

1 A whole-genome sequenced control population in northern
2 Sweden reveals subregional genetic differences.

3 Daniel Svensson^{1,*}, Matilda Rentoft^{2,*}, Anna M. Dahlin³, Emma Lundholm⁴, Pall I.
4 Olason⁵, Andreas Sjödin^{1,6}, Carin Nylander³, Beatrice S. Melin³, Johan Trygg¹ and Erik
5 Johansson^{2,†}

6 1) Computational Life Science Cluster, Department of Chemistry, Umeå University, SE
7 901 87 Umeå, Sweden

8 2) Department of Medical Biochemistry and Biophysics, Umeå University, SE 901 87
9 Umeå, Sweden

10 3) Department of Radiation Sciences, Oncology, Umeå University, SE 901 87 Umeå,
11 Sweden

12 4) Centre for Demography and Ageing, Umeå University, SE 901 87 Umeå, Sweden

13 5) Science for Life Laboratory, Department of Cell and Molecular Biology, Uppsala
14 University, SE 75123 Uppsala, Sweden

15 6) Division of CBRN Security and Defence, FOI–Swedish Defence Research Agency,
16 SE 906 21 Umeå, Sweden

17 * These authors contributed equally to this work

18 # To whom correspondence should be addressed: erik.tm.johansson@umu.se

19

20 **Running title:** Subregional genetic differences in northern Sweden

21 **Grants:** This work was funded by a project grant (2011.0042) from the Knut and Alice
22 Wallenberg Foundation (E.J., B.S.M., J.T.).

23 **Conflict of interest:** The authors declare no conflict of interest.

24

25 Abstract

26 The number of national reference populations that are whole-genome sequenced are
27 rapidly increasing. Partly driving this development is the fact that genetic disease studies
28 benefit from knowing the genetic variation typical for the geographical area of interest.
29 A whole-genome sequenced Swedish national reference population (n=1000) has been
30 recently published but with few samples from northern Sweden. In the present study we
31 have whole-genome sequenced a control population (n=300) (ACpop) from Västerbotten
32 County, a sparsely populated region in northern Sweden previously shown to be
33 genetically different from southern Sweden. The aggregated variant frequencies within
34 ACpop are publicly available (DOI 10.17044/NBIS/G000005) to function as a basic
35 resource in clinical genetics and for genetic studies. Our analysis of ACpop, representing
36 approximately 0.11% of the population in Västerbotten, indicates the presence of a
37 genetic substructure within the county. Furthermore, a demographic analysis showed that
38 the population from which samples were drawn was to a large extent geographically
39 stationary, a finding that was corroborated in the genetic analysis down to the level of
40 municipalities. Including ACpop in the reference population when imputing unknown
41 variants in a Västerbotten cohort resulted in a strong increase in the number of high-
42 confidence imputed variants (up to 81% for variants with minor allele frequency < 5%).
43 ACpop was initially designed for cancer disease studies, but the genetic structure within
44 the cohort will be of general interest for all genetic disease studies in northern Sweden.

45

46 **Keywords:** Next-generation sequencing, Population genetics, Genetic databases,
47 Genomics

48

49 Introduction

50 The challenge for all studies on genetic diseases is to disentangle disease-causing genetic
51 variations from those that are not. This task is inherently dependent on knowledge of the
52 genetic variation in the population. Even though a number of large-scale projects (1–3)
53 have mapped much of the common global human genetic variation, the map of human
54 genetic diversity is far from complete, in particular with respect to rare variants. The
55 recent explosive population growth has resulted in an abundance of rare variants (4,5)
56 which, because of their relatively recent origin (6,7) tend to be geographically clustered
57 to a higher degree than variants that are common in different parts of the world (8).
58 Therefore, in order to obtain a better overview of all genetic variation it is important to
59 sequence geographically focused populations. In recent years, several such projects have
60 mapped the genetic variation in national populations, providing important information
61 regarding locally occurring rare variation (9–11).

62 An addition to these was the recent release of a whole-genome sequenced Swedish
63 national reference population, SweGen (12). The genetic structure of the Swedish
64 population is characterized by a pronounced genetic difference between the northernmost
65 counties and the rest of Sweden (13,14). For example, the genetic distance, as measured
66 by F_{ST} , between the northern and southern parts of Sweden is larger than that between
67 southern Sweden and other populations of Northern European descent (13). Furthermore,
68 the northernmost counties exhibit an elevated level of homozygosity (13,14) and an
69 increase in the genetic distance as a function of the geographical distance (14), compared
70 to southern Sweden. In agreement with these observations, Y chromosomal haplotype
71 frequencies also showed that the population in Västerbotten County in northern Sweden
72 is differentiated from that in the southern Swedish counties (15).

73 Our studies focus on this genetically pronounced northern Swedish region, specifically
74 Västerbotten County. The county is characterized by vast distances between population
75 centers; the geographical footprint is large (54,665 km²) (16), but the population size is
76 small (268,278) (17). The demographic history of the county highlights a sparsely
77 populated region with an estimated population of as few as 7,304 individuals in 1571 who
78 mainly inhabited the coastal region (18). Historically, the inland region has
79 predominantly been inhabited by the indigenous Sami population, but settlement
80 programs were initiated by the state during the mid- to late-17th century with the main
81 part of the in-migration taking place from mid-18th to mid-19th century (19). It was also
82 in this later period that settlers formed the majority in relation to the Sami population
83 (20). Previous work based on marriage patterns and distribution of allele frequencies of
84 eight protein markers indicated the presence of a genetic substructure within Västerbotten
85 County (21). The hypothesized substructure was associated with the major river valleys
86 that stretch from the mountains in the west to the coast in the east in northern Sweden.

87 In summary, the genetics of the Västerbotten population have been shown to be distinct
88 compared to the rest of Sweden. To improve the likelihood of conducting successful
89 studies on genetic disease in this region, there is a need to acquire a better understanding
90 of the genetic variation in the population. While focusing on establishing a control
91 population to be used in cancer disease studies, we have whole-genome sequenced a
92 population sample named ACpop from the county of Västerbotten. The whole-genome
93 sequenced population, ACpop, provides a high-resolution map of the genetic variation
94 which agrees with earlier studies of protein markers and marriage patterns. Imputation of
95 rare variants in genotyping data from the region is also evaluated.

96 Materials and methods

97 *Sample selection*

98 The study was approved by the ethics board in Umeå, Sweden (dnr 2014-290-31 and dnr
99 2017-370-32). The 300 samples were selected from the Västerbotten Intervention
100 Programme (22) (VIP) cohort of the Northern Sweden Health and Disease Study
101 (NSHDS). Blood from residents were collected in health care units in each municipality
102 and a donated sample was considered to represent a resident of that municipality. Half of
103 the samples to be sequenced were spread evenly over the 15 municipalities of the county.
104 The remaining half were dedicated to increase the frequency of sequenced individuals in
105 the three most highly populated municipalities (Lycksele, Skellefteå, and Umeå), as well
106 as two municipalities that is located on the border (Supplementary Fig 1). An equal
107 number of men and women were selected in each municipality. To maximize the diversity
108 among selected individuals and to minimize selection bias, 27 phenotypic, health, and
109 lifestyle-related variables were extracted from the VIP (Supplementary Table 1), and a
110 principal component (PC) model was used to select the individuals to be sequenced from
111 each municipality. Principal component (PC) models were calculated separately for each
112 gender and municipality. Samples to be sequenced were selected from the two first PCs
113 according to a full factorial design in two levels with one center point (Supplementary
114 Fig 2). For municipalities where sample size was substantially increased (Lycksele,
115 Umeå, and Skellefteå), we extended the experimental design with another full factorial
116 design around each of the corner points, as well as with another four center points
117 (Supplementary Fig 2b). For the municipalities where sample size was moderately
118 increased (Storuman and Malå), we extended the experimental design simply by adding

119 another full factorial design in two levels and one center point but angled 45 degrees to
120 the original one.

