
Signal propagation via cortical hierarchies
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The wiring of the brain is organized around a putative unimodal-transmodal hierarchy. Here we
investigate how this intrinsic hierarchical organization of the brain shapes the transmission of infor-
mation among regions. The hierarchical positioning of individual regions was quantified by applying
diffusion map embedding to resting state functional MRI networks. Structural networks were recon-
structed from diffusion spectrum imaging and topological shortest paths among all brain regions were
computed. Sequences of nodes encountered along a path were labelled by their hierarchical position,
tracing out path motifs. We find that the cortical hierarchy guides communication in the network.
Specifically, nodes are more likely to forward signals to nodes closer in the hierarchy and cover a range
of unimodal and transmodal regions, potentially enriching or diversifying signals en route. We also
find evidence of systematic detours, particularly in attention networks, where communication is re-
routed. Altogether, the present work highlights how the cortical hierarchy shapes signal exchange and
imparts behaviourally-relevant communication patterns in brain networks.

INTRODUCTION

Adaptive behaviour requires transmission of informa-
tion between neuronal populations. The architecture of
white matter networks supports an array of signal prop-
agation patterns, linking sensation, cognition and action
[3]. Brain networks, reconstructed from multiple species
and at multiple spatial scales, possess multiple nonran-
dom attributes that make such flexible communication
possible, including near-minimal path length and high
clustering [28, 32], as well as assortative community
structure [8] and a densely interconnected core [58].

How do signals traverse neural circuits and what types
of neuronal populations do they encounter along the
way? The sequence of neurons and neuronal populations
that a signal passes through presumably transforms the
nature of the signal itself and its downstream effect [1,
4, 24, 41, 42, 53, 64]. For example, signals exchanged
between closely clustered and functionally-aligned popu-
lations may be relatively unchanged, whereas signals ex-
changed between anatomically- and functionally-distant
populations may be enriched or diversified [5]. A simple
way to infer potential signal trajectories in a network is
the topological shortest path (hereafter simply referred
to as a “path”) [2, 58]. For many classes of networks,
including brain networks, decentralized communication
mechanisms may also take advantage of shortest paths
without any knowledge of the global topology, including
diffusion [20] and navigation [54]. Thus, paths connect-
ing pairs of nodes trace out unique motifs along their
trajectory, meaning that the nature of communication be-
tween any two regions is subject to the underlying struc-
ture [4, 24, 40].

Signal propagation is likely to be constrained by the
hierarchical organization of cortical circuits. Evidence
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from classical anatomy and modern neuroimaging points
to a continuous sensory-fugal hierarchy, spanning uni-
modal to transmodal cortex [23, 38]. This continuous
axis or gradient can be observed in the functional archi-
tecture of the cortex [36], running parallel to gradients
in intracortical myelin [30, 48], cortical thickness [61],
gene transcription [9, 19], excitation-inhibition ratios
[62] and intrinsic temporal time scales [33, 44]. The in-
fluence of these multi-modal gradients on signaling and
communication in structural networks is a key question
in systems neuroscience [53, 60].

Here we investigate how the functional hierarchy
shapes the propagation of signals. We reconstruct
paths on structural networks and trace their trajectories
through the unimodal-transmodal gradient. We find that
the hierarchical organization of the cerebral cortex con-
strains path trajectories, such that most paths follow a
canonical bottom-up (ascending the hierarchy) or top-
down (descending the hierarchy) trajectory. Importantly,
we find that paths may potentially reverse direction in
attention networks. Altogether, we find that the hier-
archical organization of cortical circuits imposes a com-
munication space on the structural network, potentiating
some types of signal propagation patterns while attenu-
ating others.

RESULTS

The results are organized as follows. We first develop a
methodology to trace signal trajectories through the pu-
tative unimodal-transmodal hierarchy. We then investi-
gate the extent to which signal flows conform to the hier-
archical organization of the cortex, and instances where
they diverge. Finally, we consider whether information
about hierarchical position is sufficient to sustain a de-
centralized navigation-like communication process. Data
sources include (see Materials and Methods for detailed
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Figure 1. Tracing communication paths through cortical hierarchies | Structural and functional networks are reconstructed from
diffusion weighted MRI and resting state functional MRI, respectively. Shortest paths between all pairs of nodes are computed for
structural networks using the Floyd-Warshall algorithm [18, 52, 63]. A cortical hierarchy is recovered from functional networks
using diffusion map embedding [11]. The first eigenvector is used to label nodes according to their position in the putative
unimodal-transmodal hierarchy [36]. Sequences of nodes encountered along a path are labelled by their hierarchical position,
tracing out path motifs. Note that some paths are longer and some are shorter, some paths smoothly ascend or descend through
the hierarchy, and some paths reverse their trajectory one or more times en route to the target node.

procedures):

• Structural connectivity. Structural and functional
connectivity were derived from N = 66 healthy
participants (source: Lausanne University Hospi-
tal). Structural connectivity was reconstructed us-
ing diffusion spectrum imaging and determinis-
tic streamline tractography. A consistency- and
length-based procedure was then used to assemble
a group-representative weighted structural connec-
tivity matrix [7, 39, 40].

