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Abstract

Studies of large-scale brain organization have revealed interesting relationships

between spatial gradients in brain maps across multiple modalities. Evaluating

the significance of these findings requires establishing statistical expectations un-

der a null hypothesis of interest. Through generative modeling of synthetic data

that instantiate a specific null hypothesis, quantitative benchmarks can be de-

rived for arbitrarily complex statistical measures. Here, we present a generative

null model, provided as an open-access software platform, that generates sur-

rogate maps with spatial autocorrelation (SA) matched to SA of a target brain

map. SA is a prominent and ubiquitous property of brain maps that violates

assumptions of independence in conventional statistical tests. Our method can

simulate surrogate brain maps, constrained by empirical data, that preserve the

SA of cortical, subcortical, parcellated, and dense brain maps. We characterize

how SA impacts p-values in pairwise brain map comparisons. Furthermore, we

demonstrate how SA-preserving surrogate maps can be used in gene ontology

enrichment analyses to test hypotheses of interest related to brain map topog-

raphy. Our findings demonstrate the utility of SA-preserving surrogate maps

for hypothesis testing in complex statistical analyses, and underscore the need

to disambiguate meaningful relationships from chance associations in studies of

large-scale brain organization.
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Introduction

Recent technological advancements in neuroimaging, large-scale connectomics,

and high-throughput transcriptomics have facilitated the discovery of conserved

principles of brain organization (Huntenburg et al., 2018; Burt et al., 2018; For-

nito et al., 2019). Studies of spatial representations of brain features — i.e.,5

brain maps — have revealed large-scale gradients of microscale and macroscale

features (Wagstyl et al., 2015; Margulies et al., 2016; Burt et al., 2018; Preller

et al., 2018; Vázquez-Rodŕıguez et al., 2019; Fulcher et al., 2019; Royer et al.,

2019). Furthermore, gradients from distinct modalities exhibit intriguing rela-

tionships, including topographic alignment of local cytoarchitectural variation10

(Wagstyl et al., 2015; Hilgetag et al., 2016), long-range connectivity (Markov

et al., 2014), gene expression profiles (Burt et al., 2018; Anderson et al., 2018),

neurophysiological properties (Murray et al., 2014), and participation in hier-

archies of functionally specialized networks (Margulies et al., 2016; Burt et al.,

2018; Wang, 2020). However, interpretation of statistical measures derived from15

brain maps requires the establishment of statistical expectations under a well-

defined null hypothesis of interest.

We designate a null model as generative if it generates surrogate data which

instantiate a specific null hypothesis (Fornito et al., 2016; Betzel and Bassett,

2017). Generative null modeling is particularly advantageous because surrogate20

data can be directly operated on to derive null distributions for arbitrarily com-

plex statistical measures. For brain maps, randomly permuting values across

regions as part of a permutation test can be considered a distribution-preserving

generative null model which produces surrogate maps with randomized topogra-

phies. Yet the assumptions built into the null hypotheses of permutation testing,25

as well as conventional parametric testing, are strongly violated by a character-

istic and ubiquitous property of brain maps: spatial autocorrelation (SA). Due

2

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 19, 2020. ; https://doi.org/10.1101/2020.02.18.955054doi: bioRxiv preprint 

https://doi.org/10.1101/2020.02.18.955054
http://creativecommons.org/licenses/by-nc-nd/4.0/


to SA, values of brain features in spatially proximal regions tend to be more

similar than values of spatially distant regions. Thus, statistical claims about a

particular brain map topography should be evaluated against a generative null30

model in which that target map’s SA structure is explicitly incorporated into

the null hypothesis.

There is growing appreciation in the neuroimaging field that innovative

methods are required to account for the impact of SA on statistical analyses

of large-scale brain maps and spatial gradients (Alexander-Bloch et al., 2018;35

Burt et al., 2018; de Wael et al., 2019). Recent proposals have focused primarily

on deriving corrected p-values for tests of spatial correspondence between pairs

of brain maps. The most widely adopted of these approaches, the spin test, in-

volves randomizing the anatomical alignment between two cortical surface maps

through spherical rotation by a random angle (Alexander-Bloch et al., 2018).40

However, the utility of this non-generative approach is limited, because it does

not produce surrogate maps with complete cortical coverage, nor does it gen-

eralize to volumetric data. There remains a significant unmet methodological

need for SA-preserving generative null modeling in neuroscience.

Here, we adapt a method from geostatistics to develop a generative null mod-45

eling framework for generating surrogate brain maps with SA matched to the

SA of a target brain map (Viladomat et al., 2014). We first demonstrate that

this method can be used to correct for the impact of SA on statistical signifi-

cance values derived from pairwise brain map comparisons. After describing the

statistical foundations of the model, we provide three illustrative applications50

to empirical data, contrasting model-derived results with results from conven-

tional, spatially naive statistical tests. Our approach can be flexibly applied to

a range of brain map representations, including surface-based and volumetric

geometries at either parcellated or dense resolutions. We apply our method

to gene ontology (GO) enrichment analyses, which are commonly used to infer55

biological correlates of brain map topographies. We found that GO results are

spuriously driven by SA, and we develop a workflow for evaluating the GO en-

richment of a map’s topography while controlling for its SA. We have developed
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a Python-based implementation of our method, with additional neuroimaging-

specific functionality, which is released as an open-source software package for60

the field.

Methods

The method described below is implemented in an open-access, Python-based

software package, BrainSMASH: Brain Surrogate Maps with Autocorrelated

Spatial Heterogeneity (https://github.com/murraylab/brainsmash).65

Generating spatial autocorrelation-preserving surrogate maps

We present the algorithm first proposed by Viladomat et al. (2014) for testing

correlations between autocorrelated fields, here used to generate SA-preserving

brain maps. The algorithm can be conceptually subdivided into two main steps:

1. Randomly permute the values in a target brain map.70

2. Smooth and rescale the permuted map to recover lost SA structure.

Let x be a brain map whose value in brain region i is denoted xi. We

randomly shuffle (i.e., permute) the values in x to obtain the permuted map

x′0. We perform a local kernel-weighted sum of values in x′0 to construct the

smoothed map x′k, where the i-th element is computed as:

x′k,i =

∑k
j=1K(dij)x

′
0,j∑k

j=1K(dij)
, (1)

where k is the number of nearest neighboring regions used to perform the

smoothing, K is a distance-dependent smoothing kernel, and dij is the dis-

tance separating regions i and j. We use an exponentially decaying smoothing

kernel with a characteristic length scale equal to the distance of the k-th nearest75

neighbor. Following Viladomat et al. (2014), our smoothing kernel is truncated,

here at the characteristic length scale where it has a value of e−1. The distance

at which the kernel truncates will therefore be larger in regions where the brain

map is more sparsely sampled. The parameter k, which sets the spatial scale of

the SA reintroduced into the surrogate map, is chosen from a set of user-defined80

values such that surrogate maps’ fit to the target map is maximized (which we

will return to below).
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After smoothing the permuted map, x′k must be rescaled such that its SA

approximately matches the SA in the target map. To do this, we construct a

variogram—a summary measure of the autocorrelation in spatial data—for each

brain map. The variogram, which provides a measure of pairwise variation as a

function of distance, is typically computed within finite-width distance intervals:

in the distance interval centered around length scale h with width 2δ, the value

of the variogram, denoted γ, for brain map x is equal to the sample variance:

γ(h± δ) =
1

2N(h± δ)

N(h±δ)∑
i=1

N(h±δ)∑
j 6=i

(xi − xj)2 , (2)

where N(h± δ) is the number of sample pairs separated by a distance dij which

lies in the interval h− δ ≤ dij < h+ δ.

Following Viladomat et al. (2014), we further reduce noise in the data by

smoothing the variogram. To do this, we replace Equation 2 with

γ(h) =

∑N
i=1

∑N
j=i+1 wijvij∑N

i=1

∑N
j=i+1 wij

, (3)

where vij = 1
2 (xi − xj)2, and the weights wij are computed using a Gaussian

kernel which falls off smoothly with distance:

wij = exp

{
− (2.68s)2

2b2

}
, (4)

where s = ||h − dij ||, dij is the distance between regions i and j, the band-85

width b controls the smoothness of the smoothed variogram, and constants are

chosen such that the quartiles of the kernel are at ±0.25b (Viladomat et al.,

2014). In other words, a pair of regions i and j contribute most strongly to the

smoothed variogram evaluated at length scale h when their distance dij is equal

to h. In addition, because SA is primarily a local effect, only pairs of regions90

whose distance dij lies in the bottom 25th percentile of the distribution {dij}
contribute to the weighted sum in Equation 3, following Viladomat et al. (2014).

