

1 Vaccinia Virus Infection Inhibits Skin Dendritic Cell Migration to 2 Draining Lymph Node

3

4 Juliana Bernardi Aggio*,†, Veronika Krmeská*, Brian J. Ferguson‡, Priscilla Fanini Wowk*,†,
5 Antonio Gigliotti Rothfuchs*,#

6

7 *Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet,
8 Stockholm, Sweden. †Instituto Carlos Chagas, Fundação Oswaldo Cruz (ICC/Fiocruz),
9 Curitiba, Brazil. ‡Department of Pathology, University of Cambridge, Cambridge, UK.

10

11

12 #Corresponding author: (A.G.R.) antonio.rothfuch@ki.se

13

14 Keywords: Vaccinia virus, BCG, Dendritic cells, migration, lymph node

15

16 Running title: VACV inhibition of DC migration

17

18 Abstract

19 Despite the success of Vaccinia virus (VACV) against smallpox there remains a paucity of
20 information on Dendritic cell (DC) responses to the virus, especially on the traffic of DCs and
21 VACV to draining LN (dLN). Herein we studied skin DC migration in response to VACV and
22 compared it to the tuberculosis vaccine *Mycobacterium bovis* Bacille Calmette-Guérin (BCG),
23 another live-attenuated vaccine administered via the skin. In stark contrast to BCG, skin DCs
24 did not relocate to dLN in response to VACV. This happened in spite of virus-induced
25 accumulation of several other innate-immune cell populations in the dLN. UV inactivation of
26 VACV or use of the Modified Vaccinia virus Ankara (MVA) strain promoted DC movement
27 to dLN, indicating that the virus actively interferes with skin DC migration. This active immune
28 suppression by VACV was potent enough to ablate the mobilization of skin DCs in response to
29 BCG, and to reduce the transport of BCG to dLN. Expression of inflammatory mediators
30 associated with BCG-triggered DC migration were absent from virus-injected skin, suggesting
31 that other pathways provoke DC movement in response to replication-deficient VACV. Despite
32 viral suppression of DC migration, VACV was detected in dLN much earlier than BCG,
33 indicating a rapid, alternative route of viral traffic to dLN despite marked blockade of skin DC
34 mobilization from the site of infection.

35

36 Word count: 217

37

38 Introduction

39 Dendritic cells (DCs) excel in their capacity to capture, transport and present microbial antigen
40 to prime naïve T cells in secondary lymphoid organs (1). The lymph node (LN) is a major site
41 for such antigen presentation which is often preceded by the relocation of DCs from the site of
42 infection in the periphery to the draining LN (dLN) (2). Despite a large body of data on
43 immunizations with model antigens, DC migration remains incompletely understood during
44 infection with pathogens and live-attenuated bacterial or viral vaccines. Using an infection
45 model in mice and a novel assay to track DC migration *in vivo*, we have previously identified
46 a role for interleukin-1 receptor (IL-1R) signaling in mobilizing a sub-population of skin DCs
47 to dLN in response to *Mycobacterium bovis* Bacille Calmette-Guérin (BCG), the live-
48 attenuated tuberculosis (TB) vaccine (3). In particular, we found the population of migratory
49 CD11b^{high} EpCAM^{low} skin DCs to be engaged in BCG transport from its inoculation site in the
50 skin to dLN and in doing so, to prime mycobacteria-specific CD4+ T cells in the dLN (3).

51 Like BCG, the smallpox vaccine *Vaccinia* virus (VACV) is a live-attenuated
52 microorganism administered via the skin. Despite many studies on the immune response to
53 poxviruses and countless investigations on anti-viral T-cell priming, there is a knowledge gap
54 on the initial events that unfold *in vivo* in response to VACV. Due to its large genome and
55 replication-cycle features, VACV is readily used as an expression vector and live-recombinant
56 vaccine for infectious diseases and cancer (4-7). Since BCG efficacy is sub-optimal, there is a
57 standing need to improve TB vaccination. Both improved BCG as well as novel vaccine
58 candidates are considered or have been developed, some of which are currently undergoing
59 clinical trials. In the context of VACV vectors, Modified *Vaccinia* virus Ankara (MVA)
60 expressing the major *M. tuberculosis* antigen 85A (MVA85A) is an example of a clinically-
61 advanced vaccine candidate (8).

62 Following inoculation of VACV in the skin, infected cells including LN DCs and
63 macrophages (9) can be detected in the dLN within a few hours (9-12). It is not entirely clear
64 how this rapid relocation of virus from skin to dLN occurs, e.g. if through direct viral access to
65 lymphatic vessels or supported through other mechanisms. Similar observations have been
66 reported after skin infection with Zika virus (12) and Semliki Forest virus (13). In contrast,
67 other studies indicate that VACV is largely restricted to its inoculation site in the skin with
68 limited or null relocation of virus to dLN (14, 15). In this regard, VACV has been shown to
69 interfere with fluid transport in lymphatic vessels and as such to curb its dissemination (16). In
70 addition to data on viral traffic to dLN, there is substantive literature on immunomodulatory

71 molecules produced by VACV and on the overall immunosuppressive properties of VACV
72 infection *in vitro* and in mouse models (17). Using an established toolset for investigating DC
73 responses to mycobacteria, we herein compared local BCG-triggered, inflammatory responses
74 in the skin and skin dLN to that of VACV, especially the ability of VACV to mobilize skin DCs
75 into dLN. We found that unlike the early reaction to BCG, VACV actively inhibits skin DC
76 migration to dLN while retaining the capacity to relocate to dLN in the absence of DC transport.
77

78 Materials and Methods

79 *Mice*

80 C57BL/6NRj mice were purchased from Janvier Labs (Le Genest-Saint-Isle, France) and used
81 as wild-type (WT) controls. P25 TCRTg RAG-1^{-/-} mice expressing EGFP (18) were kindly
82 provided by Dr. Ronald Germain, NIAID, NIH. All animals were maintained at the Department
83 of Comparative Medicine (KM), Karolinska Institutet. Female mice between 8 and 12 wks old
84 were used. Animals were housed and handled at KM according to the directives and guidelines
85 of the Swedish Board of Agriculture, the Swedish Animal Protection Agency and Karolinska
86 Institutet. Experiments were approved by the Stockholm North Animal Ethics Council.

87

88 *Vaccinia virus*

89 Vaccinia virus (VACV) Western Reserve (WR) and deletion mutants ΔA49 (19), ΔB13 (20)
90 and ΔB15 (21) (kindly provided by Prof. Geoffrey Smith, Cambridge University) were
91 expanded on BSC-1 cells. Modified Vaccinia virus Ankara (MVA) was expanded in BHK-21.
92 Viral stocks were purified by saccharose gradient ultracentrifugation. Quantification of plaque-
93 forming units (PFUs) from WR and focus-forming units (FFUs) from MVA was performed as
94 previously described (22) with MVA stocks quantified in chicken embryo fibroblasts cells and
95 WR stocks or WR viral load in lymph nodes (LNs) quantified on BSC-1. In some experiments
96 VACV was inactivated with UV radiation (i-VACV) by placing the virus for 2 minutes in a UV
97 Stratalinker 2400 equipped with 365 nm long-wave UV bulbs (Stratagene, USA). UV-
98 inactivation was confirmed by lack of cytopathic effect on BSC-1 cells infected with i-VACV
99 for up to 3 days (data not shown).

100

101 *Mycobacteria*

102 *Mycobacterium bovis* BCG strain Pasteur 1173P2 was expanded in Middlebrook 7H9 broth
103 supplemented with ADC (BD Clinical Sciences) as previously described (23). Quantification
104 of mycobacterial Colony-forming units (CFUs) for bacterial stocks and determination of
105 bacterial load in LNs was performed by culture on 7H11 agar supplemented with OADC (BD
106 Clinical Sciences).

107

108 *Inoculation of mice*

109 Animals were inoculated in the hind footpad with 30 μ L PBS containing unless otherwise
110 stated, 1x10⁶ CFUs of BCG, 1x10⁶ PFUs of VACV or 1x10⁶ FFUs of MVA. i-VACV was used
111 at an amount equivalent to 1x10⁶ PFUs before UV-inactivation. Control animals received 30 μ L
112 of PBS only. For footpad conditioning experiments, animals were injected in the footpad with
113 PBS, VACV or i-VACV 24 hrs before receiving BCG into the same footpad. For studying gene
114 expression in the skin, mice were inoculated in the ear dermis with 5 μ L PBS containing the
115 same concentration of mycobacteria or virus as above. Control animals received 5 μ L PBS.

