

1 **Long-read genome sequencing and assembly of *Leptopilina boulardi*: a specialist *Drosophila***
2 **parasitoid**

3 Shagufta Khan¹, Divya Tej Sowpati^{1,2}, Arumugam Srinivasan, Mamilla Soujanya, Rakesh K
4 Mishra²

5 CSIR – Centre for Cellular and Molecular Biology

6 Hyderabad – 500007, Telangana, India

7 ¹ These authors contributed equally

8 ² Corresponding authors

9

10

11

12

13

14

15

16

17

18

19

20 **Running title:** Genome assembly of *Leptopilina boulardi*

21

22 **Keywords:** *Leptopilina boulardi*, wasp, parasitoid, *Drosophila*, genome assembly

23

24 **Corresponding authors:**

25 Divya Tej Sowpati - tej@ccmb.res.in

26 Rakesh K Mishra - mishra@ccmb.res.in

27 CSIR – Centre for Cellular and Molecular Biology

28 Uppal Road, Habsiguda, Hyderabad – 500007, Telangana, India

29 Telephone: +914027192533

30 Fax: +914027160591

31

32

33

34

35

36

37

38 **ABSTRACT**

39 *Leptopilina boulardi* (Hymenoptera: Figitidae) is a specialist parasitoid of *Drosophila*. The

40 *Drosophila-Leptopilina* system has emerged as a suitable model for understanding several

41 aspects of host-parasitoid biology. However, a good quality genome of the wasp counterpart was

42 lacking. Here, we report a whole-genome assembly of *L. boulardi* to bring it in the scope of the

43 applied and fundamental research on *Drosophila* parasitoids with access to epigenomics and

44 genome editing tools. The 375Mb draft genome has an N50 of 275Kb with 6315 scaffolds

45 >500bp and encompasses >95% complete BUSCOs. Using a combination of *ab-initio* and RNA-

46 Seq based methods, 25259 protein-coding genes were predicted and 90% (22729) of them could

47 be annotated with at least one function. We demonstrate the quality of the assembled genome by
48 recapitulating the phylogenetic relationship of *L. boulardi* with other Hymenopterans. The key
49 developmental regulators like Hox genes and sex determination genes are well conserved in *L.*
50 *boulardi*, and so is the basic toolkit for epigenetic regulation. The search for epigenetic
51 regulators has also revealed that *L. boulardi* genome possesses DNMT1 (maintenance DNA
52 methyltransferase), DNMT2 (tRNA methyltransferase) but lacks the *de novo* DNA
53 methyltransferase (DNMT3). Also, the heterochromatin protein 1 family appears to have
54 expanded as compared to other hymenopterans. The draft genome of *L. boulardi* (Lb17) will
55 expedite the research on *Drosophila* parasitoids. This genome resource and early indication of
56 epigenetic aspects in its specialization make it an interesting system to address a variety of
57 questions on host-parasitoid biology.

58

59

60 INTRODUCTION

61 Parasitoids are organisms that have a non-mutualistic association with their hosts (Eggleton and
62 Belshaw 1992; Godfray 1994). Around 10%-20% of the described insect species are estimated to
63 be parasitoids. They are spread across five insect orders, i.e., Hymenoptera, Diptera, Coleoptera,
64 Lepidoptera, Neuroptera, Strepsiptera and Trichoptera (Eggleton and Belshaw 1992; LaSalle and
65 Gauld 1991; Heraty 2009), amongst which the vast majority are parasitoid wasps belonging to
66 the order Hymenoptera (LaSalle and Gauld 1991; Godfray 1994; A R Kraaijeveld, Van Alphen,
67 and Godfray 1998). Depending on the stage of the host they attack, they are categorized into the
68 egg, larval, pupal or adult parasitoids. The larvae of parasitoids either feed/develop within the
69 host without impeding its growth (endoparasitic koinobionts) or live on the host after killing or

70 permanently paralyzing it (ectoparasitic idiobionts) (Godfray 1994; A R Kraaijeveld, Van
71 Alphen, and Godfray 1998). Based on the host preference, parasitoids are further classified as
72 generalists and specialists: generalists can parasitize a broad range of species, whereas specialists
73 favor one or two host species (Lee et al. 2009). Likewise, hymenopteran parasitoids display a
74 repertoire of unique features such as polyembryony, hyper-/mutli-/superparasitism, complex
75 multi-level interactions, and haplodiploid sex-determination (Godfray 1994). Many studies have
76 also demonstrated their potential in the biological control of insect pests (Heraty 2009; de
77 Lourdes Corrêa Figueiredo et al. 2015; Smith 1996; Martínez, González, and Dicke 2018;
78 Machtlinger et al. 2015; Kruitwagen, Beukeboom, and Wertheim 2018).

79 *Leptopilina boulardi* (NCBI taxonomy ID: 63433) is a solitary parasitoid wasp from the
80 Figitidae family in the Hymenoptera order (Figure 1). It is a cosmopolitan species, which is
81 ubiquitously found in the Mediterranean and intertropical environments. *L. boulardi* parasitizes
82 *Drosophila melanogaster* and *Drosophila simulans* at second- to early third-instar larval stages
83 and hence, is a specialist (Fleury et al. 2009). However, few strains of the wasp can also infect
84 other Drosophilids like *D. yakuba*, *D. subobscura* and *D. pseudoobscura*, albeit to a lesser extent
85 (Dubuffet et al. 2008; Schlenke et al. 2007). *Leptopilina*, like all the other Hymenopterans, has a
86 haplodiploid sex-determination system. The females are diploid and males are haploid. They are
87 endoparasitic koinobionts, i.e., they lay eggs inside the host larva, allowing the host to grow and
88 feed without rapidly killing it (Fleury et al. 2009; Lee et al. 2009; Kaiser, Couty, and Perez-
89 Maluf 2009). During oviposition, the parasitoid co-inject virulence factors like venom proteins,
90 Virus-like Particles (VLPs) into the larval hemolymph, which helps in taming the host immune
91 responses (Dupas et al. 1996; Goecks et al. 2013; Gueguen et al. 2011). After hatching inside the
92 host hemocoel, the parasitoid larva histolyses the host tissues gradually. Subsequently, the

93 endoparasitoid transitions into an ectoparasitoid and consumes the host entirely while residing
94 inside the host puparium until emergence. The entire life cycle takes 21-22 days at 25°C (Kaiser,
95 Couty, and Perez-Maluf 2009; Fleury et al. 2009). Alternatively, the host can mount an immune
96 response leading to the death of the parasitoid by encapsulation and the emergence of the host.
97 The interaction, to some degree, also culminates in the death of both host and parasitoid (Fleury
98 et al. 2009; Rizki and Rizki 1990; Small et al. 2012; A R Kraaijeveld, Van Alphen, and Godfray
99 1998). Such paradigms of evolutionary arms-race are prevalent in insects. However, the
100 combination of *Drosophila* and *Leptopilina*, in particular, has unfolded as a promising tool to
101 study various aspects of the host-parasitoid biology such as coevolutionary dynamics, behavioral
102 ecology, physiology, innate-immune responses, superparasitism (Lee et al. 2009; Fellowes and
103 Godfray 2000; Alex R. Kraaijeveld and Godfray 2009; Tracy Reynolds and Hardy 2004; A R
104 Kraaijeveld, Van Alphen, and Godfray 1998). The advancement could also be attributed to the
105 well-established and extensively studied host.
106 The genotype, age, size, and nutritional conditions of the host affect the success of the parasitoid
107 (Boulétreau and Wajnberg 1986; Godfray 1994). Nevertheless, the virulence of the parasitoid is
108 a key factor in determining the fate of an infected host. Although, studies have explored the
109 cause of genetic variance (intra- or inter-specific) and identified the genes involved in the host
110 resistance (A R Kraaijeveld, Van Alphen, and Godfray 1998; Hita et al. 1999; Schlenke et al.
111 2007; Howell et al. 2012; Salazar-Jaramillo et al. 2017), our understanding of the genetic and
112 epigenetic basis of variation seen in the counter-resistance/virulence of the parasitoids is limited
113 (Alex R. Kraaijeveld and Godfray 2009; Colinet et al. 2010). Another factor that affects the
114 outcome of the host-parasitoid association is the symbiotic partners they harbor, such as
115 *Leptopilina boulardi* Filamentous Virus (LbFV) and *Wolbachia*. LbFV, specific to *L. boulardi*,

116 causes the females to lay eggs in an already parasitized host (superparasitism). Thereby favoring
117 its transmission, and indirectly helping the parasitoid dodge the immune system of the host
118 (Julien Varaldi et al. 2003, 2009; Lepetit et al. 2017; J. Varaldi and Lepetit 2018; Martinez et al.
119 2012; Patot et al. 2012, 2009). *Wolbachia*, an alpha-proteobacterium, is also the most prevalent
120 endosymbiont of Arthropods. It manipulates the reproductive machinery of the host by inducing
121 either of the following: feminization, male-specific killing, parthenogenesis and cytoplasmic
122 incompatibility, and enhance their transmission to the subsequent generation (Werren, Windsor,
123 and Guo 1995; Vavre, Mouton, and Pannebakker 2009). Hymenopterans, with haplodiploid sex
124 determination, are appropriate hosts for parthenogenesis-inducing *Wolbachia* and have been
125 implicated in the evolution of asexual lineages, such as in *L. clavipes* (K. Kraaijeveld et al.
126 2016). Interestingly, these bacterial parasites fail to infect the Boulardi clade of the *Leptopilina*
127 genus, unlike the Heterotoma and Clavipes clades (Vavre, Mouton, and Pannebakker 2009;
128 Heath et al. 1999). Such dichotomy observed in the susceptibility of *Drosophila* parasitoids to
129 infections remains elusive.

130 The epigenetic mechanisms underlying such multispecies interactions that result in the
131 manipulation of behavior and life-history traits of *Leptopilina* genus have not been investigated
132 yet. Therefore, knowing the genomes of *Drosophila* parasitoids will be of great significance in
133 providing a detailed insight into their biology. In this study, we have sequenced the whole
134 genome of *Leptopilina boulardi* (Lb17), generated a high-quality genome assembly, and
135 annotated it. We further looked for its phylogenetic relationship with select metazoans,
136 conservation of genes responsible for body patterning, sex determination and epigenetic
137 regulation of gene expression.

