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Generative modeling of brain maps with spatial
autocorrelation
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Abstract

Studies of large-scale brain organization have revealed interesting relationships
between spatial gradients in brain maps across multiple modalities. Evaluating
the significance of these findings requires establishing statistical expectations un-
der a null hypothesis of interest. Through generative modeling of synthetic data
that instantiate a specific null hypothesis, quantitative benchmarks can be de-
rived for arbitrarily complex statistical measures. Here, we present a generative
null model, provided as an open-access software platform, that generates sur-
rogate maps with spatial autocorrelation (SA) matched to SA of a target brain
map. SA is a prominent and ubiquitous property of brain maps that violates
assumptions of independence in conventional statistical tests. Our method can
simulate surrogate brain maps, constrained by empirical data, that preserve the
SA of cortical, subcortical, parcellated, and dense brain maps. We characterize
how SA impacts p-values in pairwise brain map comparisons. Furthermore, we
demonstrate how SA-preserving surrogate maps can be used in gene ontology
enrichment analyses to test hypotheses of interest related to brain map topog-
raphy. Our findings demonstrate the utility of SA-preserving surrogate maps
for hypothesis testing in complex statistical analyses, and underscore the need
to disambiguate meaningful relationships from chance associations in studies of

large-scale brain organization.
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Introduction

Recent technological advancements in neuroimaging, large-scale connectomics,

and high-throughput transcriptomics have facilitated the discovery of conserved

principles of brain organization (Huntenburg et al.,|2018; |Burt et al., |2018; [For-|

s mito et al [2019). Studies of spatial representations of brain features — i.e.,

brain maps — have revealed large-scale gradients of microscale and macroscale
features (Wagstyl et al., 2015; Margulies et al., |2016; Burt et al., |2018; |Preller|
let all 2018} [Vazquez-Rodriguez et al. 2019; [Fulcher et al) 2019; Royer et al.
. Furthermore, gradients from distinct modalities exhibit intriguing rela-

10 tionships, including topographic alignment of local cytoarchitectural variation
(Wagstyl et al., |2015; Hilgetag et al., 2016)), long-range connectivity (Markov;

2014)), gene expression profiles (Burt et al [2018; [Anderson et al.| |2018]),
neurophysiological properties (Murray et all) 2014), and participation in hier-

archies of functionally specialized networks (Margulies et al., [2016; Burt et al.,

15 2018; [Wang} 2020). However, interpretation of statistical measures derived from

brain maps requires the establishment of statistical expectations under a well-
defined null hypothesis of interest.

We designate a null model as generative if it generates surrogate data which

instantiate a specific null hypothesis (Fornito et all 2016; [Betzel and Bassett,

2 . Generative null modeling is particularly advantageous because surrogate
data can be directly operated on to derive null distributions for arbitrarily com-
plex statistical measures. For brain maps, randomly permuting values across
regions as part of a permutation test can be considered a distribution-preserving
generative null model which produces surrogate maps with randomized topogra-

s phies. Yet the assumptions built into the null hypotheses of permutation testing,
as well as conventional parametric testing, are strongly violated by a character-

istic and ubiquitous property of brain maps: spatial autocorrelation (SA). Due
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to SA, values of brain features in spatially proximal regions tend to be more
similar than values of spatially distant regions. Thus, statistical claims about a

s particular brain map topography should be evaluated against a generative null
model in which that target map’s SA structure is explicitly incorporated into
the null hypothesis.

There is growing appreciation in the neuroimaging field that innovative
methods are required to account for the impact of SA on statistical analyses

s of large-scale brain maps and spatial gradients (Alexander-Bloch et al.| [2018;
Burt et al. [2018; |de Wael et al.,[2019). Recent proposals have focused primarily
on deriving corrected p-values for tests of spatial correspondence between pairs
of brain maps. The most widely adopted of these approaches, the spin test, in-
volves randomizing the anatomical alignment between two cortical surface maps

« through spherical rotation by a random angle (Alexander-Bloch et all [2018).
However, the utility of this non-generative approach is limited, because it does
not produce surrogate maps with complete cortical coverage, nor does it gen-
eralize to volumetric data. There remains a significant unmet methodological
need for SA-preserving generative null modeling in neuroscience.

n Here, we adapt a method from geostatistics to develop a generative null mod-
eling framework for generating surrogate brain maps with SA matched to the
SA of a target brain map (Viladomat et al., [2014)). We first demonstrate that
this method can be used to correct for the impact of SA on statistical signifi-
cance values derived from pairwise brain map comparisons. After describing the

so statistical foundations of the model, we provide three illustrative applications
to empirical data, contrasting model-derived results with results from conven-
tional, spatially naive statistical tests. Our approach can be flexibly applied to
a range of brain map representations, including surface-based and volumetric
geometries at either parcellated or dense resolutions. We apply our method

s to gene ontology (GO) enrichment analyses, which are commonly used to infer
biological correlates of brain map topographies. We found that GO results are
spuriously driven by SA, and we develop a workflow for evaluating the GO en-

richment of a map’s topography while controlling for its SA. We have developed
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a Python-based implementation of our method, with additional neuroimaging-
o specific functionality, which is released as an open-source software package for

the field.

Methods

The method described below is implemented in an open-access, Python-based
software package, BrainSMASH: Brain Surrogate Maps with Autocorrelated
s Spatial Heterogeneity (https://github.com/murraylab/brainsmash)).

Generating spatial autocorrelation-preserving surrogate maps

We present the algorithm first proposed by [Viladomat et al.| (2014} for testing
correlations between autocorrelated fields, here used to generate SA-preserving

brain maps. The algorithm can be conceptually subdivided into two main steps:

70 1. Randomly permute the values in a target brain map.

2. Smooth and rescale the permuted map to recover lost SA structure.

Let x be a brain map whose value in brain region ¢ is denoted x;. We
randomly shuffle (i.e., permute) the values in x to obtain the permuted map
Xg. We perform a local kernel-weighted sum of values in xj to construct the

smoothed map xj,, where the i-th element is computed as:

o T K(diab,
ki —
iy K (dij)

where k is the number of nearest neighboring regions used to perform the

; (1)

smoothing, K is a distance-dependent smoothing kernel, and d;; is the dis-
tance separating regions ¢ and j. We use an exponentially decaying smoothing
7 kernel with a characteristic length scale equal to the distance of the k-th nearest
neighbor. Following|Viladomat et al.| (2014)), our smoothing kernel is truncated,
here at the characteristic length scale where it has a value of e~!. The distance
at which the kernel truncates will therefore be larger in regions where the brain
map is more sparsely sampled. The parameter k, which sets the spatial scale of
so the SA reintroduced into the surrogate map, is chosen from a set of user-defined
values such that surrogate maps’ fit to the target map is maximized (which we

will return to below).
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After smoothing the permuted map, x) must be rescaled such that its SA
approximately matches the SA in the target map. To do this, we construct a
variogram—a summary measure of the autocorrelation in spatial data—for each
brain map. The variogram, which provides a measure of pairwise variation as a
function of distance, is typically computed within finite-width distance intervals:
in the distance interval centered around length scale h with width 24, the value

of the variogram, denoted -y, for brain map x is equal to the sample variance:

1 N(h=£8) N (h+d)

10 = xmy X > @) (2)

i=1 VE

where N (h+£4) is the number of sample pairs separated by a distance d;; which
lies in the interval h —d < d;; < h + 6.

Following [Viladomat et al. (2014), we further reduce noise in the data by

smoothing the variogram. To do this, we replace Equation [2| with

N N
Doim1 D jmir1 Wiglij
N N
dim1 Ej:i+1 Wi

where v;; = 1(2; — )%, and the weights w;; are computed using a Gaussian

v(h) = ; (3)

kernel which falls off smoothly with distance:

(2.68s)2
Wij = €Xp oz (7

ss where s = ||h — d;;||, di; is the distance between regions ¢ and j, the band-

(4)

width b controls the smoothness of the smoothed variogram, and constants are
chosen such that the quartiles of the kernel are at £0.256 (Viladomat et al.|
2014). In other words, a pair of regions ¢ and j contribute most strongly to the
smoothed variogram evaluated at length scale h when their distance d;; is equal
o to h. In addition, because SA is primarily a local effect, only pairs of regions
whose distance d;; lies in the bottom 25th percentile of the distribution {d;;}
contribute to the weighted sum in Equation following |Viladomat et al.| (2014).
Throughout this study, Equation [3| was evaluated at 25 uniformly spaced dis-
tance intervals {h} across the range of distances d;; which fell in the bottom
o5 25th percentile of all elements in the distance matrix D. The bandwidth b was

chosen to be three times the distance interval spacing, i.e., b = 3 (h; — h;j—1).