• Functional connectivity. Functional connectiv-
ity was estimated in the same individuals using
resting-state functional MRI (rs-fMRI). A functional
connectivity matrix was constructed using pair-
wise Pearson correlations among regional time
courses. A group-average functional connectivity
matrix was then estimated as the mean connectiv-
ity of pair-wise connections across individuals.

We trace path motifs between all possible source-
target node pairs on the weighted structural network
(Fig. 1; for a conceptually similar approach, see [58]).
We label nodes according to two different nomencla-
tures: hierarchical position and intrinsic network affili-
ation [65]. Hierarchical position is defined as the first
principal connectivity gradient of the diffusion map em-
bedding over the FC matrix [36] (see Materials and Meth-
ods). The continuous embedding vector spans a putative
hierarchy, where lower values correspond to unimodal

regions and greater values correspond to transmodal re-
gions. We use the empirical cumulative distribution func-
tion of the first gradient to bin nodes into ten classes of
equal size. We enumerate the classes from 1 to 10, where
1 corresponds to unimodal cortex and 10 to transmodal
cortex.

Path motifs follow hierarchies

We first investigate how path motifs map onto the pu-
tative unimodal-transmodal hierarchy. For a given source
and target class, we consider all possible paths between
the constituent source nodes and target nodes. We then
compute the mean hierarchical position of every step
encountered along the paths. Fig. 2 shows the mean
path motifs originating from a low (class 2), intermedi-
ate (class 6) and high (class 9) level source region, to the
same three regions as targets. Colours distinguish paths
of different lengths.

In general, path motif shape depends on the rela-
tive hierarchical position of the source and target nodes
(Fig. 2; rows and columns, respectively). For most paths,
motifs smoothly transition through the hierarchy, but
there exist systematic differences in the nature of the
transitions. Paths traversing a larger difference in the
hierarchy (e.g. from class 2 to class 9) tend to follow a
more monotonic trajectory. Conversely, when the source
and the target nodes occupy the same or neighbouring
positions in the hierarchy, paths are more likely to fol-
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Figure 2. Path motifs | For each source-target pair, nodes along the corresponding path are labeled according to their position on
the unimodal-transmodal cortical hierarchy. Hierarchy values are binned into 10 equally-sized levels, where level 1 corresponds
to unimodal cortex and level 10 corresponds to transmodal cortex. Paths motifs are shown for three levels of source nodes (2, 6
and 9; rows) and three levels of target nodes (2, 6 and 9; columns). Each plot shows the mean path motifs: path position (hop)
is shown on the x-axis and the hierarchical level of the node at each hop is shown on the y-axis. Paths are stratified according to
their length, such that warmer colours indicate shorter paths and colder colours indicate longer paths. Shaded regions indicate
95% confidence intervals. Fig. S1 shows the corresponding results for a label-permuting null model.

low a U-shape, effectively taking detours to intermediate
parts of the hierarchy (e.g. when source and target is
class 2). These trajectories are in contrast to trajecto-
ries recovered from null networks with randomized hier-
archy labels, wherein paths traverse the hierarchy more
slowly and less smoothly (Fig. S1).

Inflection points in communication flow

In the previous section we observed that anatomical
connectivity fundamentally shapes how the unimodal-
transmodal hierarchy is traversed, promoting some tran-
sitions while attenuating others. To investigate how
these “pushing” and “pulling” forces shape the commu-
nication landscape, we next consider path trajectories at
the nodal level. Specifically, we study how the orienta-
tion of the flows changes along the course of the journey
towards the target, which we quantify by the slope of
paths through the hierarchy.

For a given node, we calculate the mean slope of all
paths as they pass through that node (Fig. 3a). If, on
average, the slope of the paths when passing through
a node is positive, this suggests that the transmission
is ascending through the hierarchy, from unimodal to-
wards transmodal cortex. Conversely, nodes with nega-
tive slopes direct information flow towards areas lower in
the cortical hierarchy. Note that, in general, a node could
participate in both ascending and descending paths, and
this dependent measure reflects the mean flow of infor-
mation through that node.

We first note that the mean slope for a given node
is negatively correlated with the node’s position in the
unimodal-transmodal hierarchy (Fig. 3b; r = −0.72).
In other words, nodes that occupy higher positions in
the hierarchy tend to direct signal traffic towards nodes
lower in the hierarchy, and vice versa. This is consis-
tent with the intuition developed in the previous subsec-
tion. Fig. 3b shows that areas that exhibit mainly posi-
tive mean slope (i.e. direct information to ascend the hi-
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Figure 3. Inflection points in communication flow | As each path traverses the hierarchy, we can infer how individual brain
regions direct communication flow. (a) Schematic showing a path motif, where the position along the x-axis indicates a node and
the y-axis indicates the hierarchical position of the node. The slope of the curve at each point tells whether the path is ascending
or descending in the hierarchy. We denote nodes where slope changes sign as turning points. Nodes where the slope changes from
positive to negative are turning points down, and nodes where the slope changes from negative to positive are turning points up.
(b) The mean slope of each node (y-axis) is anticorrelated with its position in the hierarchy. The mean slope of each node is shown
for every brain region; warm colours indicate positive slopes, cold colours indicate negative slopes. (c) The mean slope for seven
intrinsic networks [65]. (d) Mean probability of turning points up and down in seven intrinsic networks. Asterisks indicate values
that are statistically significant according a label-permuting null distribution (p < 0.01, FDR-corrected). (e) Turning point up
probability for individual regions. (f) Turning point down probability for individual regions. Network assignments: DM = default
mode, FP = fronto-parietal, LIM = limbic, VA = ventral attention, DA = dorsal attention, SM = somatomotor, VIS = visual.