116 Assessment of cell migration from the footpad skin to dLN was done as previously
117 described (3, 24). Briefly, animals previously injected with vaccine or PBS were injected 24
118 hrs before sacrifice in the same footpad with 30 μ L of 0.5 mM 5- and 6-carboxyfluorescein
119 diacetate succinimidyl ester (CFSE) (Invitrogen). For assessing migration after 24 hrs, CFSE
120 was injected 2 hrs after vaccine or PBS inoculation. For studying CD4+ antigen-specific T-cell
121 responses, 1x10⁵ LN cells from naïve P25 TCRTg RAG-1^{-/-} EGFP mice were injected i.v. in
122 the tail vein of C57BL/6 recipients in a final volume of 200 μ L. Recipients were infected 24
123 hrs later in the footpad with 30 μ L of BCG or virus. Control animals received PBS. In footpad
124 conditioning experiments, recipients received naïve T cells as above and were injected in the
125 footpad 2 hrs later with PBS, VACV or i-VACV. BCG was given the next day and animals
126 sacrificed 6 days after BCG.

127

128 *Generation of single-cell suspensions from tissue*

129 Popliteal LNs (pLNs) were aseptically removed, transferred to microcentrifuge tubes
130 containing FACS buffer (5 mM EDTA and 2% FBS in PBS) and gently homogenized using a
131 tissue grinder. The resulting single-cell suspension was counted by Trypan blue exclusion. In
132 certain experiments, an aliquot was taken and subjected to CFU or PFU determinations as
133 described above. LN suspensions were otherwise washed in FACS buffer and stained for flow
134 cytometry. Ears were excised, transferred into Trizol reagent (Sigma) and homogenized in a
135 TissueLyser (Qiagen, USA) for subsequent RNA extraction, below.

136

137 *Flow cytometric staining*

138 Single-cell suspensions from pLN were incubated with various combinations of fluorochrome-
139 conjugated rat anti-mouse monoclonal antibodies specific for CD4 (L3T4), CD8 (53-6.7),
140 CD11b (M1/70), CD11c (HL3), MHC-II I-A/I-E (M5/114.15.2), Ly6G (1A8), CD44 (IM7),
141 CD62L (MEL14), CD69 (H1.2F3), V β 11 (RR3-15) (BD Biosciences), CD326/EpCAM (G8.8),

142 CD103 (2E7) (Biolegend), CD64 (X54-5/7), CD4 (RM4-5) (eBiosciences) for 45 minutes at
143 4°C in FACS buffer containing 0.5 mg/mL anti-mouse CD16/CD23 (2.4G2) (BD Biosciences).
144 Flow cytometry was performed on an LSR-II with BD FACSDIVA software (BD Biosciences)
145 and the acquired data analyzed on FlowJo software (BD Biosciences).

146

147 *Real-time TaqMan PCR*

148 RNA was extracted from ear homogenates and reverse transcribed into cDNA using M-MLV
149 reverse transcriptase (Promega). Real-time PCR was performed on an ABI PRISM 7500
150 sequence detection system (Applied Biosystems) using commercially-available primer pairs
151 and TaqMan probes for TNF- α , IL-1 α , IL-1 β and Glyceraldehyde 3-phosphate dehydrogenase
152 (GAPDH) (ThermoFisher Scientific, USA). The relative expression of the above factors was
153 determined by the 2- $\Delta\Delta$ Ct method in which samples were normalized to GAPDH and
154 expressed as fold change over uninfected controls.

155

156 *Statistical analyses*

157 Analyses were performed using GraphPad Prism 6 (GraphPad Software, Inc., USA). One-way
158 Anova with Tukey's multiple comparison test was used to compare data group means with a
159 cut-off of p <0.05 considered significant.

160

161 Results

162 *Skin DCs migrate to dLN in response to BCG but not VACV*

163 To begin investigating the early events after VACV infection, we inoculated C57BL/6 wild-
164 type mice in the footpad skin and assessed immune responses in the draining, popliteal LN
165 (pLN). A CFSE fluorochrome-based migration assay was used to track the movement of
166 migratory skin DCs to dLN. (3, 24). We have used this setup in the past to study early responses
167 to BCG, another live-attenuated vaccine and so included BCG as a comparison to VACV.
168 Corroborating our previous results, BCG skin infection triggered migration of skin DCs to dLN.
169 However, in stark contrast to BCG, skin DCs did not relocate to dLN in response to VACV
170 (Fig. 1A-C). The lack of DC movement in response to VACV was independent of viral
171 inoculation dose (Fig. 1A) and the timepoint in which DC migration was investigated (Fig. 1B).
172 The absence of CFSE-labeled (*i.e.* migratory) skin DCs in the dLN of VACV-infected mice
173 was not concurrent with CFSE labeling in other immune-cell populations, suggesting a
174 generalized absence of cells moving to dLN in response to VACV (Fig. 1C).

175 Although migratory skin DCs did not readily relocate to dLN in response to VACV,
176 virus infection provoked a robust inflammatory response in the dLN, with an increase in LN
177 cell numbers (Fig. 2A) accompanied by the expansion of several innate immune-cell
178 populations and especially CD64^{high} Ly6G^{low} cells (Fig. 2B). The lack of skin DC migration
179 recorded in our CFSE-based migration assay was also in line with a marked decrease in the
180 overall number of migratory skin DCs (MHC-II^{high} CD11c^{+/low} cells) in VACV-infected LN,
181 suggesting that skin DCs may be a particular target of VACV immunosuppression.

182

183 *VACV actively inhibits skin DC migration to dLN*

184 Since many of the known immunomodulatory molecules produced by VACV require viral
185 replication, we investigated if the absence of DC migration in response to VACV was coupled
186 to productive infection. We exposed VACV to UV cross-linking at levels sufficient to ablate
187 viral replication but without abolishing viral entry into cells (25). Interestingly, inoculation of
188 UV-inactivated VACV (i-VACV) in the footpad promoted robust skin DC mobilization to dLN
189 (Fig. 3A). Similarly, skin infection with MVA, a highly-attenuated VACV that infects but fails
190 to assemble new virions in mammalian cells (26), also triggered DC migration to dLN (Fig.
191 3A). Results with i-VACV and MVA thus indicate that live, replication-competent VACV is
192 actively blocking skin DC migration. Moreover, EpCAM^{low} CD11b^{high} DCs were found to be

193 the main DC sub-population contributing to migration in response to i-VACV and MVA (Fig.
194 3B), an observation similar to BCG (Fig. 3B)(3, 27).

195 Consistent with a potent suppressive effect on skin DC migration, conditioning the
196 footpad with VACV prior to injecting BCG in the same footpad completely blocked skin DC
197 migration to BCG (Fig. 4A). The absence of skin DCs entering the dLN was also associated
198 with a massive drop in BCG levels in the dLN (Fig. 4B), in line with the fact that these DCs
199 transport BCG to dLN (3). Interestingly, DC migration was not impaired when conditioning
200 was done with i-VACV or MVA (Fig. 4A and data not shown). The number of moving DCs
201 was rather increased (Fig. 4A), although BCG entry itself was slightly lower in the i-VACV-
202 conditioned group compared to PBS-conditioned controls (Fig. 4B). These experiments suggest
203 a carryover of DC migration-dampening properties of VACV infection to a secondary challenge
204 with BCG.

205

206 *Enhanced mRNA expression of inflammatory mediators associated with BCG-triggered DC
207 migration are absent from the skin of VACV-infected mice*

208 Next we compared local changes at the site of infection following inoculation with either
209 vaccine. Enhanced mRNA expression of the pro-inflammatory cytokines TNF- α , IL-1 α and
210 IL-1 β was clearly detected in the skin 24 hrs after BCG infection (Fig. 5), corroborating our
211 previous observations on a role for IL-1R signaling in regulating DC migration to BCG (3) and
212 (our unpublished data). On the contrary, expression of TNF- α and IL-1 cytokines was absent in
213 response to skin infection with VACV as well as i-VACV and MVA (Fig. 5). Since i-VACV
214 and MVA trigger migration of the same DC subset that also moves in response BCG (Fig. 3B),
215 it is possible that other migration-promoting pathways are in play during i-VACV and MVA-
216 induced migration of EpCAM $^{\text{low}}$ CD11b $^{\text{high}}$ DCs.