138

139 **MATERIALS AND METHODS**

140 **Sample Collection**

141 *L. boulardi* (Lb17 strain), kindly provided by S. Govind (Biology Department, The City College
142 of the City University of New York), was reared on *D. melanogaster* (Canton-S strain) as
143 described earlier (Small et al. 2012). Briefly, 50-60 young flies were allowed to lay eggs for 24
144 hours at 25°C in vials containing standard yeast/corn-flour/sugar/agar medium. Subsequently,
145 the host larvae were exposed to six to eight male and female wasps, respectively, 48 hours after
146 the initiation of egg lay. The culture conditions were maintained at 25°C and LD 12:12. The
147 wasps (two days old) were collected, flash-frozen in liquid nitrogen, and stored at -80°C until
148 further use.

149

150 **Genomic DNA preparation and sequencing**

151 For whole-genome sequencing on Illumina HiSeq 2500 platform (Table 1), the genomic DNA
152 was extracted as follows: 100 mg of wasps were ground into a fine powder in liquid nitrogen and
153 kept for lysis at 55°C in SNET buffer overnight (400 mM NaCl, 1% SDS, 20 mM Tris-HCl
154 pH8.0, 5 mM EDTA pH 8.0 and 2 mg/ml Proteinase K) with gentle rotation at 10 rpm. Next day,
155 after RNase A (100 µg/ml) digestion, Phenol: Chloroform: Isoamyl Alcohol extraction was
156 performed, followed by Ethanol precipitation. The pellet was resuspended in 1X Tris-EDTA
157 buffer (pH 8.0).

158 For long-read sequencing on PacBio Sequel II platform, the genomic DNA preparation was done
159 from 200 mg wasps using the protocol described earlier (Mayjonade et al. 2016) with the
160 following additional steps: Proteinase K digestion for 30 minutes at 50°C after lysis, RNase A
161 digestion for 10-15 minutes at RT (1 µl per 100 µl of 100 mg/ml) after the centrifugation step of

162 contaminant precipitation with potassium acetate and a single round of
163 Phenol:Chloroform:Isoamyl Alcohol (25:24:1, v/v) (Cat. No. 15593031) phase separation before
164 genomic DNA purification using Agencourts AMPure XP beads (Item No. A63880).

165

166 **Hybrid genome assembly and assessment of genome completeness**

167 Assembly of the reads was done using a hybrid assembler, MaSuRCA (Zimin et al. 2013).
168 GapFiller (Nadalin, Vezzi, and Policriti 2012) was used to fill N's in the assembly. Following
169 gap filling, all scaffolds shorter than 500bp were removed from the assembly. The version thus
170 obtained was used for all further analyses. For assessing the quality of the genome assembly,
171 bowtie2 (Langmead and Salzberg 2012) and BUSCOv3 (Simão et al. 2015) was used.

172

173 **Identification of repeat elements**

174 To identify repeat elements in the *L. boulardi* assembly, RepeatModeler was used with
175 RepeatScout (Price, Jones, and Pevzner 2005) and TRF (Benson 1999) to generate a custom
176 repeat library. The output of RepeatModeler was provided to RepeatMasker (Tarailo-Graovac
177 and Chen 2009), along with the RepBase library (Bao, Kojima, and Kohany 2015), to search for
178 various repeat elements in the assembly. PERF (Avvaru, Sowpati, and Mishra 2018) was used to
179 identify simple sequence repeats.

180

181 **Gene prediction**

182 For RNA-seq based approach, available paired-end data generated from the transcriptome of
183 female *L. boulardi* abdomen (SRR559222) (Goecks et al. 2013) was mapped to the assembly
184 using STAR (Dobin et al. 2013). The BAM file containing uniquely-mapped read pairs (72% of

185 total reads) was used to construct high-quality transcripts using Cufflinks (Trapnell et al. 2013).
186 The same BAM file was submitted for RNA-seq based *ab initio* prediction using BRAKER
187 (Hoff et al. 2016). BRAKER uses the RNA-seq data to generate initial gene structures using
188 GeneMark-ET (Lomsadze, Burns, and Borodovsky 2014), and based further uses AUGUSTUS
189 (Stanke et al. 2008) to predict genes on the generated gene structures. In addition to BRAKER,
190 two other *ab initio* prediction tools were used: GlimmerHMM (Majoros, Pertea, and Salzberg
191 2004) and SNAP (Korf 2004). Using the gene sets generated from various methods, a final non-
192 redundant set of genes was derived using Evidence Modeler (Haas et al. 2008). A protein
193 FASTA file derived using this gene set was further used for functional annotation.

194

195 **Gene annotation**

196 BLAST was used to search for homology signatures against SwissProt and TrEMBL databases at
197 an e-value cutoff of 10e-5. InterProScan v5 (Jones et al. 2014) was used to search for the
198 homology of protein sequences against various databases such as Pfam, PROSITE, and Gene3D.
199 The gene ontology terms associated with the proteins were retrieved using the InterPro ID
200 assigned to various proteins.

201

202 **Mining of homologs**

203 For protein BLAST (blastp), the proteins were used as query sequences to search against *L.*
204 *boulardi* proteome. The hit with highest e-value was selected as potential orthologue for a given
205 gene and further subjected to Conserved Domains Search using CDD (Marchler-Bauer et al.
206 2017) to look for the presence of specific protein domains. Non-redundant BLAST searches at

207 NCBI database were also done to compare with closely associated species from Hymenoptera
208 and other insect orders.

209 For translated BLAST (tblastn), the proteins were used as query sequences to search against
210 translated *L. boulardi* genome. The hits with e-value greater than 0.01, irrespective of their
211 percentage identity and alignment length, were used for further analysis. The genomic regions
212 that showed matches in tblastn were extended 5 kb upstream and downstream for gene prediction
213 using GENSCAN. The non-redundant peptides obtained from GENSCAN were then subjected to
214 domain prediction using CDD (Marchler-Bauer et al. 2017).

215

216 **Multiple sequence alignment and Phylogenetic tree construction**

217 For phylogenetic tree construction of 15 metazoan species, the protein datasets of selected
218 species were downloaded from UniProt (Bateman 2019), choosing the non-redundant proteomes
219 wherever possible. Orthologs were obtained and clustered using OrthoFinder (Emms and Kelly
220 2015). The tree generated by OrthoFinder was visualized using iTOL v3 (Letunic and Bork
221 2016). For assigning the putative DNA methyltransferases to DNMT1 and DNMT2 subfamily
222 and aligning the chromodomain/chromoshadow domain sequences obtained by tblastn with seed
223 sequences from *D. melanogaster*, Clustal Omega (Madeira et al. 2019) was used followed by
224 maximum likelihood tree generation with 1000 bootstrap steps using MEGA (Kumar et al.
225 2018).

226

227 **Data availability**

228 The raw reads generated on the Illumina and PacBio platforms are deposited in the Sequence
229 Read Archive (SRA accession SRP144858) of NCBI under the BioProject PRJNA419850.
230 Supplemental material has been uploaded to figshare.

231

232 **RESULTS AND DISCUSSION**

233 **Genome assembly and assessment of genome completeness**

234 Previous cytogenetic and karyotypic analysis has estimated the genome size of *L. boulardi* to be
235 around 360Mb (Gokhman et al. 2016). We used JellyFish (Marçais and Kingsford 2011) to
236 determine the genome size of *L. boulardi* to be 398Mb. Using the five short-read libraries of
237 ~200X coverage (70.66GB data) and PacBio reads of ~30X coverage (10.5GB data)
238 (Supplementary file 1: Table S1), MaSuRCA produced an assembly of 375Mb, made of 6341
239 scaffolds with an N50 of 275Kb (Table 1). MaSuRCA uses both short Illumina reads and long
240 PacBio reads to generate error-corrected super reads, which are further assembled into contigs. It
241 then uses mate-pair information from short-read libraries to scaffold the contigs. The largest
242 scaffold thus obtained was 2.4Mb long, and 50% of the assembly was covered by 380 largest
243 scaffolds (L50). Using GapFiller, 206Kb out of 1.4Mb of N's could be filled after ten iterations.
244 From this assembly, all scaffolds shorter than 500bp were removed, leaving a total of 6315
245 scaffolds.

246

247 **Table 1: SUMMARY STATISTICS OF THE ASSEMBLED GENOME**

Genome assembly	Numbers
Assembly size 1n (bp)	375,731,061
Number of N's (before gapfilling)	1,423,533
Number of N's (after gapfilling)	1,216,865

GC content (%)	28.26
Number of scaffolds	6315
N50 (bp)	275,616
Largest scaffold (bp)	2,405,804
Average scaffold size (bp)	59,254

248

249 The quality of the genome assembly was measured using two approaches. First, we aligned the
250 paired-end reads generated from a fresh 250bp library to the assembly using bowtie2 (Langmead
251 and Salzberg 2012). 94.64% of the reads could be mapped back, with 92.32% reads mapped in
252 proper pairs. Next, we used BUSCO v3 (Simão et al. 2015) to look for the number of single-copy
253 orthologs in the assembly. Out of the 978 BUSCOs in the metazoan dataset, 943 (96.5%)
254 complete BUSCOs were detected in the assembly (Table 2). We also performed BUSCO
255 analysis with the Arthropoda (1066 BUSCOs) and Insecta (1658 BUSCOs) datasets and could
256 identify 97% and 95.7% complete BUSCOs in our assembly, respectively (Table 2). The number
257 of complete Insect BUSCOs present in our assembly was similar to that of the other insect
258 genomes (Supplementary file 1: Table S2). Both the results indicate that the generated assembly
259 was nearly complete, with a good representation of the core gene repertoire with only 2.1% and
260 3.1% of the Arthropod and Insect specific BUSCOs missing from the assembly respectively.

