addition, we observed notable genetic correlations with neuropsychiatric
phenotypes including ADHD and OCD. Interestingly, genetic risk for OCD was
associated with higher resilience scores, while genetic risk for ADHD was associated
with lower resilience. Although there is some literature suggesting a potential link
between ADHD and dementia, it is challenging because of the symptomatic overlap of
the two conditions in adulthood (Callahan et al., 2017). Even less work has
characterized the association between OCD and dementia, but the limited literatures
suggests OCD is a risk factor for dementia (Dondu et al., 2015). Thus, it is quite
interesting that we observe a positive genetic correlation between OCD and resilience
here, suggesting a potential protective role. Past work has highlighted a strong negative
genetic correlation between OCD and metabolic phenotypes including body mass index,
hip circumference, smoking, triglycerides, and insulin levels (Dondu et al., 2015). OCD
and ADHD also show a similar opposing genetic correlation with educational attainment,
so it may be that the genetic correlation between these psychiatric conditions and
resilience is secondary to metabolic or educational attainment phenotypes, but it is an

area ripe for future investigation.

Variants near ATP8B1 are Associated with Resilience

Our top variant level association was observed on Chromosome 18 in relation to
the Combined Resilience score that pools information from residual and proxy
measures of reserve. The cluster of SNPs associated with Combined Resilience

localized just upstream of ATP8B1, and the top SNP was robustly associated with
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methylation at a site also just upstream of ATP8B1. Interestingly, prefrontal cortex
methylation at this site was strongly associated with Combined Resilience scores in the
ROS/MAP dataset, particularly among rs2571244 minor allele carriers, further
implicating methylation as a potential biological driver at this locus. ATP8BL1 is a protein
coding gene that encodes an aminophospholipid translocase that is critical for
maintaining bile acid homeostasis in the liver (Bull et al., 1998). For that reason, we also
performed post-hoc analyses using recently quantified metabolomic measures of 15 bile
acids from serum samples in ADNI and observed that the variant was nominally
associated with five bile acids, including TCA, GLCA, GCA, TDCA, and TCDCA
(p<0.05; see Supplementary Table 16). Moreover, we observed significant
associations between GLCA and TDCA on Combined Resilience, whereby higher levels
of these bile acids were associated with lower levels of resilience (Supplementary
Table 17). Bile acids have emerged as a potential biological contributor to AD, with
recent work reporting differential abundance in AD cases compared to controls in both
blood and brain (MahmoudianDehkordi et al., 2019), and other work reporting
associations with biomarkers of AD neuropathology (Nho et al., 2019). Notably, both
GLCA and TDCA were reported to have robust associations with hippocampal atrophy
and glucose hypometabolism. The present findings therefore suggest genetic variation
that predisposes some individuals towards a more detrimental bile acid state may also
increase susceptibility to cognitive decline. The exact causal pathway of such bile acid
effects is difficult to infer. Notably, the methylation QTL that we observed for rs2571244
was in prefrontal cortex, suggesting effects could be through brain, but there is a

pressing need to better understand the gut-liver-brain axis and determine whether
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associations with cognitive aging and dementia are driven by metabolic processes in

liver, gut, brain, or all three tissues.

Pathway Analyses Highlight Metabolism

While variant-level results implicate the metabolic processes in the liver,
enrichment results highlight the related branched chain amino acid (BCAA) and
dehydrogenase molecular pathways. Although the role of BCAAs in AD onset and
progression is unclear, several studies have supported a connection. A previous GWAS
study showed that SNPs associated with increased isoleucine plasma levels were also
associated with AD (Larsson and Markus, 2017). However, metabolomic studies have
shown that increased serum concentration of BCAAs are associated with decreased AD
risk (Tynkkynen et al., 2018). Particularly, increased serum valine was associated with
decreased rates of cerebral atrophy and cognitive decline (Toledo et al., 2017). Deficits
in brain BCAA metabolism have been proposed to contribute to the onset and
progression of AD in mice, and increased circulating BCAAs have been hypothesized to
increase neuronal mMTOR signaling, leading to hyperphosphorylated tau pathology (Li et
al., 2018).

Several components of dehydrogenase pathways have been implicated to play a
role in dysfunctional oxidative stress handling in AD (Martins et al., 1986). Inhibition of
alpha-ketoglutarate, pyruvate, and alcohol dehydrogenases by amyloid beta is thought
to contribute to mitochondrial and metabolic dysfunction associated with AD (Casley et
al., 2002; Yan and Stern, 2005). Alpha-ketoglutarate dehydrogenase complex

expression and activity is reduced in the temporal cortex of AD brains and is thought to
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reduce energy metabolism, contributing to neurodegeneration (Mastrogiacoma et al.,

1996).