To recover SA in our surrogate maps, we maximize the fit between the target

brain map’s variogram, (x|, and the variogram of the smoothed map, v[x}],
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where (x| refers to Equation [3| evaluated at all {h} for brain map x. By
matching the variogram of the smoothed map to the variogram of the target
map, we impart the smoothed map with the characteristic SA structure of the
target map. For each value of smoothing parameter k, we linearly regress v[x}]
onto ~[x]; this procedure amounts to choosing a linearly transformed variogram

from the family
By[xi] + o (5)

that is maximally similar to y[x]. For each value of k, we compute the sum
of squared errors (SSE) in the fit between v[x] and the linearly transformed
v[x}]. We then select the value of k which minimizes SSE, denoted k*, to
construct a surrogate map whose SA is approximately matched to the SA in
x. The regression coefficients for £*, denoted -~ and Si-, define the linear

transformation of xj. into the surrogate map x:

iz, (6)

1y
X + |

X = | By

where z is a map of normally distributed random variates with zero mean and

unit variance.

Constructing dense (i.e., vertex- or voxel-wise) surrogate brain maps imposes

w0 additional computational challenges. The number of elements in a distance ma-
trix or variogram — that is, in a pairwise measure — scales like O(N?), where N

is the number of brain regions. Consequently, each pairwise measure for a dense
map individually requires ~ 4GB of RAM, quickly exhausting the resources of
standard laptop computers. To overcome this challenge, we developed an addi-

s tional protocol for constructing dense surrogate maps. Because SA is primarily
a local effect, only a subset of the smallest elements in a distance matrix, rep-
resenting pairs of spatially proximal regions, are needed to construct reliable
dense surrogate maps. For each row of a dense distance matrix, we therefore
keep only the k,,,, smallest elements that are greater than zero. In other words,

o for each vertex/voxel, we keep only the distances to its ky, nearest neighboring
vertices/voxels. In this study, we used k,, = 1,000 for dense cortical surrogate
maps, and k,, = 1,500 for cerebellar surrogate maps. In addition, following
Viladomat et al. (2014)), we approximated dense variograms using a random
sampling of the data: for each dense surrogate map, we randomly sample ng

us  regions (without replacement) to perform the variogram fitting procedure. We
used ng = 1,000 for dense cortical surrogates and ns = 500 for cerebellar surro-

gates. These two sampling techniques reduced the memory burden by a factor
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of ~ 900 for our dense cortical data, and result in a computational cost which

scales linearly with the number of regions.

120 We have also developed an implementation which leverages memory-mapped
arrays, such that distance matrices stored locally on disk are read into memory
on an as-needed basis. The specific algorithms for constructing both dense
and parcellated surrogate brain maps are provided in All key
parameters described above are configurable in BrainSMASH and default to

s the values used in this study. More details can be found in the BrainSMASH

documentation: https://brainsmash.readthedocs.io/.

Data

Parcellated structural neuroimaging maps. Human T1w/T2w and cortical thick-
ness maps in the surface-based CIFTI file format were obtained from the Human

1 Connectome Project (HCP) (Van Essen et al}|2013). To produce the T1w/T2w
maps, high resolution T1- and T2-weighted images were first registered to a
standard reference space using an areal-feature-based technique (Glasser et al.|
2016a; [Robinson et all 2014), then corrected for bias-field intensity inhomo-
geneities (Glasser and Van Essen| 2011} |Glasser et al., 2013)). Group-averaged

s (N = 339) left-hemispheric T1w/T2w and thickness maps were parcellated into
180 regions using the HCP’s Multi-Modal Parcellation (MMP1.0) (Glasser et al.,
2016al). Assignment of MMP1.0 parcels to functional networks was performed
through community detection analysis (Ito et al., [2017) on time-series correla-
tions in the HCP resting-state fMRI dataset.

uw Gene expression maps. Gene expression data were pre-processed following a
procedure which we previously reported (Burt et all [2018]). Briefly, we con-
structed gene expression maps using data from the Allen Human Brain Atlas
(AHBA)—a publicly available transcriptional atlas of DNA microarray data,
containing samples from hundreds of histologically validated neuroanatomical

us  structures across six normal post-mortem human brains (Hawrylycz et al., [2012]
2015). Microarray expression data and all accompanying metadata were down-
loaded from the AHBA (http://human.brain-map.org). The raw microarray
expression data for each of the six donors includes expression levels of 20,737
genes; our preprocessing pipeline yielded group-averaged gene expression profiles

150 for 16,088 genes across 180 parcels in the left cortical hemisphere. Brain-specific

genes were selected as in |Burt et al.| (2018]).
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Distance matrices. Matrices of three-dimensional Euclidean distance were used
for subcortical analyses, while matrices of surface-based geodesic distance were
used for cortical analyses. Geodesic distances between grayordinate vertices
155 in the midthickness surface file were computed using the Connectome Work-
bench software. To compute the geodesic distance between two parcels ¢ and
j, we computed the average of all pairwise surface-based distances between a

grayordinate vertex in parcel ¢ and a vertex in parcel j.

Gaussian random fields

To theoretically characterize the impact of SA, we simulated Gaussian random
fields (GRF's) on a square lattice while parametrically varying SA. An impor-
tant statistical feature of a random field is its autocorrelation function which, for
isotropic and homogeneous random fields, is related to the power spectral den-
sity via the Wiener-Khinchin theorem. We therefore use a parametric function

for the power spectral density to vary the SA of simulated GRF's:
P(k) = [k]™, (7)

o where « is a positive number and k is a spatial frequency (not to be confused
with the number of nearest neighboring brain regions). We simulated GRFs on
uniformly spaced two-dimensional grids within the unit interval with N tilings in

each dimension. More details about the theoretical foundation of this approach

are provided in

s Gene ontology enrichment analyses

Gene ontology (GO) enrichment analyses were scripted in the Python program-
ming language using the GOATOOLS package (Klopfenstein et all [2018). To
generate gene sets used for these analyses, we performed partial least squares
(PLS)-based cross-decomposition between 16, 088 gene expression maps and one
o brain map to identify genes whose spatial expression patterns were most strongly
associated with a brain map’s topography (Vértes et al., [2016; [Whitaker et al.|
2016; [Romero-Garcia et al.l [2018; Morgan et al.| 2019). For each brain map,
we first identified the 1,000 most strongly associated genes using PLS with a
single latent variable, corresponding to the 1,000 genes with largest positive
s PLS scores. For these genes, we then used GOATOOLS to identify signifi-
cantly enriched annotations (i.e., GO categories) for these genes, as well as
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their Bonferroni-corrected significance values. All available UniProt IDs in the
GOATOOLS database were used as the background reference set.

Prior to reporting enriched GO categories, following [Vértes et al.| (2016),

10 we eliminated semantically redundant terms using the web-based tool REViGO
(http://revigo.irb.hr) (Supek et al] [2011). To generate Fig. [7B, we first com-
puted the number of surrogate brain maps which were enriched for each GO
category. We kept the categories for which at least 5% of surrogate maps were
significantly enriched. Our input to REVIiGO was this list of GO categories

15 and the associated numbers of significantly enriched surrogate brain maps. In
the web-based tool, we set the allowed similarity to “Medium (0.7)”, and we
selected the option for numbers associated with each GO category to be “some
other quantity, where higher is better.” Advanced options were left as their
default values. REViGO-generated outputs for each of the three enrichment

wo classes (biological process, molecular function, and cellular component) were
exported as CSV files and aggregated. Finally, we applied thresholds of v > 0.9

for column “uniqueness”, d < 0.05 for column “dispensability”, and v > 60 for
column “value”, which reduced the list to a set of 12 highly enriched and se-

mantically unique categories that were subsequently plotted in semantic space.

s Principal components analysis

For a set of N genes, each with group-averaged gene expression values in p
cortical parcels, we constructed a gene expression matrix G' with one row for
each cortical parcel and one column for each unique gene (i.e., with dimensions
P x N). The P x P spatial covariance matrix C' was constructed by comput-
20 ing the covariance between vectors of gene expression values for each pair of
cortical parcels: C;; = Cov(G,;,G;), where G; is the ith row in the matrix G,
corresponding to the vector of N gene expression values for the ith cortical
parcel. Eigendecomposition was performed on the spatial covariance matrix to
obtain the matrix eigenvectors (i.e., the principal components, PCs) and their
25 corresponding eigenvalues, which are proportional to the amount of variance
captured by the corresponding PC. To enumerate each principal component,
eigenvalues were ranked in descending order of absolute magnitude, with larger
magnitudes indicating a greater proportion of the total variance captured by
the associated PC. To compute the variance captured per PC for SA-preserving

20 surrogate maps in Figure [JF, we used the following procedure:
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1. 50 genes were randomly selected without replacement from a set of brain-
specific genes.
2. 40 surrogate gene expression maps were constructed for each selected gene.
3. 1,960 surrogate maps (the number of brain-specific genes) were randomly
215 selected without replacement from the set of 50 x 40 = 2,000 surrogate
maps.
4. PCA was performed on these gene expression maps to determine the ten

leading PCs and their variance spectrum.

