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Abstract
Post-translational modification (PTM) sites have become popular for predictor development. However,
with the exception  of  phosphorylation  and a handful  of  other examples,  PTMs suffer  from a limited
number  of  available  training  examples  and  their  sparsity  in  protein  sequences.  Here,  proline
hydroxylation is taken as an example to compare different methods and evaluate their performance on
new experimentally determined sites. As a proxy for an effective experimental design, predictors require
both high specificity and sensitivity.  However, the self-reported performance is often not indicative of
prediction quality and detection of new sites is not guaranteed. We have benchmarked seven published
hydroxylation  site  predictors  on  two  newly  constructed  independent  datasets.  The  self-reported
performance widely overestimates the real accuracy measured on independent datasets. No predictor
performs better than random on new examples, indicating the refined models are not sufficiently general
to detect new sites. The number of false positives is high and precision low, in particular for non-collagen
proteins  whose motifs are not  conserved.  In short,  existing predictors for  hydroxylation  sites do not
appear to generalize to new data. Caution is advised when dealing with PTM predictors in the absence
of independent evaluations, in particular for unique specific sites such as those involved in signalling.

Author Summary
Machine  learning  methods  are  extensively  used  by  biologists  to  design  and  interpret  experiments.
Predictors which take the only sequence as input are of particular interest due to the large amount of
sequence data available and self-reported performance is often very high. In this work, we evaluated
post-translational modification (PTM) predictors for hydroxylation sites and found that they perform no
better than random, in strong contrast to performances reported in the original publications. PTMs are
chemical  amino acids alterations providing the cell  with conditional  mechanisms to fine tune protein
function,  thereby  regulating  complex  biological  processes  such  as  signalling  and  cell  cycle.
Hydroxylation sites are a good PTM test case due to the availability of a range of predictors and an
abundance  of  newly  experimentally  detected  modification  sites.  Poor  performances  in  our  results
highlight the overlooked problem of predicting PTMs when best practices are not followed and training
data are likely incomplete. Experimentalists should be careful when using PTM predictors blindly and
more independent assessments are needed to separate the wheat from the chaff in the field. 
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Introduction
Post  translational  modifications (PTMs) are alterations of  the primary structure of  the protein.  PTMs
include  both  new  covalent  links  and  cleavage  events.  Almost  every  protein  in  the  cell  undergoes
modification during its lifetime (1). More than 600 different amino acid modifications are catalogued in
UniProtKB (2). PTMs provide a way to expand the spectrum of protein functions and an additional layer
for pathway regulation (3). They are catalyzed by enzymes that identify a specific site in the substrate
protein. A plurality of PTM motifs reside in intrinsically disordered regions in order to provide enzyme
accessibility (4). Over the last few years, a deluge of methods have been proposed to predict PTM sites
from sequence. For a recent review see e.g.  (5). The reasons for this popularity are broadly twofold.
Given  the  paucity  of  experimental  data  and  relevance  of  PTMs  for  cellular  regulation,  there  is  a
legitimate expectation that computational tools should fill in the experimental void. Computational tools
can become fundamental as hypothesis generators for an effective design of PTM experiments. The
implementation of predictors is straightforward thanks to the sequence specificity and peculiar physico-
chemical  properties  of  PTM  motifs.  This  simplicity  makes  PTM  prediction  from  sequence  easily
accessible to machine learning methods, but also presents several potential pitfalls  (6). In order to be
useful  for  experimentalists,  PTM  predictors  should  provide  good  performance  and  be  robust.
