

Single-cell chromatin profiling reveals demethylation-dependent metabolic vulnerabilities of breast cancer epigenome

Meena Kusi¹, Maryam Zand², Chun-Lin Lin¹, Chiou-Miin Wang¹, Nicholas D. Lucio¹,
Nameer B. Kirma¹, Jianhua Ruan², Tim H.-M. Huang^{1*} and Kohzoh Mitsuya^{1*}

¹Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, Texas, USA. ²Department of Computer Science, University of Texas at San Antonio, Texas, USA.

*Corresponding authors: Tim H.-M. Huang, Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229. Phone: 210-450-0025, e-mail: huangt3@uthscsa.edu; and Kohzoh Mitsuya, Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229. Phone: 210-450-8489, e-mail: mitsuya@uthscsa.edu.

13 Word count (including abstract, but excluding methods section, references and figure legends):
14 4,436

15 Total number of figures and tables: 6 figures, 6 supplementary figures, and 6 supplementary
16 tables

17 **Abstract**

18 Metabolic reprogramming in cancer cells not only sustains bioenergetic and biosynthetic needs
19 but also influences transcriptional programs, yet how chromatin regulatory networks are rewired
20 by altered metabolism remains elusive. Here we investigate genome-scale chromatin remodeling
21 in response to 2-hydroxyglutarate (2HG) oncometabolite using single-cell assay for transposase
22 accessible chromatin with sequencing (scATAC-seq). We find that 2HG enantiomers differentially
23 disrupt exquisite control of epigenome integrity by limiting α -ketoglutarate (α KG)-dependent DNA
24 and histone demethylation, while enhanced cell-to-cell variability in the chromatin regulatory
25 landscape is most evident upon exposure to L2HG enantiomer. Despite the highly heterogeneous
26 responses, 2HG largely recapitulates two prominent hallmarks of the breast cancer epigenome,
27 i.e., global loss of 5-hydroxymethylcytosine (5hmC) and promoter hypermethylation, particularly
28 at tumor suppressor genes involved in DNA damage repair and checkpoint control. Single-cell
29 mass cytometry further demonstrates downregulation of BRCA1, MSH2 and MLH1 in 2HG-
30 responsive subpopulations, along with acute reversal of chromatin remodeling upon withdrawal.
31 Collectively, this study provides a molecular basis for metabolism-epigenome coupling and
32 identifies metabolic vulnerabilities imposed on the breast cancer epigenome.

33 **Introduction**

34 As a dynamic system, cancer cells continuously adapt to the fluctuating microenvironment by
35 rerouting metabolic fluxes and evolve from early initiation through progression and
36 dissemination^{1,2}. Metabolic reprogramming in cancer cells facilitates energy production and
37 macromolecular synthesis to fuel cell proliferation^{3,4}. In addition to supporting bioenergetic and
38 biosynthetic needs, altered metabolism involves promiscuous production of non-canonical
39 metabolic intermediates, which have been described as metabolic waste products or metabolite
40 damage^{5,6}. Recent studies suggest that these previously uncharacterized metabolites including
41 oncometabolites are linked to 'non-metabolic' signaling mechanisms in cell-type-specific fate
42 decisions⁷.

43 The oncometabolite 2-hydroxyglutarate (2HG) occurs as two enantiomers and
44 accumulates up to millimolar concentrations in a broad range of hematological and solid
45 malignancies^{8,9}. Somatic mutations in isocitrate dehydrogenase genes, *IDH1* and *IDH2*, found in
46 glioma and acute myeloid leukemia (AML) result in stereospecific production of the D-enantiomer
47 (D2HG)^{10,11}, while breast tumors frequently exhibit elevated levels of 2HG despite the lack of *IDH*
48 mutations^{12,13}. Recent studies indicate that the L-enantiomer (L2HG) can accumulate under
49 acidic^{14,15} and hypoxic conditions^{16,17} that often coexist in the tumor microenvironment, yet the
50 potential sources and functions of L2HG are less well established. Both enantiomers structurally
51 resemble α -ketoglutarate (α KG), a key intermediate in the Krebs cycle, and potentially antagonize
52 α KG-dependent dioxygenases including ten-eleven translocation (TET) DNA hydroxylases and
53 Jumonji domain-containing histone demethylase (JHDM) enzymes¹⁸⁻²⁰, which catalyze oxidative
54 demethylation of DNA and histone proteins, respectively.

55 Promoter hypermethylation and global loss of 5-hydroxymethylcytosine (5hmC) are two
56 prominent hallmarks of the breast cancer epigenome²¹⁻²³. Genome-wide depletion of 5hmC is
57 frequently observed in a multitude of tumor types including breast cancer and is associated with
58 poor patient survival^{24,25}; however, its cause and pathological consequences are largely opaque.

59 Similarly, promoter hypermethylation of tumor suppressor genes has also been considered a
60 common and driving event in breast malignancies. Loss-of-function mutations in DNA
61 hydroxylases (*TET1*, *TET2* and *TET3*) or overexpression of DNA methyltransferases (*DNMT1*,
62 *DNMT3A* and *DNMT3B*)^{26,27}, and recently tumor hypoxia²⁸ have been reported to be associated
63 with aberrant DNA methylation, yet the molecular origin of promoter hypermethylation in breast
64 cancer remains obscure^{27,29}.

65 Here we show that the oncometabolite 2HG disturbs the fine-tuned spatial regulation of
66 the mammary epithelial epigenome, and initiates global loss of 5hmC and tumor-associated
67 promoter hypermethylation by impairing αKG-dependent demethylation. The findings provide a
68 mechanistic framework in which altered metabolism mediates two pathological hallmarks of the
69 breast cancer epigenome, thereby priming early epigenetic events to be exploited during the
70 development of breast cancer, in particular basal-like subtype with high 2HG accumulation. By
71 leveraging two single-cell approaches, our study further highlights a role for 2HG oncometabolites
72 in the dynamics of cell-to-cell variability in the epigenome of this tumor type, whereby chromatin
73 regulatory modules are highly vulnerable to metabolic derangements.

74 **Results**

75 **2HG enantiomers progressively modulate the mammary epigenome by limiting DNA and** 76 **histone demethylation**

77 To identify the regulatory mechanism involving cellular metabolism that mediates breast cancer
78 development, we first analyzed the intracellular levels of D2HG and L2HG using enantiomer-
79 selective liquid chromatography-mass spectrometry (LC-MS) following chiral derivatization of the
80 analyte (Fig. 1a,b). Relatively higher levels of D2HG were observed in both ERα-positive and -
81 negative breast cancer cell lines compared to benign and primary mammary epithelial cells,
82 whereas elevated L2HG levels were predominant in ERα-negative breast cancer cells (Fig. 1c,d).
83 In line with this, ERα-negative cells had higher levels of total 2HG (Supplementary Fig. 1a), which

84 is supported by prior studies showing preferential accumulation of 2HG in ER α -negative or basal-
85 like tumors^{12,13,30}. We next leveraged the recently developed comprehensive Cancer Cell Line
86 Encyclopedia (CCLE) metabolomics database^{31,32} and found that 2HG levels were remarkably
87 elevated in basal-like tumor cells in comparison to other tricarboxylic acid (TCA) cycle metabolites
88 that are structurally similar to one another and are potentially involved in α KG-dependent
89 dioxygenase reactions (Fig. 1e). Of note, our investigation of somatic mutations using two
90 independent datasets from the Sanger Catalogue of Somatic Mutations in Cancer (COSMIC) and
91 CCLE consortia showed no evidence for gain-of-function mutations in *IDH1* or *IDH2* among 62
92 breast cancer cell lines, further corroborating the findings of infrequent *IDH* mutations and yet
93 high accumulation of 2HG in breast tumors (Supplementary Fig. 1b)^{12,13,30,33}. It should be noted,
94 however, that recurrent *IDH2* mutations are found in a rare breast cancer subtype with elevated
95 intratumor 2HG levels^{34,35}.

96 To determine the global impact of oncometabolites on the chromatin landscape, primary
97 human mammary epithelial cells (HMECs), which exhibited low levels of endogenous 2HG
98 (Supplementary Fig. 1a), were exposed for 72 hr to the cell-permeable derivatives of D2HG and
99 L2HG. Exposure to either of the two enantiomers led to a decrease in 5-hydroxymethylcytosine
100 (5hmC) and reciprocal increase in 5-methylcytosine (5mC) across the LINE-1 repetitive sequence
101 elements in the genome (Supplementary Fig. 1c), indicating competitive inhibition of TET-
102 mediated oxidation of 5mC to 5hmC during the process of active DNA demethylation³⁶ (Fig. 1f).
103 Similarly, immunofluorescence staining using a 5hmC-specific antibody showed a dose-
104 dependent global loss of 5hmC in response to D2HG (Fig. 1g). In contrast, global levels of
105 H3K27me3 histone methylation were elevated in proportion to the increasing concentrations of
106 D2HG, via inhibition of JHDM-mediated histone demethylation (Fig. 1g,h and Supplementary Fig.
107 1d). Our observations thus indicated that short-term exposure at a relatively low range was
108 sufficient to induce a substantial change in the mammary epithelial epigenome.

109 Unlike DNA methylation, lysine residues on histone tails can be mono-, di- and tri-
110 methylated (Supplementary Fig. 1d) and we therefore employed a multiplexed LC-MS assay to
111 quantify changes in histone methylation. Exposure to 2HG enantiomers led to elevated
112 methylation levels in both repressive (H3K27me3, H3K9me3 and H4K20me3) and permissive
113 (H3K4me3, H3K36me3 and H3K79me3) histone marks as indicated by increases in mono-, di- or
114 tri-methylation along with a reciprocal decrease in the levels of unmethylated lysine residues (Fig.
115 1i, Supplementary Fig. 1e and Supplementary Table 1). Consistently, repressive methylation
116 modifications on H3K27 residues were accumulated in relation to the increasing levels of
117 intracellular 2HG in the CCLE breast cancer cell lines (Supplementary Fig. 1f). Of note, there was
118 no detectable alteration in cell-cycle phase distribution upon 2HG supplementation
119 (Supplementary Fig. 1g). Together, our findings support a model that the intratumor accumulation
120 of 2HG oncometabolites progressively modulates the mammary epigenome independent of cell
121 cycle progression, potentially leading to extensive chromatin remodeling.

122 **Single-cell profiling of chromatin accessibility reveals epigenetic heterogeneity in
123 response to 2HG enantiomers**

124 To delineate the genome-scale dynamics of epigenetic regulatory modules in response to
125 oncometabolite exposure, we applied single-cell assay for transposase-accessible chromatin with
126 high-throughput sequencing (scATAC-seq)³⁷. First, individual single cells were isolated from
127 HMECs cultured in media supplemented with either D2HG or L2HG using integrated fluidic
128 circuits (Fig. 2a). Following cell lysis and fragmentation of open, accessible chromatin regions by
129 Tn5 transposase, a total of 248 single-cell libraries were independently indexed with unique
130 barcodes and sequenced as a single pool. scATAC-seq reads exhibited the expected periodicity
131 of ~200-bp insert size fragments corresponding to nucleosome bands^{37,38} (Fig. 2b). Additionally,
132 aggregate scATAC-seq profiles of 248 single cells showed high concordance with the ensemble

133 measurement of the accessibility landscape profiled by DNase-seq (Fig. 2c and Supplementary
134 Fig. 2a; $r = 0.76$).

135 We next sought to globally visualize single-cell DNA accessibility profiles using principal
136 component analysis (PCA), which indicated distinct cell subpopulations that were discernible not
137 only between but also within the treatment groups (Fig. 2d and Supplementary Fig. 2b). Cell-to-
138 cell variability in the chromatin landscape was likewise detected among cells receiving the same
139 treatment by using cell similarity matrix analysis based on highly accessible genomic regions
140 (Supplementary Fig. 2c). In contrast, replicate samples were similarly distributed despite being
141 processed in different experiments (Supplementary Fig. 2d), further supporting the technical
142 robustness and reproducibility of the method. Interestingly, the first principal component (PC1)
143 broadly separated L2HG-exposed cells from control and D2HG-exposed cells that were
144 distinguishable, albeit to a lesser extent, alongside the PC2 direction (Fig. 2d), indicating that the
145 two enantiomers could differentially modulate the chromatin organization. Furthermore, L2HG-
146 exposed cells were clearly separated into different subpopulations oriented in the opposite
147 direction on the PC2 axis and showed a more variable distribution compared to unexposed control
148 cells, suggesting a substantial increase in cell-to-cell variability following L2HG exposure.

149 Consistent with the observation that epigenetic heterogeneity was most evident among
150 L2HG-exposed cells, model-based clustering following PCA identified three major cell subsets in
151 L2HG-exposed cells, referred to as L1, L2 and L3, along with a total of five distinct clusters among
152 the 248 single cells (Fig. 2e and Supplementary Fig. 2e). When scATAC-seq data were
153 aggregated, notable differences in chromatin accessibility were observed throughout the genome
154 between L2HG subgroups (Supplementary Fig. 2f). Moreover, inspection of genome-wide
155 distribution of scATAC-seq signals over CpG islands ($n = 28,690$) and H3K4me3 peaks ($n =$
156 33,116) revealed a marked difference between L1 versus L2 and L3 subsets (Fig. 2f). In
157 agreement, Cluster 1 comprised cells from all three experimental groups that were clustered in
158 close proximity with similar multidimensional phenotypes (Fig. 2d,e), implying L1 subset being a

159 cell subpopulation that is potentially less sensitive to oncometabolite perturbation. This was
160 contrasted with no pronounced differences in scATAC-seq accessibility profiles either across CpG
161 islands or H3K4me3 sites detected between the three experimental groups (Supplementary Fig.
162 2g). Together, single-cell DNA accessibility profiling revealed that the two enantiomers could
163 distinctly modulate the mammary epigenome and drive cell-to-cell epigenetic diversity in the
164 chromatin regulatory landscape.