217

218 *Early detection of VACV in dLN after infection in the skin*

219 Although DC migration was blocked in response to VACV, the virus was detected in the dLN
220 as early as 10 min after infection in the footpad skin and levels remained steady over time (Fig.
221 6A). The kinetics of this response was different and notably faster than BCG entry into dLN
222 (Fig 6B), which is known to be reliant on DC transport (3), suggesting an alternative pathway
223 for VACV entry to dLN.

224

225 Discussion

226 VACV is a live-attenuated vaccine that infects a variety of cell types in the skin, including
227 keratinocytes, epidermal and dermal DCs (28). The virus is intriguing in that it packs a diverse
228 immunosuppressive arsenal while still being highly immunogenic. Concurrent with this
229 complexity, the outcome of DC-VACV interactions remains incompletely understood. The fate
230 of the virus and its transport to dLN for antigen presentation is another matter of interest given
231 that VACV is recognized as a vaccine vector and tool for antigen delivery. We show that VACV
232 profoundly inhibits the ability of skin DCs to mobilize to dLN. This inhibition was dependent
233 on viral replication and capable of dampening DC migration to a subsequent challenge with
234 BCG. VACV could nevertheless relocate to dLN in the absence of DC mobilization. Our study
235 supports recent observations that LN conduits transport VACV to dLN for T-cell priming (12).
236 We also add to a large body of data on the immunosuppressive properties of VACV (17) and
237 extend these to include virus-mediated inhibition of DC migration.

238 VACV infection is known to have many negative effects on DC function. For instance,
239 the virus can inhibit expression of DC costimulatory molecules and cytokines (29-31). Further,
240 splenic DCs isolated from VACV-infected mice have lower MHC-II levels and antigen-
241 presentation capacity (32). We also report lower expression of MHC-II on migratory skin DCs
242 from the dLN of VACV-infected mice (Supplementary Fig. 1A). VACV undergoes abortive
243 replication in DCs (29-31, 33) but VACV and MVA can induce apoptosis in DCs (32).
244 Although we did not assess virus-induced DC death in our studies, the frequency of migratory
245 skin DCs in the dLN of VACV-infected mice was lower than for BCG but similar to that of
246 PBS-injected controls (Supplementary Fig. 1B). This speaks against DC death in the skin,
247 which would lower the pool of migratory DCs in skin and consequently, the frequency of these
248 DCs in the dLN. Results from our migration assay point instead to an impediment of skin DC
249 traffic to dLN during VACV infection.

250 We also observed muted influx of skin DCs and BCG into dLN if the injection site in
251 the footpad skin had been pre-conditioned with VACV. Thus, the suppressive effect of VACV
252 on DC migration was robust enough to interfere with DC movement triggered by a secondary
253 stimulus (BCG). Interestingly, conditioning with i-VACV doubled the number of migratory
254 skin DCs reaching the dLN without enhancing the entry of BCG. Conditioning with inactivated
255 virus may have reduced skin DC pools available for BCG transport in the next step.

256 Enhanced expression of TNF- α and IL-1 in the skin was associated with BCG- but not
257 virus-triggered skin DC migration. Migration induced by iVACV and MVA thus highlight an

258 alternative mechanism for EpCAM^{low} CD11b^{high} DCs to move to dLN. Indeed, the contribution
259 of IL-1R signaling in response to BCG is also partial (3) so there must be other factors
260 regulating migration. Similarly, infection with VACV deletion mutants Δ A49, Δ B13 and Δ B15,
261 lacking molecules that inhibit NF- κ B, Caspase-1 and IL-1 respectively, was not able to provoke
262 DC influx to dLN (Supplementary Fig. 2). During *M. tuberculosis* infection, IFN- α/β has been
263 shown to block IL-1 production from myeloid cells (34). Whether the lack of IL-1 expression
264 in VACV-infected skin or VACV inhibition of skin DC migration is coupled to IFN- α/β
265 remains to be determined. Evaluating cytokine expression and DC migration in IFN- α/β R^{-/-}
266 mice may help clarify this point.

267 Although VACV did not induce expression of pro-inflammatory cytokines in the skin,
268 it did leash a profound inflammatory infiltrate in the dLN. CD169+ subcapsular sinus (SCS)
269 macrophages are directly exposed to afferent lymph-borne particulates and thus form a strategic
270 line of defense in the dLN against free-flowing viruses, including VACV, preventing their
271 systemic spread (35). Previous studies confirm VACV infection of SCS macrophages (9, 36).
272 In addition, MVA triggers transient inflammasome activation in SCS macrophages that leads
273 to the recruitment of inflammatory cells into the LN (37). In particular, we observed an
274 expansion of CD64^{high} Ly6G^{low} cells in VACV-infected dLN. This population that expanded
275 preferentially in response to VACV remains to be thoroughly characterized. An extensive
276 network of CD64+ macrophages has been reported in the LN paracortex that can scavenge
277 apoptotic cells (38). Early during Listeria infection, populations of inflammatory CD64+ DCs
278 have also been observed in dLN (39).

279 Migratory skin DCs are tasked with the transport of microbes and their antigens to dLN
280 and constitute as such a central component in our understanding of how adaptive immune
281 responses are initiated in dLN after infection or vaccination in the skin. In our model VACV
282 can reach the dLN without mobilizing skin DCs, whose migration is blocked by the virus. We
283 speculate that skin DC-independent mechanism of virus relocation occurs via direct access of
284 VACV to lymphatic vessels. Previous studies show VACV in dLN within a few hours after
285 injection in the skin (9-12). We report the virus in the pLN even earlier, just a few minutes after
286 inoculation in the footpad. It is unclear how VACV traffics to dLN in the absence of DC
287 transport. The fate of such virus once it arrives in the dLN, including outcome of interactions
288 with LN-resident DCs and ensuing antigen presentation to naïve T cells, remains to be
289 unraveled. Fully unfolding the mechanisms behind VACV blockade of skin DC migration and

290 skin DC-independent relocation of VACV to dLN will profit our understanding of VACV-
291 mediated immune responses and its consequences of T-cell priming.
292

293 **Acknowledgements**

294 We thank Susanne Nylén (Karolinska Institutet, Stockholm), for critical reading of this
295 manuscript. We also thank Nuno Rufino de Sousa, Lei Shen, Sören Hartmann and Benjamin
296 Heller Sahlgren (Karolinska Institutet), Marisa Oliveira and Dayana Bozhidarova Hristova
297 (Cambridge University, UK) for technical assistance.

298

299 **Disclosure**

300 The authors have no financial conflicts of interest.

301

302 **Footnotes**

303 This work was supported by the Swedish Research Council (VR) and Karolinska Institutet,
304 Sweden (both to A.G.R), Oswaldo Cruz Foundation (Fiocruz), Brazil (to P.F.W.) and the
305 Foundation for the Coordination for the Improvement of Higher Education Personnel (CAPES),
306 Brazil (to J.B.A. and P.F.W.). The funders had no role in study design, data collection and
307 interpretation or the decision to submit the work for publication.

308

309 [#]Address correspondence and reprint requests to:

310 Dr. Antonio Gigliotti Rothfuchs,

311 MTC, Karolinska Institutet,

312 Biomedicum, Solnavägen 9,

313 SE-171 77 Stockholm,

314 Sweden

315 email: antonio.rothfuchs@ki.se (A.G.R)

316

317 **Figure Legends**

318 **FIGURE 1.** Skin DCs migrate to dLN in response to BCG but not VACV. C57BL/6 mice were
319 inoculated in the footpad skin with PBS, BCG or VACV and subjected to the CFSE migration
320 assay. Single-cell suspensions were generated from the draining, popliteal LN (pLN) and
321 analyzed by flow cytometry. (A) Total number CFSE-labeled skin DCs (MHC-II^{high}
322 CD11c^{+/low}) in the pLN 3 days after infection with 10⁶ CFUs of BCG or given doses of VACV.
323 (B) Total number CFSE-labeled skin DCs in the pLN at the given time points after footpad
324 infection with BCG (10⁶ CFUs) or VACV (10⁶ PFUs). (C) Concatenated FACS plots depicting
325 CFSE-labeled cells from pLN 3 days after PBS, BCG (10⁶ CFUs) or VACV (10⁶ PFUs).
326 Representation of CFSE-labeled cells relative to MHC-II (left column). Skin DCs were gated
327 (center column) and CFSE-labeled cells shown (right column). Four to 5 animals per time-point
328 and group used in each experiment. One of two independent experiments shown. Bars indicate
329 standard error of the mean. * denotes statistical difference between PBS and BCG groups.