Throughout this study, Equation 3 was evaluated at 25 uniformly spaced dis-

tance intervals {h} across the range of distances dij which fell in the bottom

25th percentile of all elements in the distance matrix D. The bandwidth b was95

chosen to be three times the distance interval spacing, i.e., b = 3 (hi − hi−1).

To recover SA in our surrogate maps, we maximize the fit between the target

brain map’s variogram, γ[x], and the variogram of the smoothed map, γ[x′k],
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where γ[x] refers to Equation 3 evaluated at all {h} for brain map x. By

matching the variogram of the smoothed map to the variogram of the target

map, we impart the smoothed map with the characteristic SA structure of the

target map. For each value of smoothing parameter k, we linearly regress γ[x′k]

onto γ[x]; this procedure amounts to choosing a linearly transformed variogram

from the family

βγ[x′k] + α (5)

that is maximally similar to γ[x]. For each value of k, we compute the sum

of squared errors (SSE) in the fit between γ[x] and the linearly transformed

γ[x′k]. We then select the value of k which minimizes SSE, denoted k∗, to

construct a surrogate map whose SA is approximately matched to the SA in

x. The regression coefficients for k∗, denoted αk∗ and βk∗ , define the linear

transformation of x′k∗ into the surrogate map x̂:

x̂ = |βk∗ |
1
2 x′k∗ + |αk∗ |

1
2 z, (6)

where z is a map of normally distributed random variates with zero mean and

unit variance.

Constructing dense (i.e., vertex- or voxel-wise) surrogate brain maps imposes

additional computational challenges. The number of elements in a distance ma-100

trix or variogram — that is, in a pairwise measure — scales like O(N2), where N

is the number of brain regions. Consequently, each pairwise measure for a dense

map individually requires ∼ 4GB of RAM, quickly exhausting the resources of

standard laptop computers. To overcome this challenge, we developed an addi-

tional protocol for constructing dense surrogate maps. Because SA is primarily105

a local effect, only a subset of the smallest elements in a distance matrix, rep-

resenting pairs of spatially proximal regions, are needed to construct reliable

dense surrogate maps. For each row of a dense distance matrix, we therefore

keep only the knn smallest elements that are greater than zero. In other words,

for each vertex/voxel, we keep only the distances to its knn nearest neighboring110

vertices/voxels. In this study, we used knn = 1, 000 for dense cortical surrogate

maps, and knn = 1, 500 for cerebellar surrogate maps. In addition, following

Viladomat et al. (2014), we approximated dense variograms using a random

sampling of the data: for each dense surrogate map, we randomly sample ns

regions (without replacement) to perform the variogram fitting procedure. We115

used ns = 1, 000 for dense cortical surrogates and ns = 500 for cerebellar surro-

gates. These two sampling techniques reduced the memory burden by a factor
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of ∼ 900 for our dense cortical data, and result in a computational cost which

scales linearly with the number of regions.

We have also developed an implementation which leverages memory-mapped120

arrays, such that distance matrices stored locally on disk are read into memory

on an as-needed basis. The specific algorithms for constructing both dense

and parcellated surrogate brain maps are provided in Appendix A. All key

parameters described above are configurable in BrainSMASH and default to

the values used in this study. More details can be found in the BrainSMASH125

documentation: https://brainsmash.readthedocs.io/.

Data

Parcellated structural neuroimaging maps. Human T1w/T2w and cortical thick-

ness maps in the surface-based CIFTI file format were obtained from the Human

Connectome Project (HCP) (Van Essen et al., 2013). To produce the T1w/T2w130

maps, high resolution T1- and T2-weighted images were first registered to a

standard reference space using an areal-feature-based technique (Glasser et al.,

2016a; Robinson et al., 2014), then corrected for bias-field intensity inhomo-

geneities (Glasser and Van Essen, 2011; Glasser et al., 2013). Group-averaged

(N = 339) left-hemispheric T1w/T2w and thickness maps were parcellated into135

180 regions using the HCP’s Multi-Modal Parcellation (MMP1.0) (Glasser et al.,

2016a). Assignment of MMP1.0 parcels to functional networks was performed

through community detection analysis (Ito et al., 2017) on time-series correla-

tions in the HCP resting-state fMRI dataset.

Gene expression maps. Gene expression data were pre-processed following a140

procedure which we previously reported (Burt et al., 2018). Briefly, we con-

structed gene expression maps using data from the Allen Human Brain Atlas

(AHBA)—a publicly available transcriptional atlas of DNA microarray data,

containing samples from hundreds of histologically validated neuroanatomical

structures across six normal post-mortem human brains (Hawrylycz et al., 2012,145

2015). Microarray expression data and all accompanying metadata were down-

loaded from the AHBA (http://human.brain-map.org). The raw microarray

expression data for each of the six donors includes expression levels of 20,737

genes; our preprocessing pipeline yielded group-averaged gene expression profiles

for 16,088 genes across 180 parcels in the left cortical hemisphere. Brain-specific150

genes were selected as in Burt et al. (2018).
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Distance matrices. Matrices of three-dimensional Euclidean distance were used

for subcortical analyses, while matrices of surface-based geodesic distance were

used for cortical analyses. Geodesic distances between grayordinate vertices

in the midthickness surface file were computed using the Connectome Work-155

bench software. To compute the geodesic distance between two parcels i and

j, we computed the average of all pairwise surface-based distances between a

grayordinate vertex in parcel i and a vertex in parcel j.

Gaussian random fields

To theoretically characterize the impact of SA, we simulated Gaussian random

fields (GRFs) on a square lattice while parametrically varying SA. An impor-

tant statistical feature of a random field is its autocorrelation function which, for

isotropic and homogeneous random fields, is related to the power spectral den-

sity via the Wiener-Khinchin theorem. We therefore use a parametric function

for the power spectral density to vary the SA of simulated GRFs:

P (k) = |k|−α, (7)

where α is a positive number and k is a spatial frequency (not to be confused160

with the number of nearest neighboring brain regions). We simulated GRFs on

uniformly spaced two-dimensional grids within the unit interval with N tilings in

each dimension. More details about the theoretical foundation of this approach

are provided in Appendix B.

Gene ontology enrichment analyses165

Gene ontology (GO) enrichment analyses were scripted in the Python program-

ming language using the GOATOOLS package (Klopfenstein et al., 2018). To

generate gene sets used for these analyses, we performed partial least squares

(PLS)-based cross-decomposition between 16, 088 gene expression maps and one

brain map to identify genes whose spatial expression patterns were most strongly170

associated with a brain map’s topography (Vértes et al., 2016; Whitaker et al.,

2016; Romero-Garcia et al., 2018; Morgan et al., 2019). For each brain map,

we first identified the 1, 000 most strongly associated genes using PLS with a

single latent variable, corresponding to the 1, 000 genes with largest positive

PLS scores. For these genes, we then used GOATOOLS to identify signifi-175

cantly enriched annotations (i.e., GO categories) for these genes, as well as
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their Bonferroni-corrected significance values. All available UniProt IDs in the

GOATOOLS database were used as the background reference set.

Prior to reporting enriched GO categories, following Vértes et al. (2016),

we eliminated semantically redundant terms using the web-based tool REViGO180

(http://revigo.irb.hr) (Supek et al., 2011). To generate Fig. 7B, we first com-

puted the number of surrogate brain maps which were enriched for each GO

category. We kept the categories for which at least 5% of surrogate maps were

significantly enriched. Our input to REViGO was this list of GO categories

and the associated numbers of significantly enriched surrogate brain maps. In185

the web-based tool, we set the allowed similarity to “Medium (0.7)”, and we

selected the option for numbers associated with each GO category to be “some

other quantity, where higher is better.” Advanced options were left as their

default values. REViGO-generated outputs for each of the three enrichment

classes (biological process, molecular function, and cellular component) were190

exported as CSV files and aggregated. Finally, we applied thresholds of u > 0.9

for column “uniqueness”, d < 0.05 for column “dispensability”, and v > 60 for

column “value”, which reduced the list to a set of 12 highly enriched and se-

mantically unique categories that were subsequently plotted in semantic space.

