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PD prediction and gene-environment interactions in the UKB

Abstract
Objective

To systematically investigate the association of environmental risk factors and prodromal
features with incident Parkinson’s disease (PD) diagnosis and the interaction of genetic risk
with these factors. To evaluate existing risk prediction algorithms and the impact of including

addition genetic risk on the performance of prediction.

M ethods

We identified individuals with incident PD diagnoses (n=1276) and unmatched controls
(n=500,406) in UK Biobank. We determined the association of risk factors with incident PD
using adjusted logistic regression models. A polygenic risk score (PRS) was constructed and
used to examine gene-environment interactions. The PRS was also incorporated into a

previously-developed prediction algorithm for finding incident cases.

Results

Strong evidence of association (Peorr<0.05) was found between PD and a positive family
history of PD, a positive family history of dementia, non-smoking, low alcohol consumption,
depression, and daytime somnolence, and novel associations with epilepsy and earlier
menarche. Individuals with the highest 10% of PRS scores had increased risk of PD
(OR=3.30, 95% CI 2.57-4.24) compared to the lowest risk decile. Higher PRS scores were
associated with earlier age at PD diagnosis and inclusion of the PRS in the PREDICT-PD
algorithm improved model performance (Nagelkerke pseudo-R? 0.0053, p=6.87x10"%). We

found evidence of interaction between the PRS and diabetes.

I nter pretation

Here we used UK Biobank datato reproduce several well-known associations with PD, to

demonstrate the validity and predictive power of a polygenic risk score, and to demonstrate a
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novel gene-environment interaction, whereby the effect of diabetes on PD risk appearsto

depend on prior genetic risk for PD.
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I ntroduction

Parkinson’s disease (PD) is the second most prevalent neurodegenerative disorder worldwide
and potentially the fastest growing’. By the time an individual is diagnosed with PD, a
substantial proportion of nigrostriatal neurons have aready been lost®>. There is an urgent
clinical and societal need for effective treatments or strategies which will prevent, halt or
reverse the progression of PD. Prediction of those at-risk and/or detection at the earliest

stages likely represent the best approaches to address this need.

Major progress has been made in understanding the genetic architecture of PD. As for many
complex diseases, this began with linkage studies of rare, familia forms of PD which
revealed pathogenic roles for SNCA, PARK2 and PINK1 genes, and later LRRK2, and GBA®,
Over the last decade, large genome-wide association studies (GWAYS) of sporadic PD have
extended our understanding of the genetic architecture of PD to include 90 independent
signals, which collectively explain ~22% of overall PD liability.

Separately, there exists good epidemiological evidence to support a role for potentially-
modifiable exposures including pesticide exposure, head injury, and potentially protective
factors such as smoking, and drinking acohol or caffeinated drinks®®"®. Various
comorbidities, such type 2 diabetes, and prodromal symptoms are more common among
individuals who are subsequently diagnosed with PD, including anosmia, anxiety, depression,
constipation, REM sleep behaviour disorder (RBD) and erectile dysfunction’®. There are
several examples of approaches that are being used in research settings to model the risk of

9-11

PD prospectively

The modest overall liability explained by genetic factors and small individual effect sizes of
environmental risk factors for PD suggest that interactions between them may explain some
of the missing risk. Modelling interactions may yield insights into PD pathobiology, further
improve prediction algorithms, and suggest potential ways to modify risk through

intervention in genetically-stratified groups™ ™.

In this study, we used the UK Biobank (UKB) cohort and the latest PD GWAS data to

address three primary aims:

i) to systematically evaluate the association of environmental risk factors and prodromal

features with a subseguent diagnosis of PD;
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ii) to determine whether the magnitude and strength of these associations is modified by
genetic risk of PD;

iii) to assess whether the inclusion of a genetic risk score improves prediction of subsequent

PD compared to existing risk prediction algorithms.

Methods
Data sources and study design

The UKB is a large repository that contains health related data on over 500,000 individuals
across the UK. The methods by which this data was collected has been described elsewhere®™.
Briefly, between 2006 and 2010 adults aged between 40 and 69 within close proximity to one
of 22 UKB recruitment centres were invited to participate. Individuals had extensive
demographic, lifestyle, clinical and radiological information collected. In addition to this,
participants underwent genotyping and had health records collected using linked Hospital
Episode Statistics.

