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ABSTRACT 

To what extent the speed of mutational production of phenotypic variation determines the 

rate of long-term phenotypic evolution is a central question in evolutionary biology.  In a recent 

study, Houle et al. addressed this question by studying the mutational variation, microevolution, 

and macroevolution of locations of vein intersections on fly wings, reporting very slow 

phenotypic evolution relative to the rates of mutational input, high phylogenetic signals of these 

traits, and a strong, linear correlation between the mutational variance of a trait and its rate of 

evolution.  Houle et al. examined multiple models of phenotypic evolution but found none 

consistent with all these observations.  Here we demonstrate that the purported linear correlation 

between mutational variance and evolutionary divergence is an artifact.  More importantly, 

patterns of fly wing evolution are explainable by a simple model in which the wing traits are 

neutral or neutral within a range of phenotypic values but their evolutionary rates are reduced 

because most mutations affecting these traits are purged owing to their pleiotropic effects on 

other traits that are under stabilizing selection.  We conclude that the evolutionary patterns of fly 

wing morphologies are explainable under the existing theoretical framework of phenotypic 

evolution.  
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INTRODUCTION 

A fundamental question in evolutionary biology is the extent to which the rate of long-

term phenotypic evolution is determined by the rate of production of phenotypic variation by 

newly arising mutations (Lande 1976; Chakraborty and Nei 1982; Hill 1982; Lynch and Hill 

1986; Lynch 1990; Schluter 1996; Wagner and Altenberg 1996; Futuyma 2010).  This question 

likely has different answers for different traits.  At one extreme are purely neutral traits whose 

evolutionary rates are dictated by the rates with which phenotypic variations originate via 

mutation.  At another extreme are traits subject to strong positive selection such that their 

evolutionary rates are primarily determined by the strength, duration, and frequency of 

Darwinian selection instead of mutation.  The lack of empirical answers to this question is in a 

large part owing to the scarcity of suitable data to address this question, because such data 

require the information of the same phenotypic traits from mutation accumulation lines, natural 

conspecifics, and different species.  

Recently, Houle et al. addressed the above question by studying the evolution of 

locations of vein intersections on fly wings in the past 40 million years after inspecting over 

50,000 wings from more than 100 Drosophilid species (Houle et al. 2017).  They reported that 

(1) the rate of phenotypic evolution is orders of magnitude lower than the neutral expectation 

given the mutational variance, (2) the phylogenetic signals of most of these phenotypic traits are 

high, and (3) the evolutionary rate of a trait is linearly correlated with its mutational variance.  

Houle et al. examined nine existing models of phenotypic evolution but found none that is 

consistent with all of the above features.  For instance, a neutral model of phenotypic evolution is 

consistent with a linear correlation between evolutionary rate and mutational variance and a high 

phylogenetic signal, but cannot explain the slow evolutionary divergence observed (Lynch and 

Hill 1986; Lynch 1991).  Models consistent with a low evolutionary rate, however, predict 

nonlinear relationships between evolutionary rate and mutational variance and/or weak 

phylogenetic signals (Houle et al. 2017).  After exhausting all existing models, Houle et al. 

suggested that their observations may be explained if “most mutations cause deleterious 

pleiotropic effects that render them irrelevant to adaptation, and, more importantly, the 

proportion of mutational variation that is deleterious is similar for all traits” (Houle et al. 2017).  

This proposal, however, is highly improbable because the chance that the proportion of 

deleterious mutational variation is similar for some 20 different traits is exceedingly low. 
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Here we demonstrate that the reported linear correlation between mutational variance and 

evolutionary divergence among the fly wing traits is an artifact resulting from the use of a biased 

method and that applying an unbiased method reveals a non-linear relationship.  We further 

show that patterns of fly wing evolution are explainable by a simple model in which the focal 

traits are neutral but most mutations affecting these traits are purged due to their pleiotropic 

effects on other traits that are under stabilizing selection.  Importantly, our model does not 

require the improbable assumption in Houle et al.’s proposal that all wing traits are equally 

impacted by the deleterious pleiotropic effect. 

 

MATERIALS AND METHODS 

Comparison of covariance matrices 

To compare matrices representing mutational variances (M) and evolutionary divergence 

(R) of the same set of traits, Houle et al. first rescaled the matrices so that they have the same 

trace, which is the sum of diagonal elements.  That is, they set 𝑅෠ ൌ 𝑅 ௧௥ሺெሻ

௧௥ሺோሻ
, where tr(M) and 

tr(R) are traces of M and R matrices, respectively, and 𝑅෠ is the rescaled R matrix.  They then 

computed 𝐻 ൌ ோ෠ାெ

ଶ
.  M and 𝑅෠ were then converted to KTMK and KT𝑅෠K, respectively, where K 

denotes the matrix comprising the eigenvectors of H.  The diagonal elements of KTMK and KT𝑅෠K 

were then compared to obtain a scaling exponent between M and R.  Comparisons between M 

and G (the matrix summarizing phenotypic variances caused by additive effects of standing 

genetic variations) and between R and G were performed likewise.   