Principal components analysis195

For a set of N genes, each with group-averaged gene expression values in p

cortical parcels, we constructed a gene expression matrix G with one row for

each cortical parcel and one column for each unique gene (i.e., with dimensions

P × N). The P × P spatial covariance matrix C was constructed by comput-

ing the covariance between vectors of gene expression values for each pair of200

cortical parcels: Cij = Cov(Gi, Gj), where Gi is the ith row in the matrix G,

corresponding to the vector of N gene expression values for the ith cortical

parcel. Eigendecomposition was performed on the spatial covariance matrix to

obtain the matrix eigenvectors (i.e., the principal components, PCs) and their

corresponding eigenvalues, which are proportional to the amount of variance205

captured by the corresponding PC. To enumerate each principal component,

eigenvalues were ranked in descending order of absolute magnitude, with larger

magnitudes indicating a greater proportion of the total variance captured by

the associated PC. To compute the variance captured per PC for SA-preserving

surrogate maps in Figure 3F, we used the following procedure:210
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1. 50 genes were randomly selected without replacement from a set of brain-

specific genes.

2. 40 surrogate gene expression maps were constructed for each selected gene.

3. 1,960 surrogate maps (the number of brain-specific genes) were randomly

selected without replacement from the set of 50 × 40 = 2, 000 surrogate215

maps.

4. PCA was performed on these gene expression maps to determine the ten

leading PCs and their variance spectrum.

To construct the variance captured per PC for randomly shuffled surrogate

maps, for each replicate, we randomly permuted all 1,960 brain-specific gene220

expression maps.

Data visualization

Cortical surface-based visualizations of empirical and surrogate brain maps were

generated using the Connectome Workbench software (Glasser et al., 2016b).

Left-hemispheric cortical data were illustrated on either flat, spherical, or very225

inflated cortical surface meshes in the HCP and Conte69 atlases. Cerebellar flat

maps were generated using the SUIT Matlab toolbox

(http://www.diedrichsenlab.org/imaging/suit.htm) (Diedrichsen and Zotow, 2015)

using custom Python scripts adapted from Guell et al. (2018). The black trend

line in Fig. 3C was calculated using the Theil-Sen estimator, a nonparametric230

estimator of linear slope that is insensitive to the underlying distribution and

robust to statistical outliers (Sen, 1968).

Moran spectral randomization

Surrogate maps derived via Moran spectral randomization (MSR) were gen-

erated using the singleton procedure implemented in the BrainSpace toolbox

(de Wael et al., 2019). Our spatial weight matrix was constructed by inverting

the parcellated geodesic distance matrix and setting diagonal elements to 1. The

tolerance (i.e., the minimum value for an eigenvalue to be considered non-zero)

was set to 10−6 as in the online tutorials (http://brainspace.readthedocs.io).

The example target brain map was constructed by superimposing normally dis-

tributed noise with an exponentially decaying component parametrized by the

distance to area MT:

xi = 0.05 ∗ N (0, 1) + exp (−di/15), (8)
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where xi is the value of the brain map in parcel i, and di is geodesic distance

(in millimeters) of parcel i from area MT.235

Results

Physical and mathematical properties of signal-generating processes in the brain

induce SA in empirical brain maps (Chumbley and Friston, 2009). To illustrate

the statistical impact of SA in brain maps, we consider two MRI-derived struc-

tural neuroimaging maps: the T1w/T2w map, which partly reflects intracortical240

gray-matter myelin content (Glasser and Van Essen, 2011; Glasser et al., 2014),

and the cortical thickness map (Fig. 1A). In these two cortical maps, proximal

brain regions exhibit more similar values than pairs of spatially distant regions.

This property differs starkly with the randomly shuffled (i.e., permuted) brain

maps in Figure 1B: randomly shuffling a brain map necessarily destroys its SA245

structure.

Although SA is a prominent and ubiquitous property of brain maps, many

conventional parametric statistical tests commonly applied to them assume that

data points are independent. This is related to the assumption that data points

are exchangeable when performing a non-parametric permutation test. In per-250

mutation tests of the significance of a brain map topography, null distributions

are constructed by repeatedly shuffling the target brain map, as in Figure 1B,

and recomputing the test statistic on these maps. This process preserves the

map’s distribution of values while randomizing its topography.

In statistical tests which do not account for the intrinsic SA structure of brain255

maps, the null hypothesis is that unstructured maps, like those in Figure 1B,

are reasonably likely to have produced a comparable or more extreme statistical

measure. To increase our confidence in claims regarding the specific spatial

topography of a brain map, we propose an alternative null hypothesis, in which

null distributions are derived from surrogate brain maps that preserve empirical260

SA while randomizing topography. By construction, SA-preserving surrogate

brain maps would preserve the two-point autocorrelation among brain regions

(Fig. 1C).

We found that null distributions for the Pearson correlation coefficient were

substantially different when derived from randomly shuffled and SA-preserving265

surrogate maps. We constructed these distributions by correlating the empirical
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Figure 1: Spatial autocorrelation (SA) in empirical brain maps has a substantial

impact on statistical inference. (A) The group-averaged (N = 339) T1w/T2w

(top) and thickness (bottom) maps in the left cortical hemisphere. The maps are

spatially autocorrelated: proximal brain regions exhibit more similar values than

pairs of spatially distant regions. (B) Randomly shuffling the empirical maps

— equivalent to assuming samples’ exchangeability, a more relaxed assumption

than independence — destroys their autocorrelation structure. (C) One exam-

ple realization of random SA-preserving surrogate maps, derived for each em-

pirical map. (D) Null distributions of Pearson correlation coefficients between

the empirical cortical thickness map, and 1, 000 randomly shuffled (red) and

SA-preserving (blue) surrogate maps derived from the empirical T1w/T2w map.

Dashed black line indicates the empirical correlation between the T1w/T2w and

cortical thickness maps. (E) Distributions of Pearson correlation coefficients be-

tween pairs of randomly shuffled (red) and SA-preserving (blue) surrogate maps

derived from the empirical T1w/T2w map. (Continued on the following page.)
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Figure 1: (F) The distribution of naive p-values for the Pearson correlation

between pairs of SA-preserving surrogate maps derived from the empirical

T1w/T2w map. These naive p-values are derived under the assumption that

samples are independent and normally distributed, in which case the sampling

distribution of Pearson’s r is a t-distribution with n − 2 = 29, 694 degrees of

freedom. n.s.: not significant.

cortical thickness map with maps in two different sets of surrogates—randomly

shuffled and SA-preserving, each derived from the empirical T1w/T2w map

(Fig. 1D). SA-preserving surrogate maps produced a null distribution whose

variance was more than an order of magnitude greater than the variance of the270

null distribution produced by randomly shuffled surrogate maps. A similarly

large difference in null distribution variance was also found for parcellated brain

maps (Supplementary Fig. 2).

This contrast between these approaches is recapitulated in the distributions

of pairwise correlations between pairs of surrogate maps (Fig. 1E). As in Figure275

1D, the variance of these distributions provides a measure of variation across

surrogate maps under the two respective null hypotheses. Increased null distri-

bution variance for the SA-preserving surrogate maps indicates that these maps

are, on average, more statistically similar than their randomly shuffled counter-

parts. Moreover, Pearson correlation p-values, which are blind to SA structure,280

tend to be exceptionally small when computed between pairs of random autocor-

related maps (Fig. 1F): we found that 91% of all pairwise correlations between

SA-preserving surrogate maps were statistically significant when assessed using

the naive Pearson correlation threshold of p < 0.05. This shows that even two

randomly generated brain maps are highly likely to be significantly correlated285

when evaluated using SA-naive statistical measures. Together, these findings

demonstrate the substantial impact that SA has on statistical measures derived

from large-scale brain maps.