To construct the variance captured per PC for randomly shuffled surrogate
20 maps, for each replicate, we randomly permuted all 1,960 brain-specific gene

expression maps.

Data visualization

Cortical surface-based visualizations of empirical and surrogate brain maps were
generated using the Connectome Workbench software (Glasser et al. [2016b).

»s  Left-hemispheric cortical data were illustrated on either flat, spherical, or very
inflated cortical surface meshes in the HCP and Conte69 atlases. Cerebellar flat
maps were generated using the SUIT Matlab toolbox
(http://www.diedrichsenlab.org/imaging/suit.htm) (Diedrichsen and Zotow, 2015)
using custom Python scripts adapted from |Guell et al.| (2018]). The black trend

20 line in Fig. was calculated using the Theil-Sen estimator, a nonparametric
estimator of linear slope that is insensitive to the underlying distribution and
robust to statistical outliers (Sen) |1968)).

Moran spectral randomization

Surrogate maps derived via Moran spectral randomization (MSR) were gen-
erated using the singleton procedure implemented in the BrainSpace toolbox
(de Wael et all [2019). Our spatial weight matrix was constructed by inverting
the parcellated geodesic distance matrix and setting diagonal elements to 1. The
tolerance (i.e., the minimum value for an eigenvalue to be considered non-zero)
was set to 107% as in the online tutorials (http://brainspace.readthedocs.io).
The example target brain map was constructed by superimposing normally dis-
tributed noise with an exponentially decaying component parametrized by the

distance to area MT:

z; = 0.05%* N(0,1) + exp (—d;/15), (8)

10
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where x; is the value of the brain map in parcel i, and d; is geodesic distance

25 (in millimeters) of parcel ¢ from area MT.

Results

Physical and mathematical properties of signal-generating processes in the brain
induce SA in empirical brain maps (Chumbley and Friston [2009). To illustrate
the statistical impact of SA in brain maps, we consider two MRI-derived struc-
20 tural neuroimaging maps: the T1w/T2w map, which partly reflects intracortical
gray-matter myelin content (Glasser and Van Essen, 2011} |Glasser et al. [2014),
and the cortical thickness map (Fig. ) In these two cortical maps, proximal
brain regions exhibit more similar values than pairs of spatially distant regions.
This property differs starkly with the randomly shuffled (i.e., permuted) brain
»s  maps in Figure [[B: randomly shuffling a brain map necessarily destroys its SA

structure.

Although SA is a prominent and ubiquitous property of brain maps, many
conventional parametric statistical tests commonly applied to them assume that
data points are independent. This is related to the assumption that data points

0 are exchangeable when performing a non-parametric permutation test. In per-
mutation tests of the significance of a brain map topography, null distributions
are constructed by repeatedly shuffling the target brain map, as in Figure [IB,
and recomputing the test statistic on these maps. This process preserves the

map’s distribution of values while randomizing its topography.

255 In statistical tests which do not account for the intrinsic SA structure of brain
maps, the null hypothesis is that unstructured maps, like those in Figure [IB,
are reasonably likely to have produced a comparable or more extreme statistical
measure. To increase our confidence in claims regarding the specific spatial
topography of a brain map, we propose an alternative null hypothesis, in which

»0 null distributions are derived from surrogate brain maps that preserve empirical
SA while randomizing topography. By construction, SA-preserving surrogate
brain maps would preserve the two-point autocorrelation among brain regions
(Fig. [IIC).

We found that null distributions for the Pearson correlation coefficient were

x5 substantially different when derived from randomly shuffled and SA-preserving

surrogate maps. We constructed these distributions by correlating the empirical

11
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Figure 1: Spatial autocorrelation (SA) in empirical brain maps has a substantial
impact on statistical inference. (A) The group-averaged (N = 339) Tlw/T2w
(top) and thickness (bottom) maps in the left cortical hemisphere. The maps are
spatially autocorrelated: proximal brain regions exhibit more similar values than
pairs of spatially distant regions. (B) Randomly shuffling the empirical maps
— equivalent to assuming samples’ exchangeability, a more relaxed assumption
than independence — destroys their autocorrelation structure. (C) One exam-
ple realization of random SA-preserving surrogate maps, derived for each em-
pirical map. (D) Null distributions of Pearson correlation coefficients between
the empirical cortical thickness map, and 1,000 randomly shuffled (red) and
SA-preserving (blue) surrogate maps derived from the empirical T1w/T2w map.
Dashed black line indicates the empirical correlation between the T1w/T2w and
cortical thickness maps. (E) Distributions of Pearson correlation coefficients be-
tween pairs of randomly shuffled (red) and SA-preserving (blue) surrogate maps

derived from the empirical T1w/T2w map. (Continued on the following page.)
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Figure 1: (F) The distribution of naive p-values for the Pearson correlation
between pairs of SA-preserving surrogate maps derived from the empirical
T1lw/T2w map. These naive p-values are derived under the assumption that
samples are independent and normally distributed, in which case the sampling
distribution of Pearson’s r is a t-distribution with n — 2 = 29,694 degrees of

freedom. n.s.: not significant.

cortical thickness map with maps in two different sets of surrogates—randomly
shuffled and SA-preserving, each derived from the empirical T1w/T2w map
(Fig. [1D). SA-preserving surrogate maps produced a null distribution whose
a0 variance was more than an order of magnitude greater than the variance of the
null distribution produced by randomly shuffled surrogate maps. A similarly
large difference in null distribution variance was also found for parcellated brain

maps (Supplementary Fig. [2]).

This contrast between these approaches is recapitulated in the distributions

a5 of pairwise correlations between pairs of surrogate maps (Fig. ) As in Figure
[ID, the variance of these distributions provides a measure of variation across
surrogate maps under the two respective null hypotheses. Increased null distri-
bution variance for the SA-preserving surrogate maps indicates that these maps
are, on average, more statistically similar than their randomly shuffled counter-

20 parts. Moreover, Pearson correlation p-values, which are blind to SA structure,
tend to be exceptionally small when computed between pairs of random autocor-
related maps (Fig. [IF): we found that 91% of all pairwise correlations between
SA-preserving surrogate maps were statistically significant when assessed using

the naive Pearson correlation threshold of p < 0.05. This shows that even two

»s  randomly generated brain maps are highly likely to be significantly correlated
when evaluated using SA-naive statistical measures. Together, these findings
demonstrate the substantial impact that SA has on statistical measures derived

from large-scale brain maps.

Constructing spatial autocorrelation-preserving surrogate maps

20 Figure[2|provides a schematic of our generative modeling method for SA-preserving
surrogate brain maps. The target brain map is first permuted, randomizing the
map’s topography. Next, SA is reintroduced by smoothing the permuted map

with a distance-dependent kernel. Motivated by previous work (Burt et al.|
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2018} [Romero-Garcia et all, 2018 [Markov et all, [2011} [ArnatkevicIuté et al.]
205 [2019)), here we use a smoothing kernel with weights which fall off exponentially
with distance. However, we found that null distributions are largely insensitive

to the functional form of the kernel (Supplementary Fig. [3]). The kernel is trun-
cated at the k-th nearest neighbor — differences in this parameter correspond
to differences in the characteristic length scale of the autocorrelation which is

s0 reintroduced.