165 **2HG depletes promoter accessibility at highly methylated genes in breast cancer**

166 To identify disease-relevant epigenetic signatures imposed upon 2HG exposure, we further
167 interrogated our scATAC-seq data using publicly available large-scale datasets including
168 Encyclopedia of DNA Elements (ENCODE)³⁹, Roadmap Epigenomics⁴⁰, Cancer methylome⁴¹ and
169 The Cancer Genome Atlas (TCGA)⁴² (Fig. 3a). We first determined the global occupancy of open,
170 accessible chromatin regions by utilizing the 12-state chromatin segmentation defined in
171 HMECs⁴³. As expected, ATAC-seq signals in unexposed control cells were remarkably enriched
172 in active/weak gene promoters and strong enhancers but were significantly underrepresented in
173 inactive genomic regions such as heterochromatin and repetitive regions, both of which were
174 associated with nuclear lamina⁴⁰ (Supplementary Fig. 3a). Following 2HG exposure, chromatin
175 accessibility was reduced in genomic regions enriched with permissive chromatin marks
176 (H3K4me3, H3K27ac and H3K9ac)⁴⁰, such as active/weak promoters and strong/weak enhancers
177 (Fig. 3b). In contrast, genomic regions that are largely devoid of permissive chromatin marks
178 displayed a substantial increase in chromatin accessibility, suggesting that oncometabolites can
179 have two opposing impacts on the mammary epigenome, i.e., selective loss of accessibility in
180 active or poised chromatin and gain of accessibility in repressive or quiescent chromatin states.
181 The overall alterations in the chromatin landscape dynamics were particularly prominent in
182 response to L2HG, suggesting L2HG to be more potent in modulating the mammary epigenome.

183 This is in line with earlier biochemical studies indicating that L2HG can competitively antagonize
184 α KG-dependent dioxygenases to a greater extent¹⁸⁻²⁰.

185 To address the sparse nature of scATAC-seq data^{37,38}, we investigated regulatory
186 variation in single-cell measurements by aggregating scATAC-seq signals over transcription start
187 sites (TSS) in the genome. As shown in Fig. 3c with each color representing DNA accessibility
188 around TSS regions (n = 20,242) in a single cell, the chromatin occupancy pattern in untreated
189 control cells was highly concordant whereas the peaks were found to be diffused and
190 heterogeneous in exposed cells, suggesting enhanced epigenetic variability in regulatory
191 modules imposed by 2HG. However, the differences between exposed and unexposed cells were
192 not quantitatively remarkable when chromatin accessibility was assessed over all TSS regions
193 across the entire genome. In contrast, a marked reduction in accessibility was detected when a
194 set of highly methylated genes (n = 150) in breast tumors⁴⁴ was investigated (Fig. 3d and
195 Supplementary Fig. 3b). Similar results were obtained using genes that were independently found
196 to be hypermethylated in promoter regions²⁸ (n = 150), indicating that 2HG led to reduced
197 chromatin accessibilities in gene promoters displaying DNA hypermethylation in breast cancer. In
198 contrast, no significant accessibility changes were observed in sets of genes that were highly
199 methylated in HMECs (data not shown) or other tumor types including endometrial cancer. Next,
200 we investigated epigenetic variability among the three L2HG subpopulations and found that L2
201 and L3 subsets exhibited a significant decrease in accessibility in comparison to L1 subset, which
202 is consistent with earlier observations that L1 may represent a cell subpopulation that is potentially
203 less responsive to oncometabolite perturbation (Fig. 3e). Collectively, single-cell chromatin
204 profiling suggests that 2HG disrupts the fine-tuned spatial control of the mammary epigenome
205 and reshapes the chromatin accessibility atlas of regulatory modules, potentially leading to DNA
206 methylator phenotype.

207 **2HG-mediated chromatin remodeling is linked to transcriptional repression and adverse**
208 **prognosis associated with tumor hypermethylation**

209 To assess the clinical relevance of tumor-associated hypermethylated genes that exhibited
210 concomitant chromatin compaction in response to 2HG, we first analyzed RNA-seq whole-
211 transcriptome profiles of 521 breast tumors and 112 adjacent uninvolved tissues from the TCGA
212 cohort (Fig. 4a). Upon unsupervised hierarchical clustering, the majority of highly methylated
213 genes appeared to be downregulated in all five PAM50 molecular subtypes, although no statistical
214 significance was observed in luminal A tumors (Fig. 4a and Supplementary Fig. 4a). Strikingly,
215 transcriptional repression was most evident in basal-like breast cancer, 84% of which displayed
216 a triple-negative phenotype (i.e., negative for expression of estrogen, progesterone and
217 HER2/neu receptors). These findings are in agreement with earlier results showing that 2HG
218 levels were elevated predominantly in ER α -negative or basal-like breast cancer. In addition, none
219 of the breast cancer patients investigated had 2HG-producing mutations in either the *IDH1* or
220 *IDH2* gene (Fig. 4a).

221 We next adopted functional pathway enrichment analyses to examine the physiological
222 role of tumor-associated DNA hypermethylation. Ingenuity pathway analysis (IPA)⁴⁵ revealed
223 enrichment of genes involved in hereditary breast cancer signaling, reproductive system disease
224 and gene expression (Fig. 4b and Supplementary Fig. 4b). In line with IPA analysis, 39% of the
225 highly methylated genes were linked to DNA-templated transcription in Gene Ontology (GO)
226 biological processes (Fig. 4c). In addition to DNA damage response (DDR), the most enriched
227 GO pathways included lipid metabolic process, oxidation-reduction, fat cell differentiation and fatty
228 acid beta-oxidation, all of which were relevant to intracellular metabolic signaling (Supplementary
229 Fig. 4c and Supplementary Table 2), and therefore suggest an intimate entwinning of metabolic
230 derangements with DNA hypermethylation in breast cancer.

231 To investigate whether altered expression of hypermethylated genes can impact the
232 clinical outcome in breast cancer patients, we performed survival analysis of the TCGA breast

233 cancer cohort. Approximately 10% of the genes exhibited a significant association between low
234 expression and shorter disease-free survival (DFS) (Supplementary Fig. 4d). Strikingly, their
235 combination displayed a steeper drop in survival (HR = 2.24; 95% CI, 1.54 to 3.24; $P = 0.00003$),
236 compared to when the genes were analyzed as single variables (Fig. 4d). This suggests that
237 concurrent downregulation of hypermethylated genes may have an additive adverse effect on
238 patient prognosis. We further assessed the outcome of tumor hypermethylation on patient survival
239 and found that the patients with a concurrent hypermethylation signature suffered decreased DFS
240 (Fig. 4e). Together, the results suggest that 2HG-mediated loss of promoter accessibility, DNA
241 methylator phenotype and concurrent transcriptional repression may present a high competing
242 risk of mortality in breast cancer patients.

243 **2HG enantiomers initiate tumor-associated promoter hypermethylation**

244 To investigate whether transcriptional repression of hypermethylated genes is correlated with
245 chromatin accessibility landscape, we leveraged the recently reported ATAC-seq data of 70
246 primary breast cancers from the TCGA cohort⁴⁶. We found that the hypermethylated genes with
247 transcriptional repression (boxed in Fig. 4a) showed a decrease in chromatin accessibility in
248 basal-like or HER2-enriched breast cancers in comparison to luminal A, luminal B and normal-
249 like tumors (Fig. 5a,b). We next sought to investigate if tumor-associated chromatin landscape
250 could be attributable to 2HG-mediated epigenetic remodeling. To this end, we analyzed open
251 chromatin signals corresponding to ChromHMM-annotated active promoter regions. The
252 scATAC-seq peaks in unexposed control cells were comparable with DNase-seq and
253 H2AFZ/H2A.Z signals that are localized at gene promoters facilitating RNA polymerase II
254 occupancy⁴⁷, while accessibility peaks were significantly reduced in D2HG- or L2HG-exposed
255 cells (Fig. 5c). This finding suggests that oncometabolites could induce a decrease in chromatin
256 accessibility at promoter regions of highly methylated genes that are downregulated in breast
257 cancer. Additionally, whole-genome bisulfite sequencing (WGBS) data indicated that accessible

258 promoter regions were essentially devoid of DNA methylation in control HMECs. These
259 observations prompted us to investigate whether 2HG can initiate tumor-associated promoter
260 hypermethylation accompanied by restricted chromatin accessibility evident in breast tumors.

261 To evaluate DNA methylation at gene promoters, we utilized oxidative bisulfite (oxBS)
262 conversion followed by pyrosequencing. DNA methylation levels across promoter CpG sites of
263 tumor suppressor genes including but not limited to DNA damage response (DDR) genes were
264 elevated in 2HG-exposed cells (Fig. 5d). Specifically, a marked methylation gain was observed in
265 the majority of genes examined including *BRCA1*, *MSH2* and *MLH1*. Promoter hypermethylation
266 in response to 2HG was confirmed by methylated DNA immunoprecipitation followed by qPCR
267 (MeDIP-qPCR) (Supplementary Fig. 5a). A similar, albeit less pronounced, accumulation of *de*
268 *novo* DNA methylation was also seen in immortalized, non-transformed mammary epithelial cells
269 (hTERT-HME1) (Supplementary Fig. 5b). To further address the disease relevance of 2HG-
270 mediated promoter hypermethylation, we evaluated our breast cancer cohort consisted of 77
271 primary tumors and 10 uninvolved tissue specimens⁴⁸. Methyl-CpG binding domain proteins
272 followed by sequencing (MBDCap-seq) indicated accumulation of DNA methylation at target
273 promoter regions in tumor samples in comparison with their normal counterparts (Supplementary
274 Fig. 5c). Collectively, these data suggest that 2HG induces loss of promoter accessibility
275 accompanied by DNA hypermethylation of tumor suppressor genes, which is a prominent
276 hallmark of the breast cancer epigenome.

277 **Single-cell mass cytometry reveals epigenetic plasticity and phenotypic heterogeneity**

278 To disentangle epigenetically heterogeneous responses to 2HG at single-cell resolution, we next
279 performed high-dimensional mass cytometry^{49,50} on viably cryopreserved cell suspensions from
280 2HG-exposed or unexposed control HMECs as well as cells exposed to 2HG followed by 5-day
281 withdrawal (Supplementary Fig. 6a,b). The panel of metal-conjugated antibodies was designed
282 to detect both chromatin modifications and intracellular proteins including *BRCA1*, *MSH2* and

283 MLH1 that are involved in DDR and checkpoint signaling (Supplementary Fig. 6a). Consistent
284 with mass spectrometry measurements (Fig. 1i and Supplementary Fig. 1e), mass cytometry
285 analysis showed that 2HG exposure led to a substantial increase in all histone markers
286 investigated (Supplementary Fig. 6c). The biaxial gating of live single cells indicated a concurrent
287 increase in multiple distinct classes of histone methylation and the presence of cell populations
288 that were potentially less responsive to 2HG oncometabolites (Supplementary Fig. 6c,d).

289 To further characterize cell-to-cell variability in the chromatin landscape, we next applied
290 nonlinear dimensionality reduction using *t*-distributed stochastic neighbor embedding (*t*-SNE)
291 analysis. The *t*-SNE visualization revealed that control and withdrawal groups had similar
292 multidimensional phenotypes and cell density distributions, which were readily distinct from those
293 of 2HG-perturbed cells (Fig. 6a). Accordingly, altered chromatin modifications were effectively
294 reverted by 2HG withdrawal (Supplementary Fig. 6c,d), suggesting that chromatin remodeling
295 imposed by 2HG is essentially reversible. Self-organizing maps generated by FlowSOM further
296 identified six discrete clusters as shown in Fig. 6b-d. Strikingly, a large population of HMECs
297 (Cluster 1) displayed a concomitant increase in histone markers following 2HG exposure and
298 reciprocal decrease upon withdrawal (Fig. 6e).

299 We next asked if 2HG-induced chromatin remodeling correlated with altered expression
300 of DDR genes displaying promoter hypermethylation in response to 2HG (Fig. 5d). As expected,
301 2HG-responsive Cluster 1 cell subsets exhibited diminished expression of BRCA1, MSH2 and
302 MLH1, which was restored upon withdrawal (Fig. 6f). In addition, BRCA1 downregulation was
303 inversely correlated with H4K20 methylation (Supplementary Fig. 6e) and, to our surprise, we
304 observed a remarkable association between the expression of the *BRCA1* and *MSH2* genes in
305 Cluster 1 (Fig. 6g). Interestingly, this positive association was also evident in the CCLE cancer
306 cell lines as well as in the TCGA breast cancer cohort (Fig. 6h,i). Although the precise mechanism
307 is currently unknown, the findings may suggest that the two DDR genes are controlled by a shared
308 set of transcriptional regulators, possibly via epigenetic modulators. Taken together, the

309 multidimensional investigation of chromatin regulators directly implicates that the epigenome
310 reprogramming imposed by 2HG and subsequent downregulation of DDR genes associated with
311 tumor hypermethylation could contribute to the pathogenesis of breast malignancies with high
312 2HG accumulation.