Sudy design, definition of exposures and outcomes

Our study utilised the full UKB dataset. All participants are enrolled in follow-up unless they
withdraw consent, in that their medical records (Hospital Episode Statistics records, cancer
register, death register, and GP records for a subset) are automatically linked to the dataset.

For analyses assessing the association of environmental and prodromal factors, we included
only incident cases of PD (those individuals in whom the diagnosis was recorded after their
initial assessment visit), and excluded prevalent cases (individuals diagnosed with PD prior
to their baseline visit). Cases were defined as having PD if they had any record of a PD
diagnosis after baseline, this was derived from self-report or linked Hospital Episode
Statistics ICD codes (Supplementary Table 1). Rather than matching controls, we included all
participants in the dataset as unmatched controls and adjusted for relevant confounding

factors in the subsequent analyses.

All exposures were captured at the time of the initial visit. Details of how each exposure
variable was defined are provided in supplementary table 1. Exposures were excluded from
this analysis if the reported prevalence in UKB was substantially lower than reported
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16-20 and

population prevalence (i.e. anosmia, erectile dysfunction, shoulder pain/stiffness)
therefore deemed unreliably recorded. Medication-related exposures were not explored in this

study because UKB does not currently have extensive linked medication data on participants.

Demographics of cases and controls

Phenotype data were available for 2127 individuals with PD, of whom 1276 were diagnosed
after enrolment (incident cases), and 500,406 controls. Of the 2127 individuals with PD, 1342
remained after exclusion of individuals of non-European ancestry and related individuals. Of
the 1276 incident PD cases, 801 remained after exclusion of non-caucasian and related
individuals. Of the 1276 incident cases, 1243 (97.4%) had a Hospital Episode Statistics coded
diagnosis of PD, and 33 (2.59%) individuals had a self-reported diagnosis only. Demographic
characteristics of individuals with PD (both prevalent and incident cases) and controls are
shown in supplementary table 2. Individuals with PD were more likely to be older (mean age
at recruitment 62.7 years, SD 5.49), male (61.6% male), born in the UK, of white ethnicity,
less deprived, and spent longer in full-time education compared to the control group. Age at
completion of full-time education was only available for a subset of participants (n=330,240).
As deprivation status (which is available for all participants) is a useful proxy for socio-
economic status, we chose to control for deprivation in our models to prevent exclusion of the
~170,000 individuals with missing education data. Age at PD diagnosis was consistent with
published estimates (median 66.1 years, IQR 59.5 - 71.7)*. Median follow-up time was the
same for cases (Median 12.01, IQR 11.01 to 13.01) and controls (Median 12.01, IQR 11.01 to
13.00).

Genotype data

Genotyping was performed using Axiom (UK Biobank Axiom™ Array, ThermoFisher) and
UK BILEVE arrays. Genotyping, imputation and quality control procedures are described
elsewhere®. Genetic principal components were included in the UKB database (data-field
22009).

Construction of a polygenic risk score (PRS)
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A variety of PRS were created using the clumping-and-thresholding approach:

1. We extracted variant associations with PD from the most recent GWAS but not including
the UK B participants from that GWAS?.

2. We excluded palindromic variants and variants without an rsiD.

3. We excluded variants associated with PD above an arbitrary p value threshold (0.00005,
0.0005, 0.005, 0.05, 0.1, 0.2, 0.4, 0.6, 0.8, and 1).

4. We clumped using several r* thresholds (0.1, 0.2, 0.4, 0.6, 0.8) and a clumping distance of

250kb, with the 1000 genomes EUR samples as the reference genome™.

Reference genome data were obtained from the 503 participants of European ancestry in the
1000 genomes project®. Only autosomal, biallelic variants which passed quality control in
both the PD GWAS and target (UKB) datasets were included. We excluded all duplicate
rsIDs, duplicate positions, variants deviating from Hardy-Weinberg Equilibrium (p <1e-06),
rare variants with minor allele frequencies <0.01, variants with genotype missingness >10%,
and variants with low imputation quality (Mach R?* < 0.3). After SNP QC, a total of
4,490,455 markers overlapped between the reference and target datasets. For genetic analysis,
individuals with >10% missing genotypes were excluded, and only individuals with self-
reported ‘British’ ethnicity and genetically European ancestry as defined by genetic principal
components were included. We excluded one of each pair of individuals related at a kinship
coefficient cutoff of 0.0442, equivalent to a 3rd degree relative, e.g. first cousins. Kinship
coefficients were calculated by UKB and are provided in the ‘Relatedness’ file available for
download (category 263).