Constructing spatial autocorrelation-preserving surrogate maps

Figure 2 provides a schematic of our generative modeling method for SA-preserving290

surrogate brain maps. The target brain map is first permuted, randomizing the

map’s topography. Next, SA is reintroduced by smoothing the permuted map

with a distance-dependent kernel. Motivated by previous work (Burt et al.,
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2018; Romero-Garcia et al., 2018; Markov et al., 2011; ArnatkevicIūtė et al.,

2019), here we use a smoothing kernel with weights which fall off exponentially295

with distance. However, we found that null distributions are largely insensitive

to the functional form of the kernel (Supplementary Fig. 3). The kernel is trun-

cated at the k-th nearest neighbor — differences in this parameter correspond

to differences in the characteristic length scale of the autocorrelation which is

reintroduced.300

SSatial VeSaration
(GiVtance)

Va
ria

nc
e SSatial VeSaration

(GiVtance)
Va

ria
nc

e

ShuIIle

Target maS
(GenVe or SarcellateG)

SA-SreVerving
Vurrogate maS

SA-inGeSenGent
Vurrogate maS Iterate over {k}

ComSute Vum oI
VTuareG errorV (SS()

Smooth uVing
k neareVt
neighEorV

ComSute variogram γ[x′
k]

  anG regreVV onto γ[x]

x′
k

x x′
0

TranVIorm uVing
the oStimal k that
minimi]eV SS( Ior
thiV Sarticular x′

0

Generate new x′
0

anG reSeateG Ior each
aGGitional Vurrogate

maS

γ[x]ComSute
variogram

Figure 2: Generating SA-preserving surrogate maps. A dense or parcellated

target brain map (x) is first randomly shuffled (x′0), destroying its SA. SA is

reintroduced by smoothing the shuffled map with an exponentially decaying,

distance-dependent smoothing kernel which includes the k nearest neighbors to

each region (x′k). Variograms (γ[·]), which we use to operationalize SA, are

computed for the target map and the smoothed map. The variogram for the

smoothed map is regressed onto the variogram for the target map. The regres-

sion coefficients define the transformation of x′k which approximately recovers

the autocorrelation in x. The smoothing and regression steps are repeated, each

time with a different number of nearest neighbors, k, used to perform the spatial

smoothing. For each iteration, the sum of squared error (SSE) in the variogram

fit is computed; the regression coefficients for the best value of k which mini-

mizes SSE are then used to produce a surrogate map whose SA is most closely

matched to the target map’s SA.

We operationalize SA in a brain map by computing its variogram. The
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variogram provides a summary measure of pairwise variation in a map as a

function of distance. For instance, any sequence of independent and identically-

distributed random variables has no distance dependence in its variation and

therefore has a flat variogram. In contrast, a positively autocorrelated spatial305

map has a variogram with positive slope, because variation among regions in

close spatial proximity (at small distances) is less than variation among widely

separated regions (at large distances). We construct variograms by computing

the brain map’s sample variance within uniformly spaced distance intervals for

both the target map and the smoothed map (Equation 2). For surface-based310

maps, we calculate distance between brain regions using surface-based geodesic

distance, while for volumetric maps we use three-dimensional Euclidean dis-

tance.

To recover SA in surrogate brain maps, we first perform a linear regression

between the smoothed map’s variogram and the target map’s variogram. We315

then compute the sum of squared error (SSE) in the variogram fit: smaller SSE

corresponds to improved recovery of SA structure. To maximize the recovery of

SA, the sequence of steps described above — smoothing the permuted map, fit-

ting the variogram, and computing SSE — are repeatedly performed, each time

using a different number of nearest neighbors, k, used to smooth the permuted320

map. Finally, the best value of k, denoted k∗, which minimizes SSE is used to

construct the SA-preserving surrogate map (via Equation 6).

The assumptions of this surrogate generation procedure are that maps are

normally distributed and stationary (Viladomat et al., 2014). Convolutions of

data and Gaussian smoothing of images, which are standard in neuroimaging325

data processing pipelines, result in maps which are approximately normal, per

central limit theory. Regardless, the value distributions of brain maps and

surrogate maps can be invertibly transformed prior to, and following, the use of

our method.

Illustrative applications to empirical neuroimaging data330

To demonstrate how SA influences statistical outcomes, we used our method

to evaluate statistical significance for three familiar types of brain map anal-

yses: testing for the functional network specificity of a brain map; testing

the topographic alignment between two maps; and testing data dimensionality.

In each analysis, we compare our findings to the results of standard spatially335
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naive statistical approaches. We perform each test on parcellated brain maps,

where neuroanatomically informed parcel borders should mitigate the impact of

SA, yielding more conservative estimates for the discrepancies between spatially

naive and SA-preserving approaches.

First, we consider the functional network specificity of the MRI-derived cor-340

tical T1w/T2w map (Fig. 3A,B). A spatially naive Wilcoxon signed-rank test

suggests that mean T1w/T2w map value is significantly higher in sensory net-

works than in association networks. Like the Wilcoxon signed-rank test, a spa-

tially naive permutation test produces a highly significant p-value (p < 10−4;

note that this is a conservative upper bound constrained by the number of per-345

mutations). However, functionally specialized networks of brain regions (and

regions of interest in general) tend to be spatially contiguous. We therefore

computed null distributions of network specificity (i.e., mean map value in as-

sociation vs. sensory networks) derived from SA-preserving surrogate maps to

determine the distribution of results expected by chance. We found that func-350

tional network specificity of the cortical T1w/T2w map remains statistically

significant, but that the calculated p-value is highly attenuated (p = 0.01), re-

flecting the more stringent null hypothesis that the specificity can be driven by

SA-constrained maps exhibiting random topography.

Next, we consider the commonly examined problem of assessing correspon-355

dence or spatial alignment between two brain maps (Fig. 3C,D). In Burt et al.

(2018), we showed that the first principal component (PC1) of brain-specific

gene expression variation exhibits a spatial topography that is strikingly simi-

lar to the cortical T1w/T2w map — a map which we showed provides a robust

noninvasive correlate of cortical hierarchy. Surface-based geodesic distance from360

primary visual area V1 has also been proposed as proxy measure of cortical hi-

erarchy (Wagstyl et al., 2015) (Fig. 3C). We revisited one of our prior analyses

(Burt et al., 2018) and asked whether the map of geodesic distance from area

V1, like the T1w/T2w map, is strongly associated with PC1 of gene expression

variation. A spatially naive Pearson correlation computed between these two365

brain maps suggests that their relationship is highly significant (rp = −0.43;

p = 2.3× 109). However, when PC1 is correlated with SA-preserving surrogate

maps, each derived from the V1 distance map, the resulting null distribution

reveals that this seemingly strong relationship can be explained by SA structure

alone (p = 0.25; Fig. 3D).370
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Figure 3: SA-preserving surrogate maps provide a more conservative and mean-

ingful measure of statistical significance in conventional neuroimaging analyses.

(A) Mean cortical T1w/T2w map value in functionally-defined sensory and as-

sociation brain networks, computed across 180 parcels in the left cortical hemi-

sphere. Spatially naive statistics suggest that cortical T1w/T2w map value is

significantly higher in sensory networks (***; p < machine precision; two-sided

Wilcoxon signed-rank test). Box plots mark the median and inner quartile

ranges across regions within each network, and whiskers indicate the 95% confi-

dence interval. (B) Null distributions for the difference in mean T1w/T2w map

value between sensory and association networks, derived from 10, 000 randomly

shuffled (red) and SA-preserving (blue) surrogate brain maps. Dashed black

line indicates the empirically observed difference. (C) Spatially naive statistics

suggest that the leading principal component (PC1) of cortical gene expression

variation, and the map of geodesic distance from visual area V1, are significantly

correlated (rp = −0.43, p = 2.3×10−9; Pearson correlation). (Continued on the

following page.)
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Figure 3: (D) Null distributions of Pearson correlations between gene expres-

sion PC1 and 10, 000 randomly shuffled (red) and SA-preserving (blue) surrogate

maps, derived from the map of distance from V1. Dashed black line indicates

the empirically observed correlation. (E) The spectrum of variance captured

by the first ten spatial PCs of cortical gene expression variation. PC1 captures

a disproportionately large fraction of gene expression variance, indicating that

cortical gene expression variation is quasi-one dimensional. (F) Null distribu-

tions of variance captured per PC, derived by performing PCA on ten replicates

of randomly shuffled (red) and SA-preserving (blue) surrogate gene expression

maps. Vertical bars indicate standard deviation across replicates. Green hori-

zontal bars indicate the empirical variance spectrum.

Finally, we examine how SA in brain maps influences principal component

analysis (PCA), a common linear decomposition and dimensionality reduction

technique. PCA identifies an orthogonal decomposition of data into dimensions

along which the data principally vary. When principal components (PCs) are

rank-ordered according to the amount of variance they capture (i.e., such that375

PC1 captures more variance than PC2), the shape of the distribution (i.e., the

variance spectrum) provides information about the data’s dimensionality. In

Burt et al. (2018), we found that PC1 of brain-specific gene expression vari-

ation captures an appreciable fraction of gene expression variance (Fig. 3E),

indicating that gene expression primarily varies along the spatial mode defined380

by PC1’s topography.

To determine whether or not the low dimensionality of gene expression vari-

ation can be explained simply by SA in the transcriptional data, we performed

PCA on ten replicate sets, each comprising 1,960 SA-preserving surrogate gene

expression maps (Fig. 3F). We found that the variance captured by empiri-385

cal PC1 greatly exceeds the expected variance captured by chance for spatially

autocorrelated surrogate maps, while subsequent empirical PCs exhibit a pat-

tern of captured variance which closely matches the null variance spectrum. In

contrast, PCA performed on replicate sets of randomly shuffled gene expression

maps yields a much flatter null variance spectrum. These discrepancies are due390

to differences in how variance is redistributed: random shuffling tends to re-

distribute variance uniformly across the brain, whereas SA-preservation retains
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the low-dimensional structure of variance found in the empirical data.