313 **Discussion**

314 Breast cancer cells accumulate high levels of 2HG with preferential concentration of L2HG in
315 basal-like subtypes. Here we show that either of the 2HG enantiomers is sufficient to broadly
316 confer two hallmarks of the breast cancer epigenome, i.e., global loss of 5hmC and promoter
317 hypermethylation. Following 2HG exposure, promoter regions of the tumor suppressor genes
318 involved in DDR signaling displayed reduced chromatin accessibility accompanied by methylation
319 gain. The associated downregulation of BRCA1, MSH2 and MLH1 in 2HG-responsive cell
320 subpopulations was validated by mass cytometry. Dysfunctional DDR pathway is one of the
321 inherent characteristics of 'BRCAnezz', which is commonly seen in basal-like breast tumors and
322 is manifested by an enhanced mutation rate and genomic instability⁵¹. Besides 2HG-mediated
323 inhibition of active DNA demethylation, recent studies show that 2HG can directly inhibit αKG-
324 dependent DDR signaling^{19,52,53} or indirectly alter expression of DNA repair genes^{54,55}, suggesting
325 that intratumor accumulation of 2HG potentially induces DDR deficiency via multiple signaling
326 pathways. It is of interest to note in this context that 2HG exposure has been reported to establish
327 the BRCAnezz phenotype in clinically pertinent models including patient-derived glioma cell lines
328 and primary AML bone marrow cultures⁵⁵. These findings may be relevant for designing treatment
329 strategies for breast cancer patients with high intratumor 2HG, since effector pathways such as
330 defective DDR signaling could represent an alternate targetable vulnerability in specific tumor
331 subtypes with a stem cell-like transcriptional signature³⁰, other than counteracting 2HG
332 overproduction per se, for instance by using IDH small molecule inhibitors.

333 Aside from promoter hypermethylation, we show that 2HG inhibits a multitude of histone
334 demethylases resulting in accumulation of both repressive and permissive chromatin marks.
335 Further, genome-scale profiling of chromatin accessibility revealed selective loss of accessibility
336 in active or poised chromatin and gain of accessibility in repressive or quiescent chromatin states
337 in response to 2HG. These results indicate previously uncharacterized, two opposing effects of
338 the oncometabolites imposed on the cellular epigenome, suggesting multifaceted entwinning of
339 cancer metabolism with epigenetic regulation. Moreover, alterations in open chromatin occupancy
340 were detected at enhancer and insulator regions. Of note, intratumor D2HG has been shown to
341 dysregulate insulator or chromatin boundary function and promote aberrant gene-enhancer
342 interaction, leading to constitutive activation of the glioma oncogene *PDGFRA*⁵⁶. The findings
343 therefore suggest that metabolic perturbations in breast cancer may modulate key aspects of
344 chromatin functions including the three-dimensional (3D) genome topology.

345 Tumor heterogeneity is implicated in a wide range of neoplastic events involved in tumor
346 evolution, dissemination, relapse or drug resistance². Characterization of the molecular origin of
347 intratumor diversity is thus integral to understanding and harnessing tumor heterogeneity and may
348 provide new opportunities to define tumor subtypes or to design effective treatment. While genetic
349 alterations have provided early insights into tumor heterogeneity, less attention has been paid to
350 epigenetic diversity in breast cancer. In this study, scATAC-seq was applied to address cell-to-
351 cell variability in the chromatin regulatory landscape and we found that the two enantiomers
352 induced distinct chromatin accessibilities in the mammary epigenome. It is noted in this context
353 that L2HG-exposed cells exhibited greater variability in comparison to D2HG-exposed cells, which
354 is supported by the observations that hypoxic induction of L2HG could contribute to the
355 development of epigenetic heterogeneity in glioblastoma¹⁷. Furthermore, single-cell profiling of
356 epigenetic modifications by mass cytometry identified multiple cell subpopulations differentially
357 responding to 2HG enantiomers. These observations suggest that metabolic dysfunction may

358 enhance epigenetic cell-to-cell variability in chromatin regulatory modules, which can functionally
359 and dynamically contribute to intratumor heterogeneity.

360 Of note, our findings and previous studies have suggested that high 2HG breast tumors
361 without *IDH* mutations are associated with poor survival³⁰, whereas a rare breast cancer subtype
362 carrying *IDH* mutations has been reported to show better prognosis^{34,35}. Consistently, prolonged
363 survival has been observed in glioblastoma and anaplastic astrocytoma patients with *IDH*
364 mutations^{57,58}. These observations imply that the pathological mechanisms of high 2HG tumors
365 may vary in the presence or absence of *IDH* mutations, which can be partly ascribed to the
366 different potencies of the two enantiomers, i.e., L2HG is relatively more potent than D2HG that is
367 produced by mutated IDH enzymes¹⁸⁻²⁰. Alternatively, L2HG induction has been shown to be more
368 sensitive to metabolic disturbances and generated via promiscuous enzymatic activity under
369 hypoxic^{16,17} or acidic conditions^{14,15}, which may yield cumulative adverse impacts on patient
370 prognosis. Additionally, L2HG has been shown to promote the development of epigenetic cell-to-
371 cell variability¹⁷. Intriguingly, more recent studies indicate that JHDM histone demethylases can
372 directly sense cellular oxygen levels to regulate cell fate decisions^{59,60}. In analogy, it might be
373 plausible that α KG-dependent dioxygenases including TET DNA hydroxylases and JHDM histone
374 demethylases could serve as metabolic sensors by detecting intratumor 2HG levels, which may
375 reflect profound metabolic disturbances accompanied by underlying acidosis and hypoxia
376 implicated in the tumor microenvironment.

377 Collectively, the present study substantiates that 2HG imposes metabolic footprints on the
378 mammary epithelial epigenome by impairing DNA and histone demethylation, and provides a
379 molecular basis in which altered metabolism leads to loss of 5hmC and associated promoter
380 hypermethylation, thereby priming early epigenetic events to be exploited during breast cancer
381 development (Fig. 6j). This in turn suggests that defective metabolic fluxes can disrupt epigenetic
382 homeostasis resulting in loss of chromatin integrity. Nonetheless, 2HG-induced epigenetic
383 liabilities are found to be dynamic and essentially reverted upon withdrawal, highlighting the

384 inherent plasticity of the cellular epigenome. Finally, our findings suggest that chromatin and its
385 regulatory modules are highly vulnerable to intracellular metabolic cues and future investigation
386 on metabolism-epigenome coupling may lead to the identification of key molecular signatures that
387 determine breast cancer susceptibility.

388 **Methods**

389 **Cell lines, growth conditions and reagents**

390 Human breast cancer cell lines BT20, BT474, MCF7, MDA-MB-157, MDA-MB-231 and MDA-MB-
391 361, and non-malignant immortalized epithelial cells hTERT-HME1, 184B5 and MCF12A were
392 acquired from the American Type Culture Collection (ATCC). Unless otherwise stated, cancer cell
393 lines were maintained in DMEM (Gibco) supplemented with 10% fetal bovine serum (Sigma-
394 Aldrich) and 100 U/ml penicillin plus 100 µg/ml streptomycin (Gibco) as previously reported^{61,62}.
395 Primary HMECs were obtained from Invitrogen and maintained at low passage number (below
396 5). HMECs, hTERT-HME1, 184B5 and MCF12A cells were cultured in mammary epithelial growth
397 medium according to the manufacturer's instructions. Authentication of cell line genomic DNA
398 was performed at ATCC using DNA fingerprint analysis of polymorphic, short tandem repeat
399 sequences. Exposure to cell-permeable 2HG analogues was carried out by supplementing octyl
400 esters of *R*-2-hydroxyglutarate or *S*-2-hydroxyglutarate (Cayman Chemical) to the culture medium
401 at a final concentration 72 hr before harvesting. Dimethyloxalylglycine (DMOG) was obtained from
402 Sigma-Aldrich. Culture medium was replaced daily with fresh complete medium with or without
403 oncometabolite supplementation.

404 **Metabolite extraction and quantification by LC-MS**

405 Following dissociation, cells were washed twice with ice-cold phosphate-buffered saline (PBS)
406 and cell pellets were flash-frozen on dry ice. For αKG analysis, metabolites were extracted with
407 80:20 methanol:water (-80°C) containing stable isotope-labeled internal standard [1,2,3,4-¹³C₄]α-
408 ketoglutaric acid (Cambridge Isotope Laboratories) and incubated at -80°C for 1 hr as described
409 previously^{63,64}. Extracts were then centrifuged at 13,800g for 10 min and supernatants were
410 transferred to glass autosampler vials for high-performance liquid chromatography-electrospray
411 ionization-mass spectrometry (HPLC-ESI-MS) measurements. For 2HG analysis, cells were
412 processed as mentioned above except that [1,2,3,4-¹³C₄]L-malic acid (Cambridge Isotope

413 Laboratories) was added as an internal standard and dried extracts were derivatized with diacetyl-
414 L-tartaric anhydride (DATAN, Sigma-Aldrich). HPLC-ESI-MS detection was conducted on a
415 ThermoFisher Q Exactive mass spectrometer with on-line separation by a ThermoFisher Dionex
416 Ultimate 3000 HPLC. HPLC conditions for α KG analysis were: column, Synergi Polar-RP, 4 μ m,
417 2x150 mm (Phenomenex); mobile phase A, 0.1% formic acid in water; mobile phase B, 0.1%
418 formic acid in acetonitrile; flow rate, 250 μ l/min; gradient, 1% B to 5% B over 5 minutes, 5% B to
419 95% B over 1 min and held at 95% B for 2 min. HPLC conditions for 2HG analysis were: column,
420 Luna NH₂, 3 μ m, 2x150 mm (Phenomenex); mobile phase A, 5% acetonitrile in water containing
421 20 mM ammonium acetate and 20 mM ammonium hydroxide, pH 9.45; mobile phase B,
422 acetonitrile; flow rate, 300 μ l/min; gradient, 85% B to 1% B over 10 min and held at 1% B for 10
423 min. The conditions used to selectively quantify D2HG and L2HG were: column, Kinetex C18, 2.6
424 μ m, 2.1x100 mm (Phenomenex); mobile phase, 1% acetonitrile with 125 mg/l ammonium formate,
425 pH 3.6; flow rate, 400 μ l/min. Full scan mass spectra were acquired in the orbitrap using negative
426 ion detection over a range of m/z 100–800 at 70,000 resolution (m/z 300). Metabolite identification
427 was based on accurate mass match to the library \pm 5 ppm and agreement with the HPLC retention
428 time of authentic standards. Quantification of metabolites was carried out by integration of
429 extracted ion chromatograms with the corresponding standard curves.

430 **Immunofluorescence staining**

431 Cells were plated in 8-well chamber slides (Falcon) at a density of 1-2x10⁴ cells/well at least 24
432 hr prior to 2HG exposure. Cell were then fixed with 4% paraformaldehyde (PFA) in PBS for 10
433 min at room temperature (RT) and permeabilized with 0.2% Triton X-100 in PBS for 10 min at RT.
434 For 5hmC staining, permeabilized cells were treated with 2N HCl for 30 min at RT and neutralized
435 with 100 mM Tris-HCl (pH 8.5). Nonspecific binding was blocked with 10% goat serum in 0.2%
436 Triton X-100 and PBS for 1 hr at RT and stained with primary antibodies in PBS with 5% goat
437 serum and 0.2% Triton X-100 overnight at 4°C. After incubation with Alexa Fluor-conjugated

438 secondary antibodies (Molecular Probes) for 1 hr at RT, nuclei were stained for 5 min with DAPI
439 (Sigma-Aldrich). Single optical sections were acquired using a Zeiss LSM710 confocal
440 microscope and image quantification was performed with NIH ImageJ software (version 1.52n).
441 Primary antibodies included rabbit polyclonal anti-5hmC (1:500; 39769, Active Motif) and rabbit
442 monoclonal anti-H3K27me3 (1:800; 9733, Cell Signaling Technologies).

443 **Tet-assisted bisulfite (TAB) pyrosequencing**

444 TAB pyrosequencing was used to differentiate 5hmC from 5mC⁶⁵. High molecular weight genomic
445 DNA was extracted using Gentra Puregene reagents (Qiagen), followed by an additional ethanol
446 precipitation and resuspension in low-EDTA TE buffer (10 mM Tris-HCl, 0.1 mM EDTA, pH 8.0).
447 RNase A and proteinase K digestion were included in the isolation procedure. UV absorbance
448 was measured on a NanoDrop 2000 (ThermoFisher) and each DNA sample was routinely
449 examined by agarose gel electrophoresis with GelRed staining to ensure the absence of
450 contaminating RNA and degradation of genomic DNA. Isolated genomic DNA was then subjected
451 to Tet-assisted bisulfite (TAB) treatment as we previously described⁶⁶. After bisulfite conversion
452 using EpiTect Fast Bisulfite Conversion kit (Qiagen), pyrosequencing was conducted on a
453 PyroMark Q96 MD instrument using CpG LINE-1 assay (973043, Qiagen). To monitor bisulfite
454 conversion efficiency, a C outside a CpG site was added within dispensation order for the
455 sequence to be analyzed as a built-in control. The quantitative levels of 5mC and 5hmC for each
456 CpG dinucleotide were determined using PyroMark CpG software (version 1.0, Qiagen).

457 **Multiplexed chromatin profiling by mass spectrometry**

458 Nuclei were isolated from 2x10⁶ cells using Nuclear Isolation Buffer (NIB) composed of 15 mM
459 Tris-HCl (pH 7.5), 60 mM KCl, 15 mM NaCl, 5 mM MgCl₂, 1 mM CaCl₂, 250 mM sucrose, 0.3%
460 NP-40, 1 mM DTT plus 10 mM sodium butyrate added immediately prior to use, for 30 min on ice.
461 Nuclei were pelleted at 600g for 5 min at 4°C and detergent was removed by washing twice with

462 NIB without NP-40. Histones from isolated nuclei were acid extracted with 5 volumes of 0.2 M
463 H₂SO₄ for 1 hr at RT. Cellular debris was removed by centrifugation at 4,000g for 5 min.
464 Trichloroacetic acid was added to the supernatant at a final concentration of 20% (v/v) and
465 incubated for 1 hr to precipitate histone proteins. Histones were pelleted at 10,000g for 5 min,
466 washed once with 0.1% HCl in acetone, twice with 100% acetone followed by centrifugation at
467 15,000g for 5 min, and then briefly air-dried. Histones were derivatized, digested and analyzed
468 by targeted LC-MS/MS as described previously⁶⁷⁻⁶⁹.