Performance should  be high enough to limit  false  positives  to a minimum, while  ensuring sufficient
coverage. Perhaps more importantly,  the method should be robust  enough to maintain performance
across  a  range  of  different  datasets  since  it  is  often  not  clear  what  experimental  conditions  may
introduce biases. On both accounts, PTM predictors may be problematic as they are rarely assessed by
independent third parties. Indeed, their ability to identify new modification sites has been questioned (7)
and effective  results  have  been obtained  only  for  a  few PTM types  (5).  The  problem of  validating
machine learning methods has already been raised and best practices have been proposed  (6). The
self-reported accuracy may be overestimated and PTM predictors do not perform better than random
when adopting the wrong training strategy, leading to overfitting (7). Generalizing models for PTM site
recognition is difficult. The number of experimental observations is low, with a lot of new types of motifs
not yet available.
In this work, proline hydroxylation is taken as a case study to answer the question how useful PTM
predictors, especially those trained on small datasets, are to design experiments. Hydroxylation is one of
the most abundant PTMs in the cell  (8). However, despite improvements in mass-spectrometry (MS)
techniques, likely only a small fraction of all hydroxylated sites has been experimentally detected so far. 
Proline hydroxylation (PH) is a PTM carried out by prolyl  hydroxylases catalyzing the addition of an
hydroxyl group to the sidechain pyrrolidine ring at the gamma position. This modification is crucial for
correct folding of the collagen triple-helix,  which contains the conserved xPG motif.  PH also plays a
crucial role in signaling, in particular in the oxygen sensing pathways, including angiogenesis  (9) and
tumor cell proliferation (10, 11). An example is HIF1α, the main target of the von Hippel-Lindau (pVHL)
E3  ubiquitin  ligase  complex  (12).  In  normoxia,  the  prolyl  hydroxylase  domain-containing  enzymes
(PHDs) hydroxylate HIF1α, promoting its degradation through pVHL binding  (13).  Under  low oxygen
concentration, the PHDs are inactivated and HIF-1α translocates into the nucleus to activate vascular
proliferation and neoangiogenesis genes (14).
The  first  hydroxylation  predictor  (15) was  trained  to  predict  only  collagen  modifications.  Several
predictors exist as web servers: HydPred  (16), PredHydroxy  (17), RF-Hydroxysite  (18), iHyd-PseAAC
(19) and iHyd-PseCp (20). The latter has not been considered in our analysis as the server is unstable
and freezes frequently. The stand-alone software OH-Pred  (21), ModPred  (4) and AMS3  (1) are also
available.  All  are potential  tools  for  large-scale  analysis,  taking only  the protein  sequence as input.
Implementations include standard machine learning algorithms like Support Vector Machines (SVM),
artificial Neural Networks (NN) and Random Forests (RF), as well as alternative techniques like logistic
regression and probabilistic classifiers. All methods were trained on SwissProt (22) annotation but with
different strategies to define positive and negative examples and different approaches to evaluate model
quality.  None of them used a real independent  dataset for validation,  i.e.  unaffected from SwissProt
biases.
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Here, we evaluate methods considering separately collagen and signalling examples as well as single
proteins versus high throughput MS experiments. The majority of new hydroxylated prolines (Hyp) come
from two MS experiments, one on HeLa cells and another based on a large experiment made on multiple
tissues and samples, recently published and not yet available in public databases when predictors were
trained (23–25). The number of MS hydroxylated sites is comparable to the entire SwissProt database. 
In this work, we considered new data extracted from two different high-throughput MS experiments to
compare different predictors and evaluate their ability to generalize for new (unseen) motifs. The new
example  sources allowed us  to perform a real  unbiased blind  test.  A  Naïve HMM predictor  trained
including  MS data,  has  been implemented to simulate  the effect  of  integrating  new examples.  The
analysis  presented here provides a starting point  for  a critical  discussion on the problem of  reliably
predicting new PTMs.