erarchy) are the supplementary motor area, somatomo-
tor cortex and visual cortex. Areas with negative slope
(i.e. directing information to descend the hierarchy) are
the prefrontal cortex, the posterior parietal cortex, au-
ditory cortex and the inferotemporal cortex. Stratifying
these nodes by their membership in intrinsic networks
[65], we find mean positive slopes for the visual, so-
matomotor, dorsal attention, ventral attention and fron-
toparietal networks, and mean negative slopes for the
limbic and default mode networks (Fig. 3c). Given that
mean slope is anticorrelated with hierarchical position,
for completeness we also regressed out hierarchical po-
sition to reveal nodes where slopes (i.e. tendency to di-
rect information) were either greater or lower than ex-
pected given their hierarchical position. Fig. S2 shows
that these hierarchy-corrected slopes are generally sim-
ilar, with greater emphasis on dorosolateral prefrontal
cortex and medial parietal cortex as regions that direct

communication higher in the hierarchy.
The slope of a path traversing a node also allows us to

identify areas that re-direct flow direction and promote
detours. As we follow a path trajectory, we look for local
extremum nodes that reside between slopes with differ-
ent signs, and tag them as turning points. Depending
on the type of extremum, we name the turning points
as “turning up” points (local minima) or “turning down”
points (local maxima) (Fig. 3a). For example, a turning
down point is a node that occupies a relatively higher
position in the hierarchy and connects two lower-level
brain areas. We first stratify nodes by their member-
ship in intrinsic networks and compute the mean turn-
ing point probability for each network. Fig. 3d shows
that networks with the greatest probability of turning up
paths (i.e. re-directing them to ascend the hierarchy)
are the dorsal attention and ventral attention, whereas
the default mode network has the greatest turning down
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Figure 4. Transition probabilities in communication | As paths traverse the hierarchy, we quantify the probability that the
current position of a node in the unimodal-transmodal hierarchy depends on previous positions in the path. (a) With 1-hop
transitions we quantify the transition probability of a path going from hierarchy level i to level j in one step or hop. With multi-hop
transitions we quantify the probability of a path going from hierarchy level i to level j in k steps or hops. Thus, in a single path we
consider multiple transitions. (b) Nodes are stratified by their hierarchical position in 10 equally-sized bins. Transition probability
matrices are shown where source nodes (hierarchy bins) are in the rows, and target nodes (hierarchy bins) are in the columns.
The top row shows 1-hop transition probabilities and the bottom row shows multi-hop transition probabilities. Transitions are
shown for paths of up to length 9, corresponding to the diameter of the network. Note that the values in the matrices display mean
probabilities over multiple paths, hence the rows do not necessarily sum to 1 (see Materials and Methods for more detail).

probability. At the regional level, regions with the great-
est probability of turning up the paths tend to be in
attention-related networks, including the supplementary
motor area and posterior parietal cortex (Fig. 3e). Con-
versely, superior and dorsolateral prefrontal, inferotem-
poral and lateral temporal cortex are the most probable
turning down points (Fig. 3f).

Temporal evolution of communication flow

How does the hierarchical organization of the brain
shape communication across time? Given that most com-
munication paths conform to the hierarchical organiza-
tion of the network, we next ask whether the hierarchy
imparts memory on communication processes by exert-
ing influence on the path trajectories. To address this
question, we consider the temporal evolution of commu-
nication patterns, envisioning the sequence of nodes tra-
versed along a path as a time series.

We explore how the position of a walker traversing the
path depends on the positions it occupied previously in
its trajectory. Specifically, we compute the probability of
going from a node that belongs to the hierarchy level i
to a node that belongs to hierarchy level j in one step

as a function of the position over the path (1-hop transi-
tions; Fig. 4a, left). To quantify whether the hierarchical
position of a walker depends on its previous hierarchical
positions (multi-hop transitions), we measure the transi-
tion probability of occupying hierarchy level i at step t,
given that the walker occupied hierarchy level j at step
t− k, changing k from 1 to the length of the path (multi-
hop transitions; Fig. 4a, right).