469 **Flow cytometry**

470 Cell cycle phase distribution was analyzed by flow cytometry. Cells were fixed with ice-cold 70%
471 methanol for 1 hr on ice. Following centrifugation, cells were washed with PBS and stained with
472 10 µg/ml propidium iodide (Sigma-Aldrich) solution in PBS containing 1 µg/ml DNase-free RNase
473 A (ThermoFisher) and incubated in the dark on ice for 1 hr. Samples were then processed on a
474 BD FACSCalibur flow cytometer equipped with CellQuest Pro software (version 5.2.1, Becton
475 Dickinson) and data were analyzed using FlowJo software (version 7.6.5, Tree Star).

476 **Single-cell ATAC-seq library preparation**

477 Single-cell ATAC-seq libraries were prepared on a Fluidigm C1 workstation using 'ATAC Seq-
478 Cell Load and Stain Rev C' script as previously described³⁷ with modifications. Briefly, cells were
479 passed through a 20 µm cell strainer (CellTrics, Sysmex Partac) to remove debris and remaining
480 cell aggregates and mixed at a ratio of 7:3 with C1 suspension reagent. The resulting single-cell
481 suspension was loaded on C1 Single-Cell Open App IFC chip (1862x, 10-17 µm, Fluidigm) at a
482 concentration of 350 cells/µl. Captured cells were stained with 2 µM green-fluorescent calcein-
483 AM and 4 µM red-fluorescent ethidium homodimer-1 (Molecular Probes) and visualized under an
484 EVOS FL cell imaging station (Life Technologies) to ensure successful capture and to determine
485 cell viability. The single-cell capture rates were typically >80% and >90% of captured single cells

486 were alive. After cell lysis and Tn5 transposition, 8 cycles of pre-amplification were run on IFC
487 chip. Pre-amplified PCR products were transferred to 96-well plates and further amplified for an
488 additional 13 cycles using custom Nextera dual-index primers and NEBNext High-Fidelity 2X PCR
489 master mix (New England Biolabs). Individually barcoded libraries were pooled and purified on a
490 single MinElute column (Qiagen). The quality and size distribution of pooled libraries were
491 evaluated on an Agilent 2100 Bioanalyzer using High Sensitivity DNA reagents (Agilent).

492 **Single-cell ATAC-seq data analysis**

493 scATAC-seq libraries were sequenced on a NextSeq 500 platform with High Output reagents
494 (Illumina) using paired-end 75-bp reads. All scATAC-seq data were preprocessed as essentially
495 described³⁷. In short, adapter and primer sequences were trimmed and initial quality control
496 checks were performed using FastQC tools (<https://www.bioinformatics.babraham.ac.uk/projects/fastqc/>). Sequencing reads were aligned to the GRCh37/hg19 assembly of the human
497 genome using Bowtie2 (ref. ⁷⁰) with the parameter ‘-X2000’ to ensure paired reads were within 2
498 kb of one another. PCR duplicates were eliminated using Picard tools (version 2.9.2,
499 <http://broadinstitute.github.io/picard/>) and alignments with mapping quality less than 30 were
500 subsequently removed by samtools. Reads mapped to the mitochondria and unmapped contigs
501 were filtered out and excluded from further analysis. PCA projections of scATAC-seq profiles were
502 performed using SCRAT⁷¹, and gene feature was applied to aggregate sequencing reads from
503 each cell, in which 3,000 bp upstream to 1,000 bp downstream of TSS is regarded as the region
504 of interest for each gene. After aggregation, the signals for each feature were normalized to adjust
505 for library size and model-based clustering (mclust) module was utilized to identify cell
506 subpopulations. Peak calling was performed using MACS2 with the following settings: --nomodel
507 --nolambda --keep-dup all --call-summits. Artifact signals were excluded using ENCODE
508 blacklist⁷². Circular visualization of ATAC-seq signals was carried out by employing Circos tools
509 (version 0.69-6, <http://circos.ca>).

511 **Breast cancer cohorts, resources and data analysis**

512 Level 3 TCGA Breast Invasive Carcinoma (BRCA) data of tumor and normal samples were
513 accessed from the Broad GDAC Firehose (<http://gdac.broadinstitute.org>) and RSEM-normalized
514 RNA-seq values were log2 transformed before analysis. Unsupervised hierarchical clustering was
515 utilized to distinguish mRNA expression profiles among different genes and heat maps were
516 generated using heatmap.2 function implemented in gplots package of R statistical program.
517 Clinical data including PAM50 intrinsic subtypes, ER/PR/HER2 expression and IDH mutation
518 status were retrieved using the Cancer Genomics cBioPortal⁷³ and were integrated into RNA-seq
519 heat map. TCGA DNA methylation data generated using Infinium Human Methylation 450K
520 (HM450K) BeadChip array were retrieved from the cBioPortal database. Normalized methylation
521 scores at each CpG dinucleotide are expressed as β values, representing a continuous
522 measurement from 0 (completely unmethylated) to 1 (completely methylated). In the event of
523 multiple CpG probes per gene, the most negatively correlated with mRNA expression was
524 selected. Chromatin accessibility data of TCGA primary tumor tissue samples were extracted from
525 the UCSC Xena browser (<https://xenabrowser.net/>). After z-scale normalization of ATAC-seq
526 signals, open chromatin occupancies at promoter regions were correlated with PAM50 gene
527 signature to evaluate DNA accessibility profiles across breast cancer subtypes. Our breast cancer
528 methylome data generated using MBDCap-seq are available at The Cancer Methylome System
529 (<http://cbbiweb.uthscsa.edu/KMethylomes/>). Global chromatin profiling and metabolomics
530 datasets were retrieved from the Broad Institute CCLE (<https://portals.broadinstitute.org/ccle>).

531 **Oxidative bisulfite (oxBS) pyrosequencing**

532 To selectively detect 5mC modification, genomic DNA was subjected to oxBS conversion⁷⁴ using
533 TrueMethyl oxBS module (NuGEN Technologies) as per the manufacturer's recommendations.
534 In short, genomic DNA was affinity-purified using 80% acetonitrile (Fisher Scientific) and
535 TrueMethyl magnetic beads to eliminate potential contaminating compounds. After the

536 denaturation step, genomic DNA was oxidized to convert 5-hydroxymethylcytosine to 5-
537 formylcytosine. Bisulfite treatment was then carried out to convert 5-formylcytosine to uracil,
538 leaving 5-methylcytosine intact. Following desulfonation and purification, converted DNA was
539 quantified using Qubit ssDNA assay (Invitrogen). PCR amplification of oxBS converted DNA was
540 carried out with biotin-labeled primers. Primer design was carried out using PyroMark Assay
541 Design software (version 2.0, Qiagen). Pyrosequencing of biotinylated PCR products was
542 performed using PyroMark Q48 Advanced CpG reagents (Qiagen) on a Pyromark Q48 Autoprep
543 apparatus (Qiagen) following the manufacturer's protocol. 5mC levels at CpG sites were
544 determined using PyroMark Q48 Autoprep software (version 2.4.2, Qiagen) in CpG Assay mode.
545 All samples were prepared, amplified and sequenced in triplicates. PCR and pyrosequencing
546 primers are listed in Supplementary Tables 3 and 4.

547 **Methylated DNA precipitation PCR (MeDIP-qPCR)**

548 Prior to the 5mC immune-capture procedure, genomic DNA was fragmented to an average length
549 of 200-600 bp using a Covaris 220 system. MeDIP was performed using MeDIP reagents (Active
550 Motif) as per the manufacturer's instructions. In brief, fragmented DNA was heat-denatured and
551 immunoprecipitated with anti-5mC antibody (39649, Active Motif). An additional quantity of
552 fragmented DNA equivalent to 10% of DNA being used in the immunoprecipitation reaction was
553 also denatured and saved as input DNA. Immunoprecipitated DNA and input DNA were then
554 purified with phenol/chloroform extraction and amplified using GenoMatrix Whole Genome
555 Amplification kit (Active Motif). Quantitative PCR was performed using PowerUP SYBR Green
556 master mix on an ABI StepOnePlus real-time PCR instrument (Applied Biosystems). All PCR
557 reactions were run in triplicates. The relative enrichment of target sequences after MeDIP was
558 evaluated by calculating the ratios of the signals in immunoprecipitated DNA versus input DNA.
559 Locus-specific primers were designed with NCBI Primer-BLAST and synthesized by Integrated
560 DNA Technologies. Primer sequences are provided in Supplementary Table 5.

561 **Panel design and heavy-metal labeling of antibodies**

562 Prior to antibody conjugation, the antibody panel was designed by allocating targets to specific
563 heavy-metal isotopes depending on the sensitivity of the mass cytometer, e.g., assigning low
564 abundance targets to high sensitivity channels in order to minimize potential spectral overlap⁷⁵.
565 Subsequently, in-house conjugation of antibodies was performed using Maxpar X8 antibody
566 labeling reagents (Fluidigm) as previously described⁷⁶ with some modifications. Briefly, up to 100
567 µg of carrier-free IgG antibody was subjected to buffer exchange by washing with R-buffer using
568 a 50 kDa Amicon filter (Millipore) that was pre-soaked with R-buffer. Antibodies were then partially
569 reduced with 4mM TCEP (ThermoFisher) for 30 min at RT followed by washing with C-buffer. In
570 parallel, metal chelation was carried out by adding lanthanide metal solutions (Fluidigm) to
571 chelating polymers (Fluidigm) in L-buffer. Metal-loaded polymers were then washed with L-buffer
572 and concentrated on a 3 kDa Amicon filter (Millipore). Partially reduced antibodies were incubated
573 with metal-loaded polymers for 90 min at RT followed by washing with W-buffer. Following
574 conjugation, antibody concentration was determined by spectrometry with a NanoDrop 2000
575 (ThermoFisher). Metal-conjugated antibodies were stored in antibody stabilization solution
576 (Candor Bioscience) supplemented with 0.05% sodium azide at 4°C. The panel of metal-
577 conjugated antibodies is provided in Supplementary Table 6.

578 **Multidimensional chromatin profiling by mass cytometry**

579 Cell suspensions were prepared at a concentration of 1x10⁷ cells/ml in serum-free, protein-free
580 medium and stained with 1 µM cisplatin (195Pt) for 5 min at RT to determine cell viability. After
581 quenching with CyTOF buffer composed of PBS with 1% BSA (Invitrogen), 2mM EDTA (Ambion)
582 and 0.05% sodium azide (Teknova), staining with lanthanide-conjugated antibodies was
583 performed as previously described⁵⁰, but with the following modifications. In brief, following
584 extracellular marker staining, cells were fixed with 1.6% PFA (Electron Microscopy Sciences) for
585 15 min at RT and permeabilized with ice-cold methanol (Fisher Scientific) for 30 min at 4°C. After

586 adding Fc receptor blocker (BioLegend), cells were labeled overnight at 4°C with a cocktail of
587 antibodies recognizing chromatin modifications or intracellular components. On the next day,
588 excess of antibodies were washed off with CyTOF buffer and cells were stained with 250 nM
589 191/193Ir-containing DNA intercalator (Fluidigm) in PBS with 1.6% PFA for 30 min at RT. After
590 resuspending in double-deionized water, samples were kept on ice. Immediately prior to
591 acquisition, cells were prepared at a concentration of 0.2-1.0x10⁶ cells/ml in 0.1X EQ bead
592 solution containing four element calibration beads (Fluidigm) and filtered through a 20 µm cell
593 strainer (CellTrics, Sysmex Partac) to remove any potential aggregates. Cells were then acquired
594 at a rate of 300-500 events/s using a Helios mass cytometer (Fluidigm) and CyTOF software
595 (version 6.7) with noise reduction, a lower convolution threshold of 400, event length limits of 10-
596 150 pushes, a sigma value of 3 and a flow rate of 0.030 ml/min.

597 **Mass cytometry data analysis**

598 Data analysis was conducted using the cloud-based platform Cytobank⁷⁷ and the statistical
599 programming environment R. Following data acquisition, mass cytometry data were normalized
600 using EQ calibration beads as previously described⁷⁸. Bead-normalized data were then uploaded
601 onto Cytobank platform to carry out initial gating and population identification using the indicated
602 gating schemes (Supplementary Fig. 6b). For downstream analysis, live single cells were
603 identified based on 140Ce bead, event length, DNA content (191Ir) and live/dead (195Pt)
604 channels. Histograms and two-dimensional contour plots were generated to assess the global
605 levels of chromatin modifications across the samples. Using an equal number of randomly
606 selected live singlets from each sample, dimensionality reduction was implemented by *t*-SNE
607 analysis with the following settings: perplexity = 60, theta = 0.5, iteration = 1,000. FlowSOM
608 clustering was carried out on the same data using the standard parameters to quantify changes
609 in cell subsets in an unbiased manner. The 2D coordinates of the *t*-SNE map were fed to
610 FlowSOM analysis for population identification based on hierarchical consensus clustering.

611 Comparisons of chromatin modifications among the samples in each cluster were performed by
612 generating heat maps in R using gplots package and median signal intensities extracted from
613 Cytobank.