121 *Whole genome sequencing, raw data processing and calling of variants*

122 DNA samples were obtained from the NSHDS and paired-end sequenced (2x150 bp) to
123 a depth of at least 30x using the Illumina HiSeqX system at NGI-U (Uppsala, Sweden).
124 Samples underwent a quality check by the sequencing facility. PCR-free library
125 preparation kits were used for all samples.

126 Raw data processing was performed in accordance with the GATK best practices(23,24).
127 Briefly, reads were aligned to the 1000g fasta reference (b37) using BWA (v0.7.10-r789)
128 (25) Sorting, indexing, and marking of duplicates was done using Picard (v.1.118) (26),
129 and realignment around indels was done using GATK (v3.3.0) (27). Qualimap (v2.0.2)
130 (28) was used to assure sample quality and to identify any deviating samples. SNPs and
131 small indels were called for each sample separately using HaplotypeCaller (GATK
132 v.3.3.0). The resulting gVCFs were then jointly genotyped into a single VCF file using
133 GenotypeGVCFs (GATK v. 3.3.0). The called variants were quality filtered in
134 accordance with GATK recommendations using VQSR. Guided by the Ti/Tv ratio, the
135 truth sensitivity cutoff was set to 99.7 and 99.0 for SNPs and small indels, respectively.
136 Additionally, variants were annotated with the result from a Hardy-Weinberg equilibrium
137 (HWE) test. Variants with a Phred-scaled p-value above 60 ($p \leq 10^{-6}$) were removed in
138 all analyses.

139 *Cryptic relations analysis*

140 The software KING (29) was used to screen for unknown pairwise relationships between
141 all samples in ACpop. KING was run with the *kinship* flag and using all biallelic SNPs

142 with a successful genotyping rate of at least 99.9%. Pairwise relationships were inferred
143 using the kinship coefficient as suggested by (29).

144 *PCA*

145 Both PCA models were produced using smartpca (30) (v. 13050) of the EIGENSOFT (v.
146 6.0.1) software package. The allowed maximum missing genotype rate was 0.1% and 1%
147 for variants and individuals, respectively. Two full sibling relations (4 individuals) were
148 suggested to exist by the relationship analysis, and one individual from each of these
149 relations was excluded prior to PCA. For the joint PCA of ACpop and the 1000 genomes
150 (1000g) project European super population, autosomal biallelic SNPs with a frequency
151 of at least 5% in ACpop and each European subpopulation were used. For the PCA of
152 only ACpop, autosomal biallelic SNPs with a frequency of at least 5% were used.
153 Variants overlapping long-range LD regions were excluded as suggested by
154 EIGENSOFT. A linkage disequilibrium (LD) pruning step was performed in both cases,
155 both using PLINK (31) (v1.90b3) with a window size of 20,000, step size of 2,000 and
156 an r^2 threshold of 0.2. In total, 118,544 variants were used for the joint PCA and 156,680
157 variants for the ACpop PCA. The 1000g genotypes (release v5 20130502) were
158 downloaded from <ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/20130502/>.

159 *Imputation*

160 Imputation was performed in two different cohorts. One cohort of individuals from
161 Västerbotten county (n = 500) and one cohort of Swedish individuals (n = 214). Both
162 cohorts have previously been used as control populations in a GWAS of glioma (32), and
163 were genotyped with the Illumina 660W array. All individuals had a call rate >94% and
164 were unrelated (PI-HAT< 0.2). SNPs were filtered based on call rate (>90%), minor allele
165 frequency (>0.01), and HWE ($p>1\times10^{-6}$). A/T and G/C SNPs were removed. All subjects

166 were phased together using SHAPEIT (33) and untyped genotypes on chromosome 20
167 were imputed with IMPUTE2 (34,35) (v2.3.2) using three different reference populations
168 – 1000g, ACpop, and combination of the two (1000g + ACpop). Imputation was
169 performed on genomic regions less than 5 Mb in size with 1 Mb buffer regions. To create
170 the ACpop reference panel we first created a VCF by jointly calling variants in the ACpop
171 samples and in 64 whole genome sequenced individuals from two families. The families
172 originate from the region. Raw data processing and calling of variants was performed in
173 the same way as was described for ACpop. Phasing was performed with SHAPEIT2 (36),
174 using all biallelic SNPs with a genotyping rate above 1%. SHAPEIT2 was run with the
175 duohmm option active. The number of conditioning states was set to 1000, the window
176 size was set to 300, and the MCMC iterations were set to have 15 burn-in and pruning
177 iterations and 50 main iterations. After phasing, we extracted the haplotypes from the 300
178 ACpop samples and used them for subsequent imputation analysis. The 1000g reference
179 panel was downloaded from https://mathgen.stats.ox.ac.uk/impute/1000GP_Phase3.html
180 and is based on 2,504 samples from phase 3 (v5 20130502).

181 F_{ST}
182 Pairwise F_{ST} was calculated using smartpca (30) (v. 13050) from the EIGENSOFT (v.
183 6.0.1) software package. The same two sibling samples that were excluded in the PCA
184 were also excluded in this analysis. Variants with a missing genotype rate of 0.1% or
185 more were excluded from the analysis. For each pairwise calculation, only autosomal
186 biallelic SNPs that were polymorphic (alternative allele frequency > 0) in both
187 investigated populations were used. Pairwise F_{ST} was calculated between ACpop and the
188 European subpopulations of the 1000g project (release v5 20130502) as well as between
189 regionally defined populations within ACpop.

190 *Inbreeding analysis*

191 Calculation of the inbreeding coefficient for ACpop was performed using FSuite (37) (v.
192 1.0.4). We followed the procedure outlined in Gazal et al (38) and included the 26
193 populations of the 1000g project in the analysis to corroborate the results (data not
194 shown). We included autosomal biallelic SNPs with a frequency of at least 5% in each of
195 the 27 populations and which did not deviate from HWE ($p < 10^{-5}$) in any of the 27
196 populations. The HWE test was performed using PLINK (31,39) (v1.90b3). Additionally,
197 we removed variants with a missing genotype rate of 5% or more, as suggested by FSuite
198 manual. Prior to calculating the population specific allele frequencies, 14 individuals
199 from 15 reported (38) first-cousin or closer relationships (including one trio) were
200 excluded from the 1000g data (release v5 20130502), as well as the same two ACpop
201 individuals that were excluded in the PCA and FST analyses due to close relationships.
202 FSuite relies on the creation of several random sparse genome maps (submaps) in order
203 to avoid markers in linkage disequilibrium (40). We selected markers between
204 recombination hotspots for a total of 100 submaps. The inbreeding coefficient reported
205 by FSuite is the median inbreeding coefficient from the 100 submaps.