Target map SA-independent SA-preserving
(dense or parcellated) surrogate map Iterate over {k} surrogate map

x X
Compute sum of -
: / squared errors (SSE)
Shuffle : ) i
—_— —» : Smooth using :
@ i knearest H @
/ Transform using

neighbors

\ @
\;ﬁriance
\

Compute\ Yix]

< : Spatial separation : the optimal k that
variogram § g (distance) : minimizes SSE for
8 g —> H this particular x,
© o : H —
> |~ i / Generate new X,
- . | Compute variogram y[x,] i @and repeated for each
Spatial separation 5 and regress onto y[x] g additional surrogate
(distance) map

Figure 2: Generating SA-preserving surrogate maps. A dense or parcellated
target brain map (x) is first randomly shuffled (x{,), destroying its SA. SA is
reintroduced by smoothing the shuffled map with an exponentially decaying,
distance-dependent smoothing kernel which includes the k nearest neighbors to
each region (xj,). Variograms (v[-]), which we use to operationalize SA, are
computed for the target map and the smoothed map. The variogram for the
smoothed map is regressed onto the variogram for the target map. The regres-
sion coefficients define the transformation of xj, which approximately recovers
the autocorrelation in x. The smoothing and regression steps are repeated, each
time with a different number of nearest neighbors, &, used to perform the spatial
smoothing. For each iteration, the sum of squared error (SSE) in the variogram
fit is computed; the regression coefficients for the best value of £ which mini-
mizes SSE are then used to produce a surrogate map whose SA is most closely

matched to the target map’s SA.
We operationalize SA in a brain map by computing its variogram. The
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variogram provides a summary measure of pairwise variation in a map as a
function of distance. For instance, any sequence of independent and identically-
distributed random variables has no distance dependence in its variation and
ws  therefore has a flat variogram. In contrast, a positively autocorrelated spatial
map has a variogram with positive slope, because variation among regions in
close spatial proximity (at small distances) is less than variation among widely
separated regions (at large distances). We construct variograms by computing
the brain map’s sample variance within uniformly spaced distance intervals for
a0 both the target map and the smoothed map (Equation . For surface-based
maps, we calculate distance between brain regions using surface-based geodesic
distance, while for volumetric maps we use three-dimensional Euclidean dis-

tance.

To recover SA in surrogate brain maps, we first perform a linear regression

sis between the smoothed map’s variogram and the target map’s variogram. We
then compute the sum of squared error (SSE) in the variogram fit: smaller SSE
corresponds to improved recovery of SA structure. To maximize the recovery of
SA, the sequence of steps described above — smoothing the permuted map, fit-
ting the variogram, and computing SSE — are repeatedly performed, each time

»0 using a different number of nearest neighbors, k, used to smooth the permuted
map. Finally, the best value of k, denoted k*, which minimizes SSE is used to

construct the SA-preserving surrogate map (via Equation @

The assumptions of this surrogate generation procedure are that maps are
normally distributed and stationary (Viladomat et al, [2014]). Convolutions of

»s data and Gaussian smoothing of images, which are standard in neuroimaging
data processing pipelines, result in maps which are approximately normal, per
central limit theory. Regardless, the value distributions of brain maps and
surrogate maps can be invertibly transformed prior to, and following, the use of

our method.

0 llustrative applications to empirical neuroimaging data

To demonstrate how SA influences statistical outcomes, we used our method
to evaluate statistical significance for three familiar types of brain map anal-
yses: testing for the functional network specificity of a brain map; testing
the topographic alignment between two maps; and testing data dimensionality.

35 In each analysis, we compare our findings to the results of standard spatially

15


https://doi.org/10.1101/2020.02.18.955054
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.02.18.955054; this version posted February 19, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

naive statistical approaches. We perform each test on parcellated brain maps,
where neuroanatomically informed parcel borders should mitigate the impact of
SA, yielding more conservative estimates for the discrepancies between spatially

naive and SA-preserving approaches.

340 First, we consider the functional network specificity of the MRI-derived cor-
tical T1w/T2w map (Fig. ,B). A spatially naive Wilcoxon signed-rank test
suggests that mean T1w/T2w map value is significantly higher in sensory net-
works than in association networks. Like the Wilcoxon signed-rank test, a spa-
tially naive permutation test produces a highly significant p-value (p < 107%;

us  note that this is a conservative upper bound constrained by the number of per-
mutations). However, functionally specialized networks of brain regions (and
regions of interest in general) tend to be spatially contiguous. We therefore
computed null distributions of network specificity (i.e., mean map value in as-
sociation vs. sensory networks) derived from SA-preserving surrogate maps to

0 determine the distribution of results expected by chance. We found that func-
tional network specificity of the cortical T1lw/T2w map remains statistically
significant, but that the calculated p-value is highly attenuated (p = 0.01), re-
flecting the more stringent null hypothesis that the specificity can be driven by
SA-constrained maps exhibiting random topography.

355 Next, we consider the commonly examined problem of assessing correspon-
dence or spatial alignment between two brain maps (Fig. ,D). In Burt et al.
(2018), we showed that the first principal component (PC1) of brain-specific
gene expression variation exhibits a spatial topography that is strikingly simi-
lar to the cortical T1w/T2w map — a map which we showed provides a robust

0 noninvasive correlate of cortical hierarchy. Surface-based geodesic distance from
primary visual area V1 has also been proposed as proxy measure of cortical hi-
erarchy (Wagstyl et all |2015) (Fig. ) We revisited one of our prior analyses
(Burt et al.| 2018) and asked whether the map of geodesic distance from area
V1, like the T1w/T2w map, is strongly associated with PC1 of gene expression

s variation. A spatially naive Pearson correlation computed between these two
brain maps suggests that their relationship is highly significant (r, = —0.43;
p = 2.3 x 10%). However, when PC1 is correlated with SA-preserving surrogate
maps, each derived from the V1 distance map, the resulting null distribution
reveals that this seemingly strong relationship can be explained by SA structure

w0 alone (p = 0.25; Fig. BD).
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Figure 3: SA-preserving surrogate maps provide a more conservative and mean-
ingful measure of statistical significance in conventional neuroimaging analyses.
(A) Mean cortical T1w/T2w map value in functionally-defined sensory and as-
sociation brain networks, computed across 180 parcels in the left cortical hemi-
sphere. Spatially naive statistics suggest that cortical T1w/T2w map value is
significantly higher in sensory networks (***; p < machine precision; two-sided
Wilcoxon signed-rank test). Box plots mark the median and inner quartile
ranges across regions within each network, and whiskers indicate the 95% confi-
dence interval. (B) Null distributions for the difference in mean T1w/T2w map
value between sensory and association networks, derived from 10,000 randomly
shuffled (red) and SA-preserving (blue) surrogate brain maps. Dashed black
line indicates the empirically observed difference. (C) Spatially naive statistics
suggest that the leading principal component (PC1) of cortical gene expression
variation, and the map of geodesic distance from visual area V1, are significantly
correlated (r, = —0.43,p = 2.3 x 107%; Pearson correlation). (Continued on the

following page.)
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Figure 3: (D) Null distributions of Pearson correlations between gene expres-
sion PC1 and 10, 000 randomly shuffled (red) and SA-preserving (blue) surrogate
maps, derived from the map of distance from V1. Dashed black line indicates
the empirically observed correlation. (E) The spectrum of variance captured
by the first ten spatial PCs of cortical gene expression variation. PC1 captures
a disproportionately large fraction of gene expression variance, indicating that
cortical gene expression variation is quasi-one dimensional. (F) Null distribu-
tions of variance captured per PC, derived by performing PCA on ten replicates
of randomly shuffled (red) and SA-preserving (blue) surrogate gene expression
maps. Vertical bars indicate standard deviation across replicates. Green hori-

zontal bars indicate the empirical variance spectrum.

Finally, we examine how SA in brain maps influences principal component
analysis (PCA), a common linear decomposition and dimensionality reduction
technique. PCA identifies an orthogonal decomposition of data into dimensions
along which the data principally vary. When principal components (PCs) are

ws  rank-ordered according to the amount of variance they capture (i.e., such that
PC1 captures more variance than PC2), the shape of the distribution (i.e., the
variance spectrum) provides information about the data’s dimensionality. In
Burt et al.| (2018), we found that PC1 of brain-specific gene expression vari-
ation captures an appreciable fraction of gene expression variance (Fig. ),
0 indicating that gene expression primarily varies along the spatial mode defined

by PC1’s topography.