614 **Statistical analysis**

615 Pairwise comparisons were carried out with a two-tailed unpaired Student's *t*-test and multiple
616 comparisons were assessed using a one-way ANOVA followed by Dunnett's multiple comparison
617 post-hoc test unless otherwise indicated in the figure legends. For Kaplan-Meier survival analysis,
618 expression or methylation values were classified as high or low by using the median as a cutoff
619 value and disease-free survival data was used to measure prognosis. Log-rank (Mantel-Cox) test
620 was used to evaluate statistical differences and hazard ratio was reported with 95% confidence
621 interval. Statistical analyses were performed using GraphPad Prism program (version 8.1). For
622 all statistical analyses, differences of $P < 0.05$ were considered statistically significant. All
623 quantitative data are presented as mean \pm s.e.m. unless specified otherwise.

624 **Data availability**

625 The raw and processed single-cell ATAC-seq data have been deposited in the National Center
626 for Biotechnology Information (NCBI) Gene Expression Omnibus (GEO) and are available under
627 accession GSE135412. The R code used in the study is available upon request from the authors.
628 All other data described, analyzed and represented in the figures that support the findings of this
629 study are available from the corresponding authors upon request.

630 **Acknowledgements**

631 We thank all laboratory members for helpful discussions and technical assistance. We are grateful
632 to the BioAnalytics and Single-Cell Core (BASiC) for single-cell analysis, Mass Spectrometry Core
633 for metabolite mass spectrometry, Optical Imaging Facility for confocal imaging, Genome

634 Sequencing Facility for next-generation sequencing and Flow Cytometry Shared Resource
635 Facility at the University of Texas Health Science Center at San Antonio for flow cytometry,
636 Northwestern Proteomics Core Facility for proteomics analyses. This study was supported by NIH
637 grants U54CA217297, P30CA054174 and CPRIT grant RP150600. J.R. acknowledges funding
638 from the US National Science Foundation (ABI 1565076). M.K. is a recipient of the CPRIT
639 predoctoral fellowship (RP170345).

640 **Author contributions**

641 T.H.M.H., K.M. and M.K. jointly conceived the project, designed the experiments, interpreted the
642 results and prepared the manuscript with contributions from all co-authors. M.K. carried out the
643 majority of experiments and data analysis. J.R., M.Z. and C.L.L assisted with scATAC-seq data
644 analysis, computational modeling and statistical methods. K.M. and M.K. established the methods
645 for chromatin mass cytometry. C.M.W, N.D.L and N.K assisted with validation of metal-tagged
646 antibodies. All authors read and approved the manuscript.

647 **Competing interests**

648 T.H.M.H holds stock options and is on the medical advisory board of LiSen Imprinting Diagnostics
649 Wuxi Co., Ltd. All other authors have no competing interests.

650 **Correspondence and requests for materials** should be addressed to T.H.M.H or K.M.

651 **References**

1. DeBerardinis, R. J., Lum, J. J., Hatzivassiliou, G. & Thompson, C. B. The biology of cancer: metabolic reprogramming fuels cell growth and proliferation. *Cell Metab.* **7**, 11-20 (2008).
2. McGranahan, N. & Swanton, C. Clonal heterogeneity and tumor evolution: past, present, and the future. *Cell* **168**, 613-628 (2017).
3. Warburg, O. On the origin of cancer cells. *Science* **123**, 309-314 (1956).
4. Intlekofer, A. M. & Finley, L. W. S. Metabolic signatures of cancer cells and stem cells. *Nat. Metab.* **1**, 177-188 (2019).
5. Linster, C. L., Van Schaftingen, E. & Hanson, A. D. Metabolite damage and its repair or pre-emption. *Nat. Chem. Biol.* **9**, 72-80 (2013).
6. DeBerardinis, R. J. & Chandel, N. S. Fundamentals of cancer metabolism. *Sci. Adv.* **2**, e1600200 (2016).
7. Ryan, D. G. et al. Coupling krebs cycle metabolites to signalling in immunity and cancer. *Nat. Metab.* **1**, 16-33 (2019).
8. Losman, J. A. & Kaelin, W. G., Jr. What a difference a hydroxyl makes: mutant IDH, (R)-2-hydroxyglutarate, and cancer. *Genes Dev.* **27**, 836-852 (2013).
9. Ye, D., Guan, K. L. & Xiong, Y. Metabolism, activity, and targeting of D- and L-2-hydroxyglutarates. *Trends Cancer* **4**, 151-165 (2018).
10. Dang, L. et al. Cancer-associated IDH1 mutations produce 2-hydroxyglutarate. *Nature* **462**, 739-744 (2009).
11. Ward, P. S. et al. The common feature of leukemia-associated IDH1 and IDH2 mutations is a neomorphic enzyme activity converting alpha-ketoglutarate to 2-hydroxyglutarate. *Cancer Cell* **17**, 225-234 (2010).
12. Mishra, P. et al. ADHFE1 is a breast cancer oncogene and induces metabolic reprogramming. *J. Clin. Invest.* **128**, 323-340 (2018).
13. Tang, X. et al. A joint analysis of metabolomics and genetics of breast cancer. *Breast Cancer Res.* **16**, 415 (2014).
14. Nadtochiy, S. M. et al. Acidic pH Is a metabolic switch for 2-hydroxyglutarate generation and signaling. *J. Biol. Chem.* **291**, 20188-20197 (2016).
15. Intlekofer, A. M. et al. L-2-Hydroxyglutarate production arises from noncanonical enzyme function at acidic pH. *Nat. Chem. Biol.* **13**, 494-500 (2017).
16. Oldham, W. M., Clish, C. B., Yang, Y. & Loscalzo, J. Hypoxia-mediated increases in L-2-hydroxyglutarate coordinate the metabolic response to reductive stress. *Cell Metab.* **22**, 291-303 (2015).

685 17. Intlekofer, A. M. et al. Hypoxia induces production of L-2-hydroxyglutarate. *Cell Metab.* **22**,
686 304-311 (2015).

687 18. Xu, W. et al. Oncometabolite 2-hydroxyglutarate is a competitive inhibitor of alpha-
688 ketoglutarate-dependent dioxygenases. *Cancer Cell* **19**, 17-30 (2011).

689 19. Chowdhury, R. et al. The oncometabolite 2-hydroxyglutarate inhibits histone lysine
690 demethylases. *EMBO Rep.* **12**, 463-469 (2011).

691 20. Koivunen, P. et al. Transformation by the (R)-enantiomer of 2-hydroxyglutarate linked to
692 EGLN activation. *Nature* **483**, 484-488 (2012).

693 21. Pfeifer, G. P., Xiong, W., Hahn, M. A. & Jin, S. G. The role of 5-hydroxymethylcytosine in
694 human cancer. *Cell Tissue Res.* **356**, 631-641 (2014).

695 22. Jones, P. A., Issa, J. P. & Baylin, S. Targeting the cancer epigenome for therapy. *Nat. Rev.
696 Genet.* **17**, 630-641 (2016).

697 23. Laird, P. W. Cancer epigenetics. *Hum. Mol. Genet.* **14**, R65-76 (2005).

698 24. Tsai, K. W. et al. Reduction of global 5-hydroxymethylcytosine is a poor prognostic factor in
699 breast cancer patients, especially for an ER/PR-negative subtype. *Breast Cancer Res.
700 Treat.* **153**, 219-234 (2015).

701 25. Jin, S. G. et al. 5-Hydroxymethylcytosine is strongly depleted in human cancers but its levels
702 do not correlate with IDH1 mutations. *Cancer Res.* **71**, 7360-7365 (2011).

703 26. Yang, L., Yu, S. J., Hong, Q., Yang, Y. & Shao, Z. M. Reduced expression of TET1, TET2,
704 TET3 and TDG mRNAs are associated with poor prognosis of patients with early breast
705 cancer. *PLoS One* **10**, e0133896 (2015).

706 27. Pfister, S. X. & Ashworth, A. Marked for death: targeting epigenetic changes in cancer. *Nat.
707 Rev. Drug Discov.* **16**, 241-263 (2017).

708 28. Thienpont, B. et al. Tumour hypoxia causes DNA hypermethylation by reducing TET activity.
709 *Nature* **537**, 63-68 (2016).

710 29. Skvortsova, K. et al. DNA hypermethylation encroachment at CpG island borders in cancer
711 is predisposed by H3K4 monomethylation patterns. *Cancer Cell* **35**, 297-314.e298 (2019).

712 30. Terunuma, A. et al. MYC-driven accumulation of 2-hydroxyglutarate is associated with
713 breast cancer prognosis. *J. Clin. Invest.* **124**, 398-412 (2014).

714 31. Li, H. et al. The landscape of cancer cell line metabolism. *Nat. Med.* **25**, 850-860 (2019).

715 32. Ghandi, M. et al. Next-generation characterization of the Cancer Cell Line Encyclopedia.
716 *Nature* **569**, 503-508 (2019).

717 33. Fathi, A. T. et al. Isocitrate dehydrogenase 1 (IDH1) mutation in breast adenocarcinoma is
718 associated with elevated levels of serum and urine 2-hydroxyglutarate. *Oncologist* **19**, 602-
719 607 (2014).

720 34. Chiang, S. et al. IDH2 mutations define a unique subtype of breast cancer with altered
721 nuclear polarity. *Cancer Res.* **76**, 7118-7129 (2016).

722 35. Bhargava, R. et al. Breast tumor resembling tall cell variant of papillary thyroid carcinoma:
723 A solid papillary neoplasm with characteristic immunohistochemical profile and few
724 recurrent mutations. *Am. J. Clin. Pathol.* **147**, 399-410 (2017).

725 36. Branco, M. R., Ficz, G. & Reik, W. Uncovering the role of 5-hydroxymethylcytosine in the
726 epigenome. *Nat. Rev. Genet.* **13**, 7-13 (2011).

727 37. Buenrostro, J. D. et al. Single-cell chromatin accessibility reveals principles of regulatory
728 variation. *Nature* **523**, 486-490 (2015).

729 38. Cusanovich, D. A. et al. Multiplex single cell profiling of chromatin accessibility by
730 combinatorial cellular indexing. *Science* **348**, 910-914 (2015).

731 39. Davis, C. A. et al. The Encyclopedia of DNA elements (ENCODE): data portal update.
732 *Nucleic Acids Res.* **46**, D794-d801 (2018).

733 40. Ernst, J. et al. Mapping and analysis of chromatin state dynamics in nine human cell types.
734 *Nature* **473**, 43-49 (2011).

735 41. Gu, F. et al. CMS: a web-based system for visualization and analysis of genome-wide
736 methylation data of human cancers. *PLoS One* **8**, e60980 (2013).

737 42. Cancer Genome Atlas, N. Comprehensive molecular portraits of human breast tumours.
738 *Nature* **490**, 61-70 (2012).

739 43. Ernst, J. & Kellis, M. Chromatin-state discovery and genome annotation with ChromHMM.
740 *Nat. Protoc.* **12**, 2478-2492 (2017).

741 44. Huang, W. Y. et al. MethHC: a database of DNA methylation and gene expression in human
742 cancer. *Nucleic Acids Res.* **43**, D856-861 (2015).

743 45. Kramer, A., Green, J., Pollard, J., Jr. & Tugendreich, S. Causal analysis approaches in
744 Ingenuity Pathway Analysis. *Bioinformatics* **30**, 523-530 (2014).

745 46. Corces, M. R. et al. The chromatin accessibility landscape of primary human cancers.
746 *Science* **362** (2018).

747 47. Adam, M., Robert, F., Laroche, M. & Gaudreau, L. H2A.Z is required for global chromatin
748 integrity and for recruitment of RNA polymerase II under specific conditions. *Mol. Cell. Biol.*
749 **21**, 6270-6279 (2001).

750 48. Jadhav, R. R. *et al.* Genome-wide DNA methylation analysis reveals estrogen-mediated
751 epigenetic repression of metallothionein-1 gene cluster in breast cancer. *Clin. Epigenetics*
752 7, 13 (2015).

753 49. Bendall, S. C. *et al.* Single-cell mass cytometry of differential immune and drug responses
754 across a human hematopoietic continuum. *Science* 332, 687-696 (2011).

755 50. Cheung, P. *et al.* Single-cell chromatin modification profiling reveals increased epigenetic
756 variations with aging. *Cell* 173, 1385-1397.e1314 (2018).

757 51. Lord, C. J. & Ashworth, A. BRCAness revisited. *Nat. Rev. Cancer* 16, 110-120 (2016).

758 52. Wang, P. *et al.* Oncometabolite D-2-hydroxyglutarate inhibits ALKBH DNA repair enzymes
759 and sensitizes IDH mutant cells to alkylating agents. *Cell Rep.* 13, 2353-2361 (2015).

760 53. Chen, F. *et al.* Oncometabolites d- and l-2-hydroxyglutarate inhibit the AlkB family DNA
761 repair enzymes under physiological conditions. *Chem. Res. Toxicol.* 30, 1102-1110 (2017).

762 54. Inoue, S. *et al.* Mutant IDH1 downregulates ATM and alters DNA repair and sensitivity to
763 DNA damage independent of TET2. *Cancer Cell* 30, 337-348 (2016).

764 55. Sulkowski, P. L. *et al.* 2-Hydroxyglutarate produced by neomorphic IDH mutations
765 suppresses homologous recombination and induces PARP inhibitor sensitivity. *Sci. Transl.
766 Med.* 9 (2017).

767 56. Flavahan, W. A. *et al.* Insulator dysfunction and oncogene activation in IDH mutant gliomas.
768 *Nature* 529, 110-114 (2016).

769 57. Yan, H. *et al.* IDH1 and IDH2 mutations in gliomas. *N. Engl. J. Med.* 360, 765-773 (2009).