261

262 **Table 2:** BUSCO ANALYSIS FOR ASSESSING THE COMPLETENESS OF GENOME ASSEMBLY

BUSCOs	Lineage		
	Metazoa	Arthropoda	Insecta
Complete Single-Copy	913 (93.4%)	1004 (94.2%)	1538 (92.8%)
Complete Duplicated	30 (3.1%)	30 (2.8%)	48 (2.9%)
Fragmented	11 (1.1%)	10 (0.9%)	20 (1.2%)

Missing	24 (2.4%)	22 (2.1%)	52 (3.1%)	263
Complete (All)	943 (96.5%)	1034 (97%)	1586 (95%)	264
Total	978	1066	1658	265

266

267

268

269

270 **Identification of repeat elements**

271 A total of 868105 repeat elements could be identified using RepeatMasker (Tarailo-Graovac and
272 Chen 2009), covering almost 165Mb (43.88%) of the genome. Table 3 summarizes the number
273 of repeat elements identified in the *L. boulardi* assembly as well as their respective types. We
274 further used PERF (Avvaru, Sowpati, and Mishra 2018) to identify simple sequence repeats of
275 ≥ 12 bp length. PERF reported a total of 853,624 SSRs covering 12.24Mb (3.26%) of the
276 genome (Table 4). The density of SSRs in the genome of *L. boulardi* was comparable to other
277 insect genomes (Supplementary file 1: Table S3). Hexamers were the most abundant SSRs
278 (40.1%) in the *L. boulardi* genome, followed by pentamers (15.8%) and monomers (14.3%).

279

280 **Table 3: SUMMARY OF REPEAT ELEMENTS IDENTIFIED BY REPEAT MASKER IN THE GENOME**

Repeat Type	Number of	Total Length	Average Length	% Genome
	Elements	(bp)	(bp, rounded)	Covered
SINEs	3721	1,651,220	444	0.44
LINEs	10573	5,613,129	531	1.49
LTR elements	12312	9,512,954	773	2.53
DNA elements	105817	31,232,845	295	8.31

Unclassified interspersed elements	382214	102,924,940	269	27.39
Small RNA	186	137,204	738	0.04
Satellites	2442	1,028,732	421	0.27
Simple repeats	251669	11,461,332	46	3.05
Low complexity	46977	2,473,942	53	0.66

281

282

283

284

285 **Table 4:** DETAILS OF SSRs IDENTIFIED BY PERF IN THE GENOME

Number of SSRs	853,624
Total Repeat bases	12.24Mb
Repeat bases per Mb genome	32,587.49
Number of monomers	122,305 (14.3%)
Number of dimers	101,493 (11.9%)
Number of trimers	72,675 (8.5%)
Number of tetramers	80,493 (9.4%)
Number of pentamers	134,680 (15.8%)
Number of hexamers	341,978 (40.1%)

286

287 **Gene prediction and annotation**

288 Coding regions in the assembled genome of *L. boulardii* were predicted using two different
289 approaches: RNA-seq based prediction and *ab initio* prediction. The number of predicted genes
290 using different method is outlined in Table 5. Using the gene sets generated from various
291 methods, a final non-redundant set of 25259 genes was derived using Evidence Modeler (Haas et

292 al. 2008) (Table 5). The average gene size in the final gene set is ~3.9Kb. A protein FASTA file
293 was derived using this gene set, which was further used for functional annotation.

294

295

296

297

298

299 **Table 5: PREDICTION OF GENES IN *L. Boulardi*: SUMMARY OF VARIOUS METHODS**

Evidence Type	Tool	Element	Total Count	Average Length
RNA-Seq	Cufflinks	Gene	16930	10216.46
		Exon	86962	404.44
	BRAKER	Gene	45478	2461.26
<i>ab initio</i>	GlimmerHMM	Exon	131812	384.35
		Gene	28468	10529.63
	SNAP	Exon	116583	243.50
Combined	EvidenceModeler	Gene	22747	856.46
		Exon	62449	222.72
		Gene	25259	3886.27
	EvidenceModeler	Exon	92127	333.69

300

301 The functional annotation of predicted proteins was done using a homology-based approach.
302 11629 and 19795 proteins could be annotated by performing BLAST against SwissProt and
303 TrEMBL databases, respectively. Further, using InterProScan v5 (Jones et al. 2014), 12,449 out
304 of 25,259 (49.2%) proteins could be annotated with Pfam, while 9346 and 10952 proteins
305 showed a match in PROSITE and Gene3D databases, respectively (Table 6). The gene ontology

306 terms associated with the proteins were retrieved using the InterPro ID assigned to various
307 proteins. A total of 22729 proteins (89.98%) could be annotated using at least one database.

308

309

310

311

312 **Table 6: GENE ANNOTATION OF THE PREDICTED GENES**

Database	Genes Annotated	Percentage Total
SwissProt	11629	46.04
TrEMBL	19795	78.37
Pfam	12449	49.29
Prosite	9346	37.00
Gene3D	10952	43.36
GO	9383	37.15
Annotated	22729	89.98
Total	25259	100.00

313

314 **Phylogenetic relationship with Hymenopterans**

315 The evolutionary relationship of *L. boulardi* was examined with fifteen metazoan species: one
316 nematode (*C. elegans*), eleven insects – one dipteran (*D. melanogaster*), one lepidopteran (*B.*
317 *mori*), seven parasitic hymenopterans (*C. solmsi*, *C. floridanum*, *T. pretiosum*, *N. vitripennis*, *M.*
318 *demolitor* and *O. abietinus*) and two non-parasitic hymenopterans (*P. dominula*, *A. mellifera*),

319 and four chordates (*D. rerio*, *G. gallus*, *M. musculus* and *H. sapiens*) (Supplementary file 1:
320 Table S4). One hundred fifty single-copy orthologs (Supplementary file 2: Figure S1), were
321 obtained and clustered using OrthoFinder (Emms and Kelly 2015), to understand the
322 phylogenetic relationship between the selected species. The tree generated by OrthoFinder was
323 visualized using iTOL v3 (Letunic and Bork 2016). As expected, *L. boulardi* clusters primarily
324 with Hymenopterans and the phylogeny places it as a separate clade and not with other families
325 of Hymenoptera order (Figure 2).

326

327 **Hox genes**

328 Hox genes, a subgroup of Homeobox genes that code for homeodomain-containing transcription
329 factors, play a crucial role during the embryonic development in animals. In addition to their
330 high evolutionary conservation in bilaterian animals, they have received special attention as their
331 genomic arrangement, and expression status determines segment identity along the anterior-
332 posterior body axis (Mallo and Alonso 2013). Unlike vertebrates, where multiple Hox clusters
333 are often found tightly arranged in the genome, the clustering of Hox genes is not very common
334 in invertebrates. The variations observed in the genomic arrangement of Hox genes in insects
335 have helped shed light on the evolution of distinct body plans (Maeda and Karch 2006; Pace,
336 Grbić, and Nagy 2016; Heffer and Pick 2013). Therefore, we investigated the conservation and
337 clustering pattern of Hox genes in the *L. boulardi* genome. The *Drosophila* Hox proteins
338 (Supplementary file 1: Table S4) (Miura, Nozawa, and Nei 2011) were used as query sequences
339 in a protein BLAST to search against *L. boulardi* proteome. All the genes except *Ubx* had full-
340 length protein products in EvidenceModeler gene prediction. For *Ubx*, a full-length protein
341 product was detected in the Cufflinks derived dataset obtained from the available transcriptome

342 of *L. boulardi* abdomen (Goecks et al. 2013). In the end, we obtained convincing hits that show
343 high similarity with the Hox proteins of *Drosophila* and Hymenopterans (Supplementary file 1:
344 Table S5 and Supplementary file 3).

345 The identified Hox genes in *L. boulardi* are spread across four scaffolds. The bithorax complex
346 orthologs – *Ubx*, *abd-A* and *Abd-B* – are located on scaffold00039 (780Kb). However, the
347 orthologs of Antennapedia complex (ANT-C) are distributed in three scaffolds – *pb* and *lab* are
348 located in scaffold00168 (454Kb), *Scr* and *Dfd* are located in scaffold00375 (278Kb), and
349 scaffold00572 (196Kb) contains *Antp*. Overall, the Hox genes are well conserved in *L. boulardi*,
350 span around 1.7Mb of the genome (assuming the scaffolds are contiguous) and are not tightly
351 clustered. To further examine the degree to which Hox genes are dispersed in the genome, the
352 scaffold level draft genome has to be assembled at a chromosome level using techniques such as
353 chromosome linkage mapping, optical mapping, or targeted sequencing of BACs.

354

355 **Sex determination genes**

356 Hymenopterans have a haplodiploid sex-determination system wherein the females are diploid,
357 and males are haploid. The diploid females develop from fertilized eggs, whereas the unfertilized
358 eggs give rise to haploid males (arrhenotoky) (Heimpel and de Boer 2008). The two major
359 experimentally supported paradigms of sex determination in Hymenopterans are complementary
360 sex determination (CSD) (Beye et al. 2003) and genome imprinting (Dobson and Tanouye 1998).
361 It has been reported in previous studies that *Leptopilina* genus lacks CSD (Hey and Gargiulo
362 1985; Biémont and Bouletreau 1980; Van Wilgenburg, Driessens, and Beukeboom 2006) but
363 whether the primary signal for sex determination cascade is the differential methylation status of
364 the maternal and paternal chromosome, is still unclear.

365 We took the previously described sex determination proteins downstream in the cascade from *D.*
366 *melanogaster* and *L. clavipes* (Geuverink et al. 2018) and searched for their homologs in *L.*
367 *boulardi* using blastp approach. We found putative orthologs of the major effector genes
368 (*doublesex* and *fruitless*) and the genes regulating their sex-specific splicing (*transformer* and
369 *transformer-2*) (Supplementary file 1: Table S6), implying that the downstream cascade of sex
370 determination is well preserved. However, we could only identify one *transformer* gene as
371 opposed to the presence of *transformer* and its parologue *transformerB* in *L. clavipes*.

