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Abstract 
Mass spectrometry (MS)-based lipidomics is revolutionizing lipid research with high throughput 
identification and quantification of hundreds to thousands of lipids with the goal of elucidating 
lipid metabolism and function. Estimates of statistical confidence in lipid identification are 
essential for downstream data interpretation in a biological context. In the related field of 
proteomics, a variety of methods for estimating false-discovery are available, and understanding 
the statistical confidence of identifications is typically required for data analysis and hypothesis 
testing. However, there is no current method for estimating the false discovery rate (FDR) or 
statistical confidence for MS-based lipid identifications. This has slowed the adoption of MS-
based lipidomics research, as all identifications require manual inspection and validation to 
ensure their accuracy. We present here the first generalizable method for FDR estimation, a 
target/decoy approach, that allows those conducting MS-based lipidomics research to 
confidently adjust spectral score thresholds to minimize false discovery and to enable full 
automation of data analysis. 
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Introduction 
An essential feature of processing and subsequent biological interpretation of high throughput 
omics data is having confidence in the accuracy of the underlying identifications for the 
molecule being measured. In mass spectrometry (MS)-based research, this translates to 
whether one can trust the molecular annotation of a spectrum, i.e. was the assigned spectrum 
due to the attributed molecule. Statistical confidence of such assignments can be calculated in a 
number of ways, each with an underlying set of assumptions. To enable high throughput 
lipidomics data processing and utilization, researchers require a method for estimating statistical 
confidence of lipid-spectrum matches (LSMs) as they already have for peptide-spectrum 
matches (PSMs). 
 
For bottom-up MS-based proteomics data, one of the first rigorous methods of estimating the 
confidence of a peptide-spectrum match was introduced in the PeptideProphet algorithm1. In 
this method, the scores of all PSMs in an LC-MS/MS analysis were plotted and evaluated to 
identify two overlapping distributions corresponding to the scores of false-positive and true-
positive results. After parameterizing the mixed-model distribution2, this method could be 
applied to any LC-MS/MS dataset to identify a score cutoff for a user-specified false-discovery 
rate. This dramatically improved the quality of research results from bottom-up proteomics data, 
as users could easily identify high-confidence PSMs and filter out remaining low-quality data, 
facilitating the automation of data analysis. 
 
Subsequent research for calculating the statistical confidence of PSMs introduced the 
target/decoy method, where each LC-MS/MS dataset was searched against a database 
containing both true and intentionally false protein sequences3. By always having a set of decoy 
hits present in search results, the observed true-negative score distribution is trivially used to 
calculate the false-discovery rate. This is in contrast to the PeptideProphet method which used 
a model for estimating the false-positive score distribution. The simplicity of the target/decoy 
method led to rapid adoption in almost all proteomics algorithms and pipelines. Various groups 
explored how best to create a decoy database, although no single method performed best 
across diverse experimental designs and organisms4. This is in part intuitive, because the 
purpose of the decoy database is to create a bulk statistic of false identifications. Thus multiple 
methods for creating false sequences (e.g. reversed or random) are appropriate and perform 
equally well.  
 
The next advancement in reporting confidence of spectrum identifications came from the 
generating function approach, which calculates an exact probability of the peptide-spectrum 
match5. Using dynamic programming, the generating function explores the complete sequence 
space for each and every spectrum. Using this distribution of spectrum-specific scores, the 
candidate PSM can be accurately evaluated for likelihood. The MSGF algorithm first 
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implemented the generating function6, and it has been subsequently adapted and re-
implemented by other groups7,8. 
 
The chemical differences between lipids and proteins have prevented a straightforward 
adaptation of either the target/decoy method or the exact probability calculation. The lack of 
common building blocks analogous to the 20 amino acids has stalled development of both the 
target/decoy method and a more statistically rigorous generating function. Decoy sequences 
can be created for proteins by reversing the amino acid sequence or picking a random 
assortment of amino acids. Although lipids have a building block-like structure, the rigidly 
defined linkages are not amenable to simple reversing or randomizing. For example, swapping 
the position of a headgroup and the phosphate linker on a glycerophospholipid, creates a 
nonsensical molecule. Moreover, there is not one pattern for all lipids, but rather a separate 
template of linkages and building blocks for each class. These issues have prevented the 
creation of a target/decoy methodology. Similarly adapting the generating function requires the 
ability to enumerate all possible lipids to calculate exact statistical significance. Although large 
libraries have been constructed (LipidBlast9 and LipidMaps10), these are empirical and not 
generalizable solutions. 
 