Results
PTM experiments are usually designed with limited time and budget. Prediction tools have the potential
to  make  experiments  more  effective.  However,  effective  predictors  need  to  work  much  better  than
random. In particular,  in the case of PTMs, where the fraction of modified residues is low, the false
positive rate (fraction of false positives over negative examples) should be minimized. Due to the low
coverage of PTM evidence in public databases, predictors should be able to generalize, i.e. identify new
motifs never seen before. In the following, different predictors are evaluated against new hydroxylation
sites and various problems related to PTM prediction are discussed. In order to provide an objective
evaluation we considered “old” examples (Literature), i.e. those available from the SwissProt database at
the training time, “new” examples coming from two different mass-spectrometry experiments (MS-Kim,
MS-HeLa) and “new but easy” examples (MS-collagen) which are a subset of the “new” examples found
in collagen proteins and  therefore similar to the “old” well known collagen motifs. Table 1 shows the
main splits used in the paper. For methods which provide a confidence score, the Precision-recall and
ROC curves are reported in Supplementary Figures S3-S8.

Predictor performance
As  a  starting  point,  Table  2  shows  details  about  the  evaluated  predictors,  including  self-reported
performance. Self-reported performance is taken from the corresponding publications selecting, when
possible, values calculated on independent validation sets, i.e. excluding training examples.
In Figure 1 the performance considering manually  curated example from single  protein experiments
(Literature) is shown to simulate the evaluation provided by the method publications. The majority of
“Literature”  examples  in  fact  come from SwissProt  and were already available  at  the  training  time.
ModPred,  HydPred  and  OH-Pred  perform  as  declared.  Instead,  ASM3,  PredHydroxy  and  RF-
Hydroxysite show a decrease, with the latter performing worse than random and with a negative MCC.
The RF-Hydroxysite web server probably suffers a software bug. 
For best methods, sensitivity and specificity are both high (Supplementary Table 1). Methods providing a
confidence threshold can modulate the precision (PPV) correctly, with the exception of PredHydroxy for
which, at high confidence (0.9) the sensitivity goes to zero and behaves like a random predictor. 
Both absolute values and predictor rankings change significantly when measuring the performance on
new MS examples (Supplementary Table S4). Even if there are substantial differences in the MS site
detection  protocol  between  the  MS-HeLa  and  MS-Kim datasets,  predictors  behavior  is  very  similar
(Figure 2, Supplementary Tables S2, S3). All methods do not seem to generalize well and have a low
sensitivity. High specificity combined with low sensitivity, as for PredHydroxy, is critical in particular for
unbalanced and incomplete datasets like PTMs. For Hyp the positive to negative ratio in the human
genome is less than 0.10 and negative examples might become positive as new experimental evidence
is collected. All predictors have a balanced accuracy close to 0.5, indicating a random behavior. Notably,
only ModePred is better than random for the Ms-HeLa dataset (Figure 2, Supplementary Table S2), it
achieves  the  best  MCC  (0.13  MS-Kim,  0.32  Ms-HeLa),  but  still  not  sufficient  for  practical  use  by
experimentalists.  For example,  considering the merged MS dataset,  only  62% of  hydroxylation sites
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predictions will  be correct (precision) and 65% of modified residues undetected (false negative rate)
(supplementary Table S4). We explored the possibility of reducing false positives by implementing a
consensus predictor based on a majority vote. In all evaluations the consensus is in line with methods
average. Overall, it is fair to say that the predictors do not work on the new datasets. The NaÏve-HMM
baseline (see Material & Methods), which is trained considering also new examples, instead behaves
like a perfect  predictor.  While  NaÏve-HMM cannot  be considered free from bias as its validation set
overlaps the training set, it demonstrates how negative sites are significantly different from positives and
predictors can benefit from using them in the training. 

Collagen
A case of special  interest may be collagen, which accounts for very specific hydroxylation motifs.  In
collagen,  hydroxylation  affects  different  locations  corresponding  to  different  sites  and  molecular
meanings. Collagen presents the canonical XaaYaaGly pattern with the ProHypGly triplet found in 10.5%
of collagen motifs (37). Xaa is a Pro in 28% and Yaa is Hyp in 38% of the cases. Hyp position matters as
in Xaa it prevents the formation of the tropocollagen (TC) triple helix (38). Collagen motifs are conserved,
well studied and therefore easier to predict compared to signaling hydroxylation. Both the Literature and
MS datasets include 152 and 95 collagen sites respectively (Table 1), all grouped into only 5 different
clusters (Supplementary Figure S2). Unsurprisingly,  considering Literature collagen motifs,  predictors
stand out achieving a maximum MCC of 0.81 and accuracy of 0.94 (Supplementary Table S3). The
situation is similar when considering collagen examples from the MS dataset (Figure 3) indicating the
quality of the MS data is comparable to Literature. 