As a sensitivity analysis to determine whether as-yet-undiscovered genomic risk loci
explained additional liability to PD, we created an additional PRS using the best-performing
PRS (in terms of Nagelkerke's pseudo-R?). We excluded all variants within 1IMB either side
of the lead SNP for the 90 risk loci discovered in the most recent IPDGC GWAS“.

Effect allele dosage at each locus was multiplied by the beta coefficient to generate the risk
score for that locus. Scores were standardised to have mean 0 and unit variance for each SNP.
For missing genotypes, the score at that locus was defined as the mean of all scores at that
locus. Risk scores were totalled across the genome to calculate an individual’s score. All
individuals in the UKB with a PD diagnosis, prevalent or incident, were included. Analysis
was performed in PLINK (v2.00aLM 64-bit Intel) using the ‘--score’ flag.
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Satistical methods

Multivariate models were built for each risk factor using the entire UKB cohort as controls
and adjusting for age, sex, ethnicity, and current deprivation status. Secondly, a multivariate
logistic regression model for incident PD comprising al environmental factors with robust
associations to PD risk was built, including the above confounders. Likelihood ratio tests

were used to assess the improvement of model fit at a False Discovery Rate threshold of 0.05.

Interactions were assessed on both the additive and multiplicative scales. Interaction on the
additive scale was assessed by calculating the Attributable Proportion due to interaction (AP).
Additive interaction analyses were based on multivariate logistic regresson models
incorporating age at recruitment, sex, and the first four genetic principal components as

confounders®.

For alogistic regression model of the form:
b, _
lOg(m) = Bo + Brr1X + BrezY + Brrirr2X X Y

In which log(ﬁ) is the log odds of PD, x and y are the values of exposure variables (e.g.

childhood body size, smoking, polygenic risk score), and x X y is the interaction term, then
the Relative Excess Risk due to Interaction (RERI) can be calculated as:

RERI = exp(Brr1 + Brrz + Brri:rrz) — €xp(Brr1) — exp(Brr2) + 1

The AP can be conceived of as the proportion of the disease in the doubly-exposed group

attributable to the interaction between the risk factors, i.e:

RERI
exp(Brr1 + BRF2 + PRF1+RF2)

AP =

This model can be expanded to include confounding covariates, in which case the beta
coefficients are adjusted for confounders. Derivation and further discussion of the advantages
of this method over Rothman'’s initial description can be found in Knol et al?. We restricted
this analysis to participants with genetically European ancestry determined by both self-
report (“Caucasian” in UKB data) and genetic ethnic grouping. For interaction analyses using
the PRS, covariates were age, sex, current deprivation, and the first four genetic principal

components. The PRS was transformed using the inverse-normal transformation and treated
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as a continuous variable for these analyses. For the menarche analysis, age at menarche was
also transformed using the inverse normal transformation. Confidence intervals for the AP
were estimated using bootstrap resampling of the entire dataset with replacement for 5000
iterations®®. 95% confidence intervals were derived from the 2.5th and 97.5th percentile
values. Interaction on the multiplicative scale was assessed using a logistic regression model
incorporating an interaction term. The presence of multiplicative interaction was assessed
using the likelihood ratio test.

Application of the PREDICT-PD algorithm

We applied the PREDICT-PD algorithm to UKB participants to externally validate this risk
score and determine whether its predictive performance was enhanced by the addition of a
genetic risk score™. Baseline risk of PD (on the odds scale) was determined from the
following equation’:
Pr(PD)
odds(PD) = m

1
~ (1 + 28.53049 + 73.67057 X exp(—0.165308 X Age — 60))

With the PREDICT-PD algorithm, the following adjustments to this baseline age-adjusted
risk are made for individuals based on the presence or absence of the following traits'®:
females (divided by 1.5), current smoking (multiplied by 0.44), previous smoking (multiplied
by 0.78), family history of PD (multiplied by 4.45), more than one cup of coffee per day
(multiplied by 0.67), more than one alcoholic drink per week (multiplied by 0.9), constipation
(multiplied by 2.34), anxiety or depression (multiplied by 1.86), and erectile dysfunction
(multiplied by 3.8). The final odds for PD was converted to the probability scale using the
equation:

0dds(PD)

PrPD) =13 0dds(PD)

Ethical approval
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This work was performed using data from UKB (application number 14872). All participants
gave informed consent to UKB registration and are free to withdraw from the study at any

point, at which point their data are censored and cannot be included in further analyses.