To determine whether or not the low dimensionality of gene expression vari-
ation can be explained simply by SA in the transcriptional data, we performed
PCA on ten replicate sets, each comprising 1,960 SA-preserving surrogate gene

35 expression maps (Fig. ) We found that the variance captured by empiri-
cal PC1 greatly exceeds the expected variance captured by chance for spatially
autocorrelated surrogate maps, while subsequent empirical PCs exhibit a pat-
tern of captured variance which closely matches the null variance spectrum. In
contrast, PCA performed on replicate sets of randomly shuffled gene expression

0 maps yields a much flatter null variance spectrum. These discrepancies are due
to differences in how variance is redistributed: random shuffling tends to re-

distribute variance uniformly across the brain, whereas SA-preservation retains
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the low-dimensional structure of variance found in the empirical data.

Collectively, these findings underscore the need for plausible null hypotheses,

35 and associated principled null models, to properly evaluate statistical outcomes
when performing tests on brain maps with large-scale spatial gradients. In each
analysis, incorporating SA directly into the null hypothesis had a substantial

impact on inference.

Spatial autocorrelation modulates null distribution variance

w0 To further characterize the impact of SA on statistical measures, we investi-
gated the relationships between SA structure and null distribution variance.
We first considered the simplified mathematical setting of Gaussian random
fields (GRFs), which are random fields with a multivariate normal probability
distribution. The SA structure of a GRF can be parametrically controlled by
w5 changing the slope of the field’s power spectral density . We de-
fine our field’s power spectra to have the functional form P(k) = |k|~%, where
a > 0 and k is a spatial frequency (not to be confused with the number of
nearest neighboring regions). Intuitively, as a increases, spectral power P be-
comes increasingly concentrated at low spatial frequencies, yielding increasingly

a0 autocorrelated fields.

Three realizations of GRFs with varying SA structure are illustrated in Fig-
ure [4A. Differences in the fields’ SA are reflected in the shapes of their vari-
ograms: fields with greater SA are less variable across greater distances (Fig.
). To relate SA to null distribution variance, for each GRF realization we

a5 constructed N = 1,000 SA-preserving surrogate fields, and computed distribu-
tions of pairwise Pearson correlation coefficients between fields at each SA level
(Fig. [4C). We found that null distribution width (i.e., variance) increased as
a function of SA (Fig. [D), suggesting that SA tends to reduce the number of
effective degrees of freedom (i.e., the number of ways in which the fields can
w0 vary). To understand this phenomenon intuitively, consider the limiting case
in which a one-dimensional random field is perfectly autocorrelated. In this
limit, the system reduces to a single degree of freedom, i.e., lines with variable
slopes. Thus, the distribution of pairwise Pearson correlations between these
lines would be a bimodally peaked “distribution” with equal probabilities of
w25 obtaining r, = %1, depending on whether the slopes have equal or opposite

signs—in other words, a distribution with maximal variance.
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Figure 4: SA drives an increase in null distribution width. (A) Gaussian random
fields (GRFs) with increasing SA, simulated on a uniformly spaced lattice of
1002 points. SA is varied by changing the slope of the fields’ power spectral
density, P(k) = |k|~*. (B) Variograms for the three GRFs in A. SA reduces
variability between spatially proximal points. (C) Distributions of pairwise
Pearson correlations between 1,000 random realizations of each field in A. (D)
Variance of each distribution in C. SA constrains the fields’ variability such that
their pairwise correlations tend to be larger in magnitude. (E) Gene expression
variation across 180 parcels in the left cortical hemisphere. Moran’s I statistic,
a measure of SA, was used to select three genes whose cortical expression maps
exhibit low (i), moderate (ii), and high (iii) SA structure. (F) Variograms for
the three gene expression maps in E. (G) Distributions of pairwise Pearson
correlations between 1,000 SA-preserving surrogate maps, computed for each
map in E. (H) Variance of each distribution in G. Histograms in panels C and
F were smoothed using Gaussian kernel density estimation. Labels i, ii, and

iii in panels E-H correspond to genes CCDC18-AS1, SERPINI1, and PRRX1,

respectively.
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Equipped with these intuitions, we asked whether the same relationship ap-
pears in analyses of empirical brain maps with different SA. Because SA in gene
expression maps is highly variable (Gryglewski et al., [2018), we repeated the

a0 analyses described above using parcellated gene expression maps derived from
microarray data in the Allen Human Brain Atlas (Burt et all 2018; Hawry-
lycz et al.| [2012] 2015). To quantify SA in gene expression maps, we computed
Moran’s I statistic (Moran, {1950). Moran’s I provides a measure of global
autocorrelation in spatial data and ranges between -1 and 1, with positive val-
ss  ues indicating the presence of positive spatial autocorrelation (i.e., indicating
that proximal regions tend to be positively correlated). We then selected three
genes, two at the extremes and one at the center of the I-distribution (range
0.001-0.317), respectively characterized by low, moderate, and high SA (Fig.
4E). Variograms for these three gene expression maps followed the same trend
uo observed for GRFs (Fig. [F), and null distribution variance was greater for
genes with larger I values (with higher SA) (Fig. —H). These results indi-
cate that SA modulates the variance of distributions for both GRFs as well as
empirical brain maps. This relationship between SA and null distribution vari-
ance reveals the origin of the large discrepancies between p-values derived from

ws  spatially informed and spatially naive approaches.

Sampling density and autocorrelation increase the likelihood of type I errors

If a measured brain feature is not spatially autocorrelated, or if it is weakly au-
tocorrelated but only sparsely sampled, then samples should be approximately
independent. In this scenario, we expect conventional tests to agree with spatial
w0 statistical approaches. In contrast, if a brain feature is strongly autocorrelated,
then we expect that as the sampling density is increased, the assumption of sta-
tistical independence will be increasingly violated and conventional tests should
diverge from spatial approaches. To test this, we investigated whether inde-
pendently increasing sampling density or SA amplified the discrepancy between

s spatially informed and spatially naive approaches.

We first demonstrated that our surrogate map generating process is robust
across a broad range of spatial scales. Using the HCP’s multi-modal parcellation
(Glasser et al.l [2016a)), dense and parcellated data differ in spatial resolution by
two orders of magnitude. Figure[J]A-B illustrates that simulated surrogate maps

w0 derived from dense and parcellated brain data each reliably recover empirical
SA.
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Figure 5: Conventional p-values derived from spatially naive tests are highly sen-
sitive to SA and spatial resolution. (A-B) Variograms for 1,000 SA-preserving
surrogate maps, derived from the dense (A) and parcellated (B) group-averaged
cortical T1w/T2w map. Open black circles indicate the empirical map’s vari-
ogram. Colored lines and shaded regions indicate mean and standard deviation
across surrogates. (C-D) Pairs of GRFs are simulated until obtaining a pair
with a Pearson correlation of |r,| = 0.15£0.005. Null distributions are computed
between one of the fields and 1,000 randomly shuffled (red) and SA-preserving
(blue) surrogate fields, derived from the second field in the pair. Statistical
significance is assessed three ways: a parametric p-value is derived from a Stu-
dent’s t-distribution with N2 —2 degrees of freedom (black), and non-parametric
p-values are derived from the two null distributions. Colored lines and shaded
regions indicate mean and standard deviation across 100 replicates. Left: SA
fixed at @ = 2. Right: Spatial resolution fixed at N2 = 256. Larger values

indicate increased statistical significance. (Continued on the following page.)
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Figure 5: (E-F) The probability of obtaining a significant (p < 0.05) Pearson
correlation between two GRF realizations as a function of SA and resolution.
Each data point indicates the mean number of significant comparisons across
5,000 trials. White contours from bottom to top correspond to probabilities

0.1,0.2,...,0.7. Purple and green slices through E correspond to lines in F.

We then performed our surrogate map analyses on simulated GRFs, for
which the SA and grid resolution (a measure of sampling density) can be eas-
ily and independently varied (Fig. ) First, we simulated a random pair of

w5  GRFs with a fixed pairwise Pearson correlation. For one of the two GRFs, we
generated both SA-preserving and randomly shuffled surrogate fields. These
surrogate fields were then correlated with the second GRF, yielding two null
distributions of expected Pearson correlations. We assessed the statistical sig-
nificance of the association between the two fields in three ways: using a spatially
a0 naive parametric p-value derived from a Student’s ¢-distribution, which assumes
that samples are independent and normally distributed; and by deriving non-

parametric p-values from the two null distributions.

We determined how these three p-values were influenced when independently
varying the grid resolution (at fixed SA) and varying the SA (at fixed resolu-

s tion) (Fig. ) Consistent with our hypothesis, we found that the discrepancy
between spatially naive and spatially informed approaches grows in magnitude

as a function of both resolution and SA: at fixed SA, greater spatial resolu-
tion leads to more significant p-values for the spatially naive statistical tests,
whereas p-values derived from SA-preserving surrogate maps remain stable. In

w0 contrast, at fixed spatial resolution, increased SA leads to less significant p-
values for spatially informed tests, whereas it has no effect on the result of
spatially naive approaches (because the correlation between the simulated GRF

pairs was fixed).