Collectively, these findings underscore the need for plausible null hypotheses,

and associated principled null models, to properly evaluate statistical outcomes395

when performing tests on brain maps with large-scale spatial gradients. In each

analysis, incorporating SA directly into the null hypothesis had a substantial

impact on inference.

Spatial autocorrelation modulates null distribution variance

To further characterize the impact of SA on statistical measures, we investi-400

gated the relationships between SA structure and null distribution variance.

We first considered the simplified mathematical setting of Gaussian random

fields (GRFs), which are random fields with a multivariate normal probability

distribution. The SA structure of a GRF can be parametrically controlled by

changing the slope of the field’s power spectral density (Appendix B). We de-405

fine our field’s power spectra to have the functional form P (k) = |k|−α, where

α > 0 and k is a spatial frequency (not to be confused with the number of

nearest neighboring regions). Intuitively, as α increases, spectral power P be-

comes increasingly concentrated at low spatial frequencies, yielding increasingly

autocorrelated fields.410

Three realizations of GRFs with varying SA structure are illustrated in Fig-

ure 4A. Differences in the fields’ SA are reflected in the shapes of their vari-

ograms: fields with greater SA are less variable across greater distances (Fig.

4B). To relate SA to null distribution variance, for each GRF realization we

constructed N = 1, 000 SA-preserving surrogate fields, and computed distribu-415

tions of pairwise Pearson correlation coefficients between fields at each SA level

(Fig. 4C). We found that null distribution width (i.e., variance) increased as

a function of SA (Fig. 4D), suggesting that SA tends to reduce the number of

effective degrees of freedom (i.e., the number of ways in which the fields can

vary). To understand this phenomenon intuitively, consider the limiting case420

in which a one-dimensional random field is perfectly autocorrelated. In this

limit, the system reduces to a single degree of freedom, i.e., lines with variable

slopes. Thus, the distribution of pairwise Pearson correlations between these

lines would be a bimodally peaked “distribution” with equal probabilities of

obtaining rp = ±1, depending on whether the slopes have equal or opposite425

signs—in other words, a distribution with maximal variance.
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Figure 4: SA drives an increase in null distribution width. (A) Gaussian random

fields (GRFs) with increasing SA, simulated on a uniformly spaced lattice of

1002 points. SA is varied by changing the slope of the fields’ power spectral

density, P (k) = |k|−α. (B) Variograms for the three GRFs in A. SA reduces

variability between spatially proximal points. (C) Distributions of pairwise

Pearson correlations between 1, 000 random realizations of each field in A. (D)

Variance of each distribution in C. SA constrains the fields’ variability such that

their pairwise correlations tend to be larger in magnitude. (E) Gene expression

variation across 180 parcels in the left cortical hemisphere. Moran’s I statistic,

a measure of SA, was used to select three genes whose cortical expression maps

exhibit low (i), moderate (ii), and high (iii) SA structure. (F) Variograms for

the three gene expression maps in E. (G) Distributions of pairwise Pearson

correlations between 1, 000 SA-preserving surrogate maps, computed for each

map in E. (H) Variance of each distribution in G. Histograms in panels C and

F were smoothed using Gaussian kernel density estimation. Labels i, ii, and

iii in panels E-H correspond to genes CCDC18-AS1, SERPINI1, and PRRX1,

respectively.

20

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 19, 2020. ; https://doi.org/10.1101/2020.02.18.955054doi: bioRxiv preprint 

https://doi.org/10.1101/2020.02.18.955054
http://creativecommons.org/licenses/by-nc-nd/4.0/


Equipped with these intuitions, we asked whether the same relationship ap-

pears in analyses of empirical brain maps with different SA. Because SA in gene

expression maps is highly variable (Gryglewski et al., 2018), we repeated the

analyses described above using parcellated gene expression maps derived from430

microarray data in the Allen Human Brain Atlas (Burt et al., 2018; Hawry-

lycz et al., 2012, 2015). To quantify SA in gene expression maps, we computed

Moran’s I statistic (Moran, 1950). Moran’s I provides a measure of global

autocorrelation in spatial data and ranges between -1 and 1, with positive val-

ues indicating the presence of positive spatial autocorrelation (i.e., indicating435

that proximal regions tend to be positively correlated). We then selected three

genes, two at the extremes and one at the center of the I-distribution (range

0.001–0.317), respectively characterized by low, moderate, and high SA (Fig.

4E). Variograms for these three gene expression maps followed the same trend

observed for GRFs (Fig. 4F), and null distribution variance was greater for440

genes with larger I values (with higher SA) (Fig. 4G-H). These results indi-

cate that SA modulates the variance of distributions for both GRFs as well as

empirical brain maps. This relationship between SA and null distribution vari-

ance reveals the origin of the large discrepancies between p-values derived from

spatially informed and spatially naive approaches.445

Sampling density and autocorrelation increase the likelihood of type I errors

If a measured brain feature is not spatially autocorrelated, or if it is weakly au-

tocorrelated but only sparsely sampled, then samples should be approximately

independent. In this scenario, we expect conventional tests to agree with spatial

statistical approaches. In contrast, if a brain feature is strongly autocorrelated,450

then we expect that as the sampling density is increased, the assumption of sta-

tistical independence will be increasingly violated and conventional tests should

diverge from spatial approaches. To test this, we investigated whether inde-

pendently increasing sampling density or SA amplified the discrepancy between

spatially informed and spatially naive approaches.455

We first demonstrated that our surrogate map generating process is robust

across a broad range of spatial scales. Using the HCP’s multi-modal parcellation

(Glasser et al., 2016a), dense and parcellated data differ in spatial resolution by

two orders of magnitude. Figure 5A-B illustrates that simulated surrogate maps

derived from dense and parcellated brain data each reliably recover empirical460

SA.
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Figure 5: Conventional p-values derived from spatially naive tests are highly sen-

sitive to SA and spatial resolution. (A-B) Variograms for 1, 000 SA-preserving

surrogate maps, derived from the dense (A) and parcellated (B) group-averaged

cortical T1w/T2w map. Open black circles indicate the empirical map’s vari-

ogram. Colored lines and shaded regions indicate mean and standard deviation

across surrogates. (C-D) Pairs of GRFs are simulated until obtaining a pair

with a Pearson correlation of |rp| = 0.15±0.005. Null distributions are computed

between one of the fields and 1, 000 randomly shuffled (red) and SA-preserving

(blue) surrogate fields, derived from the second field in the pair. Statistical

significance is assessed three ways: a parametric p-value is derived from a Stu-

dent’s t-distribution with N2−2 degrees of freedom (black), and non-parametric

p-values are derived from the two null distributions. Colored lines and shaded

regions indicate mean and standard deviation across 100 replicates. Left: SA

fixed at α = 2. Right: Spatial resolution fixed at N2 = 256. Larger values

indicate increased statistical significance. (Continued on the following page.)
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Figure 5: (E-F) The probability of obtaining a significant (p < 0.05) Pearson

correlation between two GRF realizations as a function of SA and resolution.

Each data point indicates the mean number of significant comparisons across

5, 000 trials. White contours from bottom to top correspond to probabilities

0.1, 0.2, ..., 0.7. Purple and green slices through E correspond to lines in F.

We then performed our surrogate map analyses on simulated GRFs, for

which the SA and grid resolution (a measure of sampling density) can be eas-

ily and independently varied (Fig. 5C). First, we simulated a random pair of

GRFs with a fixed pairwise Pearson correlation. For one of the two GRFs, we465

generated both SA-preserving and randomly shuffled surrogate fields. These

surrogate fields were then correlated with the second GRF, yielding two null

distributions of expected Pearson correlations. We assessed the statistical sig-

nificance of the association between the two fields in three ways: using a spatially

naive parametric p-value derived from a Student’s t-distribution, which assumes470

that samples are independent and normally distributed; and by deriving non-

parametric p-values from the two null distributions.

We determined how these three p-values were influenced when independently

varying the grid resolution (at fixed SA) and varying the SA (at fixed resolu-

tion) (Fig. 5D). Consistent with our hypothesis, we found that the discrepancy475

between spatially naive and spatially informed approaches grows in magnitude

as a function of both resolution and SA: at fixed SA, greater spatial resolu-

tion leads to more significant p-values for the spatially naive statistical tests,

whereas p-values derived from SA-preserving surrogate maps remain stable. In

contrast, at fixed spatial resolution, increased SA leads to less significant p-480

values for spatially informed tests, whereas it has no effect on the result of

spatially naive approaches (because the correlation between the simulated GRF

pairs was fixed).