Computing

This research was supported by the High-Performance Cluster computing network hosted by

Queen Mary University of London?’.

Statistical analyses were performed in R version 3.6.1 using RStudio version 1.2.1335.
Extraction of European individuals from the 1000 genomes reference genome was conducted
using vcftools. Construction of the polygenic risk score, application of the polygenic risk
score to individuals, and quality control were performed in PLINK v1.9 and PLINK v2.00.

Results
Risk factors and prodromes

There was strong evidence of a positive association (Pagusiea< 0.05; 32 tests) between incident
PD diagnosis and having afamily history of PD, not smoking, low alcohol consumption (<1
drink / week), depression, excessive daytime sleepiness, afamily history of dementia,
epilepsy and earlier menarche. There was weaker evidence (FDR < 0.10) for an association
between PD and having had peptic ulcer disease or diabetes mellitus (Fig 1, Table 1). Effect
estimates and precision did not alter substantially in a multivariate model including all
strongly-associated (FDR < 0.05) risk factors (age of menarche was excluded to allow for

inclusion of both sexes; Table 2).

Validation of PREDICT-PD risk algorithm

We sought to validate a risk prediction algorithm which has previously been employed in a
longitudinal cohort study of UK residents to determine risk of PD (the PREDICT-PD study;
www.predictpd.com)®. The agorithm uses published estimates of relative risks and odds
ratios derived from large meta-analyses of early non-motor features and risk factors for PD’.

In the present study, the algorithm had discriminative ability for distinguishing incident PD
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cases from controls (Nagelkerke's pseudo-R? 0.035, likelihood ratio p < 2x10™*°). The median
predicted odds of PD was 2.68x higher among incident PD cases (Median odds 0.00957, IQR
0.0110) compared to controls (Median odds 0.00357, IQR 0.00598; Fig 2)*.

Genetic risk score

Next, we built polygenic risk scores for PD using the clumping-and-thresholding approach.
We used several different P value and R? thresholds to generate multiple scores, and selected
the score with the closest fit to the UK Biobank data as measured by Nagelkerke' s pseudo-R?.
The parameters of the best-fitting PRS were: p value threshold < 5x10® clumping R?
threshold 0.8, Nagelkerke's pseudo-R? 0.011, 4285 SNPs included.

For this PRS, individuals with the highest 10% of scores had roughly 3.3x increased risk of
PD (OR 3.30, 95% CI 2.57 - 4.24) compared to the lowest risk decile. Higher PRS scores
were associated with earlier age at PD diagnosis in a linear model adjusting for age, sex and
the first four genetic principal components (PCs; beta -0.73 per 1-SD increase in PRS, p =
0.002, Fig 3) - this estimate is similar to the published estimate from the IPDGC?. Inclusion
of the PRS improved model fit compared to a null model including only the PREDICT-PD
algorithm, age, sex, the first four genetic PCs (Nagelkerke pseudo-R? 0.0053, p = 6.87x10").
The PRS therefore improves the performance of the PREDICT-PD algorithm, which in its
current form does not include explicit genetic data (it does include family history, whichis an
imperfect surrogate for genetic risk). We modified this PRS to exclude all variants within
known PD genomic risk loci (supplementary table 3): for each risk locus, al variants 1IMB
either side of the lead SNP were removed. This modified PRS also explained additional PD
liability compared to the PREDICT-PD algorithm alone (Nagelkerke pseudo-R? 2.57x107, p
= 1.63x10™"), suggesting that as-yet-undiscovered PD risk loci may explain additional risk not
accounted for by known loci and other risk factors incorporated in the PREDICT-PD
algorithm.

Interactions

We looked for interactions between the genome-wide PRS and the 10 risk factors/prodromal
symptoms found to be associated with PD risk at FDR < 0.10. The only phenotype with

strong evidence (FDR P < 0.05) for a negative multiplicative interaction was between
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diabetes and the PRS (beta-0.47, FDR P = 0.004, supplementary table 4) - i.e. diabetes
appears to increase PD risk for individuals with alow PRS, but has a substantially weaker
effect - and may even be protective - for individuals with ahigh PRS. We also only found
strong evidence of interaction on the additive scale between the PRS and diabetes (AP -0.42,
95% CI -0.81 to -0.11; Fig 3). These results suggest that diabetes is a more potent risk factor
among people at low genetic risk of PD.