We present here the first report for estimating the false-discovery rate within lipidomics tandem 
mass spectrometry data using a method for decoy generation. The method generalizes well to 
any lipid species that has hydrocarbon chains. Thus, while it is not completely universal, it does 
broadly address the vast majority of lipid categories (i.e., fatty acyls, sphingolipids, 
glycerophospholipids, and glycerolipids, etc.). Much like the target/decoy approach in 
proteomics is applied to numerous scoring algorithms (e.g. SEQUEST, Myrimatch, X!Tandem, 
etc.), this approach can also be applied to other lipid identification software packages.  
 

Results 
 
Calculating a probability using runner-up matches. 
 
One popular and simple method of calculating PSM probability is embodied in the X!Tandem 
algorithm11. For every spectrum in a global proteomics experiment, there are typically many 
hundreds of peptide sequences that have a similar precursor mass (e.g. within mass 
measurement accuracy of the instrument or m/z isolation window width used for MS/MS). This 
set of candidate sequences are scored against the observed fragmentation spectrum, producing 
a long list of PSMs for a single spectrum. X!Tandem assumes that all non-top-scoring PSMs are 
false-positive identifications. Using the distribution of these hundreds of false-positive 
identifications, X!Tandem builds a spectrum-specific null distribution. The probability that the 
top-scoring peptide is a true-positive is based on this distribution. 
 
We attempted to use an X!Tandem-like method to score LSMs, but were unsuccessful due to 
the relatively small set of candidate lipids for each precursor mass. We used the LipidMaps 
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database as a source of potential lipid species. Unlike peptides, where one can expect a set of 
> 500 candidates per spectrum, the list of lipids with similar precursor mass was much smaller 
(often in the low tens of candidates) and highly varied. This limited set of candidates precluded 
reliably modeling the false-positive score distribution on a per-spectrum basis (data not shown). 
 
A generalized decoy molecule for lipids 
 
We introduce a method for creating decoy lipid molecules that is easily generalizable and 
applies to the vast majority of lipid species and classes. For every lipid in the search space that 
contains a hydrocarbon chain, we create a decoy lipid that has seven more double bonds per 
chain than the target chain (see Figure 1). If the target lipid has a hydrocarbon chain with less 
than 8 carbons, all bonds in the chain become double bonds. Seven double bonds are a very 
rare event in known lipid species. Indeed, by parsing the LipidMaps database10 (download 
11/11/2015) we identified only 4 species with 7 double bonds on a carbon chain (LipidMaps 
identifications: LMFA01030916, LMFA07050066, LMFA07050107, LMPK12140072), out of 
40,360 total. 
 
We chose this option for creating a decoy sequence for the following reasons. First, it is a 
simple and straightforward implementation that can be applied to a very large variety of lipids. 
This is essential for the application to global lipidomics research on a wide variety of organisms 
across all domains of life. Second, this method creates an equivalent number of target and 
decoy sequences. This is not a requirement for the decoy database methodology, as 
proteomics sometimes uses a substantially larger set of decoy sequences. For example, the 
original PeptideProphet methodology used a set of 18 true-positive protein sequences and 
~13,000 decoy sequences. It is, however, convenient to have a 1:1 ratio for target:decoy 
molecules. Third, the method ensures predictable fragments and the creation of theoretical 
spectra. Thus any algorithm can easily score decoy lipid molecules. For example, the 
diacylglycerophosphocholine shown in Figure 1 has a M-ketone (18:1) peak; in the 
corresponding decoy molecule, this is an M-ketone(18:8) peak and its m/z is adjusted to 
account for the loss of 14 hydrogen atoms. 
 