Dataset characterization
Hydroxylation is known to be linked to angiogenesis and tumor growth and hydroxylases have been
observed to be particularly active (39) with changing collagen patterns in cancer cells (40). Therefore, we
distinguished  between  examples  from  single-protein  experiments  described  in  the  literature  and
hydroxylation observed in tumor cells from MS experiments. MS experiments are not free from bias (41)
and are enriched in flexible peptides  (42). Also, one of the two MS experiments has been performed
using anti-hydroxyproline  antibody which may include a sequence bias.  In this  study we limited the
analysis to high confidence sites with at least 80% experimental score probability.
Considering site sequence similarity the Literature dataset is a subset of the MS dataset. 122 out of 165
Literature clusters (74%) have at least one MS site (intersection). These clusters include 92% of the total
Literature examples (13,196 sites). On the other end, 583 clusters including 15,437 sites have only MS
examples representing the real new hydroxylation motifs.
In order to assess non-specific proline binding, a comparison between MS and Literature datasets is
reported in Figure 4. The residue frequencies around the modified proline (Panel A) decay exponentially
for the MS dataset while Literature sites have a peak at 25% with a distribution shifted toward enriched
sites, which is probably due to a stronger contribution of highly repeated collagen patterns. On the other
end a supposed bias towards polyproline detection by MS experiments is not observed.
The number of hydroxylated sites per protein (Panel F), despite it is similar for the two datasets, shows
that  Literature  is  shifted  having  more  sites  per  proteins,  which  might  also  be  related  to  collagen
abundance. Again, the expected over-hydroxylation of MS sites is not observed. According to the MS
experiment results three quarters of the sites are hydroxylated 100% of the time, but we do not have this
information for the Literature dataset. As previously observed for several PTM types (4), hydroxylation
also has a preference for intrinsically disordered regions (Panel C) rather than for secondary structure
elements (Panel D and E) or low complexity regions (Panel B). In summary, even if the distributions are
statistically different, no particular evidence was found for a specific sequence-based bias in the MS
dataset compared to Literature examples. This suggests that the predictors, if properly trained, should be
able to generalize sufficiently to predict MS hydroxylation sites.