330

331 **FIGURE 2.** Several innate-immune cell populations expand in the dLN after BCG and VACV
332 infection in the skin. C57BL/6 mice were inoculated in the footpad skin with PBS, BCG (10⁶
333 CFUs) or VACV (10⁶ PFUs). Three days later, single-cell suspensions were obtained from the
334 pLN and analyzed by flow cytometry. (A) Total cell counts based on trypan blue exclusion.
335 (B). Total number of designated phagocyte populations identified by flow cytometry. Five
336 animals per group were used in each experiment. Bars indicate standard error of the mean. *
337 denotes statistical significance between PBS and infected groups (A) or between CD64^{high}
338 Ly6G^{low} cells and skin DCs, respectively in BCG and VACV groups (B).

339

340 **FIGURE 3.** Skin DCs migrate to dLN in response to UV-inactivated VACV and MVA.
341 C57BL/6 mice were inoculated in the footpad skin with PBS, BCG (10⁶ CFUs), VACV (10⁶
342 PFUs), UV-inactivated VACV (i-VACV, equivalent to 10⁶ PFUs before UV treatment) or
343 MVA (10⁶ FFUs) and subjected to CFSE migration assay as in Fig. 1. pLN were analyzed by
344 flow cytometry 3 days after infection. (A) Total number CFSE-labeled skin DCs shown. (B)
345 CFSE expression within different defined subsets of skin DCs based on previously published
346 gating strategy (3, 24) shown. LC: Langerhans cells. Four to 5 animals per group were used in
347 each experiment. One of two independent experiments shown. Bars indicate standard error of
348 the mean. * denotes statistical significance between PBS- and vaccine-injected groups.

349

350 **FIGURE 4.** Conditioning the BCG injection site in the skin with VACV mutes the entry of
351 skin DCs and BCG to dLN. C57BL/6 mice were inoculated in the footpad skin with PBS,
352 VACV (10^6 PFUs) or i-VACV (corresponding to a dose of 10^6 PFUs before inactivation).
353 Twenty-four hrs later the same footpads were inoculated with BCG (10^6 CFUs) and the CFSE-
354 based migration assay performed. (A) Total number of CFSE-labeled skin DCs in the pLN 3
355 days after BCG. (B) Recovery of BCG CFUs from the pLN after conditioning with VACV.
356 Before giving BCG, footpads were inoculated 24 hrs earlier with PBS (PBS x BCG), VACV
357 (VACV x BCG) or i-VACV (i-VACV x BCG). Five animals per group were used in each
358 experiment. One of two independent experiments shown. Bars indicate standard error of the
359 mean. * denotes statistical significance between PBS x PBS controls and vaccine-injected
360 groups (A), or between PBS x BCG and i-VACV x BCG and VACV-BCG groups, respectively.
361

362 **FIGURE 5.** Enhanced mRNA expression of pro-inflammatory mediators associated with BCG-
363 triggered DC migration are absent from virus-infected skin. C57BL/6 mice were inoculated i.d.
364 in the ear with PBS, BCG (10^6 CFUs), VACV (10^6 PFUs), i-VACV (equivalent to 10^6 PFUs)
365 or MVA (10^6 FFUs). Twenty-four hrs after infection, ears were removed and subjected to RNA
366 extraction and cDNA synthesis. Then mRNA accumulation of TNF- α , IL-1 α and IL-1 β relative
367 to GAPDH was determined by real-time TaqMan PCR and the fold change of infected animals
368 over PBS controls calculated. Data pooled from 3 independent experiments including 15 to 38
369 samples per group shown. Dashed line depicts the average relative quantification in the PBS
370 control group for each molecule analyzed. Bars indicate the standard error of the mean. *
371 denotes statistical significance between PBS and BCG groups.
372

373 **FIGURE 6.** VACV is detected early in dLN after virus infection in the skin. (A and B) C57BL/6
374 mice were inoculated in the footpad skin with VACV (10^6 PFUs) or BCG (10^6 CFUs). Viral
375 (A) and mycobacterial (B) loads in pLN were determined at different timepoints after infection.
376 One of two independent experiment shown. Five animals per time point and group were used
377 in each experiment. Bars indicate standard error of the mean.
378

379 **SUPPLEMENTARY FIGURE 1.** Expression of MHC-II and frequency of skin DCs in dLN
380 of VACV- and BCG-infected mice. (A and B) C57BL/6 mice were inoculated in the footpad
381 skin with PBS, BCG (10^6 CFUs) or VACV (10^6 PFUs). Three days later, pLNs were processed
382 and analyzed by flow cytometry. (A) Mean fluorescence intensity (MFI) for MHC-II on skin
383 DCs in pLN. (B) Frequency of skin DCs in pLN. Five animals per group were used in each

384 experiment. One of 3 independent experiment shown. Bars indicate standard error of the mean.
385 * denotes statistically significant difference between PBS and infected groups (A) and PBS and
386 BCG (B).

387

388 **SUPPLEMENTARY FIGURE 2.** Infection with VACV Δ A49, Δ B13 and Δ B15 does not
389 trigger skin DC migration to dLN. C57BL/6 mice were inoculated in the footpad skin with PBS,
390 BCG (10^6 CFUs), VACV (10^6 PFUs) or the VACV deletion mutants Δ A49, Δ B13 and Δ B15
391 (10^6 PFUs) and subjected to the CFSE migration assay as in Fig. 1. Total number of CFSE-
392 labeled skin DCs in the pLN 3 days after infection. 5 animals per group were used in each
393 experiment. Bars indicate standard error of the mean. * denotes statistical significance between
394 PBS and BCG groups.

395

396 References

- 397 1. Worbs, T., S. I. Hammerschmidt, and R. Forster. 2017. Dendritic cell migration in
398 health and disease. *Nat Rev Immunol* 17: 30-48.
- 399 2. Randolph, G. J., V. Angeli, and M. A. Swartz. 2005. Dendritic-cell trafficking to
400 lymph nodes through lymphatic vessels. *Nat Rev Immunol* 5: 617-628.
- 401 3. Bollampalli, V. P., L. Harumi Yamashiro, X. Feng, D. Bierschenk, Y. Gao, H. Blom,
402 B. Henriques-Normark, S. Nylen, and A. G. Rothfuchs. 2015. BCG skin infection
403 triggers IL-1R-MyD88-dependent migration of EpCAM^{low} CD11b^{high} skin dendritic
404 cells to draining lymph node during CD4+ T-cell priming. *PLoS Pathog* 11:
405 e1005206.
- 406 4. Mackett, M., G. L. Smith, and B. Moss. 1982. Vaccinia virus: a selectable eukaryotic
407 cloning and expression vector. *Proc Natl Acad Sci U S A* 79: 7415-7419.
- 408 5. Panicali, D., and E. Paoletti. 1982. Construction of poxviruses as cloning vectors:
409 insertion of the thymidine kinase gene from herpes simplex virus into the DNA of
410 infectious vaccinia virus. *Proc Natl Acad Sci U S A* 79: 4927-4931.
- 411 6. Perkus, M. E., A. Piccini, B. R. Lipinskas, and E. Paoletti. 1985. Recombinant
412 vaccinia virus: immunization against multiple pathogens. *Science* 229: 981-984.
- 413 7. Moss, B. 1991. Vaccinia virus: a tool for research and vaccine development. *Science*
414 252: 1662-1667.
- 415 8. Ndiaye, B. P., F. Thienemann, M. Ota, B. S. Landry, M. Camara, S. Dieye, T. N.
416 Dieye, H. Esmail, R. Goliath, K. Huygen, V. January, I. Ndiaye, T. Oni, M. Raine, M.
417 Romano, I. Satti, S. Sutton, A. Thiam, K. A. Wilkinson, S. Mboup, R. J. Wilkinson,
418 and H. McShane. 2015. Safety, immunogenicity, and efficacy of the candidate
419 tuberculosis vaccine MVA85A in healthy adults infected with HIV-1: a randomised,
420 placebo-controlled, phase 2 trial. *Lancet. Respir Med* 3: 190-200.
- 421 9. Norbury, C. C., D. Malide, J. S. Gibbs, J. R. Bennink, and J. W. Yewdell. 2002.
422 Visualizing priming of virus-specific CD8+ T cells by infected dendritic cells in vivo.
423 *Nat Immunol* 3: 265-271.
- 424 10. Hickman, H. D., K. Takeda, C. N. Skon, F. R. Murray, S. E. Hensley, J. Loomis, G. N.
425 Barber, J. R. Bennink, and J. W. Yewdell. 2008. Direct priming of antiviral CD8+ T
426 cells in the peripheral interfollicular region of lymph nodes. *Nat Immunol* 9: 155-165.
- 427 11. Kastenmuller, W., P. Torabi-Parizi, N. Subramanian, T. Lammermann, and R. N.
428 Germain. 2012. A spatially-organized multicellular innate immune response in lymph
429 nodes limits systemic pathogen spread. *Cell* 150: 1235-1248.
- 430 12. Reynoso, G. V., A. S. Weisberg, J. P. Shannon, D. T. McManus, L. Shores, J. L.
431 Americo, R. V. Stan, J. W. Yewdell, and H. D. Hickman. 2019. Lymph node conduits
432 transport virions for rapid T cell activation. *Nat Immunol*.
- 433 13. Pingen, M., S. R. Bryden, E. Pondeville, E. Schnettler, A. Kohl, A. Merits, J. K.
434 Fazakerley, G. J. Graham, and C. S. McKimmie. 2016. Host inflammatory response to
435 mosquito bites enhances the severity of arbovirus infection. *Immunity* 44: 1455-1469.
- 436 14. Hickman, H. D., G. V. Reynoso, B. F. Ngudiankama, E. J. Rubin, J. G. Magadan, S. S.
437 Cush, J. Gibbs, B. Molon, V. Bronte, J. R. Bennink, and J. W. Yewdell. 2013.
438 Anatomically restricted synergistic antiviral activities of innate and adaptive immune
439 cells in the skin. *Cell Host Microbe* 13: 155-168.
- 440 15. Khan, T. N., J. L. Mooster, A. M. Kilgore, J. F. Osborn, and J. C. Nolz. 2016. Local
441 antigen in nonlymphoid tissue promotes resident memory CD8+ T cell formation
442 during viral infection. *J Exp Med* 213: 951-966.
- 443 16. Loo, C. P., N. A. Nelson, R. S. Lane, J. L. Booth, S. C. Loprinzi Hardin, A. Thomas,
444 M. K. Slifka, J. C. Nolz, and A. W. Lund. 2017. Lymphatic vessels balance viral