Model Training 
 
It is important to distinguish the goals of creating a reliable method for false-discovery 
estimation from those for creating an effective LSM scoring function. The goal of a good scoring 
function is to distinguish true-positive and false-positive identifications. The goal of a FDR 
estimate method is to report the statistical confidence in a given identification, or more generally 
to evaluate the success of the scoring function. Explicitly, one can have an accurate method for 
FDR estimation and have it operate on an imperfect scoring function. This is reminiscent of the 
early difficulty of proteomics algorithms with phosphoproteomics data12 or the lack of confidence 
in short peptide identifications. The target/decoy approach exposes such shortcomings and 
provides an opportunity to evaluate possible algorithmic improvements.  
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We collected true positive and true negative training data from a variety of global LC-MS/MS 
lipidomics experiments conducted in both positive and negative electrospray ionization, 
including from virus-infected cell lines, mouse lung tissue, human blood spots, cyanobacteria, 
and soil. True positive training data came from manual curation and true negative data was 
taken from all decoy database hits. Through manual curation, we obtained sufficient training 
data for 23 lipid subclasses: 14 in positive ionization mode and 17 in negative ionization mode 
(Supplementary Table 1). These training data were inputs to an SVM classifier (see Methods) 
using four metrics of identification: MS/MS spectrum match score, deviation from expected 
retention time, isotopic profile match of the precursor ion, and isotopic profile match of the 
precursor ion -1hydrogen (Supplemental Figure 1). During manual curation of the training data, 
we noted that the number and type of expected fragment ions varies significantly between 
different lipid subclasses (as defined by LipidMaps), due to their unique chemistry.  Similarly, 
the same molecule may fragment differently in positive and negative ionization modes. For this 
reason, we estimate FDR for each subclass and ionization modality separately. 
 
Algorithm Performance 
 
We examined the utility of the FDR method using a testing dataset comprised of nine LC-
MS/MS experiments from human and mouse cell lines. In each lipid subclass, we looked for an 
overlap between the decoy database hits and low scoring – presumably false-positive – target 
database hits. In an idealized scenario, target database hits are comprised of a mixed 
distribution from true positive and false positive matches (Figure 2), as has been previously 
observed from peptide/spectrum matches1,3,13.  
 
Fourteen of the twenty-three lipid subclasses produced reliable models, including lipids that are 
biologically important for health and environmental processes, e.g.: ceramides, 
diacylglycerophosphocholine and triacylglycerols. Some of these models had a more idealized 
overlap than others. In Figure 3A the diacylglycerophosphoethanolamine subclass (LipidMaps 
GP0201) has a decoy distribution with a strong peak centered at -1.0 with tails reaching +/- 0.5. 
Low scoring target database hits mirror this distribution. In Figure 3B, 
monoacylglycerophosphocholines (LipidMaps GP0105) also have this mirrored overlap, 
although there are fewer lipid/spectrum matches for this subclass. There are also other 
subclasses for which the decoy distribution did not as closely mirror low scoring target hits 
(Figure 3C & D). Although this does not fit the idealized model of target/decoy searches, it still 
shows how a false (decoy) molecule would be scored in the current scheme. Therefore it is still 
productive in modeling a false-discovery rate.  
 
For some lipid classes, the separation between target and decoy scores was not resolved 
because there were too few decoy hits or the hits are disperse and there is no clear separation 
between target and decoy (Figure 4A & B). Six subclasses fell into this category.  For example, 
diacylglycerophosphoinositols have hundreds of high scoring spectra in the target database, but 
few decoy hits; with only few low scoring true-negatives it may not be appropriate to assign a 
statistical confidence associated with these models. Although the current FDR implementation 
will report a value based on these distributions, they should be used with caution. Which specific 
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lipid subclasses fall into this category will change with each experiment as the number and type 
of lipids is expected to be distinct. 
 
A final challenge is lipid subclasses whose fragmentation pattern is difficult to accurately score. 
Monoacylglycerols (LipidMaps GL0101) are comprised simply of a fatty acid and a glycerol 
backbone and only reliably produce two fragment ions in positive ionization. The paucity of 
fragments generated by CID makes it difficult for a scoring function to discriminate between true 
and false spectral identifications. Testing data for this subclass produced nearly identical score 
distributions for the target and decoy hits (Figure 4C).  Another example of challenging scoring 
is when a subclass groups together molecules that behave differently in MS/MS fragmentation, 
like glycosyldiacylglycerol, GL0501 at LipidMaps. This subclass contains three types of lipids 
with very distinct diagnostic ions and fragmentation patterns: MGDG, DGDG, and SQDG. Thus 
the score of true positive lipid-spectrum matches will be an amalgam of distributions. When 
applied to the machine learning SVM approach this results in a poor separation for target and 
decoy hits (Figure 4D).  
 