Discussion
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We assessed hydroxylation sites predictors as a paradigm for common situations arising with sequence-
based machine learning methods (6). Analyses using unbiased testing data set suggest that predictors
perform no better than random when predicting hydroxylation PTM on new examples, which make them
unsuitable for experimental biologists. This is in strong contrast to the self-reported performances on
independent datasets. Bad performance on new examples can be explained by one of two reasons.
First, a bad training protocol and second, the intrinsic problem of machine learning methods that are able
to  detect  only  those  patterns  similar  enough  to  training  examples.  For  the  hydroxylation  predictors
assessed  here,  problems  in  the  training  protocol  extend  also  to  the  construction  of  the  dataset.
Sometimes negatives are chosen from complement sites in hydroxylated sequences, some other times
negatives are just randomly selected from non hydroxylated sequences. The first strategy might be more
reliable  since presumably  both  positive  and negative  sites have been tested experimentally,  on the
contrary,  randomly  selected  proteins  might  include  modifications  not  observed  yet.  Some  methods
generate training datasets filtering negative sites exploiting a third-party solvent accessibility predictor in
order  to  exclude  those  in  the  protein  surface.  This  is  problematic  since  it  can  introduce  additional
uncertainty when surface residues are mispredicted. Another critical point is the sequence redundancy in
the training set. All methods, with the exception of ModPred, reduce redundancy at the protein level. This
is problematic since protein pairs with low global identity can share short regions with high similarity
including the hydroxylation sites. Even more problematic is the choice of the validation set. When both
the training and validation sets include the same bias, predictors will over-weight biased features and
perform poorly on new examples. Aside from technical problems related to machine learning, predicting
PTMs is particularly difficult because different modification patterns can be observed for different cells
and  in  response  to  environmental  conditions  including  diseases.  Apparently  hydroxylation  does  not
escape this paradigm and predictors are not able to provide a ground for generating new hypotheses.
New data  generated  by  MS experiments  will  improve  predictor  accuracy  and  sensitivity  but  at  the
moment it is hard to estimate the amount of examples necessary to represent the entire PTM motifs
space. This is particularly critical for PTMs in general as they are heavily involved in the regulation of
biological processes/signaling and have an extremely dynamic turnover.
In  conclusion,  we  have  provided  a  thorough  independent  assessment  of  previously  published
hydroxylation site predictors. Our results do not bode well  for the field, suggesting that self-reported
performance is often overestimated and difficult to replicate. This should be seen as an example for the
common pitfalls associated with many of the current PTM predictors. Knowing how likely training sets
cover the real world is crucial. Experimentalists should be careful when using PTM predictors until more
independent assessments are able to separate the wheat from the chaff in the field. 

Materials & Methods
2.1 Dataset 
Hydroxylated  substrates  were  retrieved  from  SwissProt  (26) (version  2018_03)  considering  all
organisms. The dataset is further filtered by retaining only manually curated annotations with evidence
code “experimental evidence used in manual assertion” (ECO:0000269) or “curator inference used in
manual  assertion”  (ECO:0000305).  UniProtKB provides  a controlled  vocabulary  of  all  PTM types of
which the following terms are considered: 4-hydroxyproline (1,033 sites), hydroxyproline (220 sites), 3-
hydroxyproline (27 sites), 3,4-dihydroxyproline (5 sites) and (3R,4R)-3,4-dihydroxyproline (1 site). 
Additional sites are retrieved from the literature (27–30) including two large scale MS experiments, one
on HeLa cells  (23) and another based on 30 normal human samples including almost all tissues (24),
reanalysed  with  a  new  software,  TagGraph  (PRIDE  accession  PXD005912)  (25).  MS  experiments
provide the majority of new examples which are currently not included in SwissProt. In order to minimize
assignment errors HeLa examples are filtered to retain only sites with a confidence probability of 0.8.
Compared to the original analysis in  (24), TagGraph on average tripled the number of identified sites
with a degree of variability depending on the type of tissue.
Even though some methods predict lysine and tyrosine hydroxylation, only prolines are considered in the
assessment  in  order  to  reach  statistical  significance  given  the  paucity  of  data  for  other  PTMs.  All
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predictors identify modified residues exploiting the sequence context (surrounding residues) with the
assumption that it encodes sufficient information for molecular recognition. The maximum window size
adopted by the methods used in this study is 21 residues. 
The final dataset includes 1,419 proteins which contain at least one hydroxylated proline and for which
all predictors give an output. Only 10% of all prolines, 3,771 out of 37,670, are hydroxylated. Sites are
defined considering a window of 13 residues centered on the proline. The prediction evaluation has been
performed on a subset of sites selected as described below and shown in Figure 5.  
Both  positive  and  negative  sites  are  clustered  together  based  on  sequence  similarity.  Clusters  are
calculated from a distance matrix representing the pairwise sequence divergence between all sites. The
distance is computed as the inverse of the similarity score. Similarity is calculated elementwise for each
pair of residues of the two sequence sites. The score of a single pair is taken from the Blosum62 matrix,
with a penalty of -5 for gap opening and -1 for gap extension. Gaps are introduced to substitute non-
canonical residues or to pad the site sequence to reach the window size when a proline is too close to
sequence ends. In Supplementary Figure S1 the dendrogram of hierarchical clustering calculated with
UPGMA algorithm as implemented in the SciPy Python library is reported. Negative examples too similar
to positive examples, i.e.  falling inside clusters containing at least one hydroxylated proline (positive
site), are removed. The evaluation of the predictors is performed on 1,000 different replica sets. Each
replica is built by random picking 70% of positive sites available and the same number of negatives, so
to obtain a balanced dataset.
The evaluation is provided for different subsets of positive examples. Namely, sites from single protein
experiments  (Literature)  and  mass-spectrometry  (MS-Kim,  MS-HeLa).  The  two  mass-spectrometry
datasets were also merged for some of the presented analysis (MS dataset). Both the Literature and MS
datasets can be further divided into collagen and non-collagen entries by recognizing the collagen motif
from  Pfam  domain  annotation  PF01391  (31).  The  dataset  of  collagen  sites  from  single  protein
experiments is named Literature-collagen and collagen sites from MS is MS-collagen. For each subset
and each replica, the tested examples are resampled as described above.
To characterize the dataset sequences, secondary structure (helix/sheet propensity) is predicted using
FELLS (32), functional disorder with MobiDB-lite (33) and low complexity with SEG (34). All predictors
were executed on the full protein sequence. The fraction of residues assigned to a given feature, i.e.
“content”, is calculated for each site. Proline content is calculated as the fraction of prolines in the site
irrespective of any hydroxylation modification. 