445 dissemination and immune activation following cutaneous viral infection. *Cell Rep* 20: 3176-3187.

446

447 17. Smith, G. L., C. T. Benfield, C. Maluquer de Motes, M. Mazzon, S. W. Ember, B. J. Ferguson, and R. P. Sumner. 2013. Vaccinia virus immune evasion: mechanisms, virulence and immunogenicity. *J Gen Virol* 94: 2367-2392.

448

449 18. Egen, J. G., A. G. Rothfuchs, C. G. Feng, M. A. Horwitz, A. Sher, and R. N. Germain. 2011. Intravital imaging reveals limited antigen presentation and T cell effector function in mycobacterial granulomas. *Immunity* 34: 807-819.

450

451 19. Mansur, D. S., C. Maluquer de Motes, L. Unterholzner, R. P. Sumner, B. J. Ferguson, H. Ren, P. Strnadova, A. G. Bowie, and G. L. Smith. 2013. Poxvirus targeting of E3 ligase beta-TrCP by molecular mimicry: a mechanism to inhibit NF- κ B activation and promote immune evasion and virulence. *PLoS Pathog* 9: e1003183.

452

453 20. Kettle, S., N. W. Blake, K. M. Law, and G. L. Smith. 1995. Vaccinia virus serpins B13R (SPI-2) and B22R (SPI-1) encode M(r) 38.5 and 40K, intracellular polypeptides that do not affect virus virulence in a murine intranasal model. *Virology* 206: 136-147.

454

455 21. Alcami, A., and G. L. Smith. 1992. A soluble receptor for interleukin-1 beta encoded by vaccinia virus: a novel mechanism of virus modulation of the host response to infection. *Cell* 71: 153-167.

456

457 22. Cotter, C. A., P. L. Earl, L. S. Wyatt, and B. Moss. 2017. Preparation of cell cultures and vaccinia virus stocks. *Curr Prot Protein Sci* 89: 5.12.11-15.12.18.

458

459 23. Rothfuchs, A. G., J. G. Egen, C. G. Feng, L. R. Antonelli, A. Bafica, N. Winter, R. M. Locksley, and A. Sher. 2009. In situ IL-12/23p40 production during mycobacterial infection is sustained by CD11b^{high} dendritic cells localized in tissue sites distinct from those harboring bacilli. *J Immunol* 182: 6915-6925.

460

461 24. Bollampalli, V. P., S. Nylen, and A. G. Rothfuchs. 2016. A CFSE-based assay to study the migration of murine skin dendritic cells into draining lymph nodes during infection with *Mycobacterium bovis* Bacille Calmette-Guerin. *J Vis Exp*.

462

463 25. Tsung, K., J. H. Yim, W. Marti, R. M. Buller, and J. A. Norton. 1996. Gene expression and cytopathic effect of vaccinia virus inactivated by psoralen and long-wave UV light. *J Virol* 70: 165-171.

464

465 26. Sancho, M. C., S. Schleich, G. Griffiths, and J. Krijnse-Locker. 2002. The block in assembly of modified vaccinia virus Ankara in HeLa cells reveals new insights into vaccinia virus morphogenesis. *J Virol* 76: 8318-8334.

466

467 27. Obieglo, K., X. Feng, V. P. Bollampalli, I. Dellacasa-Lindberg, C. Classon, M. Osterblad, H. Helmby, J. P. Hewitson, R. M. Maizels, A. Gigliotti Rothfuchs, and S. Nylen. 2016. chronic gastrointestinal nematode infection mutes immune responses to mycobacterial infection distal to the gut. *J Immunol* 196: 2262-2271.

468

469 28. Sandgren, K. J., J. Wilkinson, M. Miranda-Saksena, G. M. McInerney, K. Byth-Wilson, P. J. Robinson, and A. L. Cunningham. 2010. A differential role for macropinocytosis in mediating entry of the two forms of vaccinia virus into dendritic cells. *PLoS Pathog* 6: e1000866.

470

471 29. Yates, N. L., and M. A. Alexander-Miller. 2007. Vaccinia virus infection of mature dendritic cells results in activation of virus-specific naive CD8+ T cells: a potential mechanism for direct presentation. *Virology* 359: 349-361.

472

473 30. Jenne, L., C. Hauser, J. F. Arrighi, J. H. Saurat, and A. W. Huguen. 2000. Poxvirus as a vector to transduce human dendritic cells for immunotherapy: abortive infection but reduced APC function. *Gene Therapy* 7: 1575-1583.

474

475 31. Engelmayer, J., M. Larsson, M. Subklewe, A. Chahroudi, W. I. Cox, R. M. Steinman, and N. Bhardwaj. 1999. Vaccinia virus inhibits the maturation of human dendritic cells: a novel mechanism of immune evasion. *J Immunol* 163: 6762-6768.