Consistency of decoy distribution 
 
As some of the lipid subclasses have decoy distributions that did not match the idealized 
scenario depicted in Figure 2, we attempted to determine whether the distribution of decoy 
scores for a given lipid subclass was consistent across different experimental samples. 
Therefore, we applied the target/decoy method to a second test data set from mouse lung tissue 
(9 positive and 9 negative ionization MS/MS files). For each of the 23 subclasses, the decoy 
distribution from the original test set 1 was compared to the decoy distribution from test set 2. 
Figure 5 shows several such comparisons in detail. Although the number of observations for 
each decoy distribution varies between test set 1 and 2 (as expected), the score distributions 
were consistent.  

Discussion 
The proteomics community has benefited from algorithms such as SEQUEST, X!Tandem, 
MSGF and others for 20 years, allowing researchers to rapidly identify peptides and their 
corresponding proteins. Equally important have been methods for assessing the false discovery 
rate, which allows researchers to understand the statistical confidence of peptide and protein 
identifications. The ability to accurately measure and report confidence was necessary for the 
widespread adoption of proteomics data in environmental and biomedical research. 
 
In the related fields of metabolomics and lipidomics, a method for assessing the false discovery 
rate of spectral matches has not been established. The current gold standard for confident 
identification of metabolites is to match data (e.g. tandem mass spectra, retention time, accurate 
mass) from experimental measurements to reference libraries obtained from analyses of 
purified chemical standards, an approach endorsed by the Metabolomics Standards Initiative of 
the Metabolomics Society14. Confidence in the identifications is typically asserted via manual 
inspection of the spectral match, or a non-statistical score cutoff.  This approach is untenable as 
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metabolomics and lipidomics researchers increasingly try to manage tens to hundreds of 
gigabytes of data per experiment. Further, the criteria for confidently identifying metabolites and 
lipids is evolving, and the existing criteria have not yet been broadly adopted15,16. The 
development of a method for robustly estimating FDR, regardless of the approach used for 
metabolite or lipid identification, could facilitate the establishment of consensus criteria by the 
research community17.  
 
The target/decoy method presented here is a simple option for the false discovery rate of lipid-
spectrum matches. For many biologically significant classes of lipids, this method works well. 
For the classes where scoring methods currently fall short, the false discovery rate calculations 
provide a platform for objective comparison of scoring models. Potential improvements include 
more advanced algorithms and instrumentation/fragmentation techniques to increase the 
number and intensity of reliable lipid fragment ions (e.g. MS3). We feel that the FDR estimation 
method described here will be invaluable in guiding the next stages of lipidomics research. For 
proteomics, introducing an FDR estimation method ushered in an era of intense computational 
interest and improvement, with dozens of new software tools being released. New 
instrumentation was also developed to address the need for more consistent fragmentation or 
better mass measurement. We hope and anticipate that a similar surge will now form around 
lipid-spectrum identification.  
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Methods 
 
Datasets used 
 
Lipidomics data from 8 different experiments comprising 79 LC-MS/MS analyses were included 
in training data in this study. Eight analyses were of total lipid extracts derived from human 
blood spots and serum, 25 of virus and mock infected human epithelial cell lines (Calu-3 
purchased from ATCC http://www.atcc.org/products/all/HTB-55.aspx), 32 of virus and mock 
infected mouse lung tissue, 4 of mouse lung tissue, 6 from two different soil types, and 4 from 
cyanobacteria cultures. All mice were female; all animal work was approved by the Institutional 
Animal Care and Use Committee of Pacific Northwest National Laboratory prior to initiation of 
the study. Test set one consists of nine LC-MS/MS analyses in both positive and negative 
mode; 6 samples were from Calu-3 cells, and three samples were from primary cells derived 
from mouse lymph nodes. Test set two consists of nine LC-MS/MS analyses in both positive 
and negative modes; all nine samples were from mouse lung tissue. For each of these samples 
we used the following extraction and analysis protocol. A Waters NanoAquity UPLC system 
(Waters Corporation, Milford, MA) interfaced with a Velos-ETD Orbitrap mass spectrometer 
(Thermo Scientific, San Jose, CA) was used for LC-ESI-MS/MS analyses.  Total lipid extracts 
(obtained using a modified Folch extraction18) were reconstituted in MeOH and injected onto a 
C18 reversed-phase column (HSS T3. 1.0 mm x 150 mm x 1.8 µm particle size; Waters).  Lipids 
were separated over a 90 min gradient elution (mobile phase A: ACN/H2O (40:60) containing 10 
mM ammonium acetate; mobile phase B: ACN/IPA (10:90) containing 10 mM ammonium 
acetate) at a flow rate of 30 µl/min. Samples were analyzed in both positive and negative 
ionization using HCD (higher-energy collision dissociation) and CID (collision-induced 
dissociation) to obtain high coverage of the lipidome. The raw mass spectrometry datasets have 
been uploaded to the MassIVE repository (http://massive.ucsd.edu), under submission 
MSV000079770. 
 