To characterize how these two properties interact, we computed the prob-

ability of obtaining a statistically significant (p < 0.05) Pearson correlation485

between two GRFs while jointly varying SA and resolution (Fig. 5E,F). We

found that the probability of obtaining a significant result scales with sam-

pling density, and that the strength of this scaling is modulated by the strength

of autocorrelation—evidence for an interaction between these two properties.

These findings collectively indicate that greater SA and sampling density of au-490
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tocorrelated processes both independently and jointly increase the likelihood of

obtaining type I errors when using conventional tests.

Constructing subcortical surrogate maps with spatial autocorrelation

To the best of our knowledge, there is currently no established method for

generating spatially matched surrogate data for subcortical, or other volumet-495

ric, brain maps. To further demonstrate the flexibility of our approach, we

generated SA-preserving surrogate maps for a recently identified functional gra-

dient map in human cerebellum (Guell et al., 2018) (Fig. 6A,D). We follow

the same procedure to generate our cerebellar surrogates, with the only differ-

ence being the distance metric: whereas for cortical surface surrogate maps, we500

used surface-based geodesic distance between regions, here for our subcortical

volumetric surrogate maps we used three-dimensional Euclidean distance. By

construction, our generative model produces surrogate cerebellar maps which

preserve the empirical SA in the functional gradient map (Fig. 6C,F,I). As in

cortex, SA-preserving cerebellar surrogate maps produce null distributions with505

considerably more variance than null distributions constructed from randomly

shuffled maps (Fig. 6G,H).

Spatial autocorrelation drives enrichment in gene ontology analyses

Recent advances in high-throughput transcriptomics have made it possible to

perform gene expression profiling throughout the brain and across the genome.510

Advances in bioinformatics have also produced gene ontology (GO) databases,

which provide a corpus of functional annotations (or GO categories) that relate

genes to specific biological functions and molecular pathways. Together, tran-

scriptomic profiling and GO databases establish putative mappings between

large-scale gene expression topography and biological function.515

A growing number of recent studies have leveraged these technologies to infer

biological functions associated with large-scale brain maps using GO enrichment

analyses (Vértes et al., 2016; Whitaker et al., 2016; Romero-Garcia et al., 2018;

Morgan et al., 2019). These map-GO analyses often follow a similar logic (Fig.

7A). First, a brain map of interest is compared to maps of gene expression520

using uni- or multi-variate approaches. Each gene is ranked according to the

strength of the association between its expression profile and the brain map’s
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Figure 6: Generating SA-preserving surrogates for a subcortical map. (A)

Functional cerebellar gradient 1 map, derived from diffusion map embedding

of resting-state functional connectivity data by Guell et al. (2018), shown for

the left hemisphere. (B) Randomly shuffling the map destroys its SA. (C) SA-

preserving volumetric surrogate maps of the cerebellum preserve the SA present

in the empirical map. (D-F) Flat projections of the volumetric cerebellar maps

in A-C, constructed using the SUIT toolbox in Matlab. (G) Null distribu-

tions of Pearson correlation coefficients between the empirical map and 1, 000

randomly shuffled (red) and SA-preserving (blue) surrogate maps, derived from

the functional gradient map. (H) Distributions of Pearson correlation coeffi-

cients between pairs of randomly shuffled (red) and SA-preserving (blue) sur-

rogate maps, derived from the functional gradient map. (I) Variograms for the

empirical map (open black circles) and 1, 000 randomly shuffled (red) and SA-

preserving (blue) surrogate cerebellar maps. Colored lines and shaded regions

indicate mean and standard deviation across surrogates.25
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spatial topography. A GO enrichment analysis is then performed on the top-

ranking genes: when a significant number of top-ranking genes have a particular

annotation, relative to the number of annotations present in a reference set525

(e.g., the entire genome), then the top-ranking genes are said to be enriched for

that annotation. Because the top-ranking genes are strongly associated with

the brain map of interest, the enriched annotations are used to infer biological

functions associated with that particular brain map’s topography.

In effect, the null hypothesis in these types of map-GO analyses is that the530

number of annotations in the top-ranking gene set is expected by chance. In

other words, the null hypothesis is that a randomly selected set of genes is ex-

pected to contain the number of annotations which were observed empirically.

However, both brain maps and gene expression profiles are spatially autocorre-

lated, and gene expression profiles strongly covary across human cortex (Burt535

et al., 2018). As a result, not all genes are equally likely to be selected in a GO

analysis, regardless of any specific alignment of map topographies. To demon-

strate this effect, we performed a GO enrichment analysis on SA-preserving

surrogate maps, derived from the cortical T1w/T2w map (Fig. 7B). We found

that spatially autocorrelated surrogate brain maps were significantly enriched540

for many functional annotations (i.e., the top-correlating genes for those surro-

gate brain maps are significantly enriched). Therefore, under the null hypothesis

of conventional map-GO analyses, brain maps which are SA-constrained — yet

have random topographies — yield statistically significant GO enrichment.

The above analysis shows that GO enrichment of brain maps is spuriously545

driven by SA rather than topography. For a brain map of interest, the resulting

enriched GO categories may not be a property of that map’s specific topography,

but merely its SA. How then can map-GO enrichments be interpreted, for a brain

map of interest? We propose a statistical framework which utilizes generative

null modeling to test a more stringent and meaningful null hypothesis: that the550

observed number of annotations is driven by SA in the empirical map, and is

therefore not a special property of that brain map’s topography.

Our procedure to test this more meaningful null hypothesis proceeds as fol-

lows (Fig. 7B-D). First, SA-preserving surrogate maps are derived from the

brain map of interest. For each surrogate map, the top-ranking gene set is555

computed and then fed into a GO enrichment analysis. After repeating this

procedure on all surrogate maps, the result is a null distribution of expected p-
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Figure 7: Gene ontology (GO) enrichment analysis of SA-preserving surrogate

maps. (A) In standard GO enrichment analyses, topographical relationships

between a brain map and gene expression maps are first computed using uni-

or multi-variate regression techniques, e.g., Pearson correlation or partial least

squares regression. Genes are ranked according to their statistical association

with the brain map. Significant enrichments — annotations (GO categories)

which occur more frequently than expected by chance — for a set of top-ranking

genes are then used to infer the biological functions associated with the brain

map. (B) GO enrichment analysis applied to 1, 000 SA-preserving surrogate

maps derived from the cortical T1w/T2w map. Points are scaled in propor-

tion to the fraction of surrogate maps which were significantly enriched (range

13-45%). Points are colored according to the frequency with which each an-

notation appears across all genes in the genome: specific (general) indicates

low (high) frequency (range 0-66%). X- and Y-coordinates derive from multi-

dimensional scaling, such that nearby points are semantically similar, using the

web-based tool REViGO. (C) SA-preserving null distributions of expected en-

richments provide a mapping from empirical enrichment p-values (magenta) to

surrogate map-corrected p-values (green). The point at which the empirical p-

value (dashed magenta) intersects the cumulative distribution function of surro-

gate map-derived p-values (solid green) indicates the fraction of surrogate maps

which were more significantly enriched than the empirical map (dashed green).

(D) Surrogate map-corrected p-values for empirically enriched GO categories.

Significant (p < 0.05) surrogate map-corrected p-values indicate that the em-

pirical map’s enrichment is primarily driven by its specific spatial topography,

rather than its statistical properties (SA). Blue (red) bars indicate categories for

which more (fewer) than 5% of surrogate maps were more significantly enriched

than the empirical T1w/T2w map.
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values for each functional annotation. These distributions establish a mapping

from enrichment p-values — i.e., the output of the conventional approach — to

SA-corrected p-values under the new null hypothesis (Fig. 7C). Specifically, SA-560

corrected p-values are derived for each annotation by computing the fraction of

surrogate maps which were more significantly enriched than the empirical map.

Annotations for which the empirical map is significantly enriched, with respect

to its surrogates, correspond to biological functions which are uniquely associ-

ated with the empirical map (Fig. 7D). Rejecting this alternative null hypothesis565

provides much stronger evidence that a brain map has special properties unique

to its spatial topography.