476

477

478

479

480

481

482

483

484

485

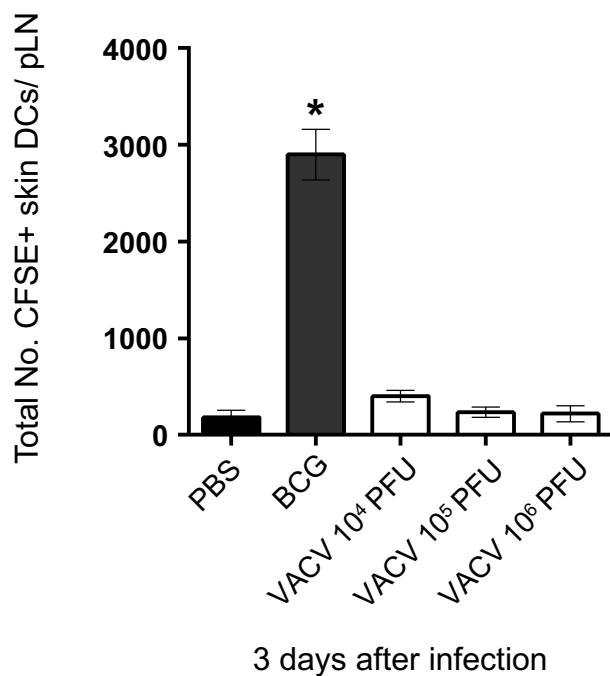
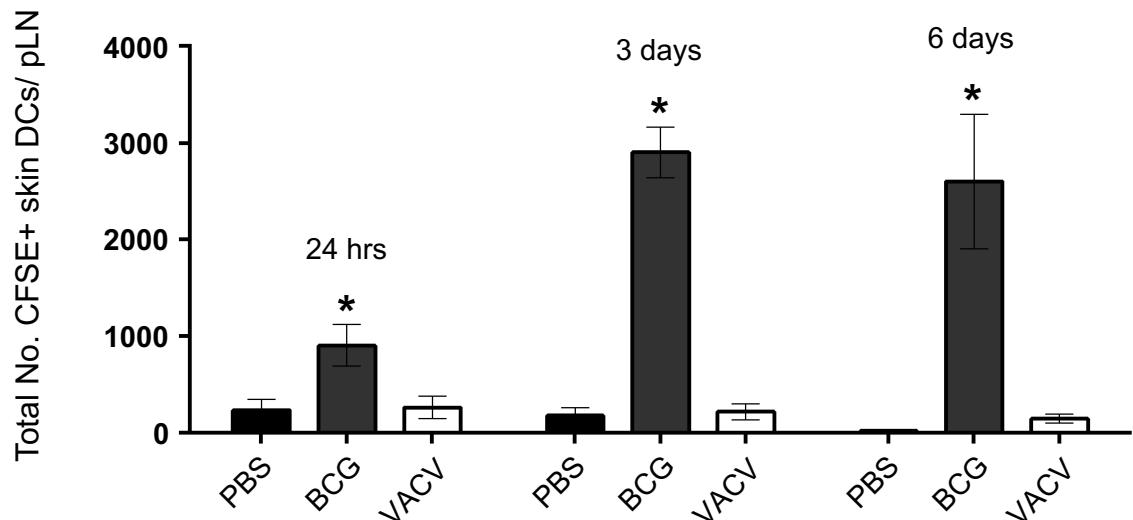
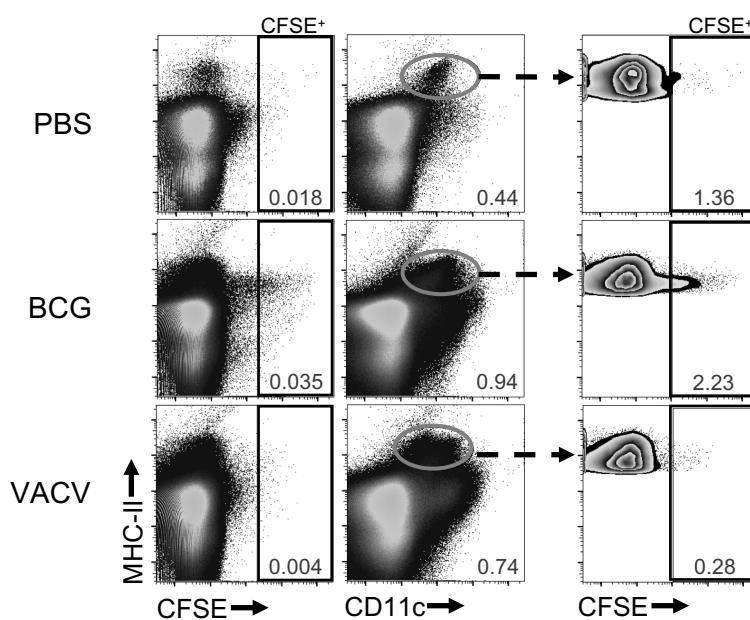
486