Fig. 4b (top) shows 1-hop transition probabilities, as in
a first-order Markov process. Nodes are stratified accord-
ing to their position in the hierarchy, with source nodes in
the rows and target nodes in the columns. Mean transi-
tion probabilities are greatest over the diagonal, favour-
ing the transmission of a walker to neighbouring posi-
tions in the hierarchy, repeating the theme from the pre-
vious two subsections. Fig. 4 (bottom) shows average
probabilities for transitions (memories) over 2 steps or
more. For memories 2, 3 and 4 steps away, transitions
become more uniform, meaning that the probability of
occupying current position j does not depend greatly on
the position it occupied 2, 3 or 4 steps before. For greater
memory values of 5, 6 and 7, there is an emergence of
transitions between lower and intermediate, and higher
and intermediate hierarchy levels, with almost zero prob-
ability of a transition between lower and higher levels.
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Figure 5. Navigation via hierarchical proximity | We evaluate the extent to which shortest paths can be recapitulated by an agent
who is aware of the three-dimensional spatial positions of the nodes (spatial navigation) and/or the hierarchical positions of the
nodes (hierarchical navigation), but not the topology of the network. (a) Schematic showing a putative path from source target,
where an agent occupies the third node in the path. Nodes are coloured according to their position in the hierarchy. If the agent
navigates using spatial information, it will transition to the neighbour that is physically closest to the target (bottom). If the agent
navigates using hierarchical information, it will transition to the neighbour that is hierarchically closest to the target (top). We
derive the navigation preference of each node (β parameter) as the source of information that maximizes recapitulation of shortest
paths [45, 46, 54]. When β is valued close to 1, paths originating from the node are better recovered using spatial proximity
compared to hierarchical proximity; the opposite is true when β is valued close 0. (b) Histogram of β values across all nodes in the
network. Histograms are also shown for seven intrinsic networks. (c) Individual brain regions are coloured by their preference for
spatial navigation (warm colours; β > 0.8) or hierarchical navigation (cold colours; β < 0.2). Network assignments: DM = default
mode, FP = fronto-parietal, LIM = limbic, VA = ventral attention, DA = dorsal attention, SM = somatomotor, VIS = visual.

Altogether, we find that most 1-hop transitions smoothly
follow the hierarchy, but that communication over longer
trajectories is biased towards some levels of the hierarchy
and away from others, particularly if the starting point is
at intermediate levels. In other words, the nodes visited
by a walker earlier in the trajectory may exert influence
on transition probabilities later in the trajectory.

Navigation via hierarchies

Given that communication paths closely align with the
hierarchy of the network, we finally ask whether it is pos-

sible to recapitulate the path architecture of the network
by following the hierarchy. We focus on navigation, a de-
centralized communication mechanism in which a signal
is forwarded to the connected neighbour that is closest
in some distance to the target. This distance is defined
with respect to an underlying metric space, with the sim-
plest such space being the three-dimensional space that
nodes are physically embedded in. For example, previous
work has demonstrated that it is possible to recapitulate
the shortest path architecture by forwarding signals to
nodes that are physically closest to the target node [54].
Decentralized mechanisms such as navigation are intu-
itively appealing as they do not assume that signals or
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nodes possess knowledge of the global topology [3, 54].
We therefore investigate whether signals could reca-

pitulate the path structure of the network if they are for-
warded to the neighbour closest to the target node in the
unimodal-transmodal hierarchy. To quantify navigation
as a communication process we measure the proportion
of paths that are successfully recovered (success ratio;
SR). Given the importance of spatial embedding, we
identify regions for which navigation success improves
when hierarchy information is taken into account rather
than only spatial factors. To operationalize a node’s prox-
imity to the target we use a linear combination of Eu-
clidean distance in three-dimensional physical space and
distance in “hierarchy space” weighted by the parameter
β as:

d(i, j) =β
√

(xi − xj)2 + (yi − yj)2 + (zi − zj)2+

(1− β)(hi − hj),

where d(i, j) is the combined distance between nodes
i and j, (xi, yi, zi) gives the position of node i in three-
dimensional Euclidean space and hi gives the position of
node i in one-dimensional hierarchical space. For each
pair of nodes we measure the success ratio as a function
of β, tuning β from 0 to 1, and find the β that maxi-
mizes the navigation success. When β is valued close to
1, paths originating from the node are better recovered
using spatial proximity compared to hierarchical prox-
imity; the opposite is true when β is valued close to 0
(Fig. 5a; see Materials and Methods for more detail).

Fig. 5b shows the distribution of the β parameters that
maximize navigation success for each source-target pair.
The distribution is bimodal, with prominent peaks at the
extremes, suggesting that most nodes have a strong pref-
erence for either hierarchical or spatial navigation. Strat-
ifying nodes by membership in intrinsic networks, we
find that each network exhibits a unique fingerprint, with
some showing a preference for spatial navigation (fron-
toparietal), others for hierarchical navigation (default),
and others a mix between the two (dorsal attention).
Fig. 5c shows parts of the visual system, lateral temporal
cortex and dorsolateral prefrontal cortex exhibit a strong
preference for spatial navigation (red; β > 0.8), while
medial parietal cortex, medial prefrontal cortex and left
temporo-parietal cortex exhibit a strong preference for
hierarchical navigation (blue; β < 0.2).

Relation with simple measures

In the present report we derived four dependent mea-
sures based on the concept of path motifs (slope, tun-
ing point up/down probability and navigation prefer-
ence). For completeness, we assess the extent to which
these node-level can be related to simpler measures.
Fig. S3 shows linear regressions comparing each of the
four path motif measures (rows) with simpler network

measures computed from structural and functional con-
nectivity matrices (columns). From the structural net-
work we compute betweness, closeness, clustering, de-
gree and mean edge length. From the functional network
we compute strength and participation coefficient (rela-
tive to the intrinsic network partition reported by Yeo and
colleagues [65]). As expected, we find weak to moder-
ate correlations with path-based measures (betweenness,
closeness) and with degree, consistent with the notion
that most centrality measures are correlated with each
other [47]. In addition, we find a positive correlation be-
tween participation and mean slope (r = 0.52), suggest-
ing that nodes with more diverse connection profiles are
more likely to direct communication towards the apex of
the unimodal-transmodal hierarchy. In sum, we find that
the four path motif-derived measures are correlated with
some simpler measures, but cannot be wholly predicted
from any one such measure.