To illustrate the interaction between the PRS and diabetes, we built regression models (PD
status ~ Age + Sex + 4 genetic PCs + Diabetes) using participants in the highest and lowest
deciles for the PRS (i.e. the bottom and top 10% of prior genetic risk). Among the high
genetic risk group, the effect of diabetes was imprecisely estimated but suggested a protective
effect (OR = 0.28, 95% CI 0.07 - 1.15, p = 0.078), whereas among the low genetic risk group
the effect was opposite (OR = 2.76, 95% CI 1.22 - 6.27, p = 0.015).

Discussion

Here, we used publicly-available data from the UKB cohort study to examine risk and
protective factors for PD. It iswidely believed that the earlier in the pathological course of
PD that a disease-modifying intervention will be used, the better the chance of delaying

Ssymptom onset or preventing phenoconversion.

We observed strong associations with incident PD for several well-established risk and
protective factors. In amodel adjusted for age, sex, ethnicity and current deprivation, risk
factors for incident PD where: having afamily history of PD, not smoking, low alcohol
consumption (<1 drink / week), depression, excessive daytime sleepiness, afamily history of
dementia, epilepsy, and earlier age of menarche. All of these factors remained associated with
incident PD when modelled with all other potential exposures. Previously reported
associations that fell short of the FDR Q value were preceding gastric ulcer or diabetes
mellitus’. Notable exposures for which there was no evidence of effect were anxiety, BMI,

constipation, pesticide exposure and coffee consumption.

In arecent paper from some members of this group, ‘novel’ cross-sectional associations with
PD were reported for migraine and epilepsy®. Here we have not only replicated the
association with epilepsy, but we have also demonstrated a temporal relationship with
incident PD. Whether the association is driven by epilepsy or chronic use of anti-epileptic
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drugs remains to be determined. As linked medication data becomes available, we will be
ableto clarify the drivers of this association. There was no convincing association with

migraine in the present study.

The association of earlier age at menarche with PD is novel and intriguing. In addition, we
observed weak evidence for asimilar effect of earlier age at voice breaking in males,
suggesting that earlier pubertal timing in both sexes may increase PD risk. The sex
dimorphism in PD incidence suggests possible protective roles for female sex hormones, or
possible harmful roles for male sex hormones™®. In animal models of PD, sex hormones have

es*3* The broad consensus from

pleiotropic effects which are inconsistent between studi
animal models and epidemiological studies of menopausal timing and PD*** is that
oestrogens may be neuroprotective. In this context, our findings are counterintuitive, as
earlier menarche should predispose towards greater lifetime oestrogen exposure. It is possible
that the observational association between earlier puberty and PD risk is driven by residual
confounding. Both the genetic and environmental determinants of pubertal timing may
confound the relationship with PD risk®’. Thus we would interpret this association with

caution and encourage replication of this finding in other cohorts.

Next, we demonstrated that a basic risk algorithm previously-devel oped in the PREDICT-PD
study could be used to identify incident cases of PD in UKB. In separate work, we have
observed that whilst the basic PREDICT-PD algorithm has utility, performance significantly
improves when factors such as anosmia, probable RBD and subtle motor impairment are
modeled as part of the algorithm (unpublished data). UKB does not accurately capture data
on these three exposures, so we were not able to include them. However, in the current study,
we were able to extend the prediction concept to show that the addition of genetic liability
towards PD (in the form of a PRS) improved the performance of the basic agorithm. Whilst
individual risk estimates may not be particularly meaningful, this approach can be used to
define a higher risk group for testing disease-modifying strategies®. The use of a PRS with
and without other risk factors for PD has been previously validated in a large case-control
setting®, but there are limited examples of application in a population setting such as we have
done *°. We anticipate that in a prospective setting in which there is information for the basic
algorithm, data on smell, RBD and motor dysfunction, and polygenic risk, then performance

may increase considerably.
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Finally, we undertook some preliminary study of the role of gene-environment interactions
for PD in UKB. We compared how the association of the various exposures in the model
varied across deciles of genetic risk. Prior to this, simple gene-environment interaction
studies have been undertaken to investigate the effect modification that a change at asingle
gene or locus can have on an environmental risk factor*-*2. Here, we used the aforementioned
PRS to show that the association with diabetesis potentially modified such that it plays a
bigger role as arisk factor in those at lower genetic risk and may have (or its treatment may

have) a protective effect in those at higher genetic risk.