206 Results

207 *Selection of the cancer control samples results in a population that reflects diverse
208 Västerbotten origins*

209 We have whole genome sequenced 300 individuals intended to be used as a control
210 population in genetic disease studies in the Swedish county of Västerbotten and northern
211 Sweden. Based on a previous study (21), it was clear that the control population would
212 benefit from a selection of individuals from all parts of Västerbotten County. The
213 longitudinal and large-scale health study cohort, the Västerbotten Intervention

214 Programme (22) (VIP) cohort of the Northern Sweden Health and Disease Study
215 (NSHDS), provided approximately 95,000 samples from which a selection could be
216 made. Through the VIP, individuals across Västerbotten were invited to undergo a health
217 examination, complete a questionnaire on health and lifestyle, and donate a blood sample
218 for research. Furthermore, our primary focus was to use the control population for cancer
219 studies, thus only individuals who had reached at least 80 years of age in 2014 without
220 being diagnosed with cancer were included from the VIP cohort. This resulted in 2117
221 women and 1431 men from which the final selection of 150 women and 150 men was
222 made (Figure 1A). The included individuals had donated their blood samples at the latest
223 in 1995 and were at least 60 years of age when making the donation.

224 The municipality of birth records for all residents in Västerbotten County in 1995 who
225 were born 1934 and earlier were utilized to investigate the origins of the population
226 (available in the Linnaeus database, Centre for Demography and Ageing, Umeå
227 University). An analysis of the population demography revealed that 82% of the
228 Västerbotten population aged 60 years or older in 1995 was born in Västerbotten, and
229 59.4% of the population still resided in the same municipality where they were born
230 (Table 1). Only 10.3% of the population had migrated from a neighboring county, and
231 7.7% of the population came from other parts of Sweden (further south) or were
232 immigrants. The inflow is expected to increase with successive cohorts. When comparing
233 to a more recent cohort of 60 years and older in 2013 it is found that the share of the
234 population originating from other parts of Sweden and immigrants have risen to 13% and
235 11% respectively. Mobility into Västerbotten has been low in the 1995 cohort but
236 mobility out from Västerbotten was higher as 35 % of those born in the county lived
237 outside Västerbotten in 1995. Based on the low mobility, the 300 individuals were

238 selected from all 15 municipalities in Västerbotten (Supplementary Figure 1) to obtain a
239 sample of the genetic variation from all parts of the county. A selection strategy was
240 employed for each municipality to maximize diversity and avoid random selection bias.
241 In short, the strategy consisted of using principal component analysis (PCA) to
242 summarize 27 sample-associated features in conjunction with design of experiments
243 (Supplementary table 1).

244 *Overview of the ACpop variant dataset*

245 The final call set comprised 17,344,482 variants, distributed over 16,522,463 variant
246 sites, after quality control. Of these variants, 14,513,111 and 2,831,371 were SNPs and
247 indels, respectively. A large share of the variants was present at a low-frequency (Figure
248 1B). For example, 6,176,006 variants have an allele frequency (AF) of below 1%, of
249 which half (2,941,762) were seen only once (singletons, allele count of 1). As sequencing
250 efforts continue around the world, the total number of discovered genetic variants
251 increases. The most comprehensive collection of genetic variants is dbSNP, which
252 provides updated releases on a regular basis. The latest release of dbSNP (v. 150) contains
253 a total of over 325.7 M variants, more than double the size of the previous release (v.
254 149). We compared the ACpop variant set against the latest release of dbSNP (v. 150)
255 and found that a total of 2,022,713 variants were not represented in the collection (Table
256 2). Even though many (938,209) of these unique variants were singletons, as many as
257 471,744 and 115,682 variants had an $AF \geq 1\%$ and $AF \geq 5\%$, respectively. Compared to
258 the recently released whole genome sequenced Swedish national reference (SweGen),
259 ACpop contains 1,813,725 unique variants, and a substantial number (794,800) of
260 variants that are common in ACpop ($AF > 1\%$) but are not represented or rare ($AF \leq 1\%$)
261 in SweGen. The average genome in ACpop consists of 4.20 M variants (3.98 M sites),

262 where 3.44 M are SNPs and 0.77 M are indels, and carries 6,742 variants not found in
263 dbSNP (v. 150).

264 *Subregional genetic structure of ACpop*

265 In a global setting, the genetic variation of ACpop tends to show similarity with other
266 European populations from the 1000g project, as evident by their co-localization within
267 the first and second components of a joint PCA (Figure 2). To investigate the relationship
268 between ACpop and other European populations in greater detail, a second PCA was
269 performed with only the European subpopulations of the 1000g project. The ACpop
270 samples displayed a distinct separation from members of the other populations in the first
271 two principal components, indicating that there is genetic variation in ACpop that is not
272 captured by sequencing efforts on other European populations (Figure 2B). The internal
273 spread of ACpop in the first and second principal components is in part due to the fact
274 that ACpop is a comparatively large sample in the context of 1000g project European
275 populations. In addition, the pairwise F_{ST} between ACpop and the European populations
276 was calculated. Of the five investigated European populations, ACpop appeared to be
277 genetically closest to the British (GBR) population rather than the geographically
278 neighboring Finnish (FIN) population (Table 3).

279 It was earlier demonstrated that there is a north-south gradient, where genetic
280 subpopulations are located along the large river valleys, which extends from the
281 mountains in the west to the coast in the east. The colonization of the inland and mountain
282 regions with a relatively small founder population together with our contemporary
283 analysis showing low mobility among individuals born in 1934 (Table 1), led us to ask if
284 there is a genetic difference between the western and eastern populations. Västerbotten
285 County can be divided into three geographical regions, a mountainous region, an inland

286 region, and a coastal region (Figure 3). To further investigate any genetic structure within
287 the county, a PCA was performed with the ACpop samples. By dividing the samples into
288 groups corresponding to the three geographical regions, a subtle pattern emerged in which
289 samples are placed along a gradient going from the coast, through the inland area and to
290 the mountains (Figure 3). The same geographical division was used for calculating
291 pairwise F_{ST} . The intra-county genetic distance between the group of individuals
292 associated with the mountainous region on the one hand, and the group of individuals
293 associated with the coastal region on the other hand, is comparable to that of the genetic
294 distance between the British (GBR) and Spanish (IBS) populations in the 1000g project
295 (Table 3 and Table 4). The emerging structure within the county could be further stratified
296 by the municipal association of the samples. Samples tend to cluster according to
297 municipality in the first and second principal components in a way that mimics the
298 geographical associations of the municipalities. That is to say, neighboring municipalities
299 tend to be represented in the PCA by neighboring samples (Figure 4) which correlates
300 with our demographic analysis (Table 1).

301 Earlier array-based studies of the northern Swedish population have suggested an
302 elevated level of autozygosity (14) and an increased number of homozygous segments
303 (13). With access to a whole-genome sequenced, carefully selected and comparatively
304 large population sample from a focused northern Swedish geographical area, we wanted
305 to provide a better understanding of the existing homozygosity pattern. The degree of
306 autozygosity can be estimated using the inbreeding coefficient f which represents the
307 proportion of the genome that is homozygous by descent. The results point to a gradual
308 increase of the average f from the coastal ($f=0.014$) region to the mountainous region
309 ($f=0.019$) of Västerbotten County, with a total average f value of 0.015 (Table 4). The

310 same gradual increase from coast to mountain can be witnessed for the proportion of
311 individuals classified as showing signs of autozygosity, i.e. where $f > 0.001$ is satisfied
312 (Supplementary Table 2).