372

373 **DNA methyltransferases**

374 Two families of DNA methyltransferases (DNMTs) are well-known to be responsible for DNA
375 methylation, which occurs primarily at CpG sites in mammals. DNMT3 is a *de novo*
376 methyltransferase, while DNMT1 is known to be involved in the maintenance of DNA
377 methylation (Goll and Bestor 2005). DNMT2, on the other hand, the most conserved
378 methyltransferase in eukaryotes, was initially assigned as a member of DNMT family but later
379 renamed as TRDMT1 (tRNA aspartic acid methyltransferase 1) that justifies its negligible
380 contribution to the DNA methylome (Jurkowski et al. 2008). Other than the role in caste
381 development in social insects (Chittka, Wurm, and Chittka 2012; Herb et al. 2012; Bonasio et al.
382 2012), cytosine methylation (genome imprinting) has been shown to be the primary signal of the
383 sex determination cascade in the haplodiploid hymenopterans lacking complementary sex
384 determination system (Dobson and Tanouye 1998). In order to assess the methylation status of *L.*
385 *boulardi* genome, we looked at the CpG content in all exons. Typically, exons that undergo
386 methylation in the genome display an underrepresentation of CpG content due to spontaneous
387 deamination of methylated cytosines into thymines. Hence, genomes that have DNA methylation

388 show a bimodal distribution of CpG content (Elango and Yi 2008), as shown for human and
389 honey bee exons in Supplementary file 2: Figure S2A and B. We observed no such bimodality
390 for exons of *L. boulardi* (Supplementary file 2: Figure S2C).

391 We further searched for the presence of DNA methyltransferases in *L. boulardi*. Corresponding
392 sequences from *N. vitripennis* (Supplementary file 1: Table S7) were used as seed sequences for
393 identification of DNMTs in *L. boulardi* using blastp and tblastn. We obtained two putative DNA
394 methyltransferases, which were then aligned to DNMTs from *A. mellifera*, *Bombyx mori*, *D.*
395 *melanogaster*, *N. vitripennis* and *T. pretiosum* (Supplementary file 1: Table S6) using Clustal
396 Omega (Madeira et al. 2019). The maximum likelihood tree thus generated with 1000 bootstrap
397 steps using MEGA (Kumar et al. 2018) assigned the two putative DNA methyltransferases to
398 DNMT1 and DNMT2 subfamily (Figure 3, and Supplementary file 4).

399 An incomplete set of DNA methylation toolkit has been previously described in insects, and it
400 does not always mean an absence of DNA methylation (Glastad, Hunt, and Goodisman 2014;
401 Bewick et al. 2016). The unimodal distribution of observed/expected CpG content in the exons
402 and the presence DNMT1 hints towards possible DNA methylation in non-CpG context in the
403 genome of *L. boulardi*. However, the presence of detectable levels of DNA methylation and the
404 methylation pattern in this genome of *L. boulardi* at different developmental stages needs to be
405 further investigated experimentally.

406

407 **Polycomb group, Trithorax group and heterochromatin factors**

408 The expression of genes in the eukaryotes is regulated by numerous evolutionary conserved
409 factors that act in a complex to either direct post-translational modifications of histones or
410 remodel chromatin in an ATP-dependent manner (Grimaud, Nègre, and Cavalli 2006). It is well

411 established that the transcriptionally active states of chromatin are maintained by Trithorax group
412 (TrxG) of proteins. In contrast, Polycomb group (PcG) of proteins and heterochromatin factors
413 maintain the transcriptionally repressed state of chromatin (facultative and constitutive
414 heterochromatin, respectively). Together, they are critical for the establishment and maintenance
415 of chromatin states throughout the development of eukaryotes (Ringrose and Paro 2004; Allshire
416 and Madhani 2018; Schotta 2002). We examined the conservation of these factors in the genome
417 of *L. boulardi*. Protein sequences from *D. melanogaster* were used as query sequences in a
418 standalone BLAST to search against *L. boulardi* protein data set. The Polycomb group (PcG) and
419 Trithorax group (TrxG) of proteins are well conserved in *L. boulardi* (Supplementary file 1:
420 Table S8). However, unlike *Drosophila*, *polyhomeotic*, *extra sexcombs*, *pleiohomeotic* is present
421 in only one copy. Heterochromatin factors, Heterochromatin protein 1 (HP1) family and
422 Suppressor of variegation 3-9 (Su(var)3-9), the proteins that bind to and introduce
423 heterochromatic histone methylation, respectively, are also conserved. Still, only one full length
424 HP1 could be identified using blastp.

425 We further did a tblastn for identification of chromodomain and chromoshadow domain
426 containing proteins in *L. boulardi*, since the characteristic feature of HP1 protein family is the
427 presence of an N-terminal chromodomain and a C-terminal chromoshadow domain (Renato Paro
428 1990; R. Paro and Hogness 1991; Assland and Stewart 1995). All known chromodomain and
429 chromoshadow domain sequences from *D. melanogaster* were used as seed sequences. A total of
430 49 proteins containing chromodomain were identified, which falls into four classes
431 (Supplementary file 1: Table S9). All the chromodomain/chromoshadow domain sequences
432 obtained were aligned with seed sequences from *D. melanogaster* using Clustal Omega (Madeira
433 et al. 2019) followed by maximum likelihood tree generation with 1000 bootstrap steps using

434 MEGA (Kumar et al. 2018) (Supplementary file 2: Figure S3 and S4). We identified only one
435 HP1 protein (Class I) containing a chromodomain followed by a chromoshadow domain, eight
436 such proteins but containing a single chromodomain (Class II). Four out of 49 have paired
437 tandem chromodomain (Class IV) and 36 proteins contain chromodomain in combination with
438 other domain families (Class III). A similar analysis done previously in ten hymenopterans has
439 reported that Hymenopterans have a simple HP1 gene family comprising of one full HP1 and
440 two partial HP1 genes (Fang, Schmitz, and Ferree 2015). However, we identified one full
441 (chromodomain and chromoshadow domain) and eight partial (only chromodomain) HP1
442 homologs. The full HP1 protein identified is more similar to HP1b of *D. melanogaster* than to
443 other paralogs. This indicates that the HP1 is more dynamic in *L. boulardi* than what is reported
444 earlier in other hymenopterans.

445

446 CONCLUSIONS

447 *Leptopilina* has been extensively used as a model system to study host-parasitoid biology. Our
448 study presents a high-quality reference genome (375 Mb) of the specialist parasitoid wasp
449 *Leptopilina boulardi* showing almost a complete coverage of the core gene repertoire shown by
450 BUSCO analysis. A total of 25,259 protein-coding genes were predicted, out of which 22729
451 could be annotated using known protein signatures. We show that the genes responsible for
452 determining the anteroposterior body axis (*Hox* genes) and sex determination are well conserved.
453 *L. boulardi* has an incomplete DNA methylation toolkit; it is devoid of a *de novo* DNA
454 methyltransferase (DNMT3). The HP1 family is much more diverse as compared to other
455 hymenopterans. The other epigenetic regulators, Polycomb and trithorax group of proteins, are

456 also retained. Overall, the basic machinery of epigenetic regulation is conserved, and though the
457 unique features are noticed, their relevance needs further investigations.

458 The *L. boulardi* genome reported in this study provides a valuable resource to researchers
459 studying parasitoids and can help shed light on the mechanisms of host-parasitoid interactions
460 and understanding the immune response mechanisms in insects. The genome sequence of *L.*
461 *boulardi* will also be a key element in understanding the evolution of parasitism in figitids. It
462 will further enable genome editing and thereby advance the genetics of *L. boulardi*, facilitate the
463 comparative studies of *Drosophila* parasitoids. More importantly, this resource fulfils the
464 prerequisite for initiating research on epigenetic mechanisms underlying parasitism, and sex
465 determination and other developmental mechanisms in *Leptopilina* genus.

466

467 **ABBREVIATIONS**

468 PacBio: Pacific Biosciences, BUSCO: Benchmarking Universal Single-Copy Orthologs, RNA-
469 Seq: RNA Sequencing, A-P: Anterior-Posterior, NCBI: National Center for Biotechnology
470 Information, LD: Light/Dark, MaSuRCA: Maryland Super Read Celera Assembler, TRF:
471 Tandem Repeats Finder, PERF: Perfect, Exhaustive Repeat Finder, SSR: Simple Sequence
472 Repeat, STAR: Spliced Transcripts Alignment to a Reference, BLAST: Basic Local Alignment
473 Search Tool, iTOL: Interactive Tree of Life, BACs: Bacterial Artificial Chromosomes, CDD:
474 Conserved Domains Database, MEGA: Molecular Evolutionary Genetics Analysis

475

476 **COMPETING INTERESTS**

477 The authors declare that they have no competing interests.

478

479 **FUNDING**

480 This work is supported by the Genesis project of the Council of Scientific and Industrial
481 Research, India (BSC0121). SK is a recipient of the DST – INSPIRE Research Fellowship. MS
482 is supported by DBT Research Fellowship.

483

484 **AUTHORS' CONTRIBUTIONS**

485 R.K.M. conceived the study. R.K.M., S.K. and D.T.S. designed the project. S.K. prepared the
486 samples and conducted experiments. D.T.S. performed genome assembly and annotation. D.T.S.,
487 S.K., A.S., and M.S. analyzed the data. S.K., D.T.S. wrote the manuscript. All authors read and
488 approved the final manuscript.

489

490 **ACKNOWLEDGEMENTS**

491 We thank Shubha Govind, The City College of the City University of New York, for providing
492 us the Lb17 strain of *L. boulardi*. We acknowledge Indira Paddibhatla for introducing the
493 *Drosophila* – *Leptopilina* system to our lab. Athira Rajeev is acknowledged for the initial quality
494 control and processing of Illumina data.

495

496 **REFERENCES**

497 Allshire, Robin C., and Hiten D. Madhani. 2018. “Ten Principles of Heterochromatin Formation
498 and Function.” *Nature Reviews Molecular Cell Biology* 19 (4): 229–44.
499 <https://doi.org/10.1038/nrm.2017.119>.

500 Assland, Rein, and Francis Stewart. 1995. “The Chromo Shadow Domain, a Second Chromo
501 Domain in Heterochromatin-Binding Protein 1, HP1.” *Nucleic Acids Research* 23 (16):

502 3168–73. <https://doi.org/10.1093/nar/23.16.3168>.

503 Avvaru, Akshay Kumar, Divya Tej Sowpati, and Rakesh Kumar Mishra. 2018. “PERF: An
504 Exhaustive Algorithm for Ultra-Fast and Efficient Identification of Microsatellites from
505 Large DNA Sequences.” Edited by John Hancock. *Bioinformatics (Oxford, England)* 34 (6):
506 943–48. <https://doi.org/10.1093/bioinformatics/btx721>.