2.3 Prediction
We evaluated seven different predictors on entire protein sequences. Some are implemented as stand-
alone software and others as web servers. None of them provide any APIs for programmatic access and
predictions were taken from web page results. The iHydPse-CP web server (20) stopped working during
the benchmark and was excluded from the evaluation  as it  was never restored.  Another  method is
described  in  the  literature  (35) but  the  software  has  not  been  released  even  upon  request.  Some
methods are designed to predict  different modification types. Our evaluation focuses only on proline
hydroxylation in order to provide statistically significant results. Some predictors (HydPred, ModPred,
PredHydroxy, RF-Hydroxysite) estimate prediction quality providing a confidence value. When different
quality levels are provided we evaluated them as different predictors. In all figures suffix numbers in the
method names indicate increasing quality threshold as defined by developers.
In addition,  a random baseline method is benchmarked where predictions are obtained by randomly
assigning each site as either hydroxylated or not with 50% probability.  We decided not to include a
separate random baseline with a probability proportional to the data imbalance since we do not really
know this probability and it is difficult to estimate, in particular for hydroxylation. The random baseline
represents a situation where prediction is effectively useless and predictors should achieve significantly
better results to be of any practical value for experimentalists.

2.4 Naive HMM
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The “Naive-HMM” baseline method has been implemented to demonstrate that negative examples are
very different from positive sites and that they may be correctly classified by integrating new information
into training datasets. A database of 750 HMMs representing hydroxylated motifs were built considering
those clusters containing at least one positive site as seeds using the HMMER software  (36). Naive-
HMM predictions were generated by aligning all dataset sites against the HMM database. Hits with an
alignment E-value better than 1.0 are considered positive predictions. The very permissive E-value is
necessary  because  the sequence  sites  are  very  short  compared to  full  Pfam domains.  Other,  less
permissive,  E-value  thresholds  do  not  significantly  affect  the  performance.  It  should  be  noted  that
positive examples in the training and test sets overlap completely, even if negative sites inside HMM
seeds are retained. The Naive-HMM baseline is therefore not meant to be of any use for biologists and
does not guarantee to generalize for new sites.