Method for Decoy Generation 
 
The target lipid database was obtained from LipidMaps. Lipid decoys are based on these lipid 
species with seven double bonds added to each of the lipid acyl chains. For example, if the 
target species was a PC(16:1/16:0), then the decoy would be PC (16:8/16:7). Because MS/MS 
methods are not typically able to localize double bonds within the hydrocarbon chain, the 
structure of this decoy molecule is not specified beyond the number of double bonds. If the acyl 
chain contained fewer than eight carbons, all carbons in the chain would be double bonded. For 
example, a fully saturated hydrocarbon chain of carbon length seven, commonly annotated as 
7:0, would become a decoy with six double bonds, annotated as 7:6. This method is appealing 
because it is generalizable to any class of lipid that has a hydrocarbon chain, e.g. PC, DG, TAG, 
etc. The decoy database file used in this manuscript is available as Supplemental Table 2 and 
3. 
 
Software implementation of the FDR  
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A support vector machine was used to create a single score from the four feature metrics of 
lipid-spectrum matches. The model was trained using 41 positive ionization and 37 negative 
ionization datasets from experiments with environmental and mammalian cells. Datasets were 
first run through LIQUID for initial lipid identification and scoring. True positive data points were 
derived from manually curated lipid/spectrum identifications (n=9251). True negative data points 
were derived from all hits to the decoy database (n=214737). See Supplemental Table 1 for a 
complete list of the training data. These training data were run through the SVM training script 
written in Python and using scikit-learn machine learning library. (The software for training the 
SVM models and also for using the models are available at http://github.com/PNNL-Comp-
Mass-Spec/LipidFDR) The model trained on four data quality metrics from the LIQUID output: 
retention time, cosine similarity of the observed precursor isotope envelope to the theoretical 
isotope, cosine similarity of the observed precursor isotope envelope to the M-1 theoretical 
envelope, and LIQUID spectrum score. Because the LIQUID spectrum score is not uniform 
across different lipid classes (due to different numbers of fragment ions generated in MS/MS), 
models were created for every class of lipid and both positive and negative ionization mode. For 
SVM models, a radial basis function (RBF) kernel was employed and random permutations 
cross validation was used to optimize the kernel parameters. 
 
To test the models we used datasets which are unrelated to those used for training. The testing 
datasets were processed by LIQUID for initial identification and scoring. For the target 
database, we used a HCD tolerance of 30 PPM as well as identifications to one per MS/MS 
spectra. For the decoy database, we used an HCD tolerance of 50 PPM to account for small 
mass shifts difference expected between true and decoy lipid species as well as allowing any 
number of decoy identifications per MS/MS spectra. From both target and decoy searches, the 
SVM classifier scored identifications based on the distance to a separating hyperplane of a 
trained model to classify the curated lipid/spectrum pairs from the true negative. Scores from 
target and decoy identifications were transformed into probability density functions, and the FDR 
estimate was calculated based on the ratio of these two distributions at a given score: 
 

𝐹𝐷𝑅(𝑠|𝑃(,𝑃*) =
∫ 𝑃((𝑥)𝑑𝑥
0
1

∫ 𝑃*(𝑥)𝑑𝑥
0
1

 

where, 𝑃((𝑠) and 𝑃*(𝑠) indicate probability distributions for decoy scores and for target scores, 
respectively. 
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Figures 
 