507 Bao, Weidong, Kenji K. Kojima, and Oleksiy Kohany. 2015. “Repbase Update, a Database of
508 Repetitive Elements in Eukaryotic Genomes.” *Mobile DNA* 6 (1): 11.
509 <https://doi.org/10.1186/s13100-015-0041-9>.

510 Bateman, Alex. 2019. “UniProt: A Worldwide Hub of Protein Knowledge.” *Nucleic Acids
511 Research* 47 (D1): D506–15. <https://doi.org/10.1093/nar/gky1049>.

512 Benson, G. 1999. “Tandem Repeats Finder: A Program to Analyze DNA Sequences.” *Nucleic
513 Acids Research* 27 (2): 573–80. <http://www.ncbi.nlm.nih.gov/pubmed/9862982>.

514 Bewick, Adam J., Kevin J. Vogel, Allen J. Moore, and Robert J. Schmitz. 2016. “Evolution of
515 DNA Methylation across Insects.” *Molecular Biology and Evolution* 34 (3): msw264.
516 <https://doi.org/10.1093/molbev/msw264>.

517 Beye, Martin, Martin Hasselmann, M Kim Fondrk, Robert E. Page, and Stig W. Omholt. 2003.
518 “The Gene Csd Is the Primary Signal for Sexual Development in the Honeybee and
519 Encodes an SR-Type Protein.” *Cell* 114 (4): 419–29. [https://doi.org/10.1016/s0092-8674\(03\)00606-8](https://doi.org/10.1016/s0092-
520 8674(03)00606-8).

521 Biémont, C., and M. Bouletreau. 1980. “Hybridization and Inbreeding Effects on Genome
522 Coadaptation in a Haplo-Diploid Hymenoptera:Cothonaspis Boulardi (Eucoccidae).”
523 *Experientia* 36 (1): 45–47. <https://doi.org/10.1007/BF02003961>.

524 Bonasio, Roberto, Qiye Li, Jinmin Lian, Navdeep S. Mutti, Lijun Jin, Hongmei Zhao, Pei Zhang,

525 et al. 2012. "Genome-Wide and Caste-Specific DNA Methylomes of the Ants *Camponotus*
526 *Floridanus* and *Harpegnathos Saltator*." *Current Biology* 22 (19): 1755–64.
527 <https://doi.org/10.1016/j.cub.2012.07.042>.

528 Boulétreau, M., and E. Wajnberg. 1986. "Comparative Responses of Two Sympatric Parasitoid
529 Cynipids to the Genetic and Epigenetic Variations of the Larvae of Their Host, *Drosophila*
530 *Melanogaster*." *Entomologia Experimentalis et Applicata* 41 (2): 107–14.
531 <https://doi.org/10.1111/j.1570-7458.1986.tb00516.x>.

532 Chittka, Alexandra, Yannick Wurm, and Lars Chittka. 2012. "Epigenetics: The Making of Ant
533 Castes." *Current Biology* 22 (19): R835–38. <https://doi.org/10.1016/j.cub.2012.07.045>.

534 Colinet, Dominique, Antonin Schmitz, Dominique Cazes, Jean-luc Gatti, and Marylène Poirié.
535 2010. "The Origin of Intraspecific Variation of Virulence in an Eukaryotic Immune
536 Suppressive Parasite." Edited by David S. Schneider. *PLoS Pathogens* 6 (11): e1001206.
537 <https://doi.org/10.1371/journal.ppat.1001206>.

538 Dobin, Alexander, Carrie A. Davis, Felix Schlesinger, Jorg Drenkow, Chris Zaleski, Sonali Jha,
539 Philippe Batut, Mark Chaisson, and Thomas R. Gingeras. 2013. "STAR: Ultrafast Universal
540 RNA-Seq Aligner." *Bioinformatics* 29 (1): 15–21.
541 <https://doi.org/10.1093/bioinformatics/bts635>.

542 Dobson, Stephen L, and Mark A Tanouye. 1998. "Evidence for a Genomic Imprinting Sex
543 Determination Mechanism in *Nasonia Vitripennis* (Hymenoptera; Chalcidoidea)." *Genetics*
544 149 (1): 233–42. <http://www.ncbi.nlm.nih.gov/pubmed/9584099>.

545 Dubuffet, Aurore, Géraldine Doury, Carole Labrousse, Jean-Michel Drezen, Yves Carton, and
546 Marylène Poirié. 2008. "Variation of Success of *Leptopilina Boulardi* in *Drosophila*
547 *Yakuba*: The Mechanisms Explored." *Developmental & Comparative Immunology* 32 (6):

548 597–602. <https://doi.org/10.1016/j.dci.2007.10.009>.

549 Dupas, S, M Brehelin, F Frey, and Y Carton. 1996. “Immune Suppressive Virus-like Particles in
550 a Drosophila Parasitoid: Significance of Their Intraspecific Morphological Variations.”
551 *Parasitology* 113 (Pt 3 (03): 207–12. <https://doi.org/10.1017/S0031182000081981>.

552 Eggleton, P., and R. Belshaw. 1992. “Insect Parasitoids: An Evolutionary Overview.”
553 *Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences*
554 337 (1279): 1–20. <https://doi.org/10.1098/rstb.1992.0079>.

555 Elango, Navin, and Soojin V. Yi. 2008. “DNA Methylation and Structural and Functional
556 Bimodality of Vertebrate Promoters.” *Molecular Biology and Evolution* 25 (8): 1602–8.
557 <https://doi.org/10.1093/molbev/msn110>.

558 Emms, David M., and Steven Kelly. 2015. “OrthoFinder: Solving Fundamental Biases in Whole
559 Genome Comparisons Dramatically Improves Orthogroup Inference Accuracy.” *Genome
560 Biology* 16 (1): 157. <https://doi.org/10.1186/s13059-015-0721-2>.

561 Fang, C., L. Schmitz, and P M Ferree. 2015. “An Unusually Simple HP1 Gene Set in
562 Hymenopteran Insects.” *Biochemistry and Cell Biology = Biochimie et Biologie Cellulaire*
563 93 (6): 596–603. <https://doi.org/10.1139/bcb-2015-0046>.

564 Fellowes, M D E, and H C J Godfray. 2000. “The Evolutionary Ecology of Resistance to
565 Parasitoids by Drosophila.” *Heredity* 84 (1): 1–8. [https://doi.org/10.1046/j.1365-2540.2000.00685.x](https://doi.org/10.1046/j.1365-
566 2540.2000.00685.x).

567 Fleury, Frédéric, Patricia Gibert, Nicolas Ris, and Roland Allemand. 2009. “Chapter 1 Ecology
568 and Life History Evolution of Frugivorous Drosophila Parasitoids.” *Advances in
569 Parasitology* 70 (09): 3–44. [https://doi.org/10.1016/S0065-308X\(09\)70001-6](https://doi.org/10.1016/S0065-308X(09)70001-6).

570 Geuverink, E., K. Kraaijeveld, M. van Leussen, F. Chen, J. Pijpe, M. H. K. Linskens, L. W.

571 Beukeboom, and L. van de Zande. 2018. “Evidence for Involvement of a Transformer
572 Paralogue in Sex Determination of the Wasp *Leptopilina Clavipes*.” *Insect Molecular*
573 *Biology* 27 (6): 780–95. <https://doi.org/10.1111/imb.12522>.

574 Glastad, Karl M., Brendan G. Hunt, and Michael AD Goodisman. 2014. “Evolutionary Insights
575 into DNA Methylation in Insects.” *Current Opinion in Insect Science* 1 (July): 25–30.
576 <https://doi.org/10.1016/j.cois.2014.04.001>.

577 Godfray, H. C. J. 1994. *Parasitoids: Behavioral and Evolutionary Ecology*. Princeton
578 University Press.

579 Goecks, Jeremy, Nathan T. Mortimer, James A. Mobley, Gregory J. Bowersock, James Taylor,
580 and Todd A. Schlenke. 2013. “Integrative Approach Reveals Composition of
581 Endoparasitoid Wasp Venoms.” Edited by Nadia Singh. *PLoS ONE* 8 (5): e64125.
582 <https://doi.org/10.1371/journal.pone.0064125>.

583 Gokhman, Vladimir E., Nadezhda L. Bolsheva, Shubha Govind, and Olga V. Muravenko. 2016.
584 “A Comparative Cytogenetic Study of *Drosophila* Parasitoids (Hymenoptera, Figitidae)
585 Using DNA-Binding Fluorochromes and FISH with 45S rDNA Probe.” *Genetica* 144 (3):
586 335–39. <https://doi.org/10.1007/s10709-016-9902-5>.

587 Goll, Mary Grace, and Timothy H Bestor. 2005. “EUKARYOTIC CYTOSINE
588 METHYLTRANSFERASES.” *Annual Review of Biochemistry* 74 (1): 481–514.
589 <https://doi.org/10.1146/annurev.biochem.74.010904.153721>.

590 Grimaud, Charlotte, Nicolas Nègre, and Giacomo Cavalli. 2006. “From Genetics to Epigenetics:
591 The Tale of Polycomb Group and Trithorax Group Genes.” *Chromosome Research: An*
592 *International Journal on the Molecular, Supramolecular and Evolutionary Aspects of*
593 *Chromosome Biology* 14 (4): 363–75. <https://doi.org/10.1007/s10577-006-1069-y>.

594 Gueguen, Gwenaelle, Roma Rajwani, Indira Paddibhatla, Jorge Morales, and Shubha Govind.

595 2011. “VLPs of Leptopilina Boulardi Share Biogenesis and Overall Stellate Morphology

596 with VLPs of the Heterotoma Clade.” *Virus Research* 160 (1–2): 159–65.

597 <https://doi.org/10.1016/j.virusres.2011.06.005>.

598 Haas, Brian J., Steven L. Salzberg, Wei Zhu, Mihaela Pertea, Jonathan E. Allen, Joshua Orvis,

599 Owen White, C Robin Buell, and Jennifer R. Wortman. 2008. “Automated Eukaryotic Gene

600 Structure Annotation Using EVidenceModeler and the Program to Assemble Spliced

601 Alignments.” *Genome Biology* 9 (1): R7. <https://doi.org/10.1186/gb-2008-9-1-r7>.

602 Heath, Benjamin D., R. D J Butcher, W. G F Whitfield, and Stephen F. Hubbard. 1999.

603 “Horizontal Transfer of Wolbachia between Phylogenetically Distant Insect Species by a

604 Naturally Occurring Mechanism.” *Current Biology* 9 (6): 313–16.

605 [https://doi.org/10.1016/S0960-9822\(99\)80139-0](https://doi.org/10.1016/S0960-9822(99)80139-0).