DISCUSSION

In the present report we asked how signals travel on
brain networks and what types of nodes they potentially
visit en route. We traced individual path motifs to inves-
tigate the propensity of communication paths to explore
the putative unimodal-transmodal cortical hierarchy. We
find that the architecture of the network promotes signal-
ing via the hierarchy, suggesting a link between the struc-
ture and function of the network. Importantly, we also
find instances where detours are promoted, particularly
as paths traverse attention-related networks. Finally, in-
formation about hierarchical position aids navigation in
some parts of the network, over and above spatial loca-
tion. Altogether, the present results touch on a number
of emerging themes in network neuroscience, including
the nature of structure-function relationships, network
communication and the role of cortical hierarchies.

The most prominent observation is that most paths
closely follow the cortical hierarchy, traveling smoothly
from unimodal to transmodal cortex and vice versa
(Figs. 2). This is reminiscent of the notion that much of
signal traffic follows a sequential bottom-up or top-down
trajectory, potentiating direct stimulus-response patterns
[64]. At the same time, the architecture of the network
occasionally serves to re-direct signal traffic and promote
detours. In particular, the default network appears to be
the most likely mediator between areas lower in the cor-
tical hierarchy, while the dorsal attention and ventral at-
tention networks act as mediators between areas higher
in the hierarchy (Fig. 3). The finding that attention net-
works are anatomically positioned to re-direct signal traf-
fic resonates with moderns theories of how attention and
control networks promote fluid transitions between seg-
regated and integrated states, promoting adaptive recon-
figuration during rest and task [13, 17, 43, 55].

These results suggest that the architecture of the net-
work promotes behaviourally-relevant communication
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patterns, and that the functional properties of individual
areas are fundamentally related to their anatomical net-
work embedding. Indeed, multiple studies point to the
idea that the topology of brain networks endows individ-
ual regions with specific functional attributes. For exam-
ple, functional properties depend on local connectional
profiles, including motif composition [21], asymmetry
[34], length [60] and weight distribution [37]. At the
global level, anatomical segregation, most prominently
observed in the unimodal visual and somatosensory cor-
tices, promotes specialized processing. Conversely, pol-
ysensory association cortex is anatomically better inte-
grated in the connectome, potentially allowing informa-
tion to be sampled from multiple parts of the network
[40, 41, 58]. A recent report demonstrated that regions
at the top of the hierarchy are better positioned to act
as “receivers” of information, while regions at the bot-
tom are better positioned to act as “senders” [53]. The
present results build on this literature, showing that the
default and attentional networks present links between
parts of the cortical hierarchy.

In shaping communication patterns, network architec-
ture may also impart memory on signal traffic, such that
transitions depend not only on the current position of
the signal, but also on positions they previously occu-
pied in the hierarchy in their journey (Fig. 4). We find
that most transitions between nodes that occupy neigh-
bouring positions in the hierarchy are memoryless, but
that transitions across disparate levels are not. The phe-
nomenon of network structure imposing non-Markovian
network flows is also observed in other complex systems,
such as air passenger flows and journal citation flows
[51]. In the brain, the functional consequences of this
phenomenon may be the well-studied hierarchical orga-
nization of time scales and temporal receptive windows.
Numerous studies point to the idea that information ac-
cumulates over time across the cortical hierarchy, such
that the temporal dynamics of higher-order regions un-
fold over slower time scales [33, 44], manifesting as a
preference for long-range contextual information [29].
Understanding the precise link between network struc-
ture and the hierarchy of intrinsic time scales remains a
major question for future research [15, 22].

More generally, these results open new questions
about how broad spatial gradients in synaptic connec-
tivity, cytoarchitecture and molecular composition inter-
act with macroscale network topology [19, 36, 60, 62].
Current graph models of brain networks assume that all
nodes are the same, but as signals propagate through
the network, they pass through a series of heterogeneous
neural circuits and populations [1, 56]. Each stage in the
trajectory may entail transformations that modern meth-
ods in network neuroscience do not consider. For ex-
ample, the majority of path-based metrics consider the
total lengths of paths between areas, but not the iden-
tity of nodes traversed during the path. By drawing path
motifs through maps annotated by molecular and cellu-
lar data, the present methodology permits closer investi-

gation into how local attributes of nodes may influence
communication in the network.

Note that the present method only traces out the short-
est paths in the network, but this does not preclude the
possibility that communication takes place via mecha-
nisms that are unaware of the shortest paths in the net-
work [2, 3, 56]. Several recent reports point to diffusion-
like and navigation-like processes as potentially more
biologically-realistic alternatives [20, 26, 42, 54], as they
do not assume that signals possess knowledge of the
global topology. At the same time, multiple studies sug-
gest that shortest paths in brain networks are readily
accessible by both diffusion [20] and spatial navigation
(greedy routing) [54], without knowledge of the global
topology. Thus, shortest paths are an important substrate
for communication, even if communication does not oc-
cur via shortest path routing per se [3]. We envision that
future studies will consider diffusion and navigation tra-
jectories, analogous to the approach we took with short-
est paths.

