

1 **Nutrient parsimony shapes diversity and functionality in hyper-oligotrophic Antarctic
2 soils**

3

4 **Running title:** Effects of nutrient stoichiometry in Antarctic soils

5

6 **Authors:** Marc W. Van Goethem^{1§}, Surendra Vikram¹, David W. Hopkins², Grant Hall³, Stephan
7 Woodborne^{3,4}, Thomas J. Aspray⁵, Ian D. Hogg⁶, Don A. Cowan¹ and Thulani P.
8 Makhalanyane^{1*}

9

10 **Affiliations:**

11 ¹Centre for Microbial Ecology and Genomics, Department of Biochemistry, Genetics and
12 Microbiology, University of Pretoria, Pretoria 0028, South Africa

13 ² Scotland's Rural College (SRUC), West Mains Road, Edinburgh, EH9 3JG, United Kingdom

14 ³ Mammal Research Institute, University of Pretoria, Private Bag X20, Hatfield, 0028, South
15 Africa ⁴ iThemba LABS, Private Bag 11, WITS, 2050, South Africa

16 ⁵ School of Energy, Geoscience, Infrastructure and Society, Heriot-Watt University, Edinburgh,
17 EH14 4AS, United Kingdom

18 ⁶ University of Waikato, New Zealand

19 [§] Present address: Environmental Genomics and Systems Biology Division, Lawrence Berkeley
20 National Laboratory, 1 Cyclotron Rd, Berkeley, CA, 94720, USA

21

22 ***Corresponding author:** Dr Thulani P. Makhalanyane

23 **Email:** thulani.makhalanyane@up.ac.za

24

25 **Conflict of Interest:** The authors declare they have no conflict of interest.

26 **Funding Sources:** This work was supported by the South African National Antarctic Program
27 funding instrument of the National Research Foundation.

28 **Subject Category:** Microbial ecology and functional diversity of natural habitats

29 **Abstract**

30 The balance of nutrients in soil is critical for microbial growth and function, and stoichiometric
31 values below the Redfield ratio for C:N:P can negatively affect microbial ecosystem services.
32 However, few studies have assessed the relationships between nutrient balance and biological
33 productivity in extremely nutrient-poor habitats. The Mackay Glacier region of Eastern Antarctica
34 is a hyper-oligotrophic ice-free desert and is an appropriate landscape to evaluate the effects of
35 nutrient deficiency and imbalance on microbial community ecology. In a survey of multiple,
36 widely dispersed soil samples from this region, we detected only low rates of microbial
37 respiration, and observed that C:N:P ratios were well below those required for optimal activity.
38 *In silico* metagenomic and soil isotopic ratio ($\delta^{15}\text{N}$) analyses indicated that the capacity for
39 nitrogen fixation was low, but that soil microbial communities were enriched for soil nitrate
40 assimilation processes, mostly associated with heterotrophic taxa. $\delta^{13}\text{C}$ isotope ratio data
41 suggested that carbon dioxide was fixed principally via the Calvin cycle. Genes involved in this
42 pathway were common to all metagenomes and were primarily attributed to members of the
43 dominant soil bacterial phyla: *Bacteroidetes* and *Acidobacteria*. The identification of multiple
44 genes encoding non-photoautotrophic RUBISCO and carbon dioxide dehydrogenase enzymes
45 in both the metagenomic sequences and assembled MAGs is suggestive of a trace-gas
46 scavenging physiology in members of these soil communities.