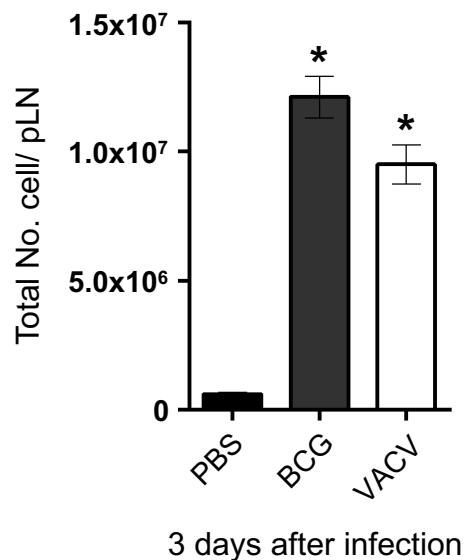
487

488

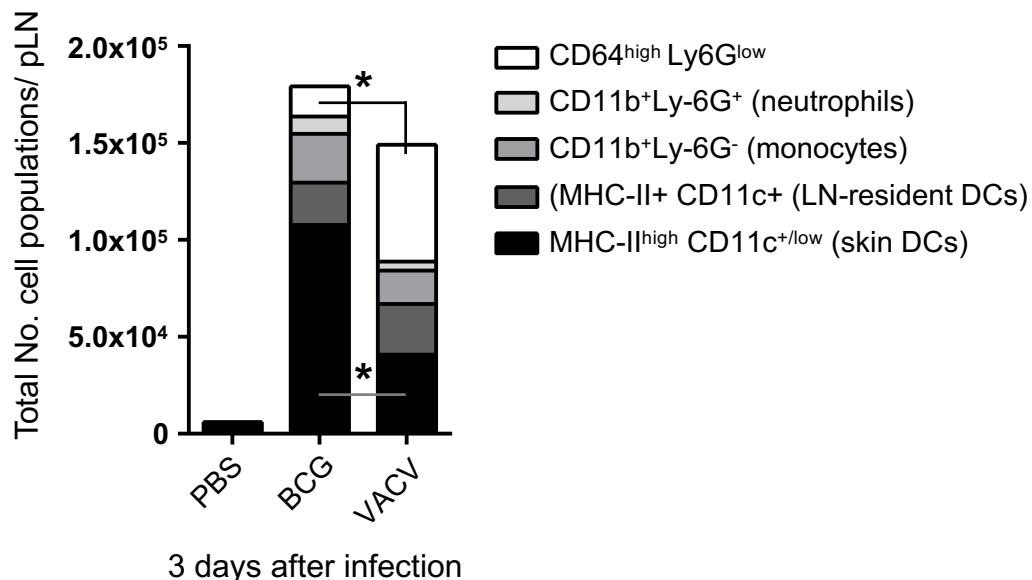
489

490

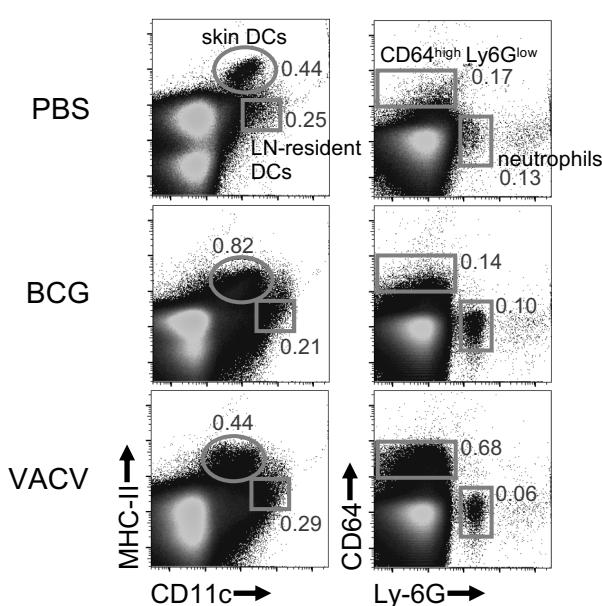



491

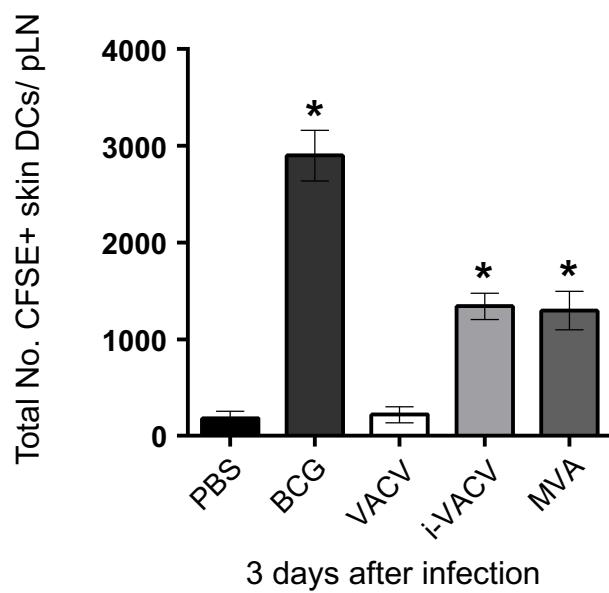
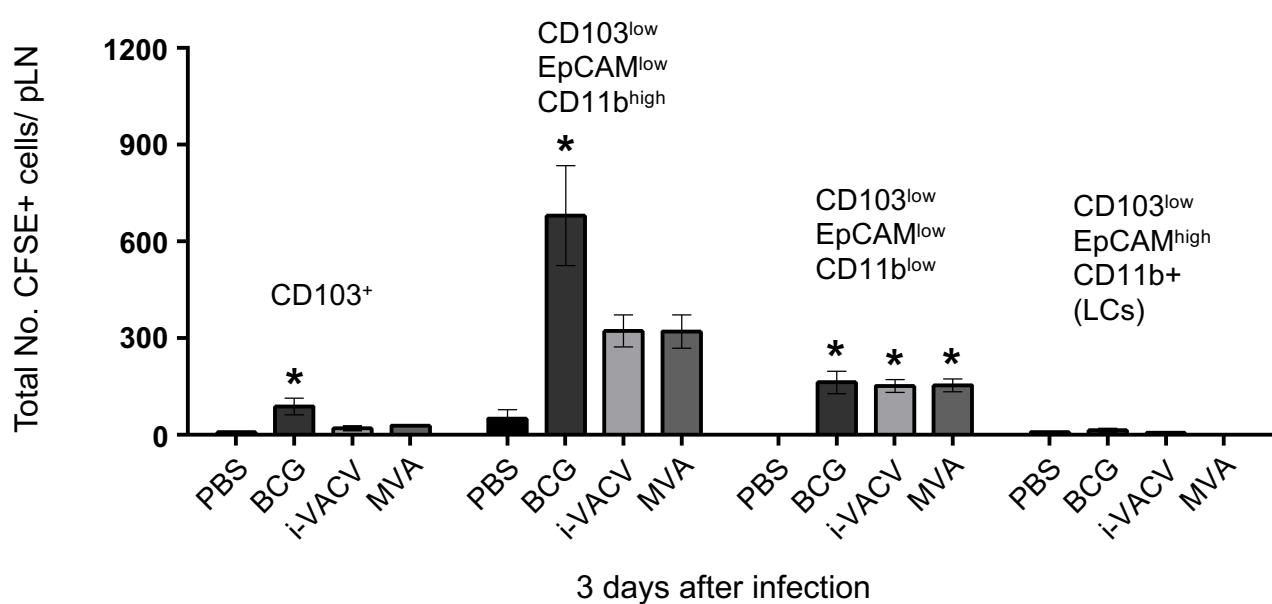

492

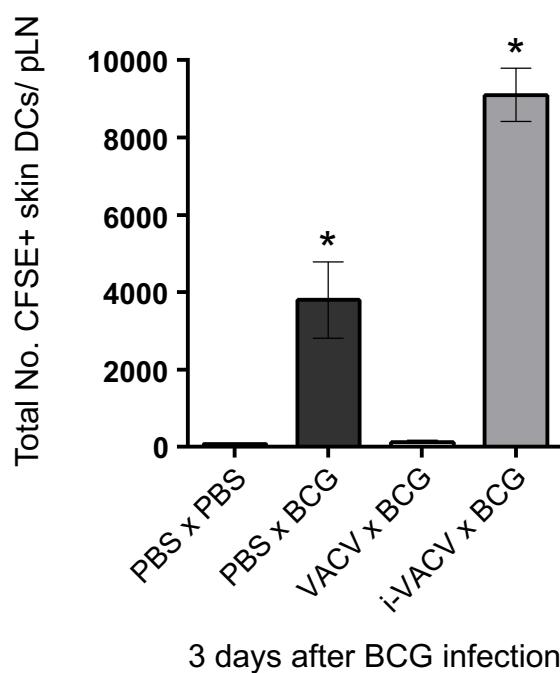
493


494

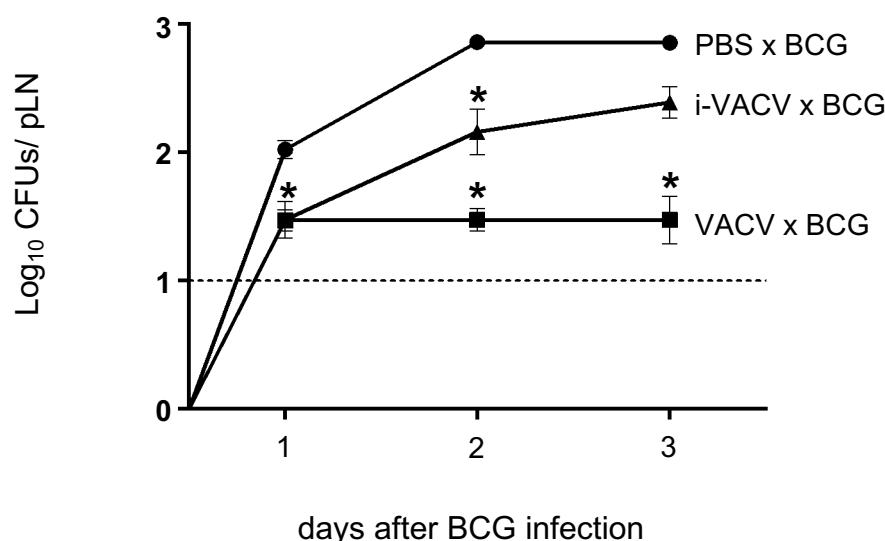
495 32. Yao, Y., P. Li, P. Singh, A. T. Thiele, D. S. Wilkes, G. J. Renukaradhya, R. R.
496 Brutkiewicz, J. B. Travers, G. D. Luker, S. C. Hong, J. S. Blum, and C. H. Chang.
497 2007. Vaccinia virus infection induces dendritic cell maturation but inhibits antigen
498 presentation by MHC class II. *Cell Immunol* 246: 92-102.
499 33. Chahroudi, A., D. A. Garber, P. Reeves, L. Liu, D. Kalman, and M. B. Feinberg.
500 2006. Differences and similarities in viral life cycle progression and host cell
501 physiology after infection of human dendritic cells with modified vaccinia virus
502 Ankara and vaccinia virus. *J Virol* 80: 8469-8481.
503 34. Mayer-Barber, K. D., B. B. Andrade, D. L. Barber, S. Hieny, C. G. Feng, P. Caspar, S.
504 Oland, S. Gordon, and A. Sher. 2011. Innate and adaptive interferons suppress IL-
505 1alpha and IL-1beta production by distinct pulmonary myeloid subsets during
506 Mycobacterium tuberculosis infection. *Immunity* 35: 1023-1034.
507 35. Louie, D. A. P., and S. Liao. 2019. Lymph Node Subcapsular Sinus Macrophages as
508 the Frontline of Lymphatic Immune Defense. *Front Immunol* 10.
509 36. Tian, T., M. Q. Jin, K. Dubin, S. L. King, W. Hoetzenegger, G. F. Murphy, C. A.
510 Chen, T. S. Kupper, and R. C. Fuhlbrigge. 2017. IL-1R type 1-deficient mice
511 demonstrate an impaired host immune response against cutaneous vaccinia virus
512 infection. *J Immunol* 198: 4341-4351.
513 37. Sagoo, P., Z. Garcia, B. Breart, F. Lemaitre, D. Michonneau, M. L. Albert, Y. Levy,
514 and P. Bousso. 2016. In vivo imaging of inflammasome activation reveals a
515 subcapsular macrophage burst response that mobilizes innate and adaptive immunity.
516 *Nat Med* 22: 64-71.
517 38. Baratin, M., L. Simon, A. Jorquera, C. Ghigo, D. Dembele, J. Nowak, R. Gentek, S.
518 Wienert, F. Klauschen, B. Malissen, M. Dalod, and M. Bajénoff. 2017. T cell zone
519 resident macrophages silently dispose of apoptotic cells in the lymph node. *Immunity*
520 47: 349-362.e345.
521 39. Min, J., D. Yang, M. Kim, K. Haam, A. Yoo, J.-H. Choi, B. U. Schraml, Y. S. Kim,
522 D. Kim, and S.-J. Kang. 2018. Inflammation induces two types of inflammatory
523 dendritic cells in inflamed lymph nodes. *Exp Mol Med* 50: e458-e458.
524