To characterize how these two properties interact, we computed the prob-

s ability of obtaining a statistically significant (p < 0.05) Pearson correlation
between two GRFs while jointly varying SA and resolution (Fig. [BE,F). We
found that the probability of obtaining a significant result scales with sam-
pling density, and that the strength of this scaling is modulated by the strength

of autocorrelation—evidence for an interaction between these two properties.

wo  These findings collectively indicate that greater SA and sampling density of au-
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tocorrelated processes both independently and jointly increase the likelihood of

obtaining type I errors when using conventional tests.

Constructing subcortical surrogate maps with spatial autocorrelation

To the best of our knowledge, there is currently no established method for

w5 generating spatially matched surrogate data for subcortical, or other volumet-
ric, brain maps. To further demonstrate the flexibility of our approach, we
generated SA-preserving surrogate maps for a recently identified functional gra-
dient map in human cerebellum (Guell et al. [2018) (Fig. @A,D). We follow
the same procedure to generate our cerebellar surrogates, with the only differ-

so0 ence being the distance metric: whereas for cortical surface surrogate maps, we
used surface-based geodesic distance between regions, here for our subcortical
volumetric surrogate maps we used three-dimensional Euclidean distance. By
construction, our generative model produces surrogate cerebellar maps which
preserve the empirical SA in the functional gradient map (Fig. @],F,I). As in

sos cortex, SA-preserving cerebellar surrogate maps produce null distributions with
considerably more variance than null distributions constructed from randomly
shuffled maps (Fig. [6(G,H).

Spatial autocorrelation drives enrichment in gene ontology analyses

Recent advances in high-throughput transcriptomics have made it possible to
s perform gene expression profiling throughout the brain and across the genome.
Advances in bioinformatics have also produced gene ontology (GO) databases,
which provide a corpus of functional annotations (or GO categories) that relate
genes to specific biological functions and molecular pathways. Together, tran-
scriptomic profiling and GO databases establish putative mappings between

sis large-scale gene expression topography and biological function.

A growing number of recent studies have leveraged these technologies to infer
biological functions associated with large-scale brain maps using GO enrichment
analyses (Vértes et al} [2016; Whitaker et al., |2016; Romero-Garcia et al.} [2018;
Morgan et al., [2019). These map-GO analyses often follow a similar logic (Fig.

520 ) First, a brain map of interest is compared to maps of gene expression
using uni- or multi-variate approaches. Each gene is ranked according to the

strength of the association between its expression profile and the brain map’s
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Figure 6: Generating SA-preserving surrogates for a subcortical map. (A)

Functional cerebellar gradient 1 map, derived from diffusion map embedding

of resting-state functional connectivity data by [Guell et al| (2018]), shown for
the left hemisphere. (B) Randomly shuffling the map destroys its SA. (C) SA-

preserving volumetric surrogate maps of the cerebellum preserve the SA present
in the empirical map. (D-F) Flat projections of the volumetric cerebellar maps
in A-C, constructed using the SUIT toolbox in Matlab. (G) Null distribu-
tions of Pearson correlation coefficients between the empirical map and 1,000
randomly shuffled (red) and SA-preserving (blue) surrogate maps, derived from
the functional gradient map. (H) Distributions of Pearson correlation coeffi-
cients between pairs of randomly shuffled (red) and SA-preserving (blue) sur-
rogate maps, derived from the functional gradient map. (I) Variograms for the
empirical map (open black circles) and 1,000 randomly shuffled (red) and SA-
preserving (blue) surrogate cerebellar maps. Colored lines and shaded regions

indicate mean and standard deviation %Rross surrogates.
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spatial topography. A GO enrichment analysis is then performed on the top-
ranking genes: when a significant number of top-ranking genes have a particular
s»s annotation, relative to the number of annotations present in a reference set
(e.g., the entire genome), then the top-ranking genes are said to be enriched for
that annotation. Because the top-ranking genes are strongly associated with
the brain map of interest, the enriched annotations are used to infer biological

functions associated with that particular brain map’s topography.

530 In effect, the null hypothesis in these types of map-GO analyses is that the
number of annotations in the top-ranking gene set is expected by chance. In
other words, the null hypothesis is that a randomly selected set of genes is ex-
pected to contain the number of annotations which were observed empirically.
However, both brain maps and gene expression profiles are spatially autocorre-

s lated, and gene expression profiles strongly covary across human cortex (Burt
et al., [2018). As a result, not all genes are equally likely to be selected in a GO
analysis, regardless of any specific alignment of map topographies. To demon-
strate this effect, we performed a GO enrichment analysis on SA-preserving
surrogate maps, derived from the cortical T1w/T2w map (Fig. ) We found

s that spatially autocorrelated surrogate brain maps were significantly enriched
for many functional annotations (i.e., the top-correlating genes for those surro-
gate brain maps are significantly enriched). Therefore, under the null hypothesis
of conventional map-GO analyses, brain maps which are SA-constrained — yet

have random topographies — yield statistically significant GO enrichment.

545 The above analysis shows that GO enrichment of brain maps is spuriously
driven by SA rather than topography. For a brain map of interest, the resulting
enriched GO categories may not be a property of that map’s specific topography,
but merely its SA. How then can map-GO enrichments be interpreted, for a brain
map of interest? We propose a statistical framework which utilizes generative

sso - null modeling to test a more stringent and meaningful null hypothesis: that the
observed number of annotations is driven by SA in the empirical map, and is

therefore not a special property of that brain map’s topography.

Our procedure to test this more meaningful null hypothesis proceeds as fol-

lows (Fig. —D). First, SA-preserving surrogate maps are derived from the

sss brain map of interest. For each surrogate map, the top-ranking gene set is
computed and then fed into a GO enrichment analysis. After repeating this

procedure on all surrogate maps, the result is a null distribution of expected p-
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Figure 7: Gene ontology (GO) enrichment analysis of SA-preserving surrogate
maps. (A) In standard GO enrichment analyses, topographical relationships
between a brain map and gene expression maps are first computed using uni-
or multi-variate regression techniques, e.g., Pearson correlation or partial least
squares regression. Genes are ranked according to their statistical association
with the brain map. Significant enrichments — annotations (GO categories)
which occur more frequently than expected by chance — for a set of top-ranking
genes are then used to infer the biological functions associated with the brain
map. (B) GO enrichment analysis applied to 1,000 SA-preserving surrogate
maps derived from the cortical T1w/T2w map. Points are scaled in propor-
tion to the fraction of surrogate maps which were significantly enriched (range
13-45%). Points are colored according to the frequency with which each an-
notation appears across all genes in the genome: specific (general) indicates
low (high) frequency (range 0-66%). X- and Y-coordinates derive from multi-
dimensional scaling, such that nearby points are semantically similar, using the
web-based tool REVIGO. (C) SA-preserving null distributions of expected en-
richments provide a mapping from empirical enrichment p-values (magenta) to
surrogate map-corrected p-values (green). The point at which the empirical p-
value (dashed magenta) intersects the cumulative distribution function of surro-
gate map-derived p-values (solid green) indicates the fraction of surrogate maps
which were more significantly enriched than the empirical map (dashed green).
(D) Surrogate map-corrected p-values for empirically enriched GO categories.
Significant (p < 0.05) surrogate map-corrected p-values indicate that the em-
pirical map’s enrichment is primarily driven by its specific spatial topography,
rather than its statistical properties (SA). Blue (red) bars indicate categories for
which more (fewer) than 5% of surrogate maps were more significantly enriched

than the empirical T1w/T2w map.
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values for each functional annotation. These distributions establish a mapping
from enrichment p-values — i.e., the output of the conventional approach — to
soo  SA-corrected p-values under the new null hypothesis (Fig. ) Specifically, SA-
corrected p-values are derived for each annotation by computing the fraction of
surrogate maps which were more significantly enriched than the empirical map.
Annotations for which the empirical map is significantly enriched, with respect
to its surrogates, correspond to biological functions which are uniquely associ-
ss  ated with the empirical map (Fig. ) Rejecting this alternative null hypothesis
provides much stronger evidence that a brain map has special properties unique

to its spatial topography.