To examine the impact of testing this null hypothesis, we applied the pro-

cedure to a map-GO analysis for the cortical T1w/T2w map (Fig. 7D). Out of

23 enriched GO categories defined by the conventional enrichment p < 0.05, we570

found that only 9 categories also reached significance with the more stringent

SA-corrected p < 0.05. That is, enrichment for 14 of the conventionally-selected

23 GO categories could be explained merely by SA of the T1w/T2w map rather

than its topography. These findings suggest exercising caution when interpreting

map-GO analyses, and demonstrate a procedure to correct for the substantial575

impact of SA. Furthermore, this generative null modeling framework can be

flexibly adapted to other complex statistical analyses of brain maps.

BrainSMASH: A Python-based platform for simulating surrogate brain maps

We have developed an open-access Python-based computational platform for

generating SA-preserving surrogate maps for any brain map of interest (Sup-580

plementary Fig. 4). BrainSMASH (Brain Surrogate Maps with Autocorrelated

Spatial Heterogeneity) requires only a brain map of interest and a matrix of

pairwise distances between elements of the brain map. How these inputs are

derived is left to user discretion, though additional support has been provided

for investigators working with HCP-compliant surface-based neuroimaging files.585

In particular, BrainSMASH includes routines to generate two-dimensional Eu-

clidean and geodesic distance matrices from surface geometry (GIFTI) files,

and subcortical Euclidean distance matrices from CIFTI-format files. All key

parameters described in the methods default to the values used in this study

but are easily reconfigurable through the API. Full details are described in the590

package documentation (https://brainsmash.readthedocs.io).
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Discussion

Here we have presented a method adapted from geostatistics for generative null

modeling of surrogate brain maps with SA matched to the SA of a target brain

map (Viladomat et al., 2014). We have validated our method and demonstrated595

its flexibility by showing that simulated surrogate maps recover SA of empir-

ical surface-based and volumetric maps, at parcellated and dense resolutions.

Our generative approach makes it possible to formulate and test a specific null

hypothesis which accounts for SA, a characteristic and ubiquitous property of

brain maps. We have released an open-access Python-based implementation of600

our method with additional neuroimaging-specific functionality, BrainSMASH.

Studies of large-scale spatial gradients often seek to discover meaningful

properties related to the specific topography of a brain map. To do so with con-

fidence, we must distinguish real and meaningful properties from those which

can be spuriously driven by general statistical properties of our data, such as605

SA. In other words, we require methods to determine the likelihood of our obser-

vation occurring by chance under a plausible null hypothesis which incorporates

general constraints on the space of possible alternatives. In practice, often the

choice of null hypothesis is not obvious; rather, it is implicit in the applied sta-

tistical test. However, many conventional tests such as the Pearson correlation610

do not control for SA, which is a prominent feature of brain maps. Incredibly

small p-values produced by these spatially naive methods should be interpreted

not as evidence of significance, but merely as an indication of how poorly the

null hypotheses can explain the observations. Spatially naive methods allow

one to reject the possibility that unstructured noise, which forms neurobiolog-615

ically implausible maps (Fig. 1B), can explain the observations. In contrast,

SA-preserving methods allow one to reject the possibility that a map with a

random topography but comparable SA (Fig. 1C) can explain the observations.

Spatial dependence is an important property of brains: local features and

inter-regional associations are influenced by the spatial arrangement of brain620

regions. For instance, the non-independence of signals measured in proximal

brain regions impacts expectations for the spatial extent of task activation

peaks in neuroimaging (Friston et al., 1994). In network neuroscience, distance-

dependent wiring rules have been incorporated into generative null network

models to establish expectations for graph-theoretic measures (Song et al., 2014;625

Betzel et al., 2016). Here we have incorporated SA into our null hypothesis in
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an adaptive (i.e., target brain-map specific) manner due to its prominence and

ubiquity in brain maps (Burt et al., 2018; Markov et al., 2011; ArnatkevicIūtė

et al., 2019; Romero-Garcia et al., 2018), its variation across brain maps (Burt

et al., 2018; Gryglewski et al., 2018), and because of its profound impact on630

statistical measures of interest.

Generative null modeling facilitates hypothesis testing for arbitrarily com-

plex statistical measures. This flexibility considerably broadens their scope of

applicability relative to conventional methods for computing p-values directly.

Generating surrogate data is particularly useful when the sampling distribution635

of a statistic lacks a closed-form expression. For instance, Demirtaş et al. (2019)

used a hierarchical cortical gradient to parametrize a dynamical brain model

that simulates functional connectivity, and tested the impact of this gradient

relative to SA-preserving surrogates. Surrogate data instantiate an explicitly

formulated null hypothesis, and thereby reproduce the expected distribution of640

a statistic under that hypothesis (Fornito et al., 2016). Generative null mod-

els thus have widespread utility as tools for power calculations and statistical

inference.

Recent studies have proposed alternative methods to account for SA in sta-

tistical analyses of brain maps. The spin test was recently developed to test645

the anatomical alignment between two cortical surface maps (Alexander-Bloch

et al., 2018). The spin test, however, cannot be used to test alignment between

volumetric maps or maps which span only a small subset of cortex. Variably

sized and irregularly spaced parcels in cortical parcellations also make the spin

test impractical for comparisons between parcellated brain maps. Furthermore,650

the spin test is not suitable for generating SA-preserving surrogate maps (Sup-

plementary Fig. 5). Spatial autoregressive modeling (Burt et al., 2018) and

Moran spectral randomization (de Wael et al., 2019) can be used to generate

spatially autocorrelated surrogate brain maps. However, these models require

the user to choose a specific functional form of the spatial dependence among655

regions, and may be highly sensitive to this choice (Dubin, 1998). Furthermore,

Moran spectral randomization may produce surrogate maps which are strongly

correlated with the target brain map, and are therefore not suitable surrogate

data for constructing null distributions (Supplementary Fig. 6). In contrast,

by construction our method generates surrogate maps which exhibit random660

topographies.
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Generative null modeling is a powerful and flexible approach for evaluating

statistical measures against an explicitly defined null hypothesis. The present

study, which presents a generative model of brain maps with constrained SA

structure, extends our ability to control for a prominent and ubiquitous feature665

of neuroimaging data. Future work can build on this approach to incorporate

additional constraints within a generative modeling framework, thereby expand-

ing the scope of scientific inquiry in the study of large-scale brain organization.
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Code and data availability

A Python-based implementation of the surrogate map generating algorithm used

to conduct analyses in this study may be downloaded as an open-access software

package, BrainSMASH: https://github.com/murraylab/brainsmash. All results690

derive from data that are publicly available from sources described above.
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Appendix A. Algorithms for generating surrogate maps

To generate parcellated and dense SA-preserving surrogate maps, we use the

following two algorithms:

Algorithm 1 Generating a parcellated SA-preserving surrogate map

1: Lines 2-8 specified at runtime:

2: x← Empirical brain map

3: D← Pairwise distance matrix

4: {k} ← Smoothing parameters to iterate over

5: K ← Smoothing kernel

6: pv ← Percentile cutoff for variogram

7: nh ← Number of uniformly spaced distances at which to evaluate variogram

8: b← Gaussian kernel bandwidth (for smoothing variogram)

9: Compute matrix V = 1
2 (xi − xj)2

10: Compute indices i, j where D < pv(D) and i < j

11: Compute γ[x] from D[i, j], V[i, j], b, and nh following Equation 3

12: x′0 ← Permute(x)

13: for k ∈ {k} do

14: Compute x′k from x′0, K, and k following Equation 1

15: Compute matrix V′ ← 1
2 (x′k,i − x′k,j)2

16: Compute γ[x′k] from D[i, j], V′[i, j], b, and nh following Equation 3

17: Regress γ[x′k] onto γ[x]

18: Store regression coefficients (αk, βk) and sum of squared error (SSE)

19: k∗ ← k for which SSE is minimized

20: Compute x′k∗ from x′0, K, and k∗ following Equation 1

21: Compute map of white noise z ∼ N (0, 1)

22: Compute surrogate map x̂ = |βk∗ |
1
2 x′k∗ + |αk∗ |

1
2 z

23: Repeat steps 12-22 for each additional surrogate map
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Algorithm 2 Generating a dense SA-preserving surrogate map

1: Lines 2-10 specified at runtime:

2: x← Empirical brain map

3: D← Pairwise distance matrix

4: {k} ← Smoothing parameters to iterate over

5: K ← Smoothing kernel

6: pv ← Percentile cutoff for variogram

7: knn ← Number of nearest neighbors to keep in each row of D

8: ns ← Number of random samples to use for each variogram

9: nh ← Number of uniformly spaced distances at which to evaluate variogram

10: b← Gaussian kernel bandwidth (for smoothing variogram)