47

48 **Key words:** Antarctica | carbon cycling | nitrogen cycling | soil stoichiometry | soil respiration

49 **Introduction**

50 Soil microorganisms mediate key biogeochemical cycles through an array of complex
51 synergistic interactions [1]. Microbial communities mediate the conversion of key soil elements,
52 including carbon (C) [2], nitrogen (N) [3] and phosphorus (P). Together, these nutrients provide
53 a framework for exploring the balance of organic matter and nutrient availability in the
54 environment. Comparisons with the ideal Redfield atomic ratio of 186:13:1 (C:N:P) for soil, or
55 60:7:1 for soil biomass [4] have been used to infer resource availability and explain observed
56 variations in soil respiration [5]. In ecosystems close to the cold and arid limits of life, an
57 imbalance in organic matter availability; i.e., values below the Redfield ratio, limit the capacity
58 for microorganisms to mediate biogeochemical cycling [6]. In Antarctic soils, the extremely low
59 levels of C and N, consistent with definitions for very low Redfield ratio values substantially
60 constrain microbial growth and activity [7]. Nevertheless, the limited abundance of higher
61 eukaryotes in continental Antarctica soil habitats [8, 9] ensures that the microbial communities
62 are the dominant suppliers of ecosystem services [10]. The extent to which very low Redfield
63 ratios may limit productivity in these systems has not been explored.

64

65 Understanding the functional roles and responses of microbial communities in the warming
66 cryosphere is of considerable contemporary interest. Most studies on continental (non-maritime)
67 Antarctic microbial systems have focused on soils from the McMurdo Dry Valleys in the Ross
68 Dependency [11]. McMurdo Dry Valley soils are typically dominated by oligotrophic bacterial
69 guilds (mainly *Proteobacteria* and *Actinobacteria*) with low representations of *Archaea* and
70 *Eukaryotes* [12]. Microbial activity (measured as respiration rates) in continental Antarctic soils
71 is generally very low [13, 14] per unit of soil, but high when expressed on a microbial biomass
72 specific basis (Hopkins et al. submitted). Microbial respiration significantly influenced by
73 changes in temperature, water bioavailability and substrate availability [15, 16]. Surprisingly,

74 relatively little is known of the composition, diversity and functional traits of microbiomes in other
75 arid Antarctic non-maritime environments such as the Mackay Glacier region [17].

76
77 The ~100km region north of the Mackay Glacier, Eastern Antarctica (Fig. 1) is suggested to be
78 a transitional zone, based on differences in physicochemical features [18] and invertebrate
79 biodiversity compared with surrounding regions [18, 19]. The patchy distribution of micro-
80 invertebrates in the Mackay Glacier region differs substantially from that in the Dry Valleys [20],
81 which is consistent with observations of species patchiness across other transitional zones [21].
82 Accordingly, we predict that differences in microbial species distribution resulting from soil
83 geomorphic heterogeneity may also support substantially different microbiomes compared to
84 those seen in the Dry Valleys. We predicted that the hyper-oligotrophic status of Mackay Glacier
85 soils would be reflected as imbalanced Redfield ratios, and that major deviations from the ideal
86 ratio could explain respiration rates and unique taxonomic characteristics. To test this
87 hypothesis, we assessed the soil microbial diversity and functional potential of 18 soil
88 communities from sites up to 100km north of the Mackay Glacier, complimented with soil
89 physicochemistry, respiration rates and stable isotope ratios ($\delta^{13}\text{C}$ and $\delta^{15}\text{N}$).

90 **Materials and methods**

91 **Study site and sampling**

92 The Mackay Glacier (76.52°S 161.45°E) is located to the north of the McMurdo Dry Valleys,
93 Victoria Land, Antarctica. Surface mineral soil samples were recovered from 18 ice-free sites up
94 to ~100 km north of the McKay Glacier, Eastern Antarctica (Table S1). At each of the 18 sites,
95 approximately 20 g samples were retrieved aseptically from five positions within a 1 m² quadrat
96 (0-5 cm soil depth), providing a total of 90 soil samples. An additional ~100 g sample was
97 collected at each site for soil physicochemical analysis ($n=18$). Soils were stored in sterile Whirl-
98 Pak bags (Nasco International, Fort Atkinson, WI, USA) and in sterile 50 ml polypropylene
99 Falcon tubes (Grenier, Bio-One) on ice during sampling and transport in the Antarctic, and at -
100 80°C in the laboratory (Centre for Microbial Ecology and Genomics, University of Pretoria,
101 South Africa) until processed. Sieved soils were analysed for total nitrogen, total carbon and
102 major elements (K⁺, Na⁺, Ca²⁺, and Mg²⁺) using X-ray fluorescence spectrometry on a Philips
103 PW1404 XRF and combustion analysis on a LECO TruSpec® Elemental Determinator. Soil pH
104 was measured using 1:2.5 (mass:volume) soil and deionised water suspensions. Standardised
105 procedures were used for all soil physicochemical analyses at the Stellenbosch Central
106 Analytical Facilities (CAF, Stellenbosch University, RSA).