606 Heffer, Alison, and Leslie Pick. 2013. “Conservation and Variation in Hox Genes: How Insect

607 Models Pioneered the Evo-Devo Field.” *Annual Review of Entomology* 58 (1): 161–79.

608 <https://doi.org/10.1146/annurev-ento-120811-153601>.

609 Heimpel, George E., and Jetske G. de Boer. 2008. “Sex Determination in the Hymenoptera.”

610 *Annual Review of Entomology* 53 (1): 209–30.

611 <https://doi.org/10.1146/annurev.ento.53.103106.093441>.

612 Heraty, John. 2009. “Parasitoid Biodiversity and Insect Pest Management.” In *Insect*

613 *Biodiversity*, edited by Robert G. Foottit and Peter H. Adler, 2nd ed., I:445–62. Oxford,

614 UK: Wiley-Blackwell. <https://doi.org/10.1002/9781444308211.ch19>.

615 Herb, Brian R., Florian Wolschin, Kasper D. Hansen, Martin J. Aryee, Ben Langmead, Rafael

616 Irizarry, Gro V. Amdam, and Andrew P. Feinberg. 2012. “Reversible Switching between

617 Epigenetic States in Honeybee Behavioral Subcastes.” *Nature Neuroscience* 15 (10): 1371–
618 73. <https://doi.org/10.1038/nn.3218>.

619 Hey, Jody, and Maria Kay Gargiulo. 1985. “Sex-Ratio Changes in Leptopilina Heterotoma in
620 Response to Inbreeding.” *Journal of Heredity* 76 (3): 209–11.
621 <https://doi.org/10.1093/oxfordjournals.jhered.a110069>.

622 Hita, Maria Teresa, Marylén Poirié, Nathalie Leblanc, Francoise Lemeunier, Francoise Lutcher,
623 Francoise Frey, Georges Periquet, and Yves Carton. 1999. “Genetic Localization of a
624 Drosophila Melanogaster Resistance Gene to a Parasitoid Wasp and Physical Mapping of
625 the Region.” *Genome Research* 9 (5): 471–81. <https://doi.org/10.1101/gr.9.5.471>.

626 Hoff, Katharina J., Simone Lange, Alexandre Lomsadze, Mark Borodovsky, and Mario Stanke.
627 2016. “BRAKER1: Unsupervised RNA-Seq-Based Genome Annotation with GeneMark-ET
628 and AUGUSTUS: Table 1.” *Bioinformatics* 32 (5): 767–69.
629 <https://doi.org/10.1093/bioinformatics/btv661>.

630 Howell, Laura, Christopher J. Sampson, Miguel J. Xavier, Ekin Bolukbasi, Margarete M S Heck,
631 and Michael J. Williams. 2012. “A Directed Miniscreen for Genes Involved in the
632 Drosophila Anti-Parasitoid Immune Response.” *Immunogenetics* 64 (2): 155–61.
633 <https://doi.org/10.1007/s00251-011-0571-3>.

634 Jones, Philip, David Binns, H.-Y. Chang, Matthew Fraser, Weizhong Li, Craig McAnulla,
635 Hamish McWilliam, et al. 2014. “InterProScan 5: Genome-Scale Protein Function
636 Classification.” *Bioinformatics* 30 (9): 1236–40.
637 <https://doi.org/10.1093/bioinformatics/btu031>.

638 Jurkowski, Tomasz P., Madeleine Meusburger, Sameer Phalke, Mark Helm, Wolfgang Nellen,
639 Gunter Reuter, and Albert Jeltsch. 2008. “Human DNMT2 Methylyates TRNAAsp

640 Molecules Using a DNA Methyltransferase-like Catalytic Mechanism.” *RNA* 14 (8): 1663–
641 70. <https://doi.org/10.1261/rna.970408>.

642 Kaiser, Laure, Aude Couty, and Raquel Perez-Maluf. 2009. “Chapter 3 Dynamic Use of Fruit
643 Odours to Locate Host Larvae.” In *Advances in Parasitology*, 1st ed., 70:67–95. Elsevier
644 Ltd. [https://doi.org/10.1016/S0065-308X\(09\)70003-X](https://doi.org/10.1016/S0065-308X(09)70003-X).

645 Korf, Ian. 2004. “Gene Finding in Novel Genomes.” *BMC Bioinformatics* 5 (9): 59.
646 <https://doi.org/10.1186/1471-2105-5-59>.

647 Kraaijeveld, A R, J J Van Alphen, and H C Godfray. 1998. “The Coevolution of Host Resistance
648 and Parasitoid Virulence.” *Parasitology* 116 Suppl (S1): S29–45.
649 <https://doi.org/10.1017/S0031182000084924>.

650 Kraaijeveld, Alex R., and H. Charles J. Godfray. 2009. “Chapter 10 Evolution of Host
651 Resistance and Parasitoid Counter-Resistance.” In *Advances in Parasitology*, 1st ed.,
652 70:257–80. Elsevier Ltd. [https://doi.org/10.1016/S0065-308X\(09\)70010-7](https://doi.org/10.1016/S0065-308X(09)70010-7).

653 Kraaijeveld, Ken, Seyed Yahya Anvar, Jeroen Frank, Arnoud Schmitz, Jens Bast, Jeanne
654 Wilbrandt, Malte Petersen, et al. 2016. “Decay of Sexual Trait Genes in an Asexual
655 Parasitoid Wasp.” *Genome Biology and Evolution* 8 (12): 3685–95.
656 <https://doi.org/10.1093/gbe/evw273>.

657 Kruitwagen, Astrid, Leo W. Beukeboom, and Bregje Wertheim. 2018. “Optimization of Native
658 Biocontrol Agents, with Parasitoids of the Invasive Pest *Drosophila Suzukii* as an
659 Example.” *Evolutionary Applications* 11 (9): 1473–97. <https://doi.org/10.1111/eva.12648>.

660 Kumar, Sudhir, Glen Stecher, Michael Li, Christina Knyaz, and Koichiro Tamura. 2018.
661 “MEGA X: Molecular Evolutionary Genetics Analysis across Computing Platforms.”
662 Edited by Fabia Ursula Battistuzzi. *Molecular Biology and Evolution* 35 (6): 1547–49.

663 <https://doi.org/10.1093/molbev/msy096>.

664 Langmead, Ben, and Steven L Salzberg. 2012. “Fast Gapped-Read Alignment with Bowtie 2.”

665 *Nature Methods* 9 (4): 357–59. <https://doi.org/10.1038/nmeth.1923>.

666 LaSalle, J, and I Gauld. 1991. “Parasitic Hymenoptera and the Biodiversity Crisis.” *Redia* 74 (3):

667 515–334.

668 <http://scholar.google.com/scholar?hl=en&btnG=Search&q=intitle:Parasitic+Hymenoptera+and+the+biodiversity+crisis#0>.

670 Lee, Mark J., Marta E. Kalamarz, Indira Paddibhatla, Chiyedza Small, Roma Rajwani, and

671 Shubha Govind. 2009. *Chapter 5 Virulence Factors and Strategies of Leptopilina Spp.: Selective Responses in Drosophila Hosts. Advances in Parasitology*. 1st ed. Vol. 70.

673 Elsevier Ltd. [https://doi.org/10.1016/S0065-308X\(09\)70005-3](https://doi.org/10.1016/S0065-308X(09)70005-3).

674 Lepetit, David, Benjamin Gillet, Sandrine Hughes, Ken Kraaijeveld, and Julien Varaldi. 2017.

675 “Genome Sequencing of the Behaviour Manipulating Virus LbFV Reveals a Possible New

676 Virus Family.” *Genome Biology and Evolution* 8 (12): evw277.

677 <https://doi.org/10.1093/gbe/evw277>.

678 Letunic, Ivica, and Peer Bork. 2016. “Interactive Tree of Life (iTOL) v3: An Online Tool for the

679 Display and Annotation of Phylogenetic and Other Trees.” *Nucleic Acids Research* 44 (W1): W242-5. <https://doi.org/10.1093/nar/gkw290>.

681 Lomsadze, Alexandre, Paul D. Burns, and Mark Borodovsky. 2014. “Integration of Mapped

682 RNA-Seq Reads into Automatic Training of Eukaryotic Gene Finding Algorithm.” *Nucleic Acids Research* 42 (15): e119. <https://doi.org/10.1093/nar/gku557>.

684 Lourdes Corrêa Figueiredo, Maria de, Ivan Cruz, Rafael Braga da Silva, and John Edward

685 Foster. 2015. “Biological Control with Trichogramma Pretiosum Increases Organic Maize

686 Productivity by 19.4%.” *Agronomy for Sustainable Development* 35 (3): 1175–83.

687 <https://doi.org/10.1007/s13593-015-0312-3>.

688 Machtinger, Erika T., Christopher J. Geden, Phillip E. Kaufman, and Amanda M. House. 2015.

689 “Use of Pupal Parasitoids as Biological Control Agents of Filth Flies on Equine Facilities.”

690 *Journal of Integrated Pest Management* 6 (1): 16. <https://doi.org/10.1093/jipm/pmv015>.

691 Madeira, Fábio, Young mi Park, Joon Lee, Nicola Buso, Tamer Gur, Nandana Madhusoodanan,

692 Prasad Basutkar, et al. 2019. “The EMBL-EBI Search and Sequence Analysis Tools APIs in

693 2019.” *Nucleic Acids Research* 47 (W1): W636–41. <https://doi.org/10.1093/nar/gkz268>.

694 Maeda, Robert K., and François Karch. 2006. “The ABC of the BX-C: The Bithorax Complex

695 Explained.” *Development (Cambridge, England)* 133 (8): 1413–22.

696 <https://doi.org/10.1242/dev.02323>.

697 Majoros, W. H., M. Pertea, and S. L. Salzberg. 2004. “TigrScan and GlimmerHMM: Two Open

698 Source Ab Initio Eukaryotic Gene-Finders.” *Bioinformatics* 20 (16): 2878–79.

699 <https://doi.org/10.1093/bioinformatics/bth315>.