To examine the impact of testing this null hypothesis, we applied the pro-

cedure to a map-GO analysis for the cortical T1w/T2w map (Fig. [7D). Out of

s 23 enriched GO categories defined by the conventional enrichment p < 0.05, we
found that only 9 categories also reached significance with the more stringent
SA-corrected p < 0.05. That is, enrichment for 14 of the conventionally-selected

23 GO categories could be explained merely by SA of the T1w/T2w map rather
than its topography. These findings suggest exercising caution when interpreting

sis map-GO analyses, and demonstrate a procedure to correct for the substantial
impact of SA. Furthermore, this generative null modeling framework can be

flexibly adapted to other complex statistical analyses of brain maps.

BrainSMASH: A Python-based platform for simulating surrogate brain maps

We have developed an open-access Python-based computational platform for
so0  generating SA-preserving surrogate maps for any brain map of interest (Sup-
plementary Fig. [4)). BrainSMASH (Brain Surrogate Maps with Autocorrelated
Spatial Heterogeneity) requires only a brain map of interest and a matrix of
pairwise distances between elements of the brain map. How these inputs are
derived is left to user discretion, though additional support has been provided
sss  for investigators working with HCP-compliant surface-based neuroimaging files.
In particular, BrainSMASH includes routines to generate two-dimensional Eu-
clidean and geodesic distance matrices from surface geometry (GIFTI) files,
and subcortical Euclidean distance matrices from CIFTI-format files. All key
parameters described in the methods default to the values used in this study
s0  but are easily reconfigurable through the API. Full details are described in the

package documentation (https://brainsmash.readthedocs.io).
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Discussion

Here we have presented a method adapted from geostatistics for generative null
modeling of surrogate brain maps with SA matched to the SA of a target brain
ss  map (Viladomat et al., 2014]). We have validated our method and demonstrated
its flexibility by showing that simulated surrogate maps recover SA of empir-
ical surface-based and volumetric maps, at parcellated and dense resolutions.
Our generative approach makes it possible to formulate and test a specific null
hypothesis which accounts for SA, a characteristic and ubiquitous property of
eo0 brain maps. We have released an open-access Python-based implementation of

our method with additional neuroimaging-specific functionality, BrainSMASH.

Studies of large-scale spatial gradients often seek to discover meaningful
properties related to the specific topography of a brain map. To do so with con-
fidence, we must distinguish real and meaningful properties from those which

65 can be spuriously driven by general statistical properties of our data, such as
SA. In other words, we require methods to determine the likelihood of our obser-
vation occurring by chance under a plausible null hypothesis which incorporates
general constraints on the space of possible alternatives. In practice, often the
choice of null hypothesis is not obvious; rather, it is implicit in the applied sta-

10 tistical test. However, many conventional tests such as the Pearson correlation
do not control for SA, which is a prominent feature of brain maps. Incredibly
small p-values produced by these spatially naive methods should be interpreted
not as evidence of significance, but merely as an indication of how poorly the
null hypotheses can explain the observations. Spatially naive methods allow

e1s  one to reject the possibility that unstructured noise, which forms neurobiolog-
ically implausible maps (Fig. ), can explain the observations. In contrast,
SA-preserving methods allow one to reject the possibility that a map with a
random topography but comparable SA (Fig. ) can explain the observations.

Spatial dependence is an important property of brains: local features and

e20 inter-regional associations are influenced by the spatial arrangement of brain
regions. For instance, the non-independence of signals measured in proximal
brain regions impacts expectations for the spatial extent of task activation
peaks in neuroimaging (Friston et al.,|1994)). In network neuroscience, distance-
dependent wiring rules have been incorporated into generative null network

s models to establish expectations for graph-theoretic measures (Song et al.| 2014;

Betzel et al.| 2016). Here we have incorporated SA into our null hypothesis in
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an adaptive (i.e., target brain-map specific) manner due to its prominence and
ubiquity in brain maps (Burt et al., 2018; [Markov et al., 2011; |Arnatkevicltutel
let all, 2019} [Romero-Garcia et al [2018)), its variation across brain maps (Burt

o et all 2018; |Gryglewski et all) [2018]), and because of its profound impact on

statistical measures of interest.

Generative null modeling facilitates hypothesis testing for arbitrarily com-
plex statistical measures. This flexibility considerably broadens their scope of
applicability relative to conventional methods for computing p-values directly.

&5 Generating surrogate data is particularly useful when the sampling distribution

of a statistic lacks a closed-form expression. For instance, Demirtag et al.| (2019)

used a hierarchical cortical gradient to parametrize a dynamical brain model
that simulates functional connectivity, and tested the impact of this gradient
relative to SA-preserving surrogates. Surrogate data instantiate an explicitly

sao formulated null hypothesis, and thereby reproduce the expected distribution of

a statistic under that hypothesis (Fornito et all 2016)). Generative null mod-

els thus have widespread utility as tools for power calculations and statistical

inference.

Recent studies have proposed alternative methods to account for SA in sta-

&5 tistical analyses of brain maps. The spin test was recently developed to test

the anatomical alignment between two cortical surface maps (Alexander-Bloch|
2018)). The spin test, however, cannot be used to test alignment between

volumetric maps or maps which span only a small subset of cortex. Variably

sized and irregularly spaced parcels in cortical parcellations also make the spin
e0 test impractical for comparisons between parcellated brain maps. Furthermore,

the spin test is not suitable for generating SA-preserving surrogate maps (Sup-

plementary Fig. [5). Spatial autoregressive modeling (Burt et al., 2018)) and

Moran spectral randomization (de Wael et all 2019) can be used to generate

spatially autocorrelated surrogate brain maps. However, these models require
s the user to choose a specific functional form of the spatial dependence among
regions, and may be highly sensitive to this choice . Furthermore,
Moran spectral randomization may produce surrogate maps which are strongly
correlated with the target brain map, and are therefore not suitable surrogate
data for constructing null distributions (Supplementary Fig. @ In contrast,
e0 by construction our method generates surrogate maps which exhibit random

topographies.
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Generative null modeling is a powerful and flexible approach for evaluating
statistical measures against an explicitly defined null hypothesis. The present
study, which presents a generative model of brain maps with constrained SA

s structure, extends our ability to control for a prominent and ubiquitous feature
of neuroimaging data. Future work can build on this approach to incorporate
additional constraints within a generative modeling framework, thereby expand-

ing the scope of scientific inquiry in the study of large-scale brain organization.
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Code and data availability

A Python-based implementation of the surrogate map generating algorithm used
to conduct analyses in this study may be downloaded as an open-access software
package, BrainSMASH: https://github.com/murraylab/brainsmashl All results

derive from data that are publicly available from sources described above.
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Appendix A. Algorithms for generating surrogate maps

To generate parcellated and dense SA-preserving surrogate maps, we use the

following two algorithms:

Algorithm 1 Generating a parcellated SA-preserving surrogate map
1: Lines 2-8 specified at runtime:

2: x < Empirical brain map

3: D < Pairwise distance matrix

4: {k} < Smoothing parameters to iterate over

5. K + Smoothing kernel

6: py < Percentile cutoff for variogram

7: np, < Number of uniformly spaced distances at which to evaluate variogram
8: b < Gaussian kernel bandwidth (for smoothing variogram)

9: Compute matrix V = 3 (z; — z;)?

10: Compute indices i, j where D < p,(D) and i < j

11: Compute y[x] from DJi, j], Vi, j], b, and ny, following Equation
12: x(, < Permute(x)

13: for k € {k} do

14: Compute xj, from xg, K, and k following Equation

15: Compute matrix V’ «+ %(xém — . ;)?