313 *Effect of ACpop in imputation of national and regional cohorts*

314 A whole genome sequenced reference population can be used as a reference panel for
315 imputation in genome-wide association studies (GWAS). Previous studies have shown
316 that population-specific reference panels can improve imputation accuracy in matching
317 cohorts (41,42). To investigate the imputation performance of ACpop, we compared the
318 number of variants on chromosome 20 that were imputed with a high *info* score, which is
319 given by the imputation software as a measure of confidence of imputation of individual
320 variants, when using (i) the 1000g reference panel, (ii) the ACpop reference panel, and
321 (iii) a combination of the two reference panels. The number of variants imputed with high
322 confidence ($\text{info} \geq 0.8$) increased by 37% in a cohort from Västerbotten County (Figure
323 5A) and by 11% in a Swedish national cohort (Figure 5B) when using the combination of
324 the reference panels, compared to using only the 1000g reference panel. For variants with
325 minor allele frequency $\leq 5\%$ the corresponding increase was 81% and 23% for the
326 Västerbotten and Swedish cohort, respectively (Figure 5). For variants that were directly
327 genotyped by array technology in the Västerbotten County and Swedish national cohorts,
328 accuracy of imputation was assessed by means of r^2 values (i.e. the correlation between
329 the genotyped and imputed values for a particular variant). Accuracy of imputation of
330 genotyped variants increased with 3.4% in the Västerbotten county cohort (mean $r^2=0.98$)
331 and 1.1% in the Swedish cohort (mean $r^2=0.95$) when using the combination of 1000g
332 and ACpop, compared to using the 1000g panel alone (Supplementary figure 3).

333 Discussion

334 In this study, we have presented and characterized ACpop, a whole genome sequenced
335 Västerbotten County population sample of 300 individuals which corresponds to 0.11%
336 of the population. The selection of ACpop aimed in part to include as much as possible
337 of the genetic diversity in Västerbotten County. Because geographic origin is a
338 determining factor of genetic variation, a main component in the selection was to ensure
339 a geographical spread across the county. In addition, using statistical design we selected
340 diverse individuals with respect to health and life style associated variables in the
341 biobank. Demographic investigations indicate that the population we selected from was,
342 to a large extent, living in the same municipality in which they were born. Therefore, by
343 basing the selection on the municipal association of the samples, we are confident that
344 ACpop is representative of the genetic variation in Västerbotten. Furthermore, ACpop
345 includes a large number of rare local variants that were not represented in dbSNP or
346 SweGen. In all, ACpop is a resource that provides an unprecedented level of detail of the
347 genetic landscape of Västerbotten County.

348 Previous studies describing the Swedish genetic landscape have highlighted genetic
349 differences between northern Sweden and both southern Sweden (15) and other European
350 populations (13,14). ACpop demonstrates in this study that not only is there a genetic
351 substructure within Sweden but also within Västerbotten county. This is in line with
352 indications of an elevated positive correlation of genetic and geographic distances
353 demonstrated in a previous array-based study (14). The intra-county genetic distances
354 between the mountain and coast regions as measured by F_{ST} are comparable to differences
355 between major European populations in the 1000g project (Table 4). This substructure is
356 also supported in the principal component analyses where the two largest components

357 reflect the municipal and regional associations of the samples, respectively (Figure 3,
358 Figure 4). In fact, our results suggest that association studies in Västerbotten might show
359 an improvement if matched controls are taken not only from Västerbotten, but from the
360 same municipality as each affected individual. Similar conclusions were drawn from
361 studies on the Icelandic population with a genealogy that show some similarities to
362 Västerbotten (43). Iceland was colonized by 8,000-16,000 settlers 1,100 years ago,
363 maintained a population size of about 50,000 around 1850, followed by an expansion to
364 its current size of about 300,000. This resulted in a population with genetic substructures
365 even if the population was assumed to be homogeneous. Indication of the Västerbotten
366 substructure is also given by the inbreeding analysis where the coefficient of inbreeding
367 increased from the coast to the mountains. The comparatively high coefficient of
368 inbreeding might be the result of a small gene pool associated with the small number of
369 founders, in combination with population isolation. In addition, one study (44) that was
370 limited to one coastal municipality suggested an increased occurrence of consanguineous
371 marriages during the 19th century which, if this is representative for the entire county, will
372 influence the inbreeding coefficient of our samples.

373 Imputation is a method that is often used to increase the number of genetic variants that
374 can be investigated in genetic association studies, and the 1000g is often the reference
375 panel of choice for these analyses. But although the 1000g includes several genetically
376 diverse populations, we found that including ACpop (n=300) together with the 1000g
377 reference panel (n=2,504), had a positive impact on imputation performance in
378 Västerbotten samples. The increase of confidently imputed variants was highest for
379 variants with minor allele frequency $\leq 5\%$. Rare variants are underrepresented on the
380 array and in our analyses of imputation accuracy. However, previous studies have shown

381 that the addition of a genetically well-match reference panel increase imputation accuracy
382 also for rare variants (42). The increase in imputation performance was not as striking in
383 a Swedish national cohort, which again is likely to be the result of the genetic differences
384 between the north and south of Sweden. Imputation performance is expected to increase
385 as haplotypes are added to the imputation reference panel (45). However, the modest
386 increase in imputation performance in the Swedish national cohort suggests that the
387 distinct increase in imputation performance in the Västerbotten cohort is, to a large extent,
388 due to the addition of reference samples that are genetically well-matched. Our results
389 suggest that association studies in populations that are not well represented by panels such
390 as 1000g would greatly benefit by the addition of reference subjects for imputation who
391 are drawn from the same geographical region as the studied individuals.

392 Acknowledgments

393 We are grateful to all participants of the VIP cohort of the Northern Sweden Health and
394 Disease Study (NSHDS), the staff at the Department of Biobank Research, Umeå
395 University. Illumina sequencing was performed by the National Genomics Infrastructure
396 (NGI), which is hosted by SciLifeLab in Stockholm and Uppsala. The computations were
397 performed using resources provided by the Swedish National Infrastructure for
398 Computing (SNIC) through the Uppsala Multidisciplinary Center for Advanced
399 Computational Science (UPPMAX). P.I.O. was supported by a grant from the Knut and
400 Alice Wallenberg Foundation to the Wallenberg Advanced Bioinformatics Infrastructure.
401 This work was funded by a project grant (2011.0042) from the Knut and Alice Wallenberg
402 Foundation (E.J., B.S.M., J.T.).

403 Conflict of interest

404 The authors declare no conflict of interest.

405 References

- 406 1. Auton A, Abecasis GR, Altshuler DM, et al. A global reference for human
407 genetic variation. *Nature*. 2015 Sep 30;526(7571):68–74.
- 408 2. Lek M, Karczewski KJ, Minikel E V., et al. Analysis of protein-coding genetic
409 variation in 60,706 humans. *Nature*. 2016 Aug 17;536(7616):285–91.
- 410 3. Altshuler DM, Gibbs RA, Peltonen L, et al. Integrating common and rare genetic
411 variation in diverse human populations. *Nature*. 2010 Sep 2;467(7311):52–8.
- 412 4. Coventry A, Bull-Otterson LM, Liu X, et al. Deep resequencing reveals excess
413 rare recent variants consistent with explosive population growth. *Nat Commun*.
414 2010 Nov 30;1(8):131–6.
- 415 5. Keinan A, Clark AG. Recent Explosive Human Population Growth Has Resulted
416 in an Excess of Rare Genetic Variants. *Science* (80-). 2012;336:740–3.
- 417 6. Fu W, O'Connor TD, Jun G, et al. Analysis of 6,515 exomes reveals the recent
418 origin of most human protein-coding variants. *Nature*. 2012 Nov
419 28;493(7431):216–20.
- 420 7. Nelson MR, Wegmann D, Ehm MG, et al. An Abundance of Rare Functional
421 Variants in 202 Drug Target Genes Sequenced in 14,002 People. *Science* (80-).
422 2012 Jul 6;337(6090):100–4.
- 423 8. Gravel S, Henn BM, Gutenkunst RN, et al. Demographic history and rare allele
424 sharing among human populations. *Proc Natl Acad Sci*. 2011;108(29):11983–8.
- 425 9. The Genome of the Netherlands Consortium. Whole-genome sequence variation,
426 population structure and demographic history of the Dutch population. *Nat*

427 Genet. 2014;46(8):818–25.

428 10. Gudbjartsson DF, Helgason H, Gudjonsson S a, et al. Large-scale whole-genome
429 sequencing of the Icelandic population. Nat Genet. 2015 Mar 25;47(5):435–44.