 
Figure 1 - Decoy lipid generation. (A) The structure and MS/MS spectrum of 
diacylglycerophosphocholine PC(16:0/18:1). The spectrum y-axis is scaled to show the low 
intensity fragment ions from the acyl tails (green). (B) The structure and hypothetical spectrum 
of the cognate decoy lipid diacylglycerophosphocholine PC(16:7/18:8). The m/z of acyl-tail 
fragment ions has been adjusted to account for the loss of mass when making double bonds. 
The m/z of the diagnostic headgroup ion (red) has not changed as its structure and chemical 
composition remain unchanged. The intensity scale has been adjusted to show the lower 
abundance fragment ions. 
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Figure 2 – Idealized score distribution of target and decoy hits. The poorly scoring target 
database hits mimic the true-negative hits to the decoy database. This concept is based on 
observations in proteomics data, and a similar figure appears in ref 13. Dashed lines correspond 
to the false-positive (blue dash) and true positive (red dash) parts of the target hits score 
distribution. The red vertical line represents a 1% false discovery rate. 
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Figure 3 – Lipid subclasses with good target/decoy separation. Data is from test set 1, a 
collection of nine MS/MS lipidomics experiments from human and mouse cell cultures. Although 
not all subclasses show an idealized distribution of scores, the distribution defines what false 
identifications would score as, and is separated from high scoring target hits. A. 
monoacylglycerophosphocholine in positive ionization mode, LipidMaps GP0105 (n=452 target 
hits, 79 decoy hits). B. diacylglycerophosphoethanolamine in positive ionization mode, 
LipidMaps GP0201 (n=577 target hits, 748 decoy hits). C. diacylglycerophosphoserine in 
positive ionization mode, LipidMaps GP0301 (n=1454 target hits, 360 decoy hits). D. ceramide 
phosphocholine (sphingomyelins) in positive ionization mode, LipidMaps SP0301 (n=412 target 
hits, 374 decoy hits). 
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Figure 4 – Lipid subclasses with poor target/decoy separation. Data is from test set 1, a 
collection of nine MS/MS data files from human and mouse cell cultures. In A, although there 
are many high scoring target hits, the number of decoy hits is too small to reliably model the 
score distribution. In B, the decoy score distribution is disperse and poorly sampled, which 
makes it difficult to model the underlying distribution. In C and D, the target and decoy 
distributions show clear overlap, but there are no good scoring target hits. A. 
diacylglycerophosphoinositols in negative ionization mode, LipidMaps GP0601 (n=1464 target 
hits, 34 decoy hits). B. monoacylglycerophosphoethanolamines in positive ionization mode, 
LipidMaps GP0205 (n=226 target hits, 112 decoy hits). C. monoacylglycerols in positive 
ionization mode, LipidMaps GL0101 (n=61 positive hits, 33 decoy hits). D. glycosyldiacylglycerol 
in positive ionization mode, LipidMaps GL0501 (n=334 target hits, 237 decoy hits). 
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Figure 5 – Consistency of decoy distribution. The decoy score distribution for the two different 
test sets is plotted against each other. Plotted in blue are decoy hits from test set 1 (nine 
experiments from human and mouse cell cultures); plotted in orange are decoy hits from test set 
2 (nine experiments from mouse lung tissue). A. N-acylsphinganines (dihydroceramides) in 
positive mode ionization, LipidMaps SP0202 (n=1019 from test set 1, 1999 from test set 2) ; B. 
diacylglycerophosphoserines in positive ionization mode, LipidMaps GP0301 (n=360 for test set 
1, 940 for test set 2); C. diacylglycerols in positive ionization mode, LipidMaps GL0201 (n=1053 
for test set 1, 2268 for test set 2); D. N-acylsphingosines (ceramides) in negative ionization 
mode, LipidMaps SP0201(n=966 for test set 1, 694 for test set 2). 
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Supplementary Figure 1 – Metrics used to create the SVM score. Data is shown for training and 
testing lipid/spectrum matches. Red is for true positive training data (n = 866); blue is for true 
negative training data (n = 3389). Orange is for all target hits on testing data (n = 1421); purple 
is for all decoy hits on testing data (n = 817). This data is from lipid/spectrum matches to 
diacylglycerophosphoglycerols in negative ionization mode (LipidMaps GP0401). Similar charts 
were created for all subclasses as a way to visualize the effective separation of target and 
decoy hits by the various score metrics. 
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