770 58. Hartmann, C. *et al.* Long-term survival in primary glioblastoma with versus without isocitrate
771 dehydrogenase mutations. *Clin. Cancer Res.* 19, 5146-5157 (2013).

772 59. Chakraborty, A. A. *et al.* Histone demethylase KDM6A directly senses oxygen to control
773 chromatin and cell fate. *Science* 363, 1217-1222 (2019).

774 60. Batie, M. *et al.* Hypoxia induces rapid changes to histone methylation and reprograms
775 chromatin. *Science* 363, 1222-1226 (2019).

776 61. Neve, R. M. *et al.* A collection of breast cancer cell lines for the study of functionally distinct
777 cancer subtypes. *Cancer Cell* 10, 515-527 (2006).

778 62. Hsu, P. Y. *et al.* Amplification of distant estrogen response elements deregulates target
779 genes associated with tamoxifen resistance in breast cancer. *Cancer Cell* 24, 197-212
780 (2013).

781 63. Lin, A. P. *et al.* D2HGDH regulates alpha-ketoglutarate levels and dioxygenase function by
782 modulating IDH2. *Nat. Commun.* 6, 7768 (2015).

783 64. Struys, E. A., Jansen, E. E., Verhoeven, N. M. & Jakobs, C. Measurement of urinary D- and
784 L-2-hydroxyglutarate enantiomers by stable-isotope-dilution liquid chromatography-tandem
785 mass spectrometry after derivatization with diacetyl-L-tartaric anhydride. *Clin. Chem.* **50**,
786 1391-1395 (2004).

787 65. Yu, M. et al. Tet-assisted bisulfite sequencing of 5-hydroxymethylcytosine. *Nat. Protoc.* **7**,
788 2159-2170 (2012).

789 66. Mitsuya, K. et al. Alterations in the placental methylome with maternal obesity and evidence
790 for metabolic regulation. *PLoS One* **12**, e0186115 (2017).

791 67. Garcia, B. A. et al. Chemical derivatization of histones for facilitated analysis by mass
792 spectrometry. *Nat. Protoc.* **2**, 933-938 (2007).

793 68. Camarillo, J. M. et al. Coupling fluorescence-activated cell sorting and targeted analysis of
794 histone modification profiles in primary human leukocytes. *J. Am. Soc. Mass Spectrom.*
795 (2019).

796 69. Diebold, L. P. et al. Mitochondrial complex III is necessary for endothelial cell proliferation
797 during angiogenesis. *Nat. Metab.* **1**, 158-171 (2019).

798 70. Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. *Nat. Methods*
799 **9**, 357-359 (2012).

800 71. Ji, Z., Zhou, W. & Ji, H. Single-cell regulome data analysis by SCRAT. *Bioinformatics* **33**,
801 2930-2932 (2017).

802 72. Consortium, E. P. An integrated encyclopedia of DNA elements in the human genome.
803 *Nature* **489**, 57-74 (2012).

804 73. Gao, J. et al. Integrative analysis of complex cancer genomics and clinical profiles using the
805 cBioPortal. *Sci. Signal.* **6**, pl1 (2013).

806 74. Booth, M. J. et al. Quantitative sequencing of 5-methylcytosine and 5-
807 hydroxymethylcytosine at single-base resolution. *Science* **336**, 934-937 (2012).

808 75. Takahashi, C. et al. Mass cytometry panel optimization through the designed distribution of
809 signal interference. *Cytometry A* **91**, 39-47 (2017).

810 76. Hartmann, F. J. et al. Scalable conjugation and characterization of Immunoglobulins with
811 stable mass isotope reporters for single-cell mass cytometry analysis. *Methods Mol. Biol.*
812 **1989**, 55-81 (2019).

813 77. Kotecha, N., Krutzik, P. O. & Irish, J. M. Web-based analysis and publication of flow
814 cytometry experiments. *Curr. Protoc. Cytom.* **Chapter 10**, Unit10.17 (2010).

815 78. Finck, R. et al. Normalization of mass cytometry data with bead standards. *Cytometry A* **83**,
816 483-494 (2013).

818 **Figure legends**

819 **Fig. 1 | 2HG imposes a global loss in 5hmC and progressive gain in histone methylation**
820 **on the mammary epithelial epigenome.** **a**, Schematic of reductive conversion of αKG to the
821 enantiomers of 2HG. 2HG is stereospecifically produced from αKG by mutant IDH proteins
822 (mIDH1/2) or by promiscuous enzymatic reactions. **b**, Extracted-ion chromatogram showing chiral
823 derivatives of 2HG detected in breast cancer cells. **c,d**, Chiral LC-MS analysis of the two
824 enantiomers D2HG (**c**) and L2HG (**d**) in breast cancer cell lines, benign and normal mammary
825 epithelial cells (n = 3 independent replicates). **e**, Intratumor levels of αKG, 2HG, succinate and
826 fumarate in the CCLE breast cancer cell lines. αKG, 2HG, succinate and fumarate are structurally
827 similar to one another and are potentially involved in DNA and histone demethylation processes.
828 *P < 0.05 versus basal-like tumor cells by one-way ANOVA with Dunnett's multiple comparison
829 test. **f**, Schematic of 2HG-mediated inhibition of αKG-dependent DNA demethylation by the TET
830 family of DNA hydroxylases. TET enzymes catalyze oxidation of 5mC to 5hmC with oxygen and
831 Fe²⁺ as cofactors. **g**, Global levels of 5hmC and H3K27me3 following 72-hr exposure to D2HG.
832 Line plot is shown for the mean intensity of 5hmC (blue) and H3K27me3 (red) assayed by
833 immunofluorescence staining. ***P < 0.001 versus control cells by one-way ANOVA with
834 Dunnett's multiple comparison test (n = 8 images per condition). ns, not significant. At least 60
835 nuclei were examined and signal intensities were normalized to DAPI nuclear counterstain. **h**,
836 Representative immunofluorescence images of HMECs after 72-hr exposure to D2HG at the
837 indicated concentrations. Scale bar, 10 μm. **i**, Fold change in different types of histone methylation
838 upon 2HG exposure. Following 72-hr exposure to 100 μM of either D2HG or L2HG, global levels
839 of methylated/unmethylated lysine residues were assayed by multiplexed mass spectrometry.
840 While two major histone H3 variants H3.1 and H3.3 are highly similar in their amino acid
841 composition, H3.1 is predominantly localized at heterochromatin, which is in contrast to the
842 preferential H3.3 accumulation in intragenic regions of transcribed genes. *P < 0.05, **P < 0.01,
843 ***P < 0.001 versus control unexposed HMECs by two-tailed unpaired Student's *t*-test with Holm-

844 Sidak correction for multiple comparisons (n = 3 independent replicates). Error bars in column
845 charts or line plot represent s.e.m. α KG, α -ketoglutarate; 2HG, 2-hydroxyglutarate; IDH, isocitrate
846 dehydrogenase; ER, estrogen receptor; LC-MS, Liquid chromatography-mass spectrometry;
847 CCLE, Cancer Cell Line Encyclopedia; HER2, human epidermal growth factor receptor 2; 5hmC,
848 5-hydroxymethylcytosine; 5mC, 5-methylcytosine; TET, ten-eleven translocation; me0,
849 unmethylated; me1, monomethylated; me2, dimethylated; me3, trimethylated histone lysine
850 residues.

851 **Fig. 2 | Single-cell ATAC-seq identifies epigenetically heterogeneous responses to 2HG**
852 **exposure.** **a**, Schematic view of the scATAC-seq protocol. Culture medium was replaced daily
853 by freshly prepared media with or without oncometabolite supplementation (arrowheads). **b**, Insert
854 size distribution of ATAC-seq fragments from a single cell displaying characteristic nucleosome-
855 associated periodicity. Diagnostic insert sizes for mononucleosome, dinucleosome and
856 trinucleosome are labeled. **c**, Representative genome browser tracks showing open chromatin
857 regions in HMECs detected by scATAC-seq, which are highly consistent with DNase
858 hypersensitive sites (DHS) detected by bulk DNaseI-seq (GSE29692). Single cell profiles are
859 shown below the aggregated profiles. **d**, Principal component analysis (PCA) of 248 single cells
860 to identify cell subpopulations based on the chromatin accessibility landscape. Ctrl (n = 83),
861 D2HG- (n = 90) and L2HG-exposed (n = 75) cells are colored by sample type. Each data point
862 represents a single cell. **e**, Proportions of cell subpopulations identified by model-based
863 clustering. Cell clusters are color-coded as indicated. **f**, Whole-genome heat maps showing
864 enrichment of scATAC-seq signals in L2HG cell subsets over a 20-kb region centered on CpG
865 islands and H3K4me3 peak summits. Each row represents one individual genomic locus and is
866 sorted by decreasing scATAC-seq signal. The color represents the intensity of chromatin
867 accessibility. Intervals flanking indicated feature are shown in kilobases. ATAC, assay for
868 transposase accessible chromatin; HMECs, human mammary epithelial cells.

869 **Fig. 3 | 2HG decreases chromatin accessibility at genes that are highly methylated in breast**
870 **cancer patients.** **a**, Workflow of the integration of scATAC-seq data with high-throughput omics
871 datasets to characterize clinically relevant epigenetic signatures imposed upon 2HG exposure. **b**,
872 Distribution of ATAC-seq signals across ENCODE-ChromHMM functionally annotated regions in
873 response to 2HG perturbation. **c**, Metagene analysis of chromatin accessibility assayed by
874 scATAC-seq. Epigenomic accessibility landscape is centered on TSS across the genome (n =
875 20,242 genes). Colors represent individual cells. Solid lines indicate mean values and semi-
876 transparent shade around the mean curve shows s.e.m. across the region. While a sharp and
877 abrupt peak is evident over TSS in unexposed control cells, accessibility peaks are distorted in
878 2HG-exposed cells (arrowheads). **d**, Chromatin accessibility profiles for highly methylated genes
879 in the TCGA cancer cohorts. scATAC-seq profiles in 2HG-exposed and unexposed cells are
880 centered on TSS of highly methylated genes (n = 150 genes) in breast cancer (two independent
881 datasets) and endometrial cancer patients. Colors represent single cells (left) and average
882 accessibility profiles in each experimental condition (right). **e**, Chromatin accessibility profiles in
883 L2HG subpopulations across TSS of highly methylated genes (n = 150 genes) in the TCGA
884 cancer cohorts. * $P < 0.05$, ** $P < 0.01$, *** $P < 0.001$ versus unexposed control cells by one-way
885 ANOVA followed by Dunnett's multiple comparison test. ENCODE, Encyclopedia of DNA
886 Elements; ChromHMM, chromatin Hidden Markov Modeling; TSS, transcriptional start site;
887 TCGA, The Cancer Genome Atlas; Txn transition, transcriptional transition; Txn elongation,
888 transcriptional elongation; Weak Txn, weak transcribed; CNV, copy number variation.

889 **Fig. 4 | Tumor-associated DNA hypermethylation is linked to transcriptional repression**
890 **and poor patient prognosis in basal-like breast cancer.** **a**, Heat map depicting mRNA
891 expression of highly methylated genes whose promoter regions showed diminished chromatin
892 accessibility following 2HG exposure. The column dendrogram indicates unsupervised
893 hierarchical clustering of 150 genes that are highly methylated in the TCGA breast cancer cohort.

894 Rectangle outlined in white represent genes downregulated in basal-like tumors. Vertical sidebars
895 indicate the category of each patient with regard to *IDH1/2* mutations (mIDH1/2), ER, PR, HER2
896 and PAM50 status. **b**, Overrepresented canonical signaling and metabolic pathways from IPA
897 profiling of highly methylated genes in the TCGA breast cancer cohort. Colored bars (top x axis)
898 represent $-\log_{10} P$ values obtained by Fisher's exact test whereas the black line (bottom x axis)
899 indicates the ratio between the number of genes compared to the total number of genes in a given
900 pathway. **c**, Pie chart indicating GO biological processes enriched in genes associated with tumor
901 hypermethylation. See also Supplementary Table 2. **d,e**, Prognostic significance of concurrent
902 transcriptional repression (**d**) and hypermethylation (**e**) of genes shown in Supplementary Figure
903 4d. Disease-free survival (DFS) was investigated using Kaplan-Meier analysis, and log-rank
904 (Mantel-Cox) P values and hazard ratios (HR) are shown (see Methods for further details). TCGA,
905 The Cancer Genome Atlas; ER, estrogen receptor; PR, progesterone receptor; HER2, human
906 epidermal growth factor receptor 2; PAM50, prediction analysis of microarray 50; IPA, Ingenuity
907 Pathways Analysis; GO, Gene Ontology.