We close by noting important methodological con-
siderations. Although the present networks are de-
rived from a consensus of 66 participants with high-
quality imaging [7], there are several limitations. First,
structural networks were reconstructed using diffusion
weighted MRI and computational tractography, a tech-
nique that results in systematic false positives and false
negatives [14, 35, 57]. Second, the technique cannot
be used to resolve the direction of white matter projec-
tions, which means that some paths recovered from the
network may not exist. Third, the present reconstruc-
tion only includes cortical regions, leaving out important
topological contributions from the subcortex and cere-
bellum. Network communication is undoubtedly shaped
by both sets of structures, and future studies should
consider subcortical-cortical and cerebellar-cortical sig-
nal traffic.

In summary, we develop a simple framework to trace
communication patterns in brain networks. We show
that the putative unimodal-transmodal hierarchy shapes
the propagation of signals, imparting behaviourally-
relevant communication patterns. The present work
highlights the importance of considering sequences of
nodes encountered during signaling, and the role they
might play in network-wide communication.

METHODS

Data acquisition

A total of N = 66 healthy young adults (16 females,
25.3 ± 4.9 years old) were scanned at the Department
of Radiology, University Hospital Center and Univer-
sity of Lausanne. The scans were performed in 3-Tesla
MRI scanner (Trio, Siemens Medical, Germany) using
a 32-channel head-coil. The protocol included (1) a
magnetization-prepared rapid acquisition gradient echo

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 16, 2020. ; https://doi.org/10.1101/2020.02.15.950907doi: bioRxiv preprint 

https://doi.org/10.1101/2020.02.15.950907
http://creativecommons.org/licenses/by/4.0/


9

(MPRAGE) sequence sensitive to white/gray matter con-
trast (1 mm in-plane resolution, 1.2 mm slice thick-
ness), (2) a diffusion spectrum imaging (DSI) sequence
(128 diffusion-weighted volumes and a single b0 vol-
ume, maximum b-value 8000 s/mm

2, 2.2× 2.2× 3.0 mm
voxel size), and (3) a gradient echo EPI sequence sensi-
tive to BOLD contrast (3.3 mm in-plane resolution and
slice thickness with a 0.3 mm gap, TR 1920 ms, result-
ing in 280 images per participant). Participants were not
subject to any overt task demands during the fMRI scan.

Structural network reconstruction

Grey matter was parcellated into 68 cortical nodes ac-
cording to the Desikan-Killiany atlas [16]. These regions
of interest were then further divided into 1000 approx-
imately equally-sized nodes [10]. Structural connectiv-
ity was estimated for individual participants using de-
terministic streamline tractography. The procedure was
implemented in the Connectome Mapping Toolkit [12],
initiating 32 streamline propagations per diffusion direc-
tion for each white matter voxel. Structural connectivity
between pairs of regions was defined as the number of
streamlines normalized by the mean length of stream-
lines and mean surface area of the two regions, termed
fiber density [27]. This normalization compensates for
the bias toward longer fibers during streamline recon-
struction, as well as differences in region size.

To mitigate concerns about inconsistencies in recon-
struction of individual participant connectomes [31, 57],
as well as the sensitive dependence of network measures
on false positives and false negatives [66], we adopted
a group-consensus approach [7, 14, 50]. In constructing
a consensus adjacency matrix, we sought to preserve (a)
the density and (b) the edge length distribution of the
individual participants matrices [6, 7, 40]. We first col-
lated the extant edges in the individual participant ma-
trices and binned them according to length. The number
of bins was determined heuristically, as the square root
of the mean binary density across participants. The most
frequently occurring edges were then selected for each
bin. If the mean number of edges across participants in
a particular bin is equal to k, we selected the k edges
of that length that occur most frequently across partic-
ipants. To ensure that inter-hemispheric edges are not
under-represented, we carried out this procedure sepa-
rately for inter- and intra-hemispheric edges. The binary
density for the final whole-brain matrix was 2.17%. The
weight associated with each edge was then computed as
the mean weight across all participants.

Functional network reconstruction

Functional MRI data were pre-processed using proce-
dures designed to facilitate subsequent network explo-
ration [49]. FMRI volumes were corrected for physiolog-

ical variables, including regression of white matter, cere-
brospinal fluid, as well as motion (three translations and
three rotations, estimated by rigid body co-registration).
BOLD time series were then subjected to a lowpass filter
(temporal Gaussian filter with full width half maximum
equal to 1.92 s). The first four time points were excluded
from subsequent analysis to allow the time series to sta-
bilize. Motion “scrubbing” was performed as described
by Power and colleagues [49]. The data were parcellated
according to the same atlas used for structural networks
[10]. Individual functional connectivity matrices were
defined as zero-lag Pearson correlation among the fMRI
BOLD time series. A group-consensus functional connec-
tivity matrix was estimated as the mean connectivity of
pair-wise connections across individuals.