Our new method is identical to Houle et al.’s method except that K is derived solely from 

M (when comparing M with R or G) or G (when comparing G with R) instead of H.  The number 

of eigenvectors of K along which variances were compared is the same as the number of 

orthogonal traits plotted in the corresponding comparison of matrices in Houle et al. (2017).  

That is, regressions were performed using the first 18 eigenvectors of K when M was compared 

with R or G and the first 17 eigenvectors of K when G was compared with R. 

 

Examination of matrix comparison methods using simulation 

To evaluate the performances of Houle et al.’s method and the new method in comparing 

M with R matrices, we simulated multivariate trait evolution on the phylogenetic tree of 
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Drosophilid species used by Houle et al. and then analyzed the simulated data using the two 

methods, respectively.  To ensure that the simulation is realistic and relevant, we used the M 

matrix estimated from the fly wing traits (Houle and Fierst 2013) as the true M matrix (denoted 

as Mtrue hereafter) in the simulation.  Although the empirically estimated M matrix (Houle and 

Fierst 2013) may not be identical to the true M matrix, it is presumably similar to the true M 

matrix in terms of the structure.  In each simulation, the matrix describing trait evolution, Rtrue, 

was set to equal 𝑤𝐹 ൅ ሺ1െ𝑤ሻ𝑀୲୰୳ୣ, where F is a random matrix independent of Mtrue and w is 

its weight that ranges from 0 to 1.  F was obtained by first generating a correlation matrix using 

the rcorrmatrix function of the R package clusterGeneration (Qiu and Joe 2015) and then 

converting it to a covariance matrix.  Diagonal elements of F were sampled from pre-specified 

gamma distributions and then rescaled to have the same mean as the diagonal elements of Mtrue.  

We sampled diagonal elements of F from gamma distributions with shape parameters (k) equal 

to 0.05 such that the skewness of the distribution of the diagonal elements of Rtrue is similar to 

that observed from the empirically estimated R matrix.  Similar results were obtained when we 

used k = 0.025 or 0.1.  The multivariate phenotype at each node was obtained by 𝑋 ൌ 𝑋୅ ൅ 𝑙∆𝑋, 

where XA is the phenotype at the node immediately ancestral to the focal node, l is the length of 

the branch connecting them, and ∆𝑋 is a vector sampled from the corresponding multivariate 

normal distribution of Rtrue.  For each combination of w and k, we performed 50 simulations, 

each with an independently simulated F as well as the corresponding Rtrue. 

After each simulation, we compared estimates of M and R, denoted as Mobs and Robs 

respectively, using both Houle et al.’s method and the new method.  Mobs was estimated from 

independent vectors taken from the distribution of Mtrue.  The sample size was set to be 150, 

because the empirical M matrix for the fly wing traits was estimated from 150 sublines (Houle 

and Fierst 2013).  Robs was estimated from the evolved phenotypes using the ratematrix function 

of the geiger package in R (Revell et al. 2007; Pennell et al. 2014).  In each simulation, we also 

compared Rtrue with Mtrue at a set of orthogonal directions corresponding to the eigenvectors of 

Mtrue and considered the regression slope of log10(Rtrue variance) on log10(Mtrue variance) the true 

scaling exponent between evolutionary divergence and mutational variance.  

 

Simulation of evolution of neutral traits with mutational pleiotropy 

Mutational input 
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For a neutral focal trait, mutations affecting the trait were generated per unit of time by 

simulation.  The number of mutations followed a Poisson distribution with the mean equal to 𝜆୑, 

which is a random variable drawn from a gamma distribution with the shape parameter 𝑘 ൌ 0.5 

and the scale parameter 𝜃 ൌ 400.  We set 𝑘 ൌ 0.5 because such a distribution is similar to some 

empirically observed distributions for mutationally independent orthogonal traits such as yeast 

cell morphologies (Ho et al. 2017) and fly wing morphologies (Houle and Fierst 2013).  The 

phenotypic effect of a mutation on a trait followed a normal distribution with a mean of 0 and a 

standard deviation of 0.01.  Therefore, VM, the expected phenotypic variance of the focal trait 

introduced by new mutations per unit time, equals 𝜆୑ ൈ 0.01ଶ.  Before comparing mutational 

input and evolutionary divergence, we estimated VM (M variance) for each trait from 150 

independent samples taken from a normal distribution with the variance equal to the 

corresponding true value.  These estimated M variances were compared with R variances. 