908 **Fig. 5 | 2HG induces DNA hypermethylation of tumor suppressor genes accompanied by**
909 **loss of promoter accessibility.** **a**, Heat map showing a decrease in chromatin accessibility of
910 hypermethylated genes ($n = 150$) in basal-like and HER2-enriched breast cancer subtypes.
911 Rectangle outlined in white represents genes downregulated in basal-like tumors as indicated in
912 Fig. 4a. Vertical sidebar indicates five different molecular subtypes. **b**, Quantitative comparison
913 of chromatin accessibility of hypermethylated genes across the TCGA breast cancer subtypes.
914 The upper and lower whiskers indicate the minimum and maximum values of the data, center
915 lines indicate the median, and the first and third quartiles are indicated by the bottom and top
916 edges of the boxes respectively. *** $P < 0.001$ versus basal-like tumors by one-way ANOVA with
917 Dunnett's multiple comparison test: basal-like ($n = 15$), HER2-enriched ($n = 11$), luminal A ($n =$
918 18), luminal B ($n = 25$) and normal-like ($n = 1$) subtypes. **c**, IGV genome browser tracks showing

919 diminished chromatin accessibility at gene promoters following 2HG exposure. ChromHMM-
920 defined chromatin states (GSE38163), DNasel-seq (GSE29692), H2AFZ/H2A.Z ChIP-seq
921 (GSE29611), WGBS profiles (GSE86732) from HMECs are shown. Arrows indicate TSS and
922 direction of transcription initiation, and y-axes show read coverage. Histone variant H2A.Z is
923 enriched around TSS. **d**, Promoter methylation measured by oxBs pyrosequencing. $*P < 0.05$,
924 $**P < 0.01$, $***P < 0.001$ versus control by one-way ANOVA with Dunnett's multiple comparison
925 test ($n \geq 3$ individual replicates). Error bars denote s.e.m. Validation by MeDIP-qPCR was also
926 done in the same samples and promoter hypermethylation following 2HG exposure was
927 confirmed using hTERT-HME1 cells (see Supplementary Figure 5a,b). IGV, Integrative Genomics
928 Viewer; ChromHMM, chromatin Hidden Markov Modeling; WGBS, whole-genome bisulfite
929 sequencing; TSS, transcriptional start site; oxBs, oxidative bisulfite; MeDIP, methylated DNA
930 immunoprecipitation.

931 **Fig 6 | Single-cell mass cytometry demonstrates downregulation of hypermethylated**
932 **genes in 2HG-responsive cell subpopulations. a**, Representative *t*-SNE plots showing levels
933 of histone modification markers in response to 2HG exposure. C, unexposed control cells; D, cells
934 exposed to D2HG for 72 hr; L, cells exposed to L2HG for 72 hr; LW, cells exposed to L2HG for
935 72 hr followed by 5-day withdrawal of L2HG. Each data point on the *t*-SNE maps represents an
936 individual cell and its color corresponds to cellular levels of each marker assessed. Density plots
937 at the bottom show cell population distribution in each experimental group (~10,000 cells per
938 condition). **b**, *t*-SNE plot of HMECs from all experimental groups merged. Each data point is
939 colored by condition. **c**, *t*-SNE projections of epigenetically distinct cell subsets defined by
940 FlowSOM. Cells are colored according to the cluster they were assigned to using consensus
941 hierarchical clustering in FlowSOM analysis. **d**, Bar chart showing changes in cell frequency
942 distribution across different treatment groups. **e**, Heat maps depicting epigenetically
943 heterogeneous responses upon 2HG exposure. Normalized median values of signal intensities

944 are shown for each cluster. Pie charts indicate the proportion of cells from different experimental
945 groups in each cluster. **f**, Violin plots showing expression levels of the *BRCA1*, *MSH2* and *MLH1*
946 genes in Cluster 1. ** $P < 0.01$, *** $P < 0.001$ versus control by one-way ANOVA followed by
947 Dunnett's multiple comparison test. **g,h,i**, Scatter plots showing the correlation between the
948 expression of *BRCA1* and *MSH2* in the mass cytometry Cluster 1 (**g**), CCLE breast cancer cell
949 lines (**h**) and TCGA breast cancer cohort (**i**). Data in **g** are transformed to arcsinh scales with the
950 cofactor of 5 and four experimental groups (C, D, L and LW) are indicated by different colors. In
951 the CCLE and TCGA datasets, red and brown dots indicate cancer cell lines or tumors with
952 mutations in the *BRCA1* and *MSH2* genes respectively. Spearman's correlation coefficient (r with
953 P value) is indicated at the bottom of the panel. **j**, A model for metabolic rewiring of the breast
954 cancer epigenome. TCA cycle metabolite α KG enhances TET and JHDM enzyme activities
955 facilitating active DNA and histone demethylation such that promoter regions of tumor suppressor
956 genes (TSG) remain accessible. Cancer metabolism accompanied with intratumor accumulation
957 of 2HG oncometabolites, which antagonize DNA hydroxylases or histone demethylases, may
958 drive global loss of 5hmC and promoter hypermethylation leading to DNA methylator phenotype.
959 L2HG exposure could also confer enhanced cell-to-cell variability in the chromatin regulatory
960 landscape by reversibly remodeling the breast cancer epigenome, potentially contributing to
961 extensive intratumor heterogeneity. *t*-SNE, *t*-distributed stochastic neighbor embedding;
962 FlowSOM, flow cytometry data analysis using self-organizing maps.