Strengths and Limitations

This project has multiple strengths including the large, well characterized cohorts,
the deep phenotypic data that allowed for a quantification of residual cognitive
performance given level of amyloidosis, and the comprehensive follow-up analyses
highlighting novel genes and pathways contributing to resilience. The study is not
without limitations. Our sample was restricted to non-Hispanic white individuals who
were healthy and highly educated, limiting generalizability beyond such populations.
Additionally, while we were able to fully harmonize cognitive data within the autopsy and
PET analyses separately, subtle differences in the scores across autopsy and PET
remain possible due to limited availability of item anchors across all cohorts. Further, we
were limited to cross-sectional analyses, which leave open the possibility that some
individuals will later develop more severe pathology or cognitive impairment. Additional
measures of neuropathology, particularly tau and cerebrovascular pathology, may have
explained additional variance in cognitive performance and is an important area for
future work. Moreover, the lack of extensive neuropsychological protocols in some
datasets limited our ability to investigate other cognitive domains (e.g., language or
visuospatial abilities). Finally, while this is the largest analysis of the genetic predictors
of residual cognition completed to date, we remained underpowered to detect single
variant effects, particularly at a low minor allele frequency. Continued efforts to pool,

harmonize, and analyze biomarker, autopsy, and neuropsychological data from larger,
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more representative cohorts will be needed to more fully characterize the genetic

architecture of resilience.

Conclusions

We completed a large analysis of genetic resilience to AD and highlight several
novel biological pathways that may protect the brain from the downstream
consequences of amyloidosis. Our results implicate genetic drivers of bile acid
homeostasis, vascular and metabolic risk factors, and neuropsychiatric conditions in AD

resilience.
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Table 1. Participant Characteristics
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Autopsy Cohorts PET Cohorts :
Combined
ACT ROSMAP ADNI A4
Normal All Normal All Normal All Normal/All Normal All
Sample Size 284 407 337 1,031 217 688 2980 3818 5108
Female, n, % 153,54% | 232,57% | 217,64% | 672,52% | 107,49% | 296,43% | 1779,60% | 2258,59% | 2983, 58%
Age 87.11+6.73 | 88.28+6.75 | 86.99+6.62 | 89.43+6.51 | 76.46+6.34 | 74.82+7.58 | 71.36+4.75 | 74.20+7.78 | 76.82+9.67
Education 14.9242.99 | 14.7143.04 | 16.56+3.78 | 16.42+3.61 | 16.38+2.68 | 16.19+2.71 | 16.76+2.68 | 16.57+2.86 | 16.44+2.98
Amyloid Burden

CERAD, n, %

None 84,20% | 106,26% | 133,39% | 253,24% 217, 35%

Sparse 80,31% | 107,26% | 39,12% | 97,9% 128, 21%

Moderate 63,22% | 94,23% | 115,34% | 374,36% 178, 29%

Severe 47,16% | 100,25% | 50,15% | 307,30% 97, 26%
ﬁ;‘g?(;dm PET 1394260 | 2194305 | 1414252 | 1414252 | 141253

Cognitive Function
Harmonized Memory | 0.31£0.57 | -0.09£0.82 | 0.36£0.47 | -0.6+1.01 | 0.81+0.48 | 03+0.69 | 0.53£0.22 | 053022 | 0.52+0.33
Eﬁ;’;}?onr:zed EXGCUIVE | 1 554089 | 1.43+117 | 1.39+0.82 | 0.58+1.12 | 2.89+0.88 | 2.36+1.16 183+ 1.07
Egegcr']'i?i'\f:'é)'ﬁ;ggg 0.3142.93 | -439+533 | 020£2.5 | 020425 | 0.17 +2.53
Resilience Phenotypes

Egi:ﬁgﬁlgogn't"’e 0042089 | 0244082 | 0£08 | -0.1740.9 | 0224137 | -054+1.33 | 0.06+1.06 | 0.25:0.63 | 0.06 % 1.05
Combined Resilience | -0.19+0.47 | -0.13+0.41 | 0+0.53 | -0.04+0.46 | 0.05:0.56 | -0.15£0.46 | 0.04+0.47 | 0.09£0.34 | 0.02 +0.49