Diffusion map embedding

Diffusion map embedding is a nonlinear dimension-
ality reduction algorithm [11]. The algorithm seeks to
project a set of embeddings into a lower-dimensional Eu-
clidean space. Briefly, the similarity matrix among a set
of points (in our case, the correlation matrix represent-
ing functional connectivity) is treated as a graph, and
the goal of the procedure is to identify points that are
proximal to one another on the graph. In other words,
two points are close together if there are many relatively
short paths connecting them. A diffusion operator, rep-
resenting an ergodic Markov chain on the network, is
formed by taking the normalized graph Laplacian of the
matrix. The new coordinate space is described by the
eigenvectors of the diffusion operator. We set the diffu-
sion rate α = 1 and the variance of the Gaussian used
in affinity computation σ = 1. The procedure was im-
plemented using the Dimensionality Reduction Toolbox
(https://lvdmaaten.github.io/drtoolbox/) [59].

Shortest path retrieval

Structural connectivity was encoded as an undirected
weighted graph G ≡ {V,W} comprised of nodes V =
{v1, v2, ...vn} and a matrix of fiber density values W =
[wij ], valued on the interval [0,1]. To recover shortest
paths, we first define a topological distance measure.
The weighted adjacency matrix was transformed from
a connection weights to connection lengths matrix us-
ing the transform L = −log(W ), such that connections
with greater weights are mapped to shorter lengths [20].
Note that other transformations are also possible, includ-
ing L = 1/W . The drawback of this transform is that it
generates highly skewed distributions of lengths L. As a
result, a small number of connections are valued much
more than the rest, and they are disproportionately rep-
resented in shortest paths. The logarithmic transform
controls for this, yielding log-normal distributions of L
[2]. Weighted shortest paths were recovered using the
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Floyd-Warshall algorithm [18, 52, 63] (Brainconn Python
Toolbox ). Note that in many types of networks there
may exist multiple shortest paths between two nodes
(edge-disjoint or not); in our network this was not the
case as we computed weighted shortest paths, yielding
unique paths between all source-target pairs.

Inflection points

A shortest path is defined as a sequence of nodes
v1, v2, ..., vn where vi is the node that was at the i-th step
of a path of length n. Each node has an associated hi-
erarchical position (value), so we assign the difference
between the hierarchy values hvi , hvi+1

as the slope of
the path through node vi. Once all slopes are assigned,
we compute the mean over all paths for each node.

Network navigation

We measured navigation by simulating an agent or
walker that traverses the network from source node i
to target node j. The agent has no knowledge of the
global topology; instead, they hop towards neighbours
who are closest to the target node in some underlying
metric space. Across all source-target pairs, we measure
the proportion of paths that are successfully recovered
(success ratio; SR) [54]. To operationalize a node’s prox-
imity to the target we use a linear combination of the
Euclidean distances in three-dimensional physical space
and in hierarchy space weighted by the parameter β as:

d(i, j) =β
√

(xi − xj)2 + (yi − yj)2 + (zi − zj)2+

(1− β)(hi − hj),

where di,j is the combined distance between nodes i
and j, (xi, yi, zi) is a node’s position in Euclidean space
and hi is a node’s position in hierarchy space. Both val-
ues were normalized to lie in the interval [0,1]. Given
that navigation is a deterministic model, we calculated,
for each node as a source, the success ratio as a function
of β. The resulting curves showed a global trend pre-
ferring Euclidean distance, with optimal β values close
to 0.8, consistent with previous reports [54]. In each
node, however, there exists substantial variance across
β values, showing a changing preference deviating from
global trend. To better capture this preferences for in-
dividual nodes, we detrend the mean success ratio and
select for each source node the β that maximizes the de-
trended success ratio (Fig. S4).

Transition probabilities

We define the one-hop transition probability ma-
trix T as a function of the position t, where t =

1, ..., Diam(GSC) − 1. For each position there was one
matrix T(t) defined as

Tij(t) =
#{sp : sp(t) = i, sp(t+ 1) = j}

#{sp : length(sp) ≥ t+ 1}
,

where i and j represent the hierarchy bins, thus (i, j) ∈
{h1, ..., h10}. The expression #{sp : ◦} represents the
number of shortest paths, from the set of all shortest
paths, that satisfy the condition ◦.

For multi-hop transition probabilities, we define the
transition matrix between hierarchy bins as a function of
hops k, denoted as M(k), where k = 1, ..., Diam(GSC)−
1. For each hop length k the matrix M(k) was defined as

Mij(k) =
Σθt=1(#{sp : sp(t) = i, sp(t+ k) = j})

Σθt=1(#{sp : length(sp) ≥ t+ k})
, (1)

where i, j ∈ {h1, ..., h10}, θ = length(sp) − k, θ ∈
[1, Diam(GSC)− 1]

Null model

The critical question underlying all reported analyses
is the link between structural connectivity and hierar-
chical position. To assess this question, we used a null
model that randomly permutes the hierarchical label of
nodes while preserving their topological and spatial em-
bedding (2,000 repetitions) [67], embodying the null hy-
pothesis that there is no relationship between structural
topology and functional hierarchy labels.
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[9] Burt, J. B., Demirtaş, M., Eckner, W. J., Navejar, N. M.,
Ji, J. L., Martin, W. J., Bernacchia, A., Anticevic, A., and
Murray, J. D. (2018). Hierarchy of transcriptomic special-
ization across human cortex captured by structural neu-
roimaging topography. Nat Neurosci, 21(9):1251.