 

Pleiotropic effects of mutations 

We set the number (n) of traits genetically correlated with a focal trait to be the largest 

integer smaller than 15൅ ଵ

ଶ
logଶ

ఒ౉
ଵ଴

.  We assumed that n is a linear function of log2𝜆ெ to impose 

a diminishing impact of 𝜆୑ on n, because when the focal trait is affected by multiple genes, it is 

unlikely that every one of them impacts a distinct set of additional traits.  The probability that a 

mutation has an effect on a particular correlated trait was set to be 0.5.  When the mutation was 

decided to have an effect, the effect size followed a normal distribution with a mean of 0 and a 

standard deviation of 0.01. 

 

Fitness function and selection 

Because the focal traits examined in the simulation were orthogonal, each simulation run 

considered only one focal trait and its genetically correlated non-focal traits.  Upon the 

occurrence of a mutation on a background genotype, the fitness of the mutant was set to be 

𝑓ሺ𝑑ଵ, … ,𝑑௡ሻ ൌ 1െ ∑ 𝑑୧
ଶ௡

௜ୀଵ , where di denotes the phenotypic distance from the optimum for the 

ith trait, n is the total number of traits correlated with the focal trait, and  ∑ 𝑑୧
ଶ௡

௜ୀଵ  is the square of 

the Euclidean distance of the mutant from the multivariate optimum.  If the fitness of the mutant 

relative to the fitness of the background genotype was lower than 1െ ଵ

ଶே౛
, the mutation was 
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removed by selection; otherwise, the mutation was accepted.  Here, the effective population size 

Ne was assumed to be 106 to model Drosophila melanogaster (Charlesworth 2009).  When the 

Euclidean distance occasionally exceeded 1, we treated it as 1.  At the end of each time unit, 

effects of all accepted mutations were added to the initial population mean phenotype.  While the 

parameters used in the simulation presented are specific, we note that they are not unique in 

yielding results resembling patterns of fly wing evolution.  

 

Phenotypic divergence and phylogenetic signal 

For each trait with given VM and n, we independently simulated its phenotypic evolution 

50 times, all starting from the phenotypic optimum.  Each simulation lasted for t = 2,000 units of 

time, after which the variance among the 50 replicates (R variance) was calculated at each time 

unit.  Pearson’s correlation coefficient between time and R variance at the time was calculated to 

represent the phylogenetic signal.  We note that the length of the simulation (t) has a negligible 

effect on the simulation results, because the focal trait is neutral and the R variance increases 

with time at a constant rate, as indicated by the high phylogenetic signal observed. 

 

RESULTS 

Houle et al.’s method of matrix comparison is biased 

To investigate the scaling relationship between mutational variance and evolutionary 

divergence, one should compare the covariance matrices respectively representing the mutational 

inputs (M) and evolutionary divergences (R) of various traits along a set of orthogonal directions 

in the phenotypic space.  For this purpose, Houle et al. used an eigenvector matrix K of the mean 

of M and R to determine the orthogonal directions.  This practice could create a bias towards 

directions shared by M and R and inflate the correlation between log10(M variance) and log10(R 

variance).  In theory, this potential bias can be avoided if K is derived solely from M such that 

the set of orthogonal directions are mutationally independent.  We refer to this modified method 

as the new method.    

To examine the potential bias of Houle et al.’s method and to compare its performance 

with that of the new method, we simulated phenotypic evolution along the fly phylogenetic tree 

used by Houle and colleagues.  To be realistic, we treated the M matrix estimated from the fly 

wing data (Houle and Fierst 2013) as the truth (Mtrue) and used it in our simulation.  In the 
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simulation, multivariate trait evolution followed a Brownian motion model, and the matrix 

describing trait evolution, Rtrue, was obtained by taking a weighted average of Mtrue and an 

independent matrix F that adjusts the scaling between mutational input and evolutionary 

divergence (see Materials and Methods).  After each simulation, we compared the estimated M 

and R matrices, denoted as Mobs and Robs, respectively, using Houle et al.’s method as well as the 

new method.  We also compared Mtrue and Rtrue along a set of orthogonal directions 

corresponding to the eigenvectors of Mtrue and considered the regression slope of log10(Rtrue 

variance) on log10(Mtrue variance) the true scaling exponent. 