107

108 **Carbon dioxide release measurements**

109 Approximately 10 g (± 0.5) of soil (fresh weight) was incubated at 10°C in the dark for up to 40
110 days in a conductometric respirometer [22]. Microbial CO₂ production (respiration) was
111 measured at hourly intervals and output data were used to estimate the soil respiration rates
112 using linear regressions of CO₂ production over the initial 2-3 days [13].

113

114 **Soil Isotopic analyses**

115 For $\delta^{13}\text{C}$ analyses, ~5 g samples were subjected to standard acid pre-treatment to exclude
116 carbonates and then rinsed to neutrality. Samples were then re-dried and ground for carbon
117 isotope ratio analysis while unpretreated samples were used for nitrogen isotope ratio analysis.
118 Soil stable isotope ratios are reported as $\delta^{15}\text{N}$ and $\delta^{13}\text{C}$ as part per mille (‰) depletion or
119 enrichment of ^{15}N or ^{13}C , in relation to conventional standards, atmospheric N_2 and VPDB,
120 respectively. Blanks and standards were analysed at a ratio of 1:12 relative to soil samples, and
121 at the start and end of batch runs. Soil aliquots were analysed in duplicate for $\delta^{13}\text{C}$ at the Stable
122 Light Isotope Laboratory (University of Pretoria, South Africa) on a DeltaV isotope mass
123 spectrometer coupled with a Flash EA 1112 series elemental analyser using a Conflo IV
124 (ThermoScientific, USA).

125

126 **Nucleic acid extraction and shotgun metagenome sequencing**

127 Duplicate metagenomic DNA extractions were performed on each soil sample from the 18 sites,
128 using an established phenol/chloroform protocol [23]. From each site, pooled samples with the
129 highest DNA concentration and purity ($n=18$) were submitted to a commercial supplier for
130 Illumina-HiSeq sequencing (Mr DNA, Shallowater, TX, USA). Sequencing was performed using
131 paired-ends (2 x 250 bp) for 500 cycles using the HiSeq 2500 Ultra-High-Throughput
132 Sequencing System (Illumina), as per the manufacturer's instructions.

133

134 **Sequence processing and analysis**

135 All sequence data were filtered, trimmed and screened using a combination of in-house scripts
136 and PRINSEQ-lite v0.20.4 [24]. FLASH v1.2.11 was used to merge complimentary forward and

137 reverse reads [25]. We culled low-quality reads and sequences containing ambiguous bases
138 that were not expected to contribute to assembly. The unassembled metagenomes can be
139 found on the MG-RAST server [26] under sample accession numbers 4667018.3 through
140 4667036. Metagenomic sequences were *de novo* assembled using metaSPAdes v3.9.0 [27] as
141 per a proposed pipeline [28]. Iterative assemblies using increasing *k*-mer lengths generated
142 contigs used in downstream analyses. The quality of each assembled metagenome was
143 evaluated using MetaQUAST v4.3 [29]. Prodigal v2.6.3 was used to predict and extract
144 prokaryotic open reading frames (ORFs) from contigs longer than 200 bp [30]. To provide
145 functional assignments, all ORFs were compared to the NCBI protein non-redundant database
146 at an E value cut-off of 1×10^{-5} using DIAMOND v0.7.9.58 [31]. Functional annotations of the
147 ORFs were based on KEGG (Kyoto Encyclopedia of Genes and Genomes) pathways as
148 assigned and visualised in MEGAN5 [32]. Hits corresponding to specific taxa or functions were
149 retained if their bit scores were within 10% of the best bit score. Taxonomic assignments were
150 obtained using the same procedure on all contigs greater than 200 bp in length. All singletons
151 were excluded from analyses.