This observation is especially interesting in the context of recent phase Il clinical trial data
showing that the anti-hyperglycaemic drug exenatide (a Glucagon Like Peptide 1 agonist)
had efficacy in reducing off-medication motor symptomsin PD*, It is conceivable that our
results may therefore reflect confounding by drug treatment - i.e. if the treatment of diabetes
differs systematically between individuals at high and low risk of PD. As genetic risk for PD
(quantified by genome-wide PRS) may itself be a surrogate for subtle ethnic variation, socio-
economic status and other confounders, so it is plausible that there could bereal differences
in access to particular anti-diabetes medi cations between strata of the PRS. If the effect of
anti-diabetic drugs on PD is modified dramatically by prior genetic risk for PD, it may be
possible to select individuals who are more likely to benefit from these drugs in phase 111
trials. Validation of our results and exploration of the mechanism for thisinteraction is

required before translation into trial selection criteria.

We have previously observed markedly different effects of diabetes on PD risk’. Whilst
survival bias may account for some of the observed variability in effect estimates comparing
case-control and cohort studies, genetic population stratification may also be an important
source of variation as indicated here. Correcting for genetic principal components should
mitigate confounding due to population stratification, but may not eliminateit. The
importance of genetic stratification for PD intervention studies, has been recently explored®,
and in the current study, we demonstrate further evidence for why genetic stratification isan

important consideration.

The strengths of this study are that we used a very large sample size to measure risk and
protective factors for PD, as well as to externally validate the PREDICT-PD algorithmin a
cohort where incident cases are accruing. The prospective design reduces the likelihood of

reverse causation but in diseases with along prodromal phase (such as PD), reverse causation
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cannot be completely dispelled. However, for the purpose of predicting incident cases,
whether factorsin the model are true exposures or prodromal featuresis less concerning. As
many of the exposures vary by age and gender, we adjusted all exposure variables for
important confounding factors. We have previously surveyed a sub-group of the PREDICT-
PD participants and found that less than 5% were participants in UKB, hence overlap in
populationsis minimal. The latest PD GWAS used data from PD cases in UKB and the
controls, but we used summary statistics which excluded UKB cases, controls and proxy-

cases, to avoid sample overlap and over-fitting models.

General limitations are that definition of incident PD casesin this setting relied to a small
extent on self-report and several important risk factors for incident PD were inadequately
captured. Both of these factors may lead to bias and imprecision in the effect estimates.
Another important consideration is the generalisability of UKB. Recruitment into the UKB
cohort was voluntary with 5.5% of those invited ultimately joining. Comparing the UKB
population to UK Census and representative cross-sectional survey data shows that typically
UKB participants were more likely to be female, older and from less socioeconomically
deprived areas, within the cohort rates of smoking, obesity and daily drinking were less than

that in the general UK population®.

To conclude, we have further confirmed several well-established risk and protective factors
for PD, and shed further light on several novel associations (migraine, epilepsy, earlier
menarche). We have externally validated the basic PREDICT-PD algorithm and extended this
approach to incorporate population-level common genetic variation. Finally we have
modelled interactions between environmental factors, comorbidities and polygenic risk to
demonstrate further improvement in model fit and conceptually how genetic stratification

might aid or confound intervention strategies.
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Figurelegends

Figure 1: Associations of risk factors and incident cases of Parkinson’s disease. Point
estimates for association are depicted as log odds ratios and 95% confidence intervals.
Estimates of association were derived from logistic regression models adjusting for age,
sex, Townsend deprivation index at recruitment, and ethnicity. BMI = body mass index;

PD = Parkinson’s disease.

Figure 2: PREDICT-PD determined probability (on the absolute risk scale) of Parkinson’s
disease, determined at recruitment, for individuals who would go on to develop PD

(incident cases) and those who would not (controls).

Figure 3A: Several candidate polygenic risk scores (PRS) were created using summary
statistics from the Metab PD GWAS excluding UKB participants. For each candidate
PRS, the degree of variation in PD risk explained was estimated using Nagelkerke's
pseudo-R2 metric. B: Normalised PRS values for incident PD cases and controls. C:
Odds ratio of Parkinson’s disease by polygenic risk score decile compared to lowest
polygenic risk score decile. D: correlation between increasing PRS and earlier age at PD
diagnosis. E: Interactions between risk factors for PD and the PD PRS were estimated
using the Attributable proportion due to interaction. Point estimates for the AP and 95%

Clsare shown. OR = odds ratio; PD = Parkinson’s disease; PRS = polygenic risk score
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