16: Compute v[x}] from D[s, j], V'[i, j], b, and n;, following Equation
17: Regress v[x),] onto y[x]

18: Store regression coefficients (o, 8;) and sum of squared error (SSE)
19: k* < k for which SSE is minimized

20: Compute x). from xj, K, and k* following Equation

21: Compute map of white noise z ~ N(0,1)

1
27

1
2 X;c* + |Oék*

22: Compute surrogate map X = | Sy~

23: Repeat steps 12-22 for each additional surrogate map
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Algorithm 2 Generating a dense SA-preserving surrogate map

1: Lines 2-10 specified at runtime:

2: x < Empirical brain map

3: D « Pairwise distance matrix

4: {k} + Smoothing parameters to iterate over

5. K < Smoothing kernel

6: P, < Percentile cutoff for variogram

7: kpyn < Number of nearest neighbors to keep in each row of D

8: ng <— Number of random samples to use for each variogram

9: ny, < Number of uniformly spaced distances at which to evaluate variogram
10: b < Gaussian kernel bandwidth (for smoothing variogram)

11: D* « (for each row of D) the ky,, smallest elements greater than zero
12: i < Sample ny elements without replacement from {1, 2, ...,length(x)}
13: D’ «+ ith rows of D*

14: Compute matrix V = 1 (z; — 2;+)* = 1 (ng)2

15: Compute indices ', j* where D’ < p,(D*)

16: Compute (x| from D'[i’, j'], V[i', j'], b, and ny, following Equation
17: x( < Permute(x)

18: for k € {k} do

19: Compute xj, from x{,, K, and k following Equation
20: Compute elements V' = (2} ; — 2}, ;.)?
21: Compute v[x}| from D'[¢', j'], V', j'], b, and nj, following Equation
22: Regress v[x}.] onto v[x]
23: Store regression coefficients (ay, Ox) and sum of squared error (SSE)
24: k* + k for which SSE is minimized
25: Compute xj,. from xj, K, and k* following Equation
26: Compute map of white noise z ~ N(0,1)

1
27

1
2xp, + o

27: Compute surrogate map X = | S~

28: Repeat steps 12-27 for each additional surrogate map
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s Appendix B. Gaussian random fields

The most important statistical feature of a random field is its two-point au-
tocorrelation function, £(x1,23), which quantifies the inter-dependence of field
values at different locations. For isotropic and homogeneous random fields, the
autocorrelation function depends only on the separation x = z; — z2 and is

related to its power spectral density P(k) through a Fourier transform:

£(z) = /e‘“”'P(k)dk. (B.1)

Because () is positive definite, P(k) must be non-negative. In addition, for the
field to be isotropic we require P(k) = P(|k|). In this spectral representation,
field fluctuations are represented as an integral over plane waves, where P(k)
specifies the distribution over wave number k (i.e., over spatial frequencies). In
70 other words, the smoothness of the field is determined by the rate at which P(k)

approaches 0 as k — oo.

To simulate GRF's, we color a continuous white noise Gaussian process with

zero mean and unit variance, n(z), whose Fourier transform is given by:

n(k) = /dx n(z)ete. (B.2)

The Gaussian white noise process is then colored using the target power spectral

density via:
b(k) = PR(k) = / d/ PRy (x)ei*. (B.3)

We then leverage the fact that the inverse Fourier transform of Equation B3]
yields a Gaussian process ¢(z) colored with the desired power spectral density
P(k) (Yura and Hansonl 2011)). This field is guaranteed to be Gaussian by the
central limit theorem because field values in n(z) are by definition independent,
and an integral is an infinite sum. Note however that in discretized simulations
where integrals are replaced by finite sums, this guarantee holds only asymp-
totically. Lastly, we let

P(k) = [k, (B.4)

where « is any positive number, such that both the isotropic and positive-

definiteness conditions on £(x) are satisfied.

To simulate GRF realizations, we follow the logic described above. We first

705 create a uniformly spaced two-dimensional lattice (or grid) with NV tilings in each
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dimension. At each point on the grid, we draw a random sample from a standard
normal distribution. We then compute the discrete Fourier transform of this
field to get 7j(k). At each point on the grid, the shifted Fourier components
k = \/k% + k2 are used to compute the spectral amplitudes VP(k) = |k|7/2.
70 Note that we remove the mean shift by setting the spectral amplitude for k = 0
equal to zero. Finally, we substitute 7j(k) and W into Equation to get

¢(k), then take the discrete inverse Fourier transform to get ¢(x). We normalize

the resulting field such that it has zero mean and unit variance.
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Supplementary Figure 1: Random realizations of SA-preserving surrogate maps
for the dense and parcellated group-averaged (N = 339) cortical T1w/T2w and
cortical thickness maps. Each surrogate map’s topography is randomized while
preserving the SA that is present in the empirical map from which each surrogate
is derived. To match surrogate map value distributions to the distribution of
values in the corresponding empirical map, rank-ordered surrogate map values

were re-assigned the corresponding rank-ordered values in the empirical map.
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Supplementary Figure 2: SA in parcellated brain maps has a substantial impact

on statistical inference. (A) The group-averaged (N

= 339) cortical T1w/T2w

(top) and cortical thickness (bottom) maps across 180 parcels (Glasser et al.|

2016a)) in the left hemisphere.

in A destroys their autocorrelation structure.

(B) Randomly shuffling the empirical maps

(C) One example realization

of SA-preserving surrogate maps, derived for each empirical map. (D) Null

distributions of Pearson correlation coefficients between the empirical cortical

thickness map, and N = 1,000 randomly shuffled (red) and SA-preserving (blue)

surrogate maps derived from the empirical T1w/T2w map. Dashed black line

indicates the empirical correlation between the T1w/T2w and cortical thickness

maps.

(E) Distributions of Pearson correlation coefficients between pairs of

randomly shuffled (red) and SA-preserving (blue) surrogate maps derived from

the empirical T1w/T2w map. (Continued on the following page.)
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Supplementary Figure 2: (F) Distributions of naive p-values for the Pearson
correlation between pairs of SA-preserving surrogate maps derived from the em-
pirical T1w/T2w map. These naive p-values are derived under the assumption
that samples are independent and normally distributed, in which case the sam-
pling distribution of Pearson’s r is a t-distribution with n — 2 = 178 degrees of

freedom. n.s.: not significant.
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Supplementary Figure 3: The SA-preserving surrogate generating method is
largely insensitive to the functional form of the smoothing kernel (Equation
1). FEach distribution consists of all pairwise Pearson correlations between
N = 1,000 SA-preserving surrogate maps derived from the parcellated cortical
T1lw/T2w map. Top, middle, and bottom panels were derived using uniform
(i.e., distance independent), Gaussian, and exponentially-decaying kernels, re-
spectively. Mean and variance of each distribution is indicated by p and o2,

respectively.
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Supplementary Figure 4: BrainSMASH: Brain Surrogate Maps with Au-
tocorrelated Spatial Heterogeneity. Simulating surrogate brain maps with
the BrainSMASH package requires specifying two inputs: a brain map, and
the matrix of pairwise distances between elements of the brain map. Ad-
ditional support is provided for users working with HCP-style neuroimag-
ing files. Comprehensive documentation for BrainSMASH can be found at

https://brainsmash.readthedocs.iol
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Supplementary Figure 5: The spin test developed by |Alexander-Bloch et al/|
(2018). (A) The dense, left-hemispheric cortical T1w/T2w map. The medial

wall (blue border) forms a void in the cortical surface. (B) First, data are
projected from the warped cortical surface onto a spherical surface. (C) Next,
data on the spherical surface are rotated by a random angle, preserving SA but
randomizing anatomical alignment. Blue (red) border indicates the location of
the medial wall before (after) rotation. (D) Next, the rotated data are projected
back onto the warped cortical surface. (E) To construct one sample from the
null distribution, the rotated map in D is compared against another empirical
brain map. Vertices in the pre- or post-rotation medial wall, indicated by lightly
shaded edges within the blue and red borders, are excluded. The number of
vertices included, indicated by darkly shaded edges, depends the spatial overlap
between the pre- and post-rotation medial wall, and will in general vary for each
sample in the null distribution. If a surrogate brain map were to be constructed,
data rotated into the blue region would be discarded, while the red region would

need to be interpolated in some manner using data points around the boundary.
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Supplementary Figure 6: Moran spectral randomization (MSR) may yield sur-
rogate brain maps which correlate strongly with the target map. (A) An exam-
ple, neurobiologically plausible target brain map, constructed by superimposing
normally distributed noise with a signal component which decays smoothly as
a function of distance from area MT. (B) The distribution of Pearson corre-

lations between the target map and N = 5,000 MSR-derived surrogate maps,

constructed using the BrainSpace toolbox (de Wael et al., 2019). A substantial

fraction of MSR~derived surrogate maps correlate strongly (positively or nega-
tively) with the target map, producing the two approximately symmetric outer
peaks of the distribution. (C) The distribution of Pearson correlations between
pairs of MSR-derived surrogate maps exhibits the same trimodal shape. Panels
B-C indicate that MSR does not generate surrogate brain maps with random to-
pographies. (D) The distribution of Pearson correlations between the empirical
map and N = 5,000 variogram-matched surrogate maps from our method. (E)
The distribution of Pearson correlations between pairs of variogram-matched

surrogate maps from our method.
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