[10] Cammoun, L., Gigandet, X., Meskaldji, D., Thiran, J. P.,
Sporns, O., Do, K. Q., Maeder, P., Meuli, R., and Hag-
mann, P. (2012). Mapping the human connectome at
multiple scales with diffusion spectrum mri. J Neurosci
Meth, 203(2):386–397.

[11] Coifman, R. R., Lafon, S., Lee, A. B., Maggioni, M., Nadler,
B., Warner, F., and Zucker, S. W. (2005). Geometric dif-
fusions as a tool for harmonic analysis and structure def-
inition of data: Diffusion maps. Proc Natl Acad Sci USA,
102(21):7426–7431.

[12] Daducci, A., Gerhard, S., Griffa, A., Lemkaddem, A., Cam-
moun, L., Gigandet, X., Meuli, R., Hagmann, P., and Thi-
ran, J.-P. (2012). The connectome mapper: an open-
source processing pipeline to map connectomes with mri.
PLoS ONE, 7(12):e48121.

[13] de Pasquale, F., Della Penna, S., Snyder, A. Z., Marzetti,
L., Pizzella, V., Romani, G. L., and Corbetta, M. (2012).
A cortical core for dynamic integration of functional net-
works in the resting human brain. Neuron, 74(4):753–
764.

[14] de Reus, M. A. and van den Heuvel, M. P. (2013). Es-
timating false positives and negatives in brain networks.
NeuroImage, 70:402–409.
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oukov, D. (2015). Navigable networks as nash equilibria
of navigation games. Nat Commun, 6:7651.

[27] Hagmann, P., Cammoun, L., Gigandet, X., Meuli, R.,
Honey, C. J., Wedeen, V. J., and Sporns, O. (2008). Map-
ping the structural core of human cerebral cortex. PLoS
Biol, 6(7).

[28] Hilgetag, C. C. and Kaiser, M. (2004). Clustered organiza-
tion of cortical connectivity. Neuroinformatics, 2(3):353–
360.

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 16, 2020. ; https://doi.org/10.1101/2020.02.15.950907doi: bioRxiv preprint 

https://doi.org/10.1101/2020.02.15.950907
http://creativecommons.org/licenses/by/4.0/


12

[29] Honey, C. J., Thesen, T., Donner, T. H., Silbert, L. J., Carl-
son, C. E., Devinsky, O., Doyle, W. K., Rubin, N., Heeger,
D. J., and Hasson, U. (2012). Slow cortical dynamics and
the accumulation of information over long timescales.
Neuron, 76(2):423–434.

[30] Huntenburg, J. M., Bazin, P.-L., Goulas, A., Tardif, C. L.,
Villringer, A., and Margulies, D. S. (2017). A system-
atic relationship between functional connectivity and in-
tracortical myelin in the human cerebral cortex. Cereb
Cortex, 27(2):981–997.
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Figure S1. Path motifs null model | For each source-target pair, nodes along the corresponding path are labeled according to their
position on the unimodal-transmodal cortical hierarchy. Hierarchy values are binned into 10 equally-sized levels, where level 1
corresponds to unimodal cortex and level 10 corresponds to transmodal cortex. Paths motifs are shown for three levels of source
nodes (2, 6 and 9; rows) and three levels of target nodes (2, 6 and 9; columns). Each plot shows the z-score of the mean path motif
relative to a label-permuting null mode. Path position (hop) is shown on the x-axis. Paths are stratified according to their length,
such that warmer colours indicate shorter paths and colder colours indicate longer paths. Points denoted by asterisks indicate
p < 0.05.

Figure S2. Mean slope before and after correcting for hierarchical position | (a) The mean path slope shown in Fig. 3 is
anticorrelated with hierarchical position. (b) Mean slope after linearly regressing out hierarchical position. Warm colours indicate
regions where paths ascend the hierarchy more than expected given their hierarchical position; cold colours indicate regions where
paths descend the hierarchy more than expected given their hierarchical position.
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Figure S3. Relating path motif measures with graph properties | The present report derives four node-level dependent variables
(mean slope, turning up/down point probability and navigation preference). To assess the extent to which these measures are
related to simpler graph properties, we correlate them with node-level features from same structural and functional connectivity
matrices. Path motif measures are shown in the rows and graph measures are shown in the columns. The first five graph measures
(betweenness, closeness, clustering, degree and mean edge length) are computed on the structural network; the last two graph
measures (strength and participation) are computed on the functional network. Edge length refers to physical length and is mea-
sured in mm. Participation coefficient is computed with respect to the intrinsic network partition provided by Yeo and colleagues
[65]. The two turning point measures and betweenness centrality are log transformed. Relationships are reported in terms of
Pearson correlation coefficients.

Figure S4. Navigation via space and hierarchy | To assess the use of spatial and hierarchical information to navigate, we derive
the proportion of shortest paths successfully recovered (success ratio) as a function β, which tunes preference for hierarchy (β = 0)
vs spatial (β = 1.0) information. (a) When the same β is imposed on all nodes, there is a stronger preference for spatial navigation,
with the optimal β = 0.9. (b) Fitting β separately for each source node, we observe the same preference for spatial navigation, but
also substantial variability across nodes. (c) To ask whether some nodes additionally benefit from hierarchical information, above
and beyond spatial information, we detrend the curves and focus on the residual success ratios.
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