430 11. Nagasaki M, Yasuda J, Katsuoka F, et al. Rare variant discovery by deep whole-
431 genome sequencing of 1,070 Japanese individuals. Nat Commun. 2015;6:1–13.

432 12. Ameur A, Dahlberg J, Olason P, et al. SweGen: a whole-genome data resource of
433 genetic variability in a cross-section of the Swedish population. Eur J Hum
434 Genet. 2017 Nov 23;25(11):1253–60.

435 13. Humphreys K, Grankvist A, Leu M, et al. The genetic structure of the Swedish
436 population. PLoS One. 2011;6(8):e22547.

437 14. Salmela E, Lappalainen T, Liu J, et al. Swedish population substructure revealed
438 by genome-wide single nucleotide polymorphism data. PLoS One. 2011 Jan
439 9;6(2):e16747.

440 15. Karlsson AO, Wallerström T, Götherström A, Holmlund G. Y-chromosome
441 diversity in Sweden – A long-time perspective. Eur J Hum Genet. 2006 Aug
442 24;14(8):963–70.

443 16. Statistics Sweden. Land and water area in square kilometre by region, type of
444 area and year [Internet]. 2017 [cited 2018 Jan 19]. Available from:
445 http://www.statistikdatabasen.scb.se/pxweb/en/ssd/START__MI__MI0802/Areal2012/?rxid=6ad4df53-3608-4fc9-b2af-faab9be4a126

446 17. Statistics Sweden. Population 1 November by region, age and sex. Year 2002 -
447 2017 [Internet]. 2017 [cited 2018 Jan 19]. Available from:
448 http://www.statistikdatabasen.scb.se/pxweb/en/ssd/START__MI__MI0802/Areal2012/?rxid=6ad4df53-3608-4fc9-b2af-faab9be4a126

449 http://www.statistikdatabasen.scb.se/pxweb/en/ssd/START__BE__BE0101__BE0101A/FolkmangdNov/?rxid=4d6d2f0f-c0fc-4ab6-8cd9-77032b5e2ee2

450

451 18. Palm LA. Folkmängden i Sveriges socknar och kommuner 1571-1997 : med
452 särskild hänsyn till perioden 1571-1751. Göteborg: L. A. Palm; 2000. 199 p.

453 19. Bylund E. Koloniseringen av Botniaregionen. In: Edlund L-E, Beckman L,
454 editors. Botnia : en nordsvensk region. Höganäs: Bra böcker; 1994. p. 86–98.

455 20. Sköld P, Axelsson P. The northern population development; colonization and
456 mortality in Swedish Sápmi, 1776-1895. *Int J Circumpolar Health*.
457 2008;67(1):27–42.

458 21. Einarsdottir E, Egerbladh I, Beckman L, Holmberg D, Escher SA. The genetic
459 population structure of northern Sweden and its implications for mapping genetic
460 diseases. *Hereditas*. 2007;144(5):171–80.

461 22. Norberg M, Blomstedt Y, Lönnberg G, et al. Community participation and
462 sustainability – evidence over 25 years in the Västerbotten Intervention
463 Programme. *Glob Health Action*. 2012 Dec 17;5(1):19166.

464 23. DePristo MA, Banks E, Poplin R, et al. A framework for variation discovery and
465 genotyping using next-generation DNA sequencing data. *Nat Genet*. 2011
466 May;43(5):491–8.

467 24. Van der Auwera GA, Carneiro MO, Hartl C, et al. From FastQ data to high
468 confidence variant calls: the Genome Analysis Toolkit best practices pipeline.
469 *Curr Protoc Bioinforma*. 2013;43(1110):11.10.1-33.

470 25. Li H, Durbin R. Fast and accurate short read alignment with Burrows-Wheeler

471 transform. *Bioinformatics*. 2009 Jul 15;25(14):1754–60.

472 26. Picard [Internet]. Available from: <http://broadinstitute.github.io/picard>

473 27. McKenna A, Hanna M, Banks E, et al. The Genome Analysis Toolkit: a
474 MapReduce framework for analyzing next-generation DNA sequencing data.
475 *Genome Res.* 2010 Sep;20(9):1297–303.

476 28. Okonechnikov K, Conesa A, García-Alcalde F. Qualimap 2: advanced multi-
477 sample quality control for high-throughput sequencing data. *Bioinformatics*.
478 2015 Oct 1;32(2):btv566.

479 29. Manichaikul A, Mychaleckyj JC, Rich SS, Daly K, Sale M, Chen W. Robust
480 relationship inference in genome-wide association studies. 2010;26(22):2867–73.

481 30. Patterson N, Price AL, Reich D. Population structure and eigenanalysis. *PLoS*
482 *Genet.* 2006;2(12):2074–93.

483 31. Chang CC, Chow CC, Tellier LC, Vattikuti S, Purcell SM, Lee JJ. Second-
484 generation PLINK: rising to the challenge of larger and richer datasets.
485 *Gigascience*. 2015;4:7.

486 32. Rajaraman P, Melin BS, Wang Z, et al. Genome-wide association study of
487 glioma and meta-analysis. *Hum Genet*. 2012 Dec 11;131(12):1877–88.

488 33. Delaneau O, Marchini J, Zagury J-F. A linear complexity phasing method for
489 thousands of genomes. *Nat Methods*. 2011 Dec 4;9(2):179–81.

490 34. Howie BN, Donnelly P, Marchini J. A flexible and accurate genotype imputation
491 method for the next generation of genome-wide association studies. *PLoS Genet*.
492 2009 Jun;5(6):e1000529.

493 35. Howie B, Fuchsberger C, Stephens M, Marchini J, Abecasis GR. Fast and
494 accurate genotype imputation in genome-wide association studies through pre-
495 phasing. *Nat Genet.* 2012 Jul 22;44(8):955–9.

496 36. Delaneau O, Zagury J-F, Marchini J. Improved whole-chromosome phasing for
497 disease and population genetic studies. *Nat Methods.* 2013;10(1):5–6.

498 37. Gazal S, Sahbatou M, Babron MC, Génin E, Leutenegger AL. FSuite: Exploiting
499 inbreeding in dense SNP chip and exome data. *Bioinformatics.*
500 2014;30(13):1940–1.

501 38. Gazal S, Sahbatou M, Babron M-C, Génin E, Leutenegger A-L. High level of
502 inbreeding in final phase of 1000 Genomes Project. 2015;

503 39. Graffelman J, Moreno V. The mid p-value in exact tests for Hardy-Weinberg
504 equilibrium. *Stat Appl Genet Mol Biol.* 2013 Jan 1;12(4):433–48.

505 40. Leutenegger AL, Sahbatou M, Gazal S, Cann H, Génin E. Consanguinity around
506 the world: What do the genomic data of the HGDP-CEPH diversity panel tell us?
507 *Eur J Hum Genet.* 2011;19(5):583–7.