A**B****C****FIGURE 1**



A

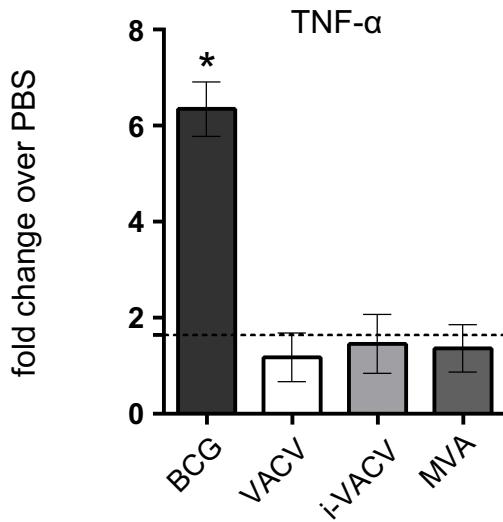

3 days after infection

B

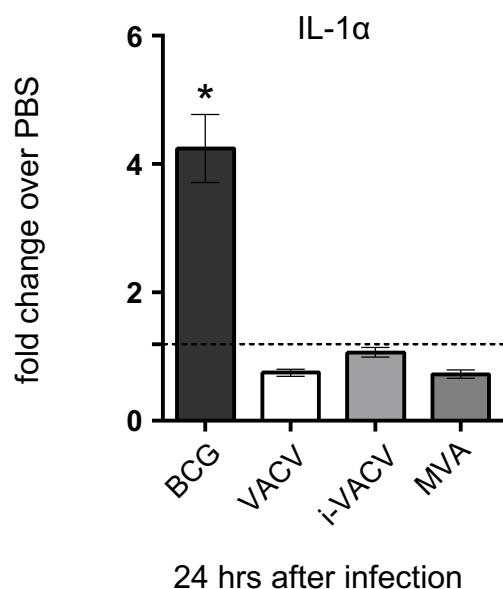

3 days after infection

C**FIGURE 2**

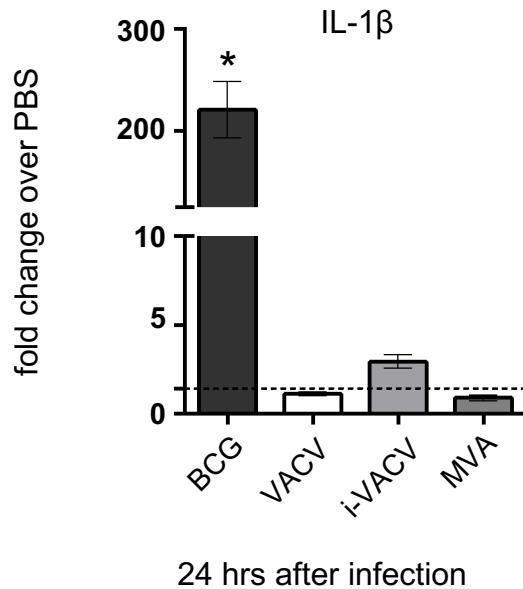
A**B**


A

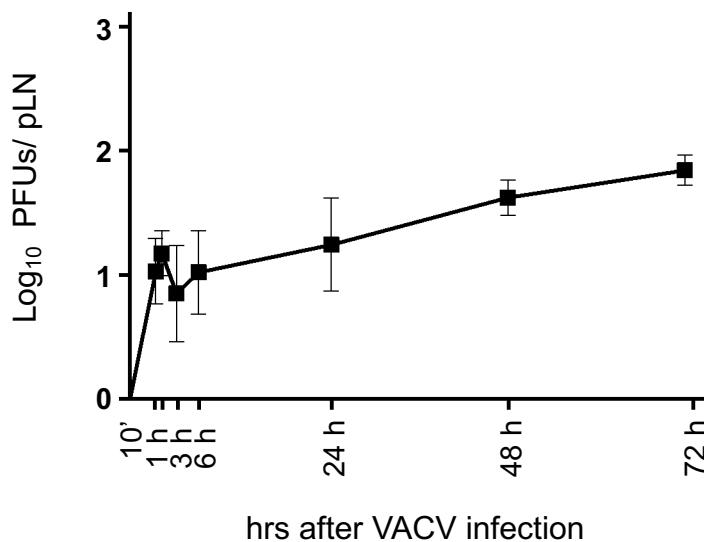
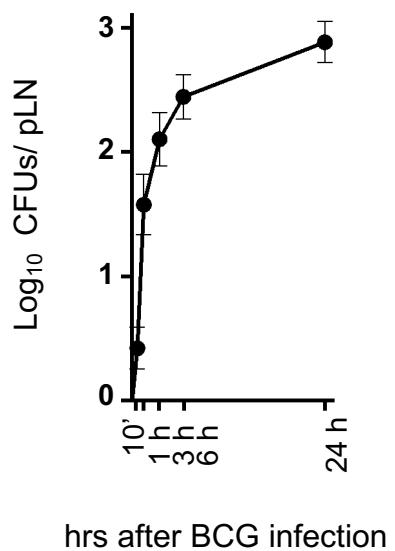
3 days after BCG infection

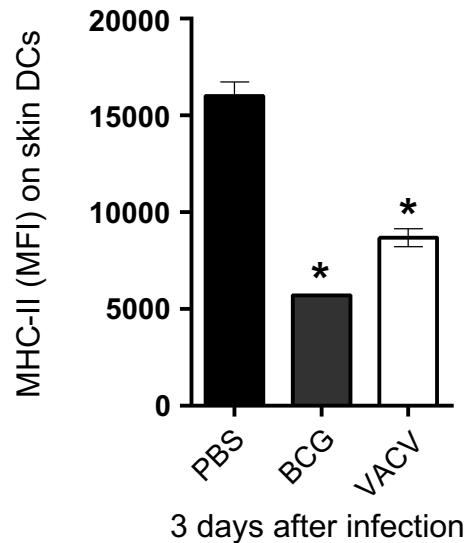
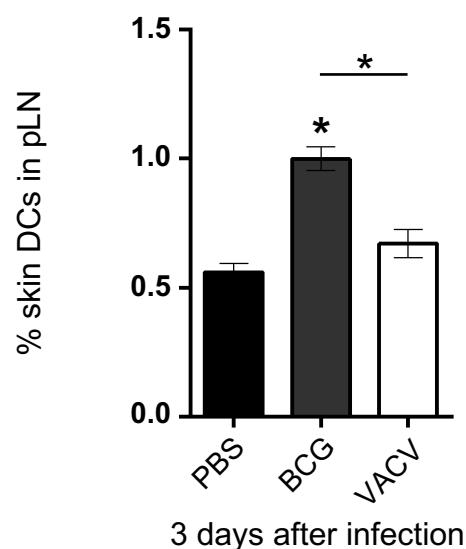

B

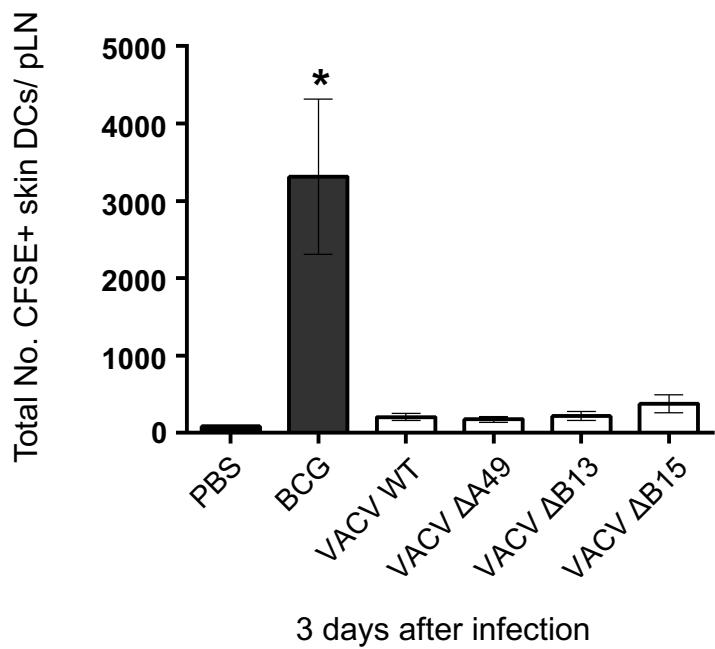
days after BCG infection


FIGURE 4

24 hrs after infection



24 hrs after infection



24 hrs after infection

FIGURE 5

A**B**

A**B**