700 Mallo, Moisés, and Claudio R. Alonso. 2013. “The Regulation of Hox Gene Expression during

701 Animal Development.” *Development* 140 (19): 3951–63.

702 <https://doi.org/10.1242/dev.068346>.

703 Marçais, Guillaume, and Carl Kingsford. 2011. “A Fast, Lock-Free Approach for Efficient

704 Parallel Counting of Occurrences of k-Mers.” *Bioinformatics (Oxford, England)* 27 (6):

705 764–70. <https://doi.org/10.1093/bioinformatics/btr011>.

706 Marchler-Bauer, Aron, Yu Bo, Lianyi Han, Jane He, Christopher J. Lanczycki, Shennan Lu,

707 Farideh Chitsaz, et al. 2017. “CDD/SPARCLE: Functional Classification of Proteins via

708 Subfamily Domain Architectures.” *Nucleic Acids Research* 45 (D1): D200–203.

709 https://doi.org/10.1093/nar/gkw1129.

710 Martínez, Gonzalo, Andrés González, and Marcel Dicke. 2018. “Rearing and Releasing the Egg

711 Parasitoid Cleruchoides Noackae, a Biological Control Agent for the Eucalyptus Bronze

712 Bug.” *Biological Control* 123 (May): 97–104.

713 https://doi.org/10.1016/j.biocontrol.2018.05.008.

714 Martinez, Julien, Anne Duplouy, Megan Woolfit, Fabrice Vavre, Scott L. O’Neill, and Julien

715 Varaldi. 2012. “Influence of the Virus LbFV and of Wolbachia in a Host-Parasitoid

716 Interaction.” *PloS One* 7 (4). <https://doi.org/10.1371/journal.pone.0035081>.

717 Mayjonade, Baptiste, Jérôme Gouzy, Cécile Donnadieu, Nicolas Pouilly, William Marande,

718 Caroline Callot, Nicolas Langlade, and Stéphane Muños. 2016. “Extraction of High-

719 Molecular-Weight Genomic DNA for Long-Read Sequencing of Single Molecules.”

720 *BioTechniques* 61 (4): 203–5. <https://doi.org/10.2144/000114460>.

721 Miura, Sayaka, Masafumi Nozawa, and Masatoshi Nei. 2011. “Evolutionary Changes of the

722 Target Sites of Two MicroRNAs Encoded in the Hox Gene Cluster of *Drosophila* and Other

723 Insect Species.” *Genome Biology and Evolution* 3 (1): 129–39.

724 https://doi.org/10.1093/gbe/evq088.

725 Nadalin, Francesca, Francesco Vezzi, and Alberto Policriti. 2012. “GapFiller: A de Novo

726 Assembly Approach to Fill the Gap within Paired Reads.” *BMC Bioinformatics* 13 Suppl 1

727 (S14): S8. <https://doi.org/10.1186/1471-2105-13-S14-S8>.

728 Pace, Ryan M., Miodrag Grbić, and Lisa M. Nagy. 2016. “Composition and Genomic

729 Organization of Arthropod Hox Clusters.” *EvoDevo* 7 (1): 11.

730 https://doi.org/10.1186/s13227-016-0048-4.

731 Paro, R., and D. S. Hogness. 1991. “The Polycomb Protein Shares a Homologous Domain with a

732 Heterochromatin-Associated Protein of *Drosophila*.” *Proceedings of the National Academy of Sciences* 88 (1): 263–67. <https://doi.org/10.1073/pnas.88.1.263>.

733

734 Paro, Renato. 1990. “Imprinting a Determined State into the Chromatin of *Drosophila*.” *Trends in Genetics* 6 (C): 416–21. [https://doi.org/10.1016/0168-9525\(90\)90303-N](https://doi.org/10.1016/0168-9525(90)90303-N).

735

736 Patot, Sabine, Roland Allemand, Frédéric Fleury, and Julien Varaldi. 2012. “An Inherited Virus Influences the Coexistence of Parasitoid Species through Behaviour Manipulation.” *Ecology Letters* 15 (6): 603–10. <https://doi.org/10.1111/j.1461-0248.2012.01774.x>.

737

738

739 Patot, Sabine, David Lepetit, Delphine Charif, Julien Varaldi, and Frédéric Fleury. 2009. “Molecular Detection, Penetrance, and Transmission of an Inherited Virus Responsible for Behavioral Manipulation of an Insect Parasitoid.” *Applied and Environmental Microbiology* 75 (3): 703–10. <https://doi.org/10.1128/AEM.01778-08>.

740

741

742

743 Price, Alkes L., Neil C. Jones, and Pavel A. Pevzner. 2005. “De Novo Identification of Repeat Families in Large Genomes.” *Bioinformatics (Oxford, England)* 21 Suppl 1 (Suppl 1): i351–8. <https://doi.org/10.1093/bioinformatics/bti1018>.

744

745

746 Ringrose, Leonie, and Renato Paro. 2004. “Epigenetic Regulation of Cellular Memory by the Polycomb and Trithorax Group Proteins.” *Annual Review of Genetics* 38 (1): 413–43. <https://doi.org/10.1146/annurev.genet.38.072902.091907>.

747

748

749 Rizki, R. M., and T M Rizki. 1990. “Parasitoid Virus-like Particles Destroy *Drosophila* Cellular Immunity.” *Proceedings of the National Academy of Sciences* 87 (21): 8388–92. <https://doi.org/10.1073/pnas.87.21.8388>.

750

751

752 Salazar-Jaramillo, Laura, Kirsten M. Jalvingh, Ammerins de Haan, Ken Kraaijeveld, Henk Buermans, and Bregje Wertheim. 2017. “Inter- and Intra-Species Variation in Genome-Wide Gene Expression of *Drosophila* in Response to Parasitoid Wasp Attack.” *BMC*

753

754

755 *Genomics* 18 (1): 331. <https://doi.org/10.1186/s12864-017-3697-3>.

756 Schlenke, Todd A, Jorge Morales, Shubha Govind, and Andrew G Clark. 2007. “Contrasting
757 Infection Strategies in Generalist and Specialist Wasp Parasitoids of *Drosophila*
758 *Melanogaster*.” *PLoS Pathogens* 3 (10): 1486–1501.
759 <https://doi.org/10.1371/journal.ppat.0030158>.

760 Schotta, Gunnar. 2002. “Central Role of *Drosophila* SU(VAR)3-9 in Histone H3-K9 Methylation
761 and Heterochromatic Gene Silencing.” *The EMBO Journal* 21 (5): 1121–31.
762 <https://doi.org/10.1093/emboj/21.5.1121>.

763 Simão, Felipe A., Robert M. Waterhouse, Panagiotis Ioannidis, Evgenia V. Kriventseva, and
764 Evgeny M. Zdobnov. 2015. “BUSCO: Assessing Genome Assembly and Annotation
765 Completeness with Single-Copy Orthologs.” *Bioinformatics (Oxford, England)* 31 (19):
766 3210–12. <https://doi.org/10.1093/bioinformatics/btv351>.

767 Small, Chiyedza, Indira Paddibhatla, Roma Rajwani, and Shubha Govind. 2012. “An
768 Introduction to Parasitic Wasps of *Drosophila* and the Antiparasite Immune Response.”
769 Edited by Richard Cordaux. *Journal of Visualized Experiments: JoVE* 7 (63): e3347.
770 <https://doi.org/10.3791/3347>.

771 Smith, S. M. 1996. “Biological Control with *Trichogramma*: Advances, Successes, and Potential
772 of Their Use.” *Annual Review of Entomology* 41 (1): 375–406.
773 <https://doi.org/10.1146/annurev.en.41.010196.002111>.

774 Stanke, Mario, Mark Diekhans, Robert Baertsch, and David Haussler. 2008. “Using Native and
775 Syntenically Mapped cDNA Alignments to Improve de Novo Gene Finding.”
776 *Bioinformatics (Oxford, England)* 24 (5): 637–44.
777 <https://doi.org/10.1093/bioinformatics/btn013>.

778 Tarailo-Graovac, Maja, and Nansheng Chen. 2009. “Using RepeatMasker to Identify Repetitive
779 Elements in Genomic Sequences.” In *Current Protocols in Bioinformatics*, Chapter 4:Unit
780 4.10. Hoboken, NJ, USA: John Wiley & Sons, Inc.
781 <https://doi.org/10.1002/0471250953.bi0410s25>.

782 Tracy Reynolds, K, and Ian C W Hardy. 2004. “Superparasitism: A Non-Adaptive Strategy?”
783 *Trends in Ecology & Evolution* 19 (7): 347–48. <https://doi.org/10.1016/j.tree.2004.03.021>.

784 Trapnell, Cole, David G Hendrickson, Martin Sauvageau, Loyal Goff, John L Rinn, and Lior
785 Pachter. 2013. “Differential Analysis of Gene Regulation at Transcript Resolution with
786 RNA-Seq.” *Nature Biotechnology* 31 (1): 46–53. <https://doi.org/10.1038/nbt.2450>.

787 Varaldi, J., and D. Lepetit. 2018. “Deciphering the Behaviour Manipulation Imposed by a Virus
788 on Its Parasitoid Host: Insights from a Dual Transcriptomic Approach.” *Parasitology* 145
789 (14): 1979–89. <https://doi.org/10.1017/s0031182018000835>.

790 Varaldi, Julien, Pierre Fouillet, Marc Ravallec, Miguel López-Ferber, Michel Boulétreau, and
791 Frédéric Fleury. 2003. “Infectious Behavior in a Parasitoid.” *Science (New York, N.Y.)* 302
792 (5652): 1930. <https://doi.org/10.1126/science.1088798>.

793 Varaldi, Julien, Sabine Patot, Maxime Nardin, and Sylvain Gandon. 2009. “Chapter 13 A Virus-
794 Shaping Reproductive Strategy in a Drosophila Parasitoid.” In *Advances in Parasitology*,
795 1st ed., 70:333–63. Elsevier Ltd. [https://doi.org/10.1016/S0065-308X\(09\)70013-2](https://doi.org/10.1016/S0065-308X(09)70013-2).