508 41. Surakka I, Kristiansson K, Anttila V, et al. Founder population-specific HapMap
509 panel increases power in GWA studies through improved imputation accuracy
510 and CNV tagging. *Genome Res.* 2010 Oct;20(10):1344–51.

511 42. Mitt M, Kals M, Pärn K, et al. Improved imputation accuracy of rare and low-
512 frequency variants using population-specific high-coverage WGS-based
513 imputation reference panel. *Eur J Hum Genet.* 2017;2551(10):869–76.

514 43. Helgason A, Yngvadóttir B, Hrafnkelsson B, Gulcher J, Stefánsson K. An

515 Icelandic example of the impact of population structure on association studies.

516 *Nat Genet.* 2005 Jan 19;37(1):90–5.

517 44. Bittles AH, Egerbladh I. The influence of past endogamy and consanguinity on
518 genetic disorders in northern Sweden. *Ann Hum Genet.* 2005;69(5):549–58.

519 45. Howie B, Marchini J, Stephens M. Genotype Imputation with Thousands of
520 Genomes. *G3; Genes|Genomes|Genetics.* 2011 Nov 4;1(6):457–70.

521

522 Titles and legends to figures.

523 **Figure 1 – Selection process and allele frequency distribution.** The initial aim of
524 ACpop was to sequence a geographically and phenotypically matched cancer control
525 population for Västerbotten County. The selection was made using three steps; selection
526 of cohort from which individuals were identified, inclusion criteria, and maximization of
527 diversity. **(A)**. The alternative allele frequency distribution of the variants contained in
528 ACpop, stratified over 50 bins of 2% each. The share of the variants in each bin that does
529 not overlap with dbSNP v. 150 is indicated by green, while the opposite is indicated by
530 orange **(B)**.

531 **Figure 2 – PCA of ACpop and the 1000g.** Joint PCA of ACpop and the super
532 populations (EUR: European, EAS: East Asian, AFR: African, AMR: Ad Mixed
533 American, SAS: South Asian) of the 1000g project **(A)**. Joint PCA of ACpop and the
534 European populations (FIN: Finnish in Finland, CEU: Utah Residents (CEPH) with
535 Northern and Western European Ancestry, GBR: British in England and Scotland, IBS:
536 Iberian Population in Spain, TSI: Tuscany in Italy) of the 1000g project **(B)**. The
537 proportion of the variance explained by each principle component is indicated in the
538 figure axis titles.

539 **Figure 3 – PCA of ACpop samples.** The samples were plotted along principal
540 components 1 and 2 and are colored according to three geographical regions in
541 Västerbotten County. Top left panel: a map of Västerbotten County showing the 15
542 municipalities and the regional subdivision. The proportion of the variance explained by
543 each principle component is indicated in the figure axis titles.

544 **Figure 4 – PCA of ACpop samples.** The samples were plotted along the first and second
545 components in 15 subplots, each corresponding to one of the municipalities in
546 Västerbotten County. Samples associated with the municipality are colored red, and the
547 rest are colored black. The proportion of the variance explained by each principle
548 component is indicated in the figure axis titles.

549

550 **Figure 5 – Imputation result.** Unknown genotypes on chromosome 20 were imputed
551 using either only the 1000g reference panel, only the ACpop reference panel, or using a
552 combined reference panel from both panels. The number of high quality SNPs ($\text{info} \geq$
553 0.8), aggregated by minor allele frequency (MAF), that were imputed in a Västerbotten
554 cohort (A) and a Swedish national cohort (B) is indicated.

555

556 Tables

557 **Table 1 – Origins of the Västerbotten population aged 60 or older in 1995.** The origin

558 (geographical region of birth) as a percentage of the population that were living in

559 Västerbotten County in the year 1995 and that were aged 60 or more at the time.

Geographical region of birth	Men (%)	Women (%)	Total (%)
Västerbotten County, same municipality	63.8	55.9	59.4
Västerbotten County, other municipality	20.3	24.4	22.6
Neighboring counties	9.3	11.1	10.3
Non-neighboring counties in Sweden	4.7	4.4	4.5
Other country	1.9	4.2	3.2

560

561

562 **Table 2 - Summary table of the ACpop dataset.** Novel variants is the number of variants
563 in ACpop that are not present in the latest version of dbSNP (v. 150). Ts/Tv ratio is the
564 ratio of SNP transitions and transversions, and Het/Hom ratio is the ratio between the
565 number of heterozygous and homozygous occurrences of the variants.

		ACpop
Number of samples		300
Minimum sequencing depth		30X
Number of variants		17,344,482
Average no. of variants per genome		4,202,229
Novel variants (%)		2,022,713 (11.66 %)
Average Het/Hom ratio (SNPs/indels)		1.68 (1.54/2.53)
Ts/Tv ratio		2.08
SNPs		
	Total number	14,513,111
	Average per genome	3,435,205
	Novel variants (%)	1,177,731 (8.11 %)
	Singltons (allele count=1)	2,606,782
Indels		
	Total number	2,831,371
	Average per genome	767,024
	Novel variants (%)	844,982 (29.84 %)
	Singltons (allele count=1)	334,980

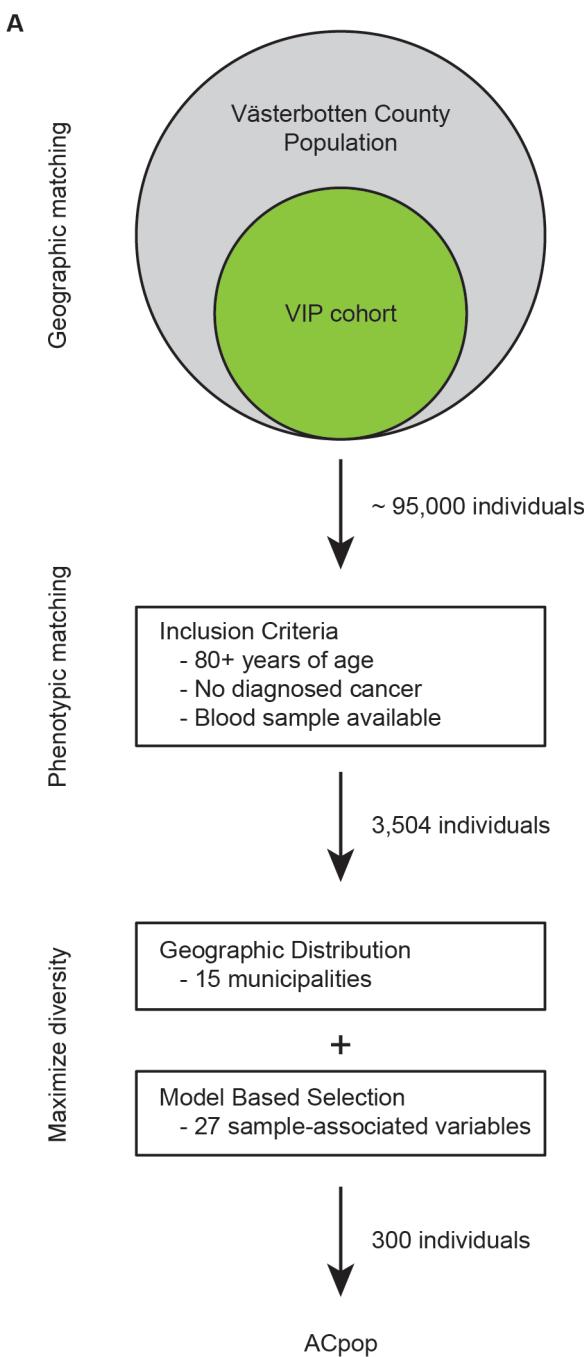
566

567

568 **Table 3 – Pairwise F_{ST} of European populations.** The European populations are the
569 subpopulations of the European super population of the 1000g project. The standard error
570 of the corresponding F_{ST} value is given in parentheses.

	ACpop	GBR	CEU	IBS	TSI	FIN
ACpop	--	0.004 (0.00006)	0.004 (0.000055)	0.008 (0.000097)	0.009 (0.000176)	0.006 (0.000076)
GBR		--	0.0 (0.000041)	0.002 (0.000061)	0.004 (0.000109)	0.007 (0.000108)
CEU			--	0.002 (0.000073)	0.004 (0.000134)	0.006 (0.000106)
IBS				--	0.002 (0.000051)	0.01 (0.000139)
TSI					--	0.012 (0.000192)
FIN						--

571


572 **Table 4 – Pairwise F_{ST} of Västerbotten subpopulations.** The F_{ST} values were calculated
573 pairwise between three geographically defined regions in Västerbotten County, the
574 mountains, inland and coast. Parentheses contain the standard error of the corresponding
575 F_{ST} value.

	Coast	Inland	Mountain
Coast	--	0.001 (0.000035)	0.002 (0.000083)
Inland		--	0.001 (0.000067)
Mountain			--

576

577

Figure 1

B

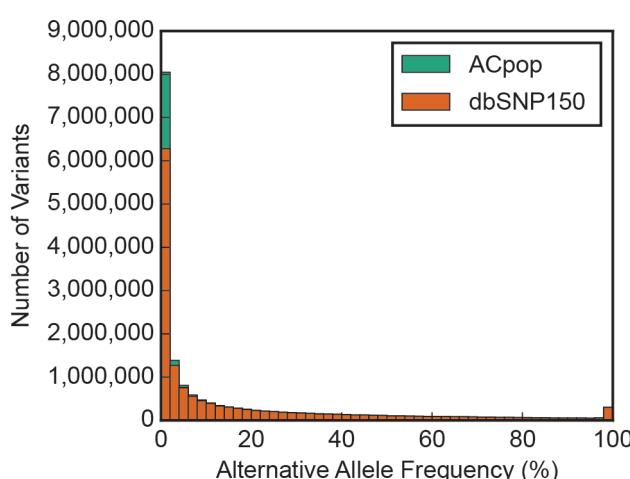


Figure 2

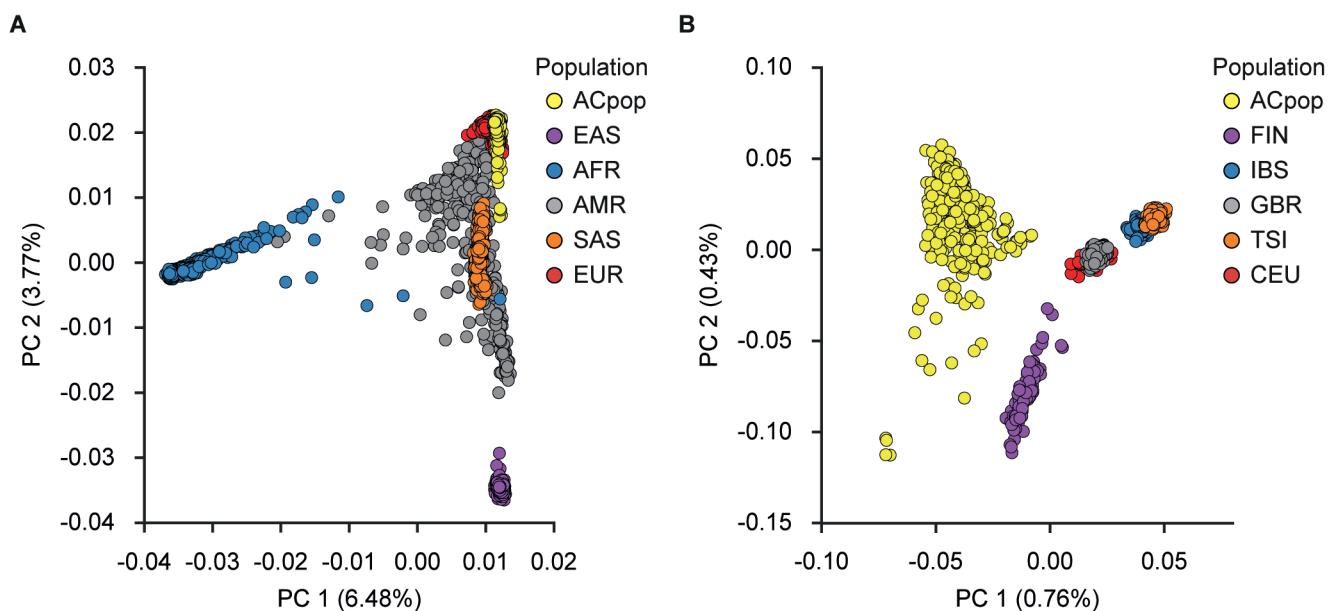


Figure 3

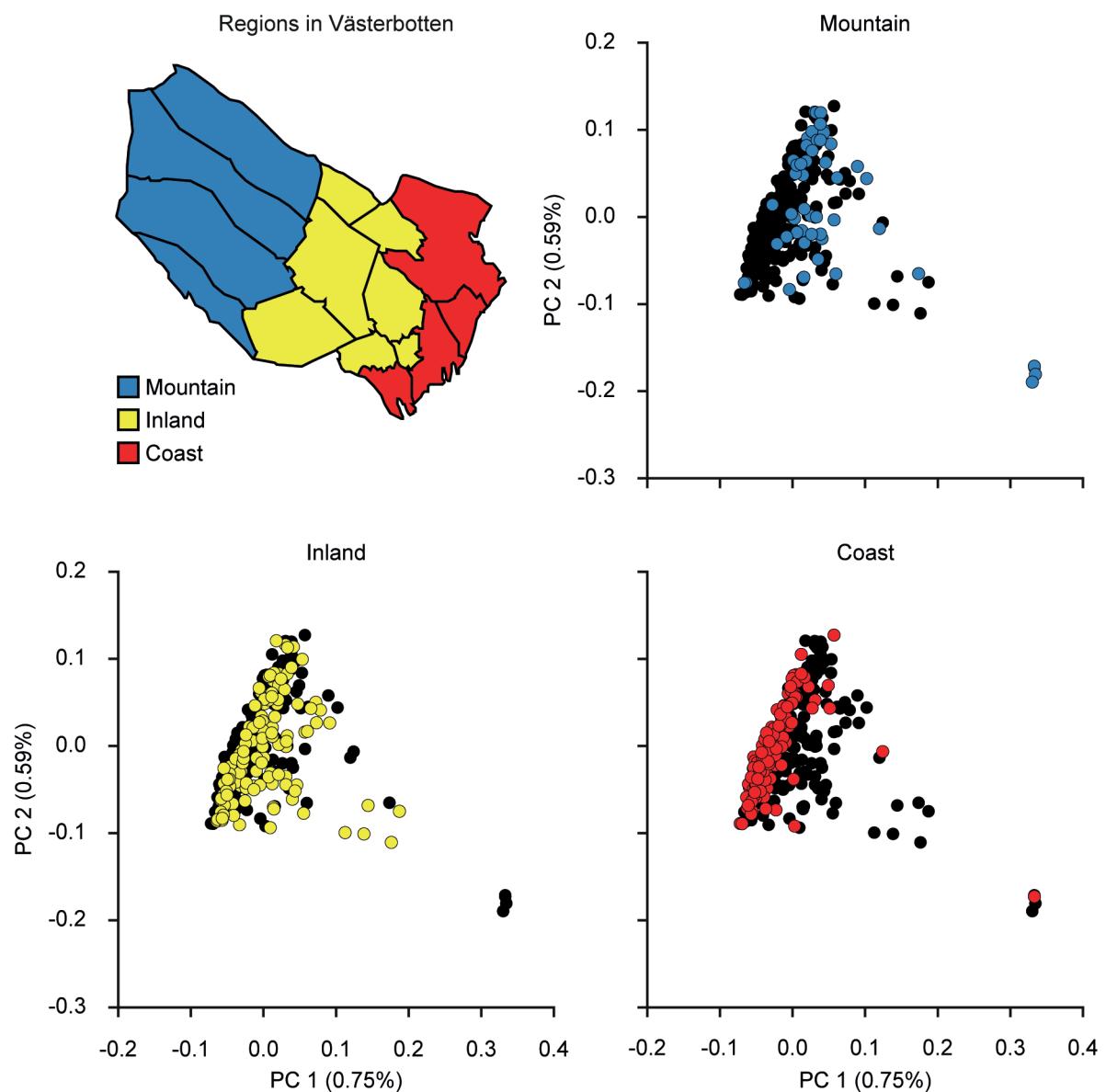


Figure 4

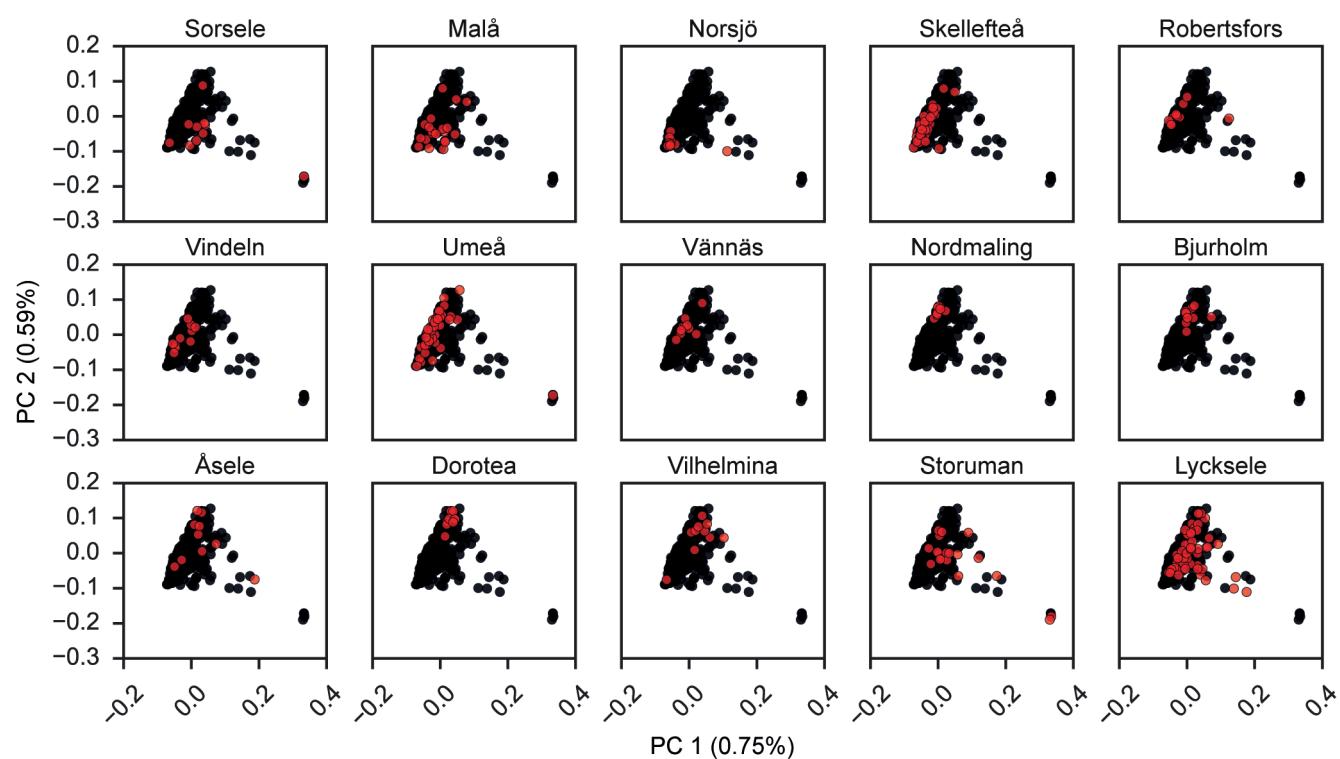
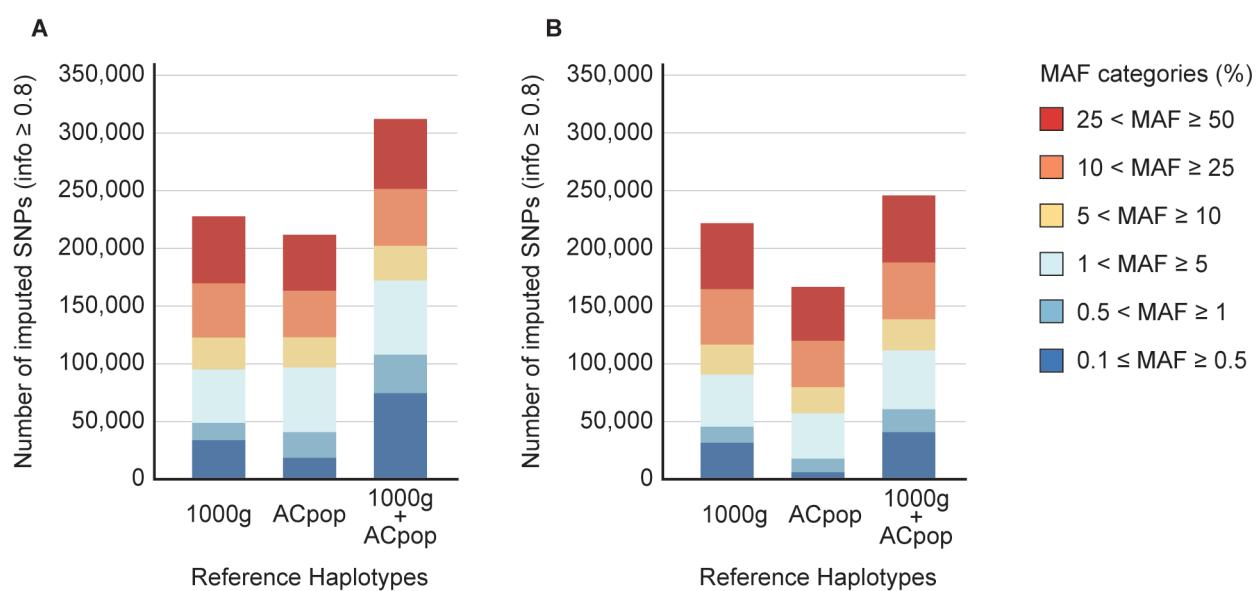



Figure 5