11: D∗ ← (for each row of D) the knn smallest elements greater than zero

12: i← Sample ns elements without replacement from {1, 2, ..., length(x)}

13: D′ ← ith rows of D∗

14: Compute matrix V = 1
2 (xi − xj∗)2 = 1

2

(
D′ij

)2
15: Compute indices i′, j′ where D′ < pv(D

∗)

16: Compute γ[x] from D′[i′, j′], V[i′, j′], b, and nh following Equation 3

17: x′0 ← Permute(x)

18: for k ∈ {k} do

19: Compute x′k from x′0, K, and k following Equation 1

20: Compute elements V′ = (x′k,i − x′k,j∗)2

21: Compute γ[x′k] from D′[i′, j′], V′[i′, j′], b, and nh following Equation 3

22: Regress γ[x′k] onto γ[x]

23: Store regression coefficients (αk, βk) and sum of squared error (SSE)

24: k∗ ← k for which SSE is minimized

25: Compute x′k∗ from x′0, K, and k∗ following Equation 1

26: Compute map of white noise z ∼ N (0, 1)

27: Compute surrogate map x̂ = |βk∗ |
1
2 x′k∗ + |αk∗ |

1
2 z

28: Repeat steps 12-27 for each additional surrogate map
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Appendix B. Gaussian random fields695

The most important statistical feature of a random field is its two-point au-

tocorrelation function, ξ(x1, x2), which quantifies the inter-dependence of field

values at different locations. For isotropic and homogeneous random fields, the

autocorrelation function depends only on the separation x = x1 − x2 and is

related to its power spectral density P (k) through a Fourier transform:

ξ(x) =

∫
e−ikxP (k)dk. (B.1)

Because ξ(x) is positive definite, P (k) must be non-negative. In addition, for the

field to be isotropic we require P (k) = P (|k|). In this spectral representation,

field fluctuations are represented as an integral over plane waves, where P (k)

specifies the distribution over wave number k (i.e., over spatial frequencies). In

other words, the smoothness of the field is determined by the rate at which P (k)700

approaches 0 as k →∞.

To simulate GRFs, we color a continuous white noise Gaussian process with

zero mean and unit variance, η(x), whose Fourier transform is given by:

η̂(k) =

∫
dx η(x)eikx. (B.2)

The Gaussian white noise process is then colored using the target power spectral

density via:

φ̂(k) =
√
P (k)η̂(k) =

∫
dx
√
P (k)η(x)eikx. (B.3)

We then leverage the fact that the inverse Fourier transform of Equation B.3

yields a Gaussian process φ(x) colored with the desired power spectral density

P (k) (Yura and Hanson, 2011). This field is guaranteed to be Gaussian by the

central limit theorem because field values in η(x) are by definition independent,

and an integral is an infinite sum. Note however that in discretized simulations

where integrals are replaced by finite sums, this guarantee holds only asymp-

totically. Lastly, we let

P (k) = |k|−α, (B.4)

where α is any positive number, such that both the isotropic and positive-

definiteness conditions on ξ(x) are satisfied.

To simulate GRF realizations, we follow the logic described above. We first

create a uniformly spaced two-dimensional lattice (or grid) with N tilings in each705
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dimension. At each point on the grid, we draw a random sample from a standard

normal distribution. We then compute the discrete Fourier transform of this

field to get η̂(k). At each point on the grid, the shifted Fourier components

k =
√
k2x + k2y are used to compute the spectral amplitudes

√
P (k) = |k|−α/2.

Note that we remove the mean shift by setting the spectral amplitude for k = 0710

equal to zero. Finally, we substitute η̂(k) and
√
P (k) into Equation B.3 to get

φ̂(k), then take the discrete inverse Fourier transform to get φ(x). We normalize

the resulting field such that it has zero mean and unit variance.
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Supplementary Figure 1: Random realizations of SA-preserving surrogate maps

for the dense and parcellated group-averaged (N = 339) cortical T1w/T2w and

cortical thickness maps. Each surrogate map’s topography is randomized while

preserving the SA that is present in the empirical map from which each surrogate

is derived. To match surrogate map value distributions to the distribution of

values in the corresponding empirical map, rank-ordered surrogate map values

were re-assigned the corresponding rank-ordered values in the empirical map.
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Supplementary Figure 2: SA in parcellated brain maps has a substantial impact

on statistical inference. (A) The group-averaged (N = 339) cortical T1w/T2w

(top) and cortical thickness (bottom) maps across 180 parcels (Glasser et al.,

2016a) in the left hemisphere. (B) Randomly shuffling the empirical maps

in A destroys their autocorrelation structure. (C) One example realization

of SA-preserving surrogate maps, derived for each empirical map. (D) Null

distributions of Pearson correlation coefficients between the empirical cortical

thickness map, andN = 1, 000 randomly shuffled (red) and SA-preserving (blue)

surrogate maps derived from the empirical T1w/T2w map. Dashed black line

indicates the empirical correlation between the T1w/T2w and cortical thickness

maps. (E) Distributions of Pearson correlation coefficients between pairs of

randomly shuffled (red) and SA-preserving (blue) surrogate maps derived from

the empirical T1w/T2w map. (Continued on the following page.)
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Supplementary Figure 2: (F) Distributions of naive p-values for the Pearson

correlation between pairs of SA-preserving surrogate maps derived from the em-

pirical T1w/T2w map. These naive p-values are derived under the assumption

that samples are independent and normally distributed, in which case the sam-

pling distribution of Pearson’s r is a t-distribution with n− 2 = 178 degrees of

freedom. n.s.: not significant.
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Supplementary Figure 3: The SA-preserving surrogate generating method is

largely insensitive to the functional form of the smoothing kernel (Equation

1). Each distribution consists of all pairwise Pearson correlations between

N = 1, 000 SA-preserving surrogate maps derived from the parcellated cortical

T1w/T2w map. Top, middle, and bottom panels were derived using uniform

(i.e., distance independent), Gaussian, and exponentially-decaying kernels, re-

spectively. Mean and variance of each distribution is indicated by µ and σ2,

respectively.
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Supplementary Figure 4: BrainSMASH: Brain Surrogate Maps with Au-

tocorrelated Spatial Heterogeneity. Simulating surrogate brain maps with

the BrainSMASH package requires specifying two inputs: a brain map, and

the matrix of pairwise distances between elements of the brain map. Ad-

ditional support is provided for users working with HCP-style neuroimag-

ing files. Comprehensive documentation for BrainSMASH can be found at

https://brainsmash.readthedocs.io.
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Supplementary Figure 5: The spin test developed by Alexander-Bloch et al.

(2018). (A) The dense, left-hemispheric cortical T1w/T2w map. The medial

wall (blue border) forms a void in the cortical surface. (B) First, data are

projected from the warped cortical surface onto a spherical surface. (C) Next,

data on the spherical surface are rotated by a random angle, preserving SA but

randomizing anatomical alignment. Blue (red) border indicates the location of

the medial wall before (after) rotation. (D) Next, the rotated data are projected

back onto the warped cortical surface. (E) To construct one sample from the

null distribution, the rotated map in D is compared against another empirical

brain map. Vertices in the pre- or post-rotation medial wall, indicated by lightly

shaded edges within the blue and red borders, are excluded. The number of

vertices included, indicated by darkly shaded edges, depends the spatial overlap

between the pre- and post-rotation medial wall, and will in general vary for each

sample in the null distribution. If a surrogate brain map were to be constructed,

data rotated into the blue region would be discarded, while the red region would

need to be interpolated in some manner using data points around the boundary.
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Supplementary Figure 6: Moran spectral randomization (MSR) may yield sur-

rogate brain maps which correlate strongly with the target map. (A) An exam-

ple, neurobiologically plausible target brain map, constructed by superimposing

normally distributed noise with a signal component which decays smoothly as

a function of distance from area MT. (B) The distribution of Pearson corre-

lations between the target map and N = 5, 000 MSR-derived surrogate maps,

constructed using the BrainSpace toolbox (de Wael et al., 2019). A substantial

fraction of MSR-derived surrogate maps correlate strongly (positively or nega-

tively) with the target map, producing the two approximately symmetric outer

peaks of the distribution. (C) The distribution of Pearson correlations between

pairs of MSR-derived surrogate maps exhibits the same trimodal shape. Panels

B-C indicate that MSR does not generate surrogate brain maps with random to-

pographies. (D) The distribution of Pearson correlations between the empirical

map and N = 5, 000 variogram-matched surrogate maps from our method. (E)

The distribution of Pearson correlations between pairs of variogram-matched

surrogate maps from our method.
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