When Mobs and Robs are compared using Houle et al.’s method, the slope in the linear 

regression between log10(R variance) and log10(M variance) is close to 1 regardless of the true 

slope (Fig. 1a) and Pearson’s correlation coefficient between log10(R variance) and log10(M 

variance) exceeds 0.6 even when the true correlation coefficient is 0 (Fig. 1b).  Clearly, Houle et 

al.’s method is uninformative and tells little about the true scaling between evolutionary 

divergence and mutational rate.  By contrast, the slope and correlation coefficient estimated 

using the new method are close to the corresponding true values (Fig. 1).  In theory, the new 

method may underestimate the slope because the M matrix used to obtain the orthogonal 

directions is Mobs, which differs from Mtrue due to sampling error.  Nevertheless, under the 

current simulation parameters, which are based on the actual fly wing data, the sampling error is 

sufficiently small to render the slope estimated by the new method reliable. 

 

Unequal constraints on mutationally independent traits 

Using Houle et al.’s method, we reproduced their result of a slope of nearly 1 in the 

linear regression between log10(M variance) and log10(R variance) for fly wing traits (Fig. 2a).  

But our simulation suggested that this estimation is unlikely to be reliable.  Indeed, when the fly 

wing data are reanalyzed using the new method, the slope reduced to 0.54, which is significantly 

smaller than 1 (P < 0.05, t-test; Fig. 2b).  Applying the new method also caused a similar 

reduction in the slope of the linear regression between log10(M variance) and log10(G variance) 

(Fig. 2c-d), where the G matrix represents intraspecific phenotypic variations.  The finding of a 

slope of approximately 0.5 for the linear regression between log10(M variance) and log10(R 

variance) or log10(G variance) indicates that R or G variance does not scale linearly with M 
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variance.  Rather, the positive impact of M variance on R or G variance gradually diminishes as 

M variance rises. 

Interestingly, G and R are indeed similar in the structure.  When the G and R variances 

are compared along the eigenvectors of G, the regression slope between log10(G variance) and 

log10(R variance) is 0.95, which is not significantly different from 1 (P = 0.48).  This observation 

is consistent with the view that standing genetic variation has a profound impact on long-term 

evolution (Schluter 1996).   

 

A neutral model with mutational pleiotropy explains patterns of fly wing evolution 

Houle et al. could not find a plausible model to explain fly wing evolution (Houle et al. 

2017).  Importantly, because the slope of the regression between log10(M variance) and log10(R 

variance) significantly deviates from 1, their proposal that all wing traits concerned are affected 

by pleiotropy to the same extent is not only implausible but also inconsistent with the data. 

Below we show that a neutral model with mutational pleiotropy can almost perfectly explain the 

above scaling between M variance and R or G variance as well as the first two observations of 

Houle et al. mentioned in Introduction.  In our model, the focal wing traits are neutral, but 

mutations affecting the focal traits also influence other (unconsidered) traits that are subject to 

stabilizing selection (Turelli 1985; McGuigan et al. 2011).  In addition, focal traits with higher M 

variances are likely influenced by more genes, which will likely affect more other traits.  

Consequently, focal traits with higher M variances are expected to be genetically correlated with 

more traits and impacted by greater mutational pleiotropy.  Such a positive relationship may also 

arise from the positive correlation between the pleiotropic level of a mutation and its effect size 

on individual traits (Wagner et al. 2008; Wang et al. 2010). 

Our model makes three predictions that are respectively consistent with the three patterns 

of fly wing evolution.  First, a focal trait is expected to evolve more slowly than predicted from 

the M variance, because most mutations affecting the focal trait are selectively removed due to 

their deleterious effects on correlated traits.  Second, because the focal trait itself is neutral, its 

divergence is unbounded, resulting in a high phylogenetic signal.  Finally, the positive 

correlation between M variance and pleiotropy means that the fraction of mutations that are 

acceptable declines with M variance, creating a slope that is lower than 1 for the linear regression 

between log10(M variance) and log10(R variance) or log10(G variance).  
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 To illustrate the above model predictions on long-term phenotypic evolution, we 

simulated the evolution of the population mean values of 20 orthogonal, neutral focal traits, each 

genetically correlated with a set of non-focal traits that are under stabilizing selection.  Mutations 

were randomly generated per unit time and were accepted only if their fitness disadvantages are 

smaller than 1/(2Ne) according to a phenotype-fitness mapping, where Ne is the effective 

population size.  The simulation lasted for 2000 time units and was repeated 50 times per trait to 

create 50 replicate lineages.  For each trait, the phenotypic variance among the 50 lineages at 

each of the 2000 time units was used to represent the evolutionary divergence (R variance) at that 

time, and its correlation with time is a measure of the phylogenetic signal.  Details of the 

simulation are provided in Materials and Methods.  The simulation results showed that, for most 

traits, the amount of phenotypic divergence is about four orders of magnitude lower than 

predicted from the total mutational input (Fig. 3a).  In addition, all traits exhibited phylogenetic 

signals exceeding 0.9 (Fig. 3b).  The slope of the linear regression between log10(M variance) 

and log10(R variance) is 0.52, which is significantly lower than 1 (P < 10-10, t-test; Fig. 3a).  