796 Vavre, Fabrice, Laurence Mouton, and Bart A. Pannebakker. 2009. “Chapter 12 Drosophila-
797 Parasitoid Communities as Model Systems for Host–Wolbachia Interactions.” In *Advances
798 in Parasitology*, 1st ed., 70:299–331. Elsevier Ltd. [https://doi.org/10.1016/S0065-308X\(09\)70012-0](https://doi.org/10.1016/S0065-308X(09)70012-0).

800 Werren, John H., Donald Windsor, and Lirong Guo. 1995. “Distribution of Wolbachia among

801 Neotropical Arthropods.” Edited by Kristin Michel. *Proceedings of the Royal Society of*
802 *London. Series B: Biological Sciences* 262 (1364): 197–204.
803 <https://doi.org/10.1098/rspb.1995.0196>.

804 Wilgenburg, Ellen Van, Gerard Driessen, and Leo W. Beukeboom. 2006. “Single Locus
805 Complementary Sex Determination in Hymenoptera: An ‘Unintelligent’ Design?” *Frontiers*
806 *in Zoology* 3: 1–15. <https://doi.org/10.1186/1742-9994-3-1>.

807 Zimin, Aleksey V., Guillaume Marçais, Daniela Puiu, Michael Roberts, Steven L. Salzberg, and
808 James A. Yorke. 2013. “The MaSuRCA Genome Assembler.” *Bioinformatics* 29 (21):
809 2669–77. <https://doi.org/10.1093/bioinformatics/btt476>.

810

811

812

813

814

815

816

817

818

819

820

821 **FIGURE LEGENDS**

822

823 **Figure 1:** Bright field image of *Leptopilina boulardi* (Lb17 strain). A) Adult female and B) adult
824 male.

825 **Figure 2:** Phylogenetic relationship of *L. boulardi* with selected metazoan species. A
826 phylogenetic tree representing the relationship of *L. boulardi* (red, boldface) with 11 protostomes
827 and four deuterostomes based on 150 single-copy orthologs. Bootstrap values are mentioned at
828 each node. The Phylum/Class is written in uppercase and the order in sentence case. Nine
829 selected species of hymenoptera are shown in different colours based on their superfamily:
830 Orrusoidea (orange), Apoidea (blue), Vespoidea (teal), Chalcidoidea (green), Cynipoidea (red),
831 Ichneumonoidea (magenta).

832 **Figure 3:** Phylogram of putative DNA methyltransferases in *Leptopilina boulardi*. *L. boulardi* is
833 written in boldface. Bootstrap values are shown at each node. Putative DNMT2 and DNMT1 of
834 *L. boulardi* clusters with the DNMT2 and DNMT1 of other insects, respectively.

Figure 1:

Figure 2:

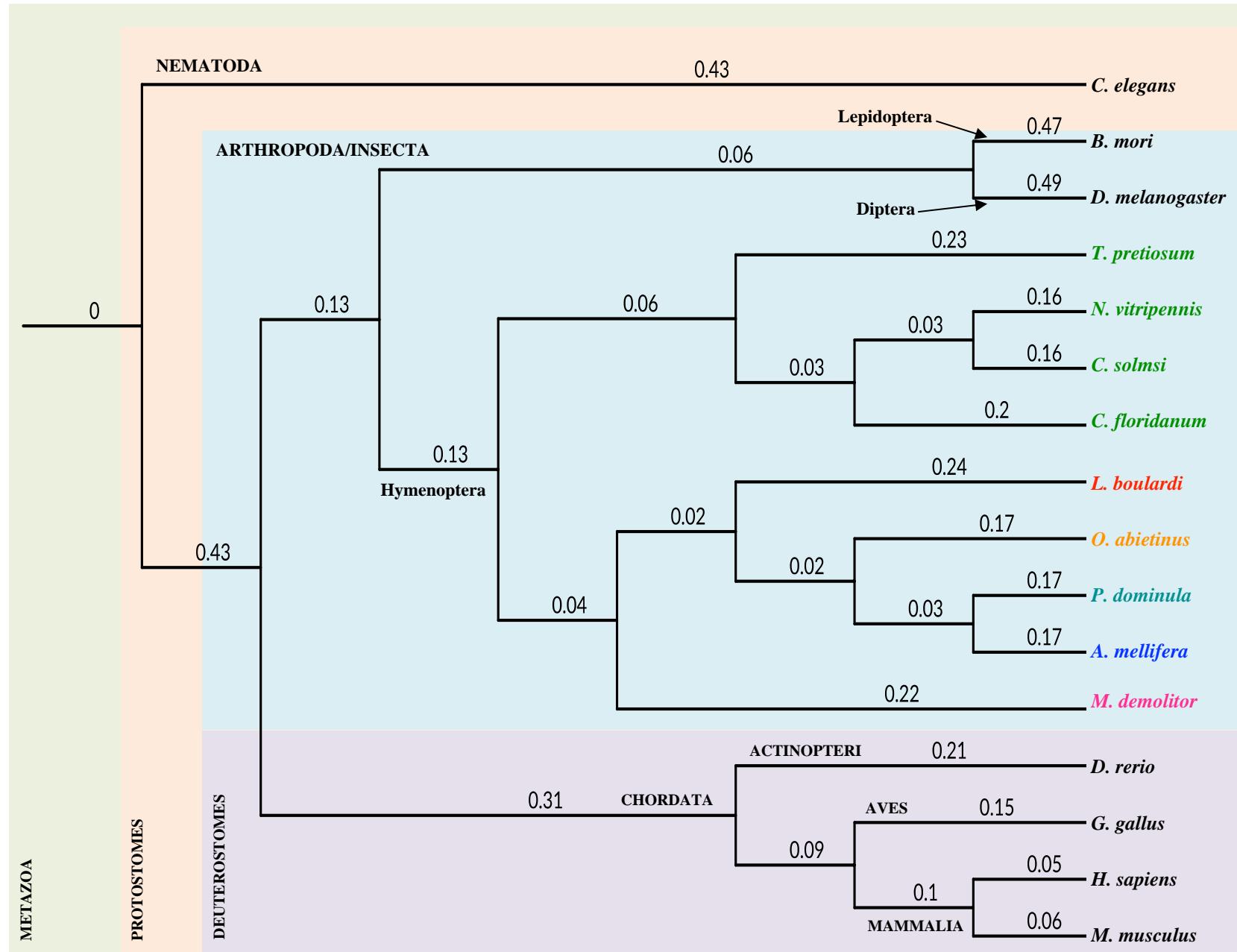
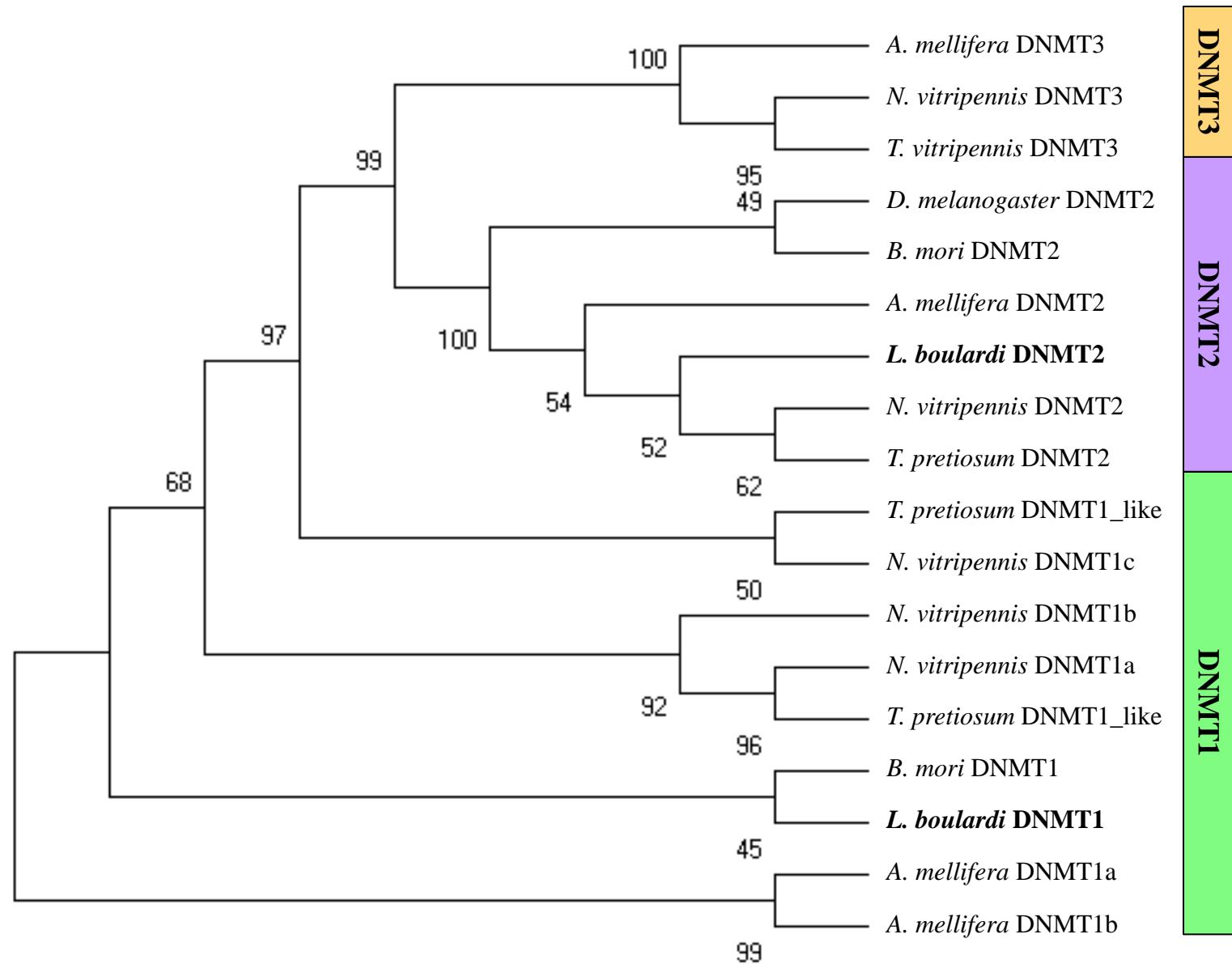



Figure 3:

