bioRxiv preprint doi: https://doi.org/10.1101/2020.02.18.878595; this version posted February 20, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Fly wing evolution explained by a neutral model with mutational pleiotropy
Daohan Jiang and Jianzhi Zhang"

Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor,
Michigan, USA

*Correspondence to:

Jianzhi Zhang

Department of Ecology and Evolutionary Biology
University of Michigan

4018 Biological Sciences Building

1105 North University Avenue

Ann Arbor, MI 48109

Phone: 734-763-0527

Fax: 734-763-0544

Email: jianzhi@umich.edu

Running title: Tempo and mode of fly wing evolution

Keywords: mutational variance, phenotypic evolution, selection


https://doi.org/10.1101/2020.02.18.878595
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.02.18.878595; this version posted February 20, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

ABSTRACT

To what extent the speed of mutational production of phenotypic variation determines the
rate of long-term phenotypic evolution is a central question in evolutionary biology. In a recent
study, Houle et al. addressed this question by studying the mutational variation, microevolution,
and macroevolution of locations of vein intersections on fly wings, reporting very slow
phenotypic evolution relative to the rates of mutational input, high phylogenetic signals of these
traits, and a strong, linear correlation between the mutational variance of a trait and its rate of
evolution. Houle ef al. examined multiple models of phenotypic evolution but found none
consistent with all these observations. Here we demonstrate that the purported linear correlation
between mutational variance and evolutionary divergence is an artifact. More importantly,
patterns of fly wing evolution are explainable by a simple model in which the wing traits are
neutral or neutral within a range of phenotypic values but their evolutionary rates are reduced
because most mutations affecting these traits are purged owing to their pleiotropic effects on
other traits that are under stabilizing selection. We conclude that the evolutionary patterns of fly
wing morphologies are explainable under the existing theoretical framework of phenotypic

evolution.
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INTRODUCTION

A fundamental question in evolutionary biology is the extent to which the rate of long-
term phenotypic evolution is determined by the rate of production of phenotypic variation by
newly arising mutations (Lande 1976; Chakraborty and Nei 1982; Hill 1982; Lynch and Hill
1986; Lynch 1990; Schluter 1996; Wagner and Altenberg 1996; Futuyma 2010). This question
likely has different answers for different traits. At one extreme are purely neutral traits whose
evolutionary rates are dictated by the rates with which phenotypic variations originate via
mutation. At another extreme are traits subject to strong positive selection such that their
evolutionary rates are primarily determined by the strength, duration, and frequency of
Darwinian selection instead of mutation. The lack of empirical answers to this question is in a
large part owing to the scarcity of suitable data to address this question, because such data
require the information of the same phenotypic traits from mutation accumulation lines, natural
conspecifics, and different species.

Recently, Houle et al. addressed the above question by studying the evolution of
locations of vein intersections on fly wings in the past 40 million years after inspecting over
50,000 wings from more than 100 Drosophilid species (Houle et al. 2017). They reported that
(1) the rate of phenotypic evolution is orders of magnitude lower than the neutral expectation
given the mutational variance, (2) the phylogenetic signals of most of these phenotypic traits are
high, and (3) the evolutionary rate of a trait is linearly correlated with its mutational variance.
Houle ef al. examined nine existing models of phenotypic evolution but found none that is
consistent with all of the above features. For instance, a neutral model of phenotypic evolution is
consistent with a linear correlation between evolutionary rate and mutational variance and a high
phylogenetic signal, but cannot explain the slow evolutionary divergence observed (Lynch and
Hill 1986; Lynch 1991). Models consistent with a low evolutionary rate, however, predict
nonlinear relationships between evolutionary rate and mutational variance and/or weak
phylogenetic signals (Houle et al. 2017). After exhausting all existing models, Houle ef al.
suggested that their observations may be explained if “most mutations cause deleterious
pleiotropic effects that render them irrelevant to adaptation, and, more importantly, the
proportion of mutational variation that is deleterious is similar for all traits” (Houle et al. 2017).
This proposal, however, is highly improbable because the chance that the proportion of

deleterious mutational variation is similar for some 20 different traits is exceedingly low.
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Here we demonstrate that the reported linear correlation between mutational variance and
evolutionary divergence among the fly wing traits is an artifact resulting from the use of a biased
method and that applying an unbiased method reveals a non-linear relationship. We further
show that patterns of fly wing evolution are explainable by a simple model in which the focal
traits are neutral but most mutations affecting these traits are purged due to their pleiotropic
effects on other traits that are under stabilizing selection. Importantly, our model does not
require the improbable assumption in Houle ef al.’s proposal that all wing traits are equally

impacted by the deleterious pleiotropic effect.

MATERIALS AND METHODS
Comparison of covariance matrices
To compare matrices representing mutational variances (M) and evolutionary divergence

(R) of the same set of traits, Houle et al. first rescaled the matrices so that they have the same

tr(M)
tr(R)’

trace, which is the sum of diagonal elements. That is, they set R = R where (M) and

tr(R) are traces of M and R matrices, respectively, and R is the rescaled R matrix. They then
computed H = #. M and R were then converted to K’MK and K'RK, respectively, where K

denotes the matrix comprising the eigenvectors of /. The diagonal elements of K’MK and K'RK
were then compared to obtain a scaling exponent between M and R. Comparisons between M
and G (the matrix summarizing phenotypic variances caused by additive effects of standing
genetic variations) and between R and G were performed likewise.

Our new method is identical to Houle ef al.’s method except that K is derived solely from
M (when comparing M with R or G) or G (when comparing G with R) instead of H. The number
of eigenvectors of K along which variances were compared is the same as the number of
orthogonal traits plotted in the corresponding comparison of matrices in Houle et al. (2017).
That is, regressions were performed using the first 18 eigenvectors of K when M was compared

with R or G and the first 17 eigenvectors of K when G was compared with R.

Examination of matrix comparison methods using simulation
To evaluate the performances of Houle ef al.’s method and the new method in comparing

M with R matrices, we simulated multivariate trait evolution on the phylogenetic tree of
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Drosophilid species used by Houle ef al. and then analyzed the simulated data using the two
methods, respectively. To ensure that the simulation is realistic and relevant, we used the M
matrix estimated from the fly wing traits (Houle and Fierst 2013) as the true M matrix (denoted
as Miue hereafter) in the simulation. Although the empirically estimated M matrix (Houle and
Fierst 2013) may not be identical to the true M matrix, it is presumably similar to the true M
matrix in terms of the structure. In each simulation, the matrix describing trait evolution, Rirue,
was set to equal WF + (1 — w)M;ye, Where F'is a random matrix independent of Mire and w is
its weight that ranges from O to 1. F was obtained by first generating a correlation matrix using
the rcorrmatrix function of the R package clusterGeneration (Qiu and Joe 2015) and then
converting it to a covariance matrix. Diagonal elements of ' were sampled from pre-specified
gamma distributions and then rescaled to have the same mean as the diagonal elements of Mirue.
We sampled diagonal elements of F' from gamma distributions with shape parameters (k) equal
to 0.05 such that the skewness of the distribution of the diagonal elements of Rirue is similar to
that observed from the empirically estimated R matrix. Similar results were obtained when we
used £ =0.025 or 0.1. The multivariate phenotype at each node was obtained by X = X, + [AX,
where Xa is the phenotype at the node immediately ancestral to the focal node, / is the length of
the branch connecting them, and AX is a vector sampled from the corresponding multivariate
normal distribution of Rive. For each combination of w and &, we performed 50 simulations,
each with an independently simulated F as well as the corresponding Rirue.

After each simulation, we compared estimates of M and R, denoted as Mobs and Robs
respectively, using both Houle et al.’s method and the new method. Mobs was estimated from
independent vectors taken from the distribution of Mire. The sample size was set to be 150,
because the empirical M matrix for the fly wing traits was estimated from 150 sublines (Houle
and Fierst 2013). Robs was estimated from the evolved phenotypes using the ratematrix function
of the geiger package in R (Revell et al. 2007; Pennell et al. 2014). In each simulation, we also
compared Rire With Mirue at a set of orthogonal directions corresponding to the eigenvectors of
Mire and considered the regression slope of logio(Ruue variance) on logio(Muwe variance) the true

scaling exponent between evolutionary divergence and mutational variance.

Simulation of evolution of neutral traits with mutational pleiotropy

Mutational input
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For a neutral focal trait, mutations affecting the trait were generated per unit of time by
simulation. The number of mutations followed a Poisson distribution with the mean equal to Ay,
which is a random variable drawn from a gamma distribution with the shape parameter k = 0.5
and the scale parameter 8 = 400. We set k = 0.5 because such a distribution is similar to some
empirically observed distributions for mutationally independent orthogonal traits such as yeast
cell morphologies (Ho et al. 2017) and fly wing morphologies (Houle and Fierst 2013). The
phenotypic effect of a mutation on a trait followed a normal distribution with a mean of 0 and a
standard deviation of 0.01. Therefore, Vs, the expected phenotypic variance of the focal trait
introduced by new mutations per unit time, equals Ay X 0.012. Before comparing mutational
input and evolutionary divergence, we estimated Vs (M variance) for each trait from 150
independent samples taken from a normal distribution with the variance equal to the

corresponding true value. These estimated M variances were compared with R variances.

Pleiotropic effects of mutations

We set the number (n) of traits genetically correlated with a focal trait to be the largest
integer smaller than 15 + %logz i_h(;[' We assumed that # is a linear function of log24,, to impose

a diminishing impact of 1y on n, because when the focal trait is affected by multiple genes, it is
unlikely that every one of them impacts a distinct set of additional traits. The probability that a
mutation has an effect on a particular correlated trait was set to be 0.5. When the mutation was
decided to have an effect, the effect size followed a normal distribution with a mean of 0 and a

standard deviation of 0.01.

Fitness function and selection

Because the focal traits examined in the simulation were orthogonal, each simulation run
considered only one focal trait and its genetically correlated non-focal traits. Upon the
occurrence of a mutation on a background genotype, the fitness of the mutant was set to be
f(dy, .., d,) =1 =Y d? where di denotes the phenotypic distance from the optimum for the
ith trait, n is the total number of traits correlated with the focal trait, and Y-, d;? is the square of

the Euclidean distance of the mutant from the multivariate optimum. If the fitness of the mutant

relative to the fitness of the background genotype was lower than 1 — %, the mutation was
e
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removed by selection; otherwise, the mutation was accepted. Here, the effective population size
Ne was assumed to be 10° to model Drosophila melanogaster (Charlesworth 2009). When the
Euclidean distance occasionally exceeded 1, we treated it as 1. At the end of each time unit,
effects of all accepted mutations were added to the initial population mean phenotype. While the
parameters used in the simulation presented are specific, we note that they are not unique in

yielding results resembling patterns of fly wing evolution.

Phenotypic divergence and phylogenetic signal

For each trait with given V'm and n, we independently simulated its phenotypic evolution
50 times, all starting from the phenotypic optimum. Each simulation lasted for # = 2,000 units of
time, after which the variance among the 50 replicates (R variance) was calculated at each time
unit. Pearson’s correlation coefficient between time and R variance at the time was calculated to
represent the phylogenetic signal. We note that the length of the simulation (¢) has a negligible
effect on the simulation results, because the focal trait is neutral and the R variance increases

with time at a constant rate, as indicated by the high phylogenetic signal observed.

RESULTS
Houle et al.’s method of matrix comparison is biased

To investigate the scaling relationship between mutational variance and evolutionary
divergence, one should compare the covariance matrices respectively representing the mutational
inputs (M) and evolutionary divergences (R) of various traits along a set of orthogonal directions
in the phenotypic space. For this purpose, Houle et al. used an eigenvector matrix K of the mean
of M and R to determine the orthogonal directions. This practice could create a bias towards
directions shared by M and R and inflate the correlation between logio(M variance) and logio(R
variance). In theory, this potential bias can be avoided if K is derived solely from M such that
the set of orthogonal directions are mutationally independent. We refer to this modified method
as the new method.

To examine the potential bias of Houle ef al.’s method and to compare its performance
with that of the new method, we simulated phenotypic evolution along the fly phylogenetic tree
used by Houle and colleagues. To be realistic, we treated the M matrix estimated from the fly

wing data (Houle and Fierst 2013) as the truth (M) and used it in our simulation. In the
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simulation, multivariate trait evolution followed a Brownian motion model, and the matrix
describing trait evolution, Riue, was obtained by taking a weighted average of Mine and an
independent matrix F that adjusts the scaling between mutational input and evolutionary
divergence (see Materials and Methods). After each simulation, we compared the estimated M
and R matrices, denoted as Mobs and Robs, respectively, using Houle et al.’s method as well as the
new method. We also compared Mire and Rire along a set of orthogonal directions
corresponding to the eigenvectors of Miue and considered the regression slope of logio(Rirue
variance) on logio(Mie variance) the true scaling exponent.

When Mobs and Robs are compared using Houle ef al.’s method, the slope in the linear
regression between logio(R variance) and logio(M variance) is close to 1 regardless of the true
slope (Fig. 1a) and Pearson’s correlation coefficient between logio(R variance) and logio(M
variance) exceeds 0.6 even when the true correlation coefficient is 0 (Fig. 1b). Clearly, Houle et
al.’s method is uninformative and tells little about the true scaling between evolutionary
divergence and mutational rate. By contrast, the slope and correlation coefficient estimated
using the new method are close to the corresponding true values (Fig. 1). In theory, the new
method may underestimate the slope because the M matrix used to obtain the orthogonal
directions is Mobs, which differs from Mine due to sampling error. Nevertheless, under the
current simulation parameters, which are based on the actual fly wing data, the sampling error is

sufficiently small to render the slope estimated by the new method reliable.

Unequal constraints on mutationally independent traits

Using Houle et al.’s method, we reproduced their result of a slope of nearly 1 in the
linear regression between logio(M variance) and logio(R variance) for fly wing traits (Fig. 2a).
But our simulation suggested that this estimation is unlikely to be reliable. Indeed, when the fly
wing data are reanalyzed using the new method, the slope reduced to 0.54, which is significantly
smaller than 1 (P < 0.05, ¢-test; Fig. 2b). Applying the new method also caused a similar
reduction in the slope of the linear regression between logio(M variance) and logio(G variance)
(Fig. 2¢c-d), where the G matrix represents intraspecific phenotypic variations. The finding of a
slope of approximately 0.5 for the linear regression between logio(M variance) and logio(R

variance) or logio(G variance) indicates that R or G variance does not scale linearly with M
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variance. Rather, the positive impact of M variance on R or G variance gradually diminishes as
M variance rises.

Interestingly, G and R are indeed similar in the structure. When the G and R variances
are compared along the eigenvectors of G, the regression slope between logio(G variance) and
logio(R variance) is 0.95, which is not significantly different from 1 (P = 0.48). This observation
is consistent with the view that standing genetic variation has a profound impact on long-term

evolution (Schluter 1996).

A neutral model with mutational pleiotropy explains patterns of fly wing evolution

Houle et al. could not find a plausible model to explain fly wing evolution (Houle et al.
2017). Importantly, because the slope of the regression between logio(M variance) and logio(R
variance) significantly deviates from 1, their proposal that all wing traits concerned are affected
by pleiotropy to the same extent is not only implausible but also inconsistent with the data.
Below we show that a neutral model with mutational pleiotropy can almost perfectly explain the
above scaling between M variance and R or G variance as well as the first two observations of
Houle ef al. mentioned in Introduction. In our model, the focal wing traits are neutral, but
mutations affecting the focal traits also influence other (unconsidered) traits that are subject to
stabilizing selection (Turelli 1985; McGuigan et al. 2011). In addition, focal traits with higher M
variances are likely influenced by more genes, which will likely affect more other traits.
Consequently, focal traits with higher M variances are expected to be genetically correlated with
more traits and impacted by greater mutational pleiotropy. Such a positive relationship may also
arise from the positive correlation between the pleiotropic level of a mutation and its effect size
on individual traits (Wagner et al. 2008; Wang et al. 2010).

Our model makes three predictions that are respectively consistent with the three patterns
of fly wing evolution. First, a focal trait is expected to evolve more slowly than predicted from
the M variance, because most mutations affecting the focal trait are selectively removed due to
their deleterious effects on correlated traits. Second, because the focal trait itself is neutral, its
divergence is unbounded, resulting in a high phylogenetic signal. Finally, the positive
correlation between M variance and pleiotropy means that the fraction of mutations that are
acceptable declines with M variance, creating a slope that is lower than 1 for the linear regression

between logio(M variance) and logio(R variance) or logio(G variance).
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To illustrate the above model predictions on long-term phenotypic evolution, we
simulated the evolution of the population mean values of 20 orthogonal, neutral focal traits, each
genetically correlated with a set of non-focal traits that are under stabilizing selection. Mutations
were randomly generated per unit time and were accepted only if their fitness disadvantages are
smaller than 1/(2Ne) according to a phenotype-fitness mapping, where Ne is the effective
population size. The simulation lasted for 2000 time units and was repeated 50 times per trait to
create 50 replicate lineages. For each trait, the phenotypic variance among the 50 lineages at
each of the 2000 time units was used to represent the evolutionary divergence (R variance) at that
time, and its correlation with time is a measure of the phylogenetic signal. Details of the
simulation are provided in Materials and Methods. The simulation results showed that, for most
traits, the amount of phenotypic divergence is about four orders of magnitude lower than
predicted from the total mutational input (Fig. 3a). In addition, all traits exhibited phylogenetic
signals exceeding 0.9 (Fig. 3b). The slope of the linear regression between logio(M variance)
and logio(R variance) is 0.52, which is significantly lower than 1 (P < 107!, #-test; Fig. 3a).
These results closely matched those observed in fly wing evolution, quantitatively verifying the

validity and suitability of our model.