These results closely matched those observed in fly wing evolution, quantitatively verifying the 

validity and suitability of our model.  

 

DISCUSSION 

In this study, we showed that the method used by Houle et al. to compare matrices is 

biased, resulting in the erroneous conclusion of a linear relationship between mutational variance 

and evolutionary divergence among fly wing morphologies.  We demonstrated by computer 

simulation that a simple modification of their method yields virtually unbiased results under the 

parameters reflecting the fly wing data.  Using the new method, we estimated that the scaling 

coefficient between mutational variance and evolutionary divergence is significantly smaller than 

1, suggesting that the impact of the rate of mutational input on the rate of phenotypic evolution is 

not constant but declines with the rate of mutational input.  That is, compared with traits with 

relatively low mutational inputs, those with relatively high mutational inputs do not evolve as 

rapidly as predicted linearly from their mutational inputs.  With this finding, patterns of fly wing 

evolution are explainable by a model in which the wing traits are themselves neutral but 

mutations affecting the wing traits also affect other traits that are under various degrees of 

stabilizing selection.  Our estimate of the scaling coefficient suggests that traits with higher 
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mutational variances are subject to stronger mutational pleiotropy, and we offered potential 

mechanisms responsible for this relationship.  Our evolutionary simulation under the above 

model is able to recapitulate all major patterns observed in fly wing evolution.  Nevertheless, it is 

possible that the fly data also fit some other models.  In particular, our results suggest the 

plausibility but do not prove that the fly wing traits are neutral.  In fact, an expanded model in 

which the focal traits are neutral only within a range of phenotypic values can also explain fly 

wing evolution, provided that 40 million years of evolution under mutational pleiotropy has not 

reached the boundaries of this range.  Regardless, our analysis suggests that fly wing evolution is 

explainable under the existing theoretical framework of phenotypic evolution.   

The invaluable data collected by Houle et al. have allowed an unprecedented population 

genetic analysis of macroevolution of morphologies.  To the best of our knowledge, no other 

large phenotypic data simultaneously comprising M, G, and R from long-term evolution exist.  

Only when many such data become available may we test the general applicability of our model 

or its expanded version in explaining phenotypic evolution, and only then can one tell whether 

the current theoretical framework of phenotypic evolution is generally correct.   
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Figure legends 

Figure 1.  Slope of the linear regression and correlation between log10(Mobs variance) and 

log10(Robs variance) of simulated data, estimated by Houle et al.’s method (red) and the new 

method (blue).  (a) Slope of the linear regression between log10(Mobs variance) and log10(Robs 

variance).  (b) Pearson’s correlation coefficient between log10(Mobs variance) and log10(Robs 

variance).  Each dot represents the average slope or average correlation coefficient from 50 

simulations with the same w parameter (see Materials and Methods).  Colored lines in each panel 

are regression lines.  The dashed line in each panel indicates the situation when estimates equal 

true values.  

 

Figure 2.  Linear regression between log10(M variance) and log10(R variance) or log10(G 

variance) along orthogonal directions for fly wing traits.  (a-b) Linear regression between 

log10(M variance) and log10(R variance) estimated using Houle et al.’s method (a) or the new 

method (b).  (c-d) Linear regression between log10(M variance) and log10(G variance) estimated 

using Houle et al.’s method (c) or the new method (d).  In each panel, r stands for Pearson’s 

correlation coefficient, and the shaded region shows the 95% confidence interval of the 

regression.  The number of orthogonal traits presented in each panel is the same as in Houle et al. 

(2017).  

 

Figure 3.  Patterns of phenotypic evolution observed from computer simulation of 20 

orthogonal, neutral focal traits with mutational pleiotropy.  (a) Linear regression between 

log10(M variance) and log10(R variance) upon evolution of 2000 time units.  Presented are M and 

R variances per time unit.  The shaded region shows the 95% confidence interval of the 

regression.  (b) Distribution of the phylogenetic signals of the focal traits.  The phylogenetic 

signal of a trait is measured by Pearson’s correlation between the evolutionary time and R 

variance at the time for the trait.  
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Figure 1 
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Figure 2 
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Figure 3 
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