2.5 Evaluation
The assessment is site centric, i.e. all modified (and non-modified) prolines are considered independent
examples when belonging to the same protein. True positives (TP) correspond to correctly predicted
hydroxylation sites whereas false positives (FP) are prolines predicted as modified in contradiction to
experimental observations. True negatives (TN) are sites predicted and observed as not hydroxylated,
false negatives (FN) are negative predictions of truly modified prolines. The sensitivity (Sn), specificity
(Sp), weighted (or balanced) accuracy (WACC), F-measure (F1), Precision or Positive Predictive Value
(PREC)  and  Matthew’s  correlation  coefficient  (MCC)  are  computed  using  standard  definitions  (see
Supplementary Material). Even where not mentioned explicitly the accuracy is always weighted.
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Figure Legends

Figure 1. Performance on literature examples.
The evaluation is performed only considering hydroxylated sites detected by single protein experiments 
(Literature dataset). Error bars are the standard deviation calculated over 1,000 replica sets. The 
consensus baseline method is the majority vote across all predictors. Suffix numbers in the method 
names indicate increasing quality threshold as defined by developers.

Figure 2. Performance on the MS-HeLa and MS-Kim datasets.
The evaluation is performed only considering hydroxylated sites detected by mass-spectrometry 
experiments (MS-HeLa  and MS-Kim dataset). Consensus and errors are calculated as in the previous 
figure. Suffix numbers in the method names indicate increasing quality threshold as defined by 
developers.

Figure 3. Performance on MS-collagen examples.
The evaluation is performed only considering hydroxylated sites detected by mass-spectrometry 
experiments and belonging to collagen proteins  (MS-collagen dataset). Consensus and errors are 
calculated as in the previous figure. Suffix numbers in the method names indicate increasing quality 
threshold as defined by developers.

Figure 4. Features distribution for MS and Literature sites.
Content refers to the fraction of residues in the site sequence associated with a given feature. Density 
refers to the fraction of proteins in the dataset with a given number of sites.

Figure 5. Dataset generation
Negative (blue dots) and positive sites (red dots) are clustered based on sequence similarity. Positive 
clusters (gray background) contains at least one hydroxylates site and negative examples falling inside 
positive clusters are removed. 1,000 replica sets are created by random sampling 70% of the positive 
sites and the same number from the negatives.

Supporting Information Legends

S1 Supplementary material. Supplementary tables and figures.

S2 Supplementary code and data. Evaluation source code, predictions and reference datasets.
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Tables

Dataset Clusters Evaluated sites Filtered negative sites*

Collagen 5 243 4,517
Literature-collagen 4 152 4,588

MS-collagen 4 95 4,508
Literature 167 877 13,481
MS-HeLa 198 324 14,982
MS-Kim 625 1,694 24,692

MS 705 2,002 26,631
Negative 493 7,875^ -

Table 1. Datasets 
Negative clusters (“Negative”) contain only clusters with non-hydroxylated sites. Others datasets have 
clusters with both positive and negative examples, but negatives are completely removed during 
evaluation (*). Negative sites (^) considered during evaluation are always resampled for each replica, 
based on the size of the positive dataset.

Method Implementation 
Training

set
available

Type Window
Self-reported performance

Sp Sn Acc MCC AUC

AMS3
Basu et al. 2010

NN / Stand alone no P,K 9 - 0.95 - - 0.97

HydPred
Li et al. 2016

RF / Web service yes P,K 13 0.89 0.71 0.85 0.60 -

iHyd-PseAAC
Xu et al. 2014

Vector similarity /
Web service

yes P,K 13 0.79 0.71 0.75 0.52 -

ModPred
Pejaver et al. 2014

Logistic regression /
Stand alone

yes P,K,Y 21 0.90 0.54 0.72 - 0.83

OH-Pred
Shi et al. 2015

SVM / Stand alone no P,K 15 0.82 0.76 0.81 0.52 -

PredHydroxy
Jia et al. 2017 

SVM / Web Service yes P,K 13 0.87 0.96 0.92 0.83 -

RF-Hydroxysite
Ismail et al. 2016 

RF / Web service no P,K 13 0.96 0.97 0.96 0.93 -

Table 2. Methods overview
Self-reported performance is taken from the corresponding method publications preferring values 
reported from independent validation sets, i.e. not used in the training.
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