Note: Age is age at death for autopsy cohorts and age at visit for PET cohorts. Values are mean + standard deviation or number of samples, percent

of the group.
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Figure 1. Quantification of Resilience Metrics. Residuals from linear regression
models in which a cognitive score was regressed on age, sex, and amyloid levels were
extracted and entered as indicator variables in a partial least squares path model using
established procedures. Combined Resilience was quantified as a second order latent
trait in the model in which educational attainment was included as an additional

indicator variable.
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Resilience GWAS Workflow

Harmonization of cognition and amyloid metrics

ACT ROSMAP ADNI A4
Total=407 Total=1031 Total=688 Total=2,982
NC=284 NC=337 NC=217 NC=2,982
GWAS

Autopsy PET
Total=1,438 Total=3,670
NC=621 NC=3,199

Meta-analysis

Combined results from both sets
Total=5,108
NC=3,820

Post-GWAS Analytical Workflow

Genetic correlation
———

_\_‘_\_‘_\_\_‘_\_\_‘_\_‘_‘—‘—\—\_

Gene- and pathway-based tests

_\_\\\\\—\—‘_

Variant level tests
Post-hoc Functional
analyses annotation

Figure 2. Workflow of Analytical Activities.



https://doi.org/10.1101/2020.02.19.954651
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.02.19.954651; this version posted February 21, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Genetic Markers of Resilience 36

Cognitive Performance 1 —
Obsessi'v'%écom s L|Isiiv'eﬂDi_sordeE- l—'—||_._|
ucational Attainment
Height ——

.i‘-.%e at First Eligrth 1
Age of Injtiation - Smoking q
Intracranial Volume
Celiac Disease -
~ Anorexia Mervosa q
Hippocampal Volume o
Internalizing Problems 4
. Age at Menarche
Restm? Heart Rate RM35D
Age af Matural Menopause
Birth Weight -
HOL Cholesterol
Bipolar Disorder q
. Ischaemic Stroke 4
Autism Spectrum Disorder
Resting Heart Rate pvRSA HF 1
Schizophrenia 4
LOL Cholesteral
Sleep Duration
~ Total Cholesterol
Primary EllllarKCthqsm- t

. Alcohalism A
MNumber of Children Ever Born A
. Baldness
Resting Heart Rate SDRN 4
Type2 Diabetes

Chronotype
Bone Mineral Density Spine —— P=0.05
T Risky Behavior | -
Asthma = P=<0.05

Amyatrophic Leteral Sclerosis 4
~ Subjective Well being
Wajor Depressive Disorder q
Mumber of Sexual Partners q
) TrigIEJc_erides-
Alzheimers Disease
Caoronary Artery Disease

i Loneliness

Bone Mineral Density Meck
Multiple Sclerosis A
Meuraticism

Suicide Attempt

Smoking Cessation

~ Insomnia

Smoking Initiation
Aggressive Behavior
Rheumatoid Arthritis 1
Frontotemporal Dementia
Cannabis Dependence
Cigarettes per day

. 1 4

_Epilepsy1

Ulcerative Calitis

25 Hydromgvitamin D A

Anxiety Disorder

Eczema

Inflammatory Bowel Disease
. Crohn's Disease
Systemic Lupus Elgthematosus 1
Tourefte Syndrome -
Antisocial Behavior

—+ FWE-F=0.05

] hﬂ-ﬁﬂﬁﬂﬁﬁﬂ Tl T T 3 T
N it l 1 ‘H

0

1T

]

Primary Sclerosing Cholangitis k : |

-0.3 -0.2 -0.1 0.0 0.1
Genetic Covariance with Combined Resilience

Figure 3. Genome-Wide Genetic Covariance Results. Genetic covariances between
Combined Resilience and 67 complex traits. Error bars represent 95% confidence

intervals. FWE-P: corrected p-value based on the family-wise error rate.
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Figure 4. Variant-Level Resilience GWAS Results. A) Results from the GWAS
analysis of Combined Resilience is presented in a Manhattan Plot. GWAS significance
(5x10®) is indicated by the red line, while suggestive significance (1x10-°) is indicated by
the blue line. B) A LocusZoom plot of the GWAS-significant locus on chromosome 18.
Colors denote linkage disequilibrium with the most statistically significant SNP. C) A
forest plot for the top SNP on chromosome 18 is presented demonstrating consistent
direction and magnitude of effect across the autopsy and PET datasets and within the
component cohorts. The summary estimate at the bottom indicates the meta-analysis of

the autopsy and PET combined datasets.
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Figure 5. Functional Annotation of Resilience GWAS Results. A) The most
significant methylation targets for rs2571244 in dorsolateral prefrontal cortex are
presented. B) The minor allele of rs2571244 (T) is associated with decreased

methylation at the CpG site cg19596477.
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