DISCUSSION

In this study, we showed that the method used by Houle ef al. to compare matrices is
biased, resulting in the erroneous conclusion of a linear relationship between mutational variance
and evolutionary divergence among fly wing morphologies. We demonstrated by computer
simulation that a simple modification of their method yields virtually unbiased results under the
parameters reflecting the fly wing data. Using the new method, we estimated that the scaling
coefficient between mutational variance and evolutionary divergence is significantly smaller than
1, suggesting that the impact of the rate of mutational input on the rate of phenotypic evolution is
not constant but declines with the rate of mutational input. That is, compared with traits with
relatively low mutational inputs, those with relatively high mutational inputs do not evolve as
rapidly as predicted linearly from their mutational inputs. With this finding, patterns of fly wing
evolution are explainable by a model in which the wing traits are themselves neutral but
mutations affecting the wing traits also affect other traits that are under various degrees of

stabilizing selection. Our estimate of the scaling coefficient suggests that traits with higher

10
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mutational variances are subject to stronger mutational pleiotropy, and we offered potential
mechanisms responsible for this relationship. Our evolutionary simulation under the above
model is able to recapitulate all major patterns observed in fly wing evolution. Nevertheless, it is
possible that the fly data also fit some other models. In particular, our results suggest the
plausibility but do not prove that the fly wing traits are neutral. In fact, an expanded model in
which the focal traits are neutral only within a range of phenotypic values can also explain fly
wing evolution, provided that 40 million years of evolution under mutational pleiotropy has not
reached the boundaries of this range. Regardless, our analysis suggests that fly wing evolution is
explainable under the existing theoretical framework of phenotypic evolution.

The invaluable data collected by Houle et al. have allowed an unprecedented population
genetic analysis of macroevolution of morphologies. To the best of our knowledge, no other
large phenotypic data simultaneously comprising M, G, and R from long-term evolution exist.
Only when many such data become available may we test the general applicability of our model
or its expanded version in explaining phenotypic evolution, and only then can one tell whether

the current theoretical framework of phenotypic evolution is generally correct.
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Figure legends

Figure 1. Slope of the linear regression and correlation between logio(Mobs variance) and
logio(Robs variance) of simulated data, estimated by Houle et al.’s method (red) and the new
method (blue). (a) Slope of the linear regression between logio(Mops variance) and logio(Robs
variance). (b) Pearson’s correlation coefficient between logio(Moss variance) and logio(Robs
variance). Each dot represents the average slope or average correlation coefficient from 50
simulations with the same w parameter (see Materials and Methods). Colored lines in each panel
are regression lines. The dashed line in each panel indicates the situation when estimates equal

true values.

Figure 2. Linear regression between logio(M variance) and logio(R variance) or logio(G
variance) along orthogonal directions for fly wing traits. (a-b) Linear regression between
logio(M variance) and logio(R variance) estimated using Houle et al.’s method (a) or the new
method (b). (c-d) Linear regression between logio(M variance) and logio(G variance) estimated
using Houle ef al.’s method (¢) or the new method (d). In each panel,  stands for Pearson’s
correlation coefficient, and the shaded region shows the 95% confidence interval of the

regression. The number of orthogonal traits presented in each panel is the same as in Houle et al.

(2017).

Figure 3. Patterns of phenotypic evolution observed from computer simulation of 20
orthogonal, neutral focal traits with mutational pleiotropy. (a) Linear regression between
logio(M variance) and logio(R variance) upon evolution of 2000 time units. Presented are M and
R variances per time unit. The shaded region shows the 95% confidence interval of the
regression. (b) Distribution of the phylogenetic signals of the focal traits. The phylogenetic
signal of a trait is measured by Pearson’s correlation between the evolutionary time and R

variance at the time for the trait.
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Figure 3
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