Figure 1

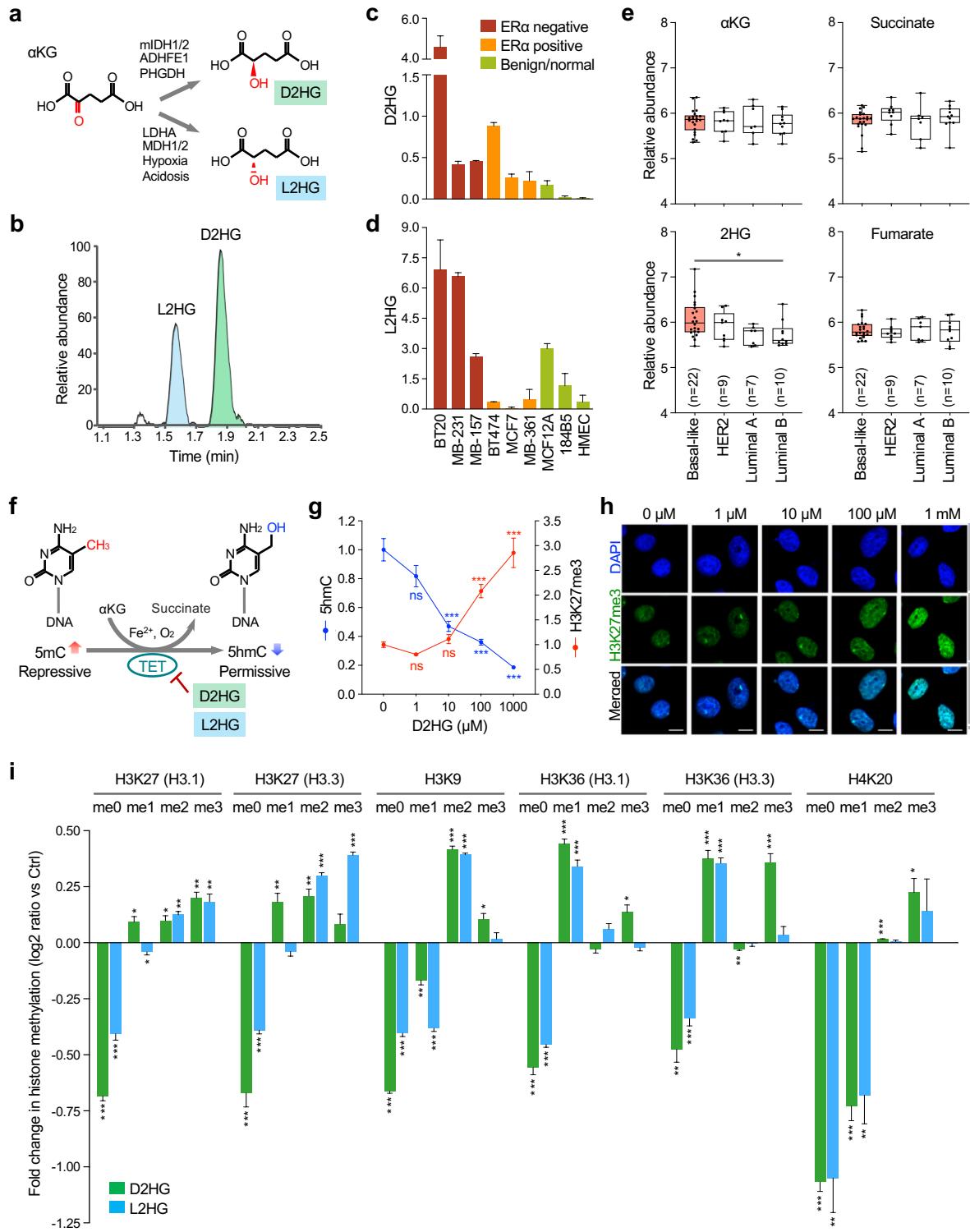


Figure 2

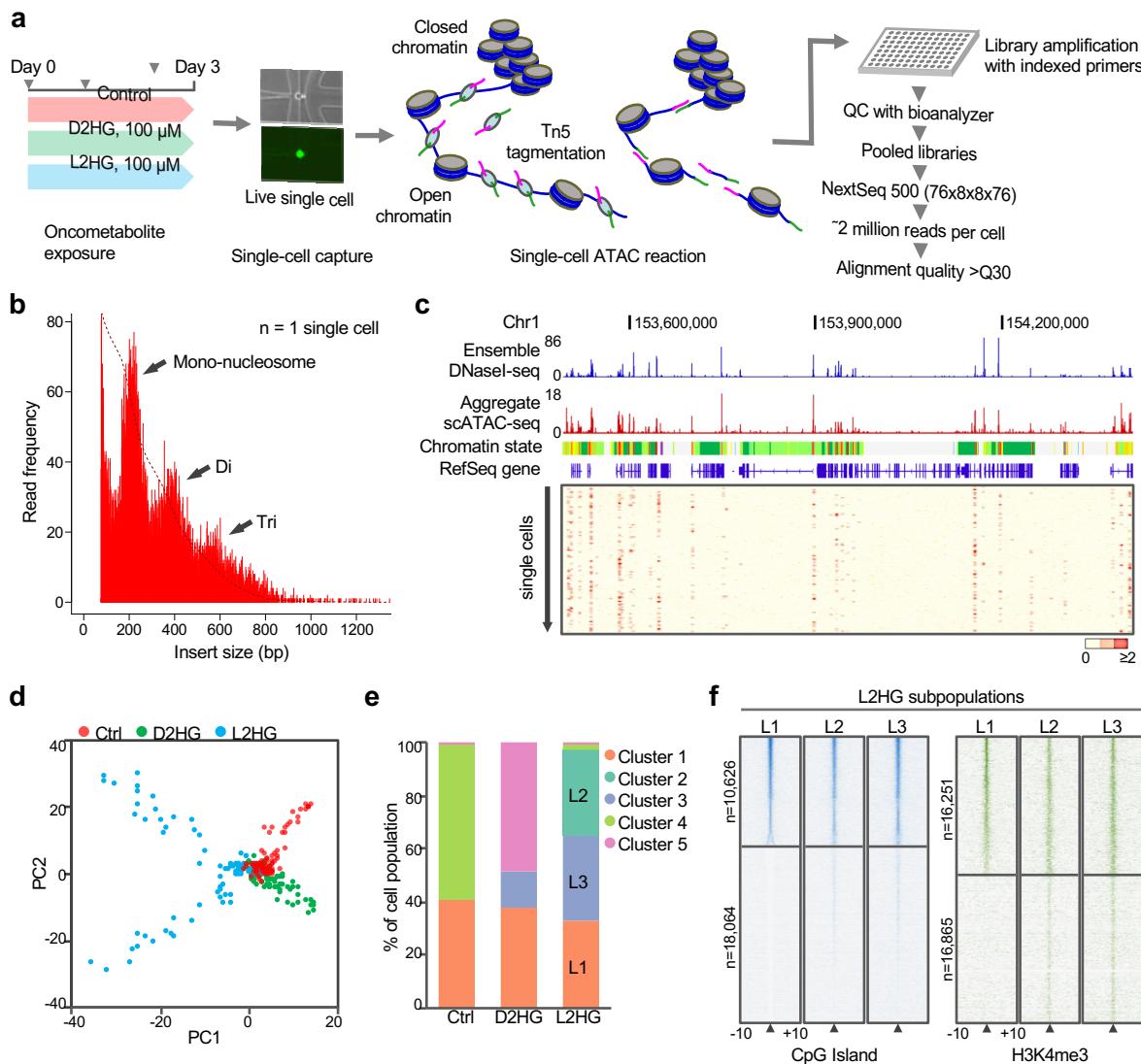


Figure 3

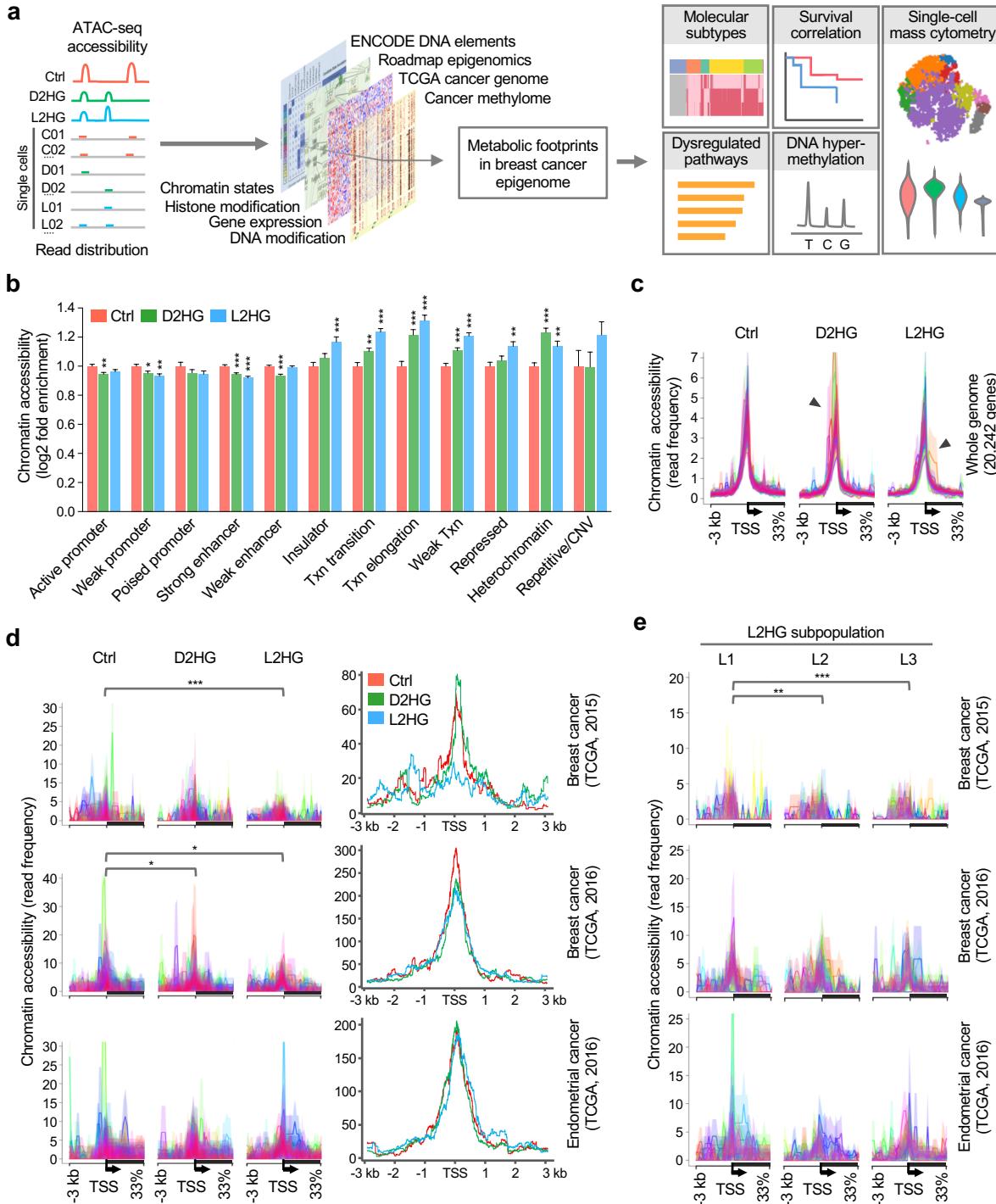


Figure 4

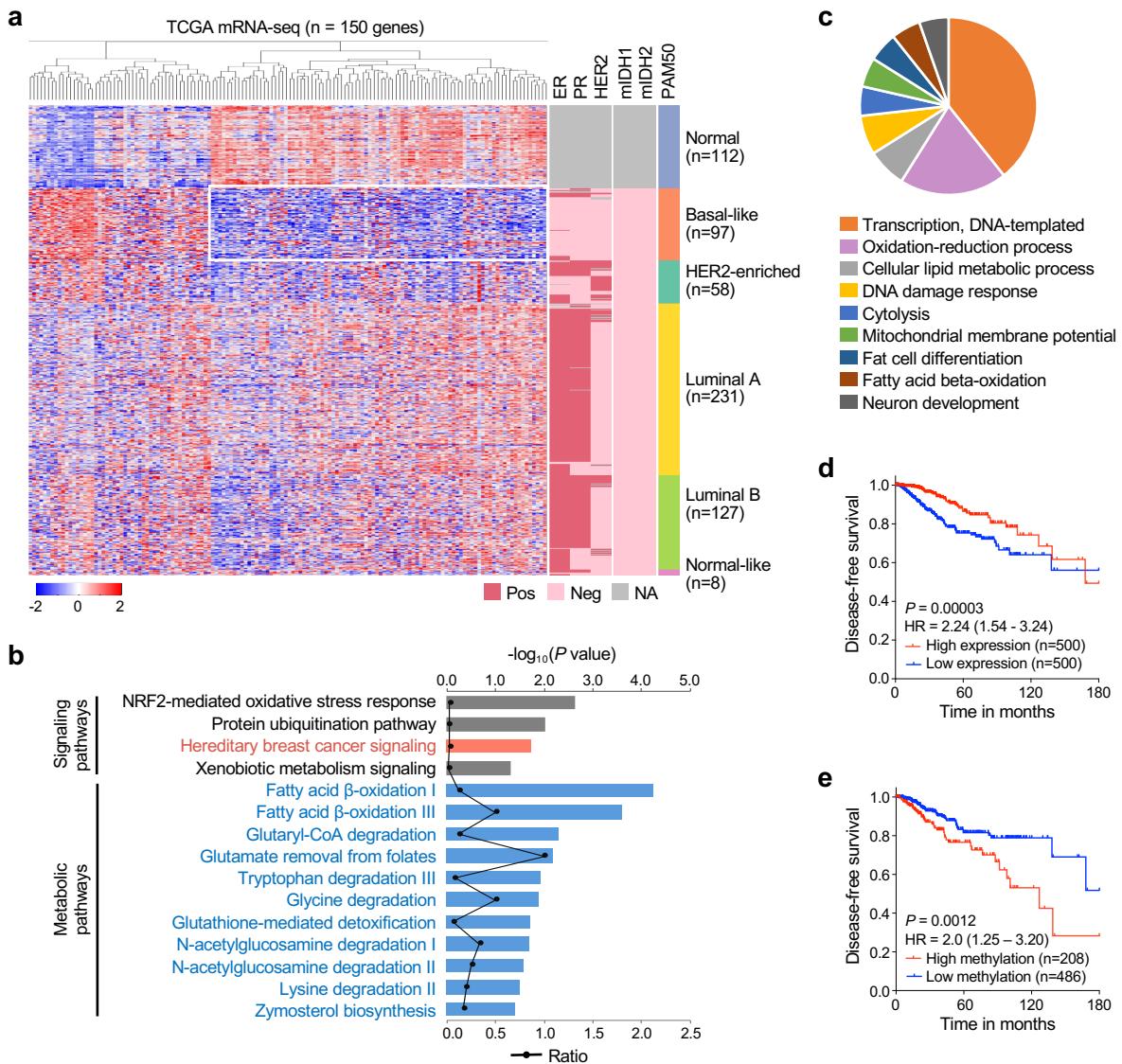


Figure 5

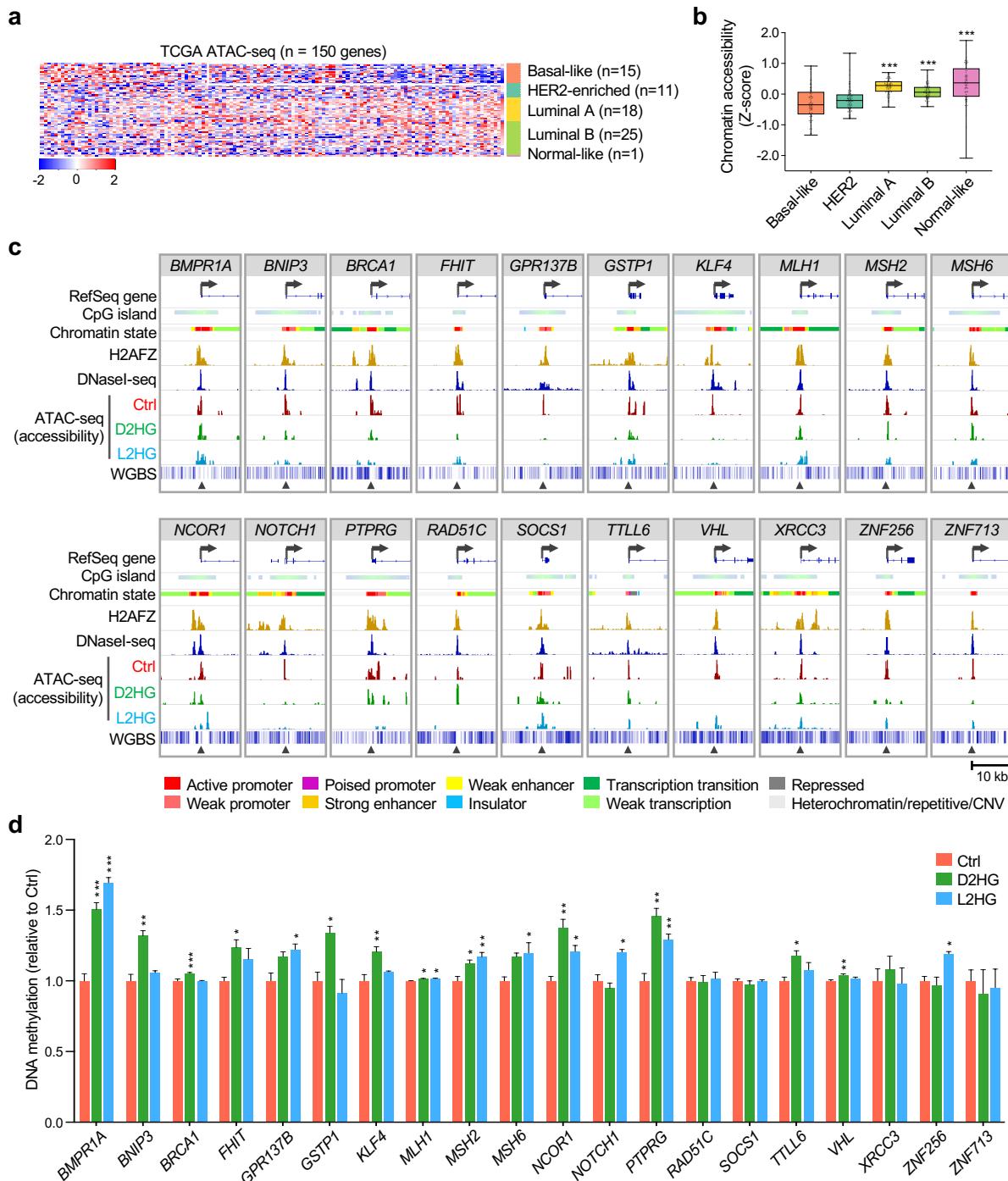
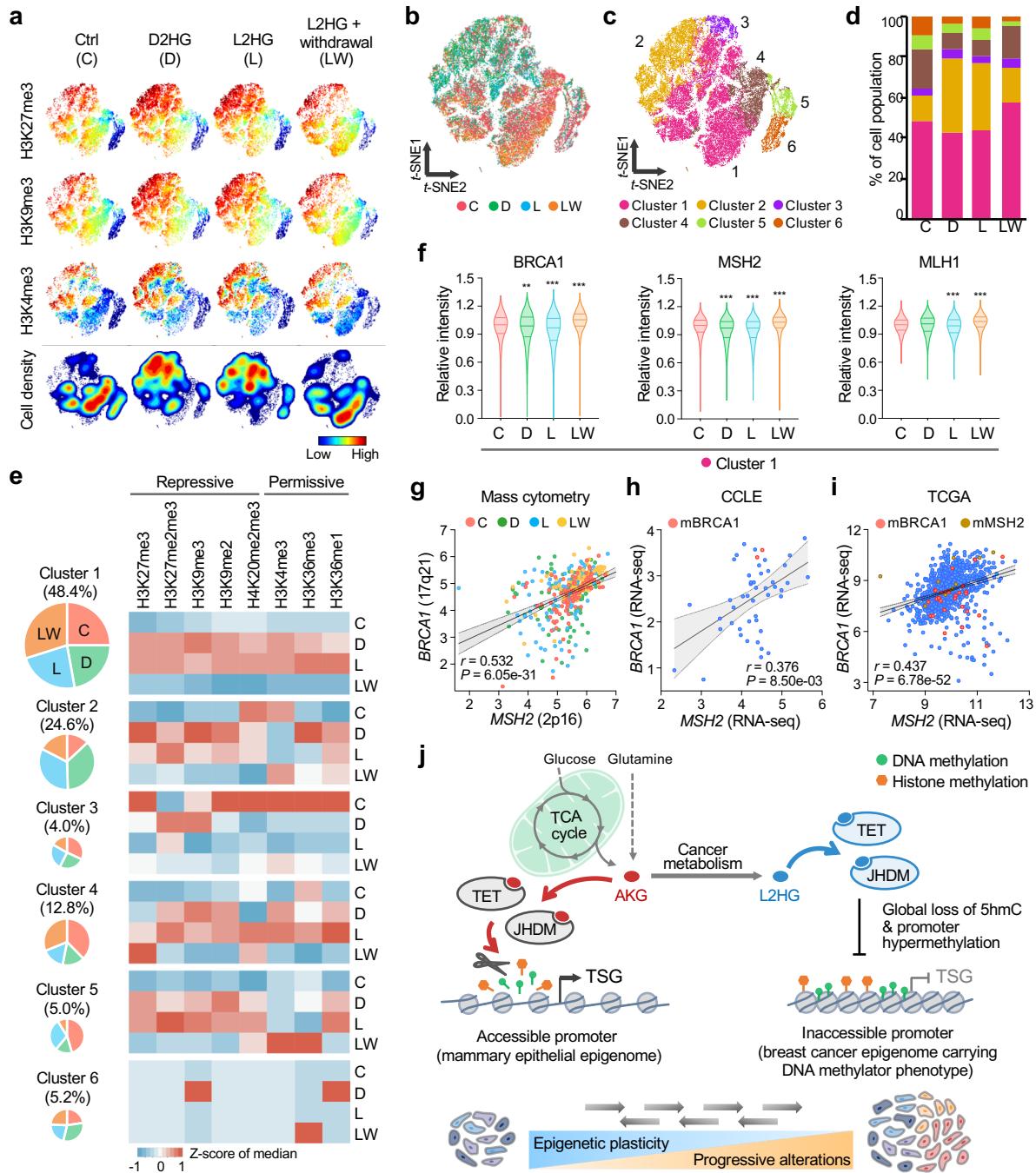



Figure 6