152

153 **Statistical analyses**

154 Bray-Curtis dissimilarities based on Hellinger-transformed relative abundances of microbial
155 genera and functional ORFs identified in each sample were used to calculate dissimilarities
156 between sites. These dissimilarity data were used to create ordinations using non-parametric
157 multi-dimensional scaling (nMDS). We used a redundancy analysis (RDA) within the *vegan*
158 package in R [33] to explore which environmental parameters were significant drivers of
159 microbial community structure within the transition boundary. A permutational non-parametric
160 analysis of variance (PERMANOVA) using the *adonis* function in R was used to test for
161 differences between groups after performing 9999 permutations. Estimates of community

162 richness and diversity were computed using *BiodiversityR* [34], and Nonpareil [35]. Correlations
163 between soil physicochemical variables and community taxonomic data were computed using
164 all Spearman's rank correlation coefficients (*rho*) that were above 0.6 or below -0.6 and
165 significant ($P < 0.05$).

166

167 **Genome binning**

168 Assembled contigs longer than 1.5 kbp were selected for genome binning. Genome binning was
169 performed with the Anvi'o v4 platform [36] and CONCOCT v1.0.0 binning software [37].
170 Complete bins with the lowest contamination were selected for the next round of refinement
171 using sample-specific read alignment, extraction and reassembly using the SPAdes v3.9.0
172 assembler [38]. Complete or near-complete bins were selected for refinement in the Anvi'o
173 pipeline. Bin completeness, contamination and strain heterogeneity were assessed at each step
174 using CheckM [39]. The bins with the least contamination and heterogeneity were selected for
175 functional annotation and phylogenetic analysis. The high-quality bins were used to identify
176 single copy marker genes using AMPHORA2 [40]. Out of 31 single copy marker genes, 7 and
177 11 genes were common in all the reference genomes and target bins belonging to
178 *Chitinophagales* and *Acidobacteria*, respectively. The selected protein sequences were aligned,
179 trimmed and a final concatenated tree was generated using the neighbour-joining method [41] in
180 MEGA7 [42]. Contigs were aligned with the sample-specific reads using bowtie2 aligner [43] to
181 quantify the average coverage in the respective samples. Functional annotation of
182 reconstructed genomic bins was performed with the RAST [44] and KAAS [45] servers. Circular
183 genome visualisation was performed using DNAPlotter [46].

184 **Results**

185 The location of samplings sites is shown in Fig. 1, at altitudes ranging from 157 – 1,109 m
186 above sea level (Table S1). Physicochemical analyses showed that the soils were slightly
187 alkaline (pH 7.5 – 8.7) and extremely oligotrophic, with soil carbon (0.1 – 0.15%) and nitrogen
188 (0.008 – 0.042%) levels close to the accurate detection limits (Table 1). Soil C:N ratios varied
189 considerably (2.86 – 15), and most were below the ideal Redfield ratio of 6.6:1, suggesting that
190 nitrogen is severely limiting at most sample sites. Surface soil phosphorus (P) concentrations
191 ranged widely across all samples, from 9 – 220 ppm (mean 41.26 ppm). Combined elemental
192 ratios of ~60:0.05:0.01 were markedly lower than the ideal Redfield ratio of 60:7:1 for optimal
193 soil microbial community activity and biomass [4, 5]. All samples were also characterised by low
194 major cation contents (Table S1).

195

196 In dark-incubated microcosms, CO₂ production increased linearly over 2-3 days for most
197 samples, giving low but reliable rates of microbial respiration (average value of 0.407 µg C g⁻¹
198 soil d⁻¹). CO₂ flux values from the soils ranged widely from 0.075 to 0.938 µg C g⁻¹ soil d⁻¹ (Table
199 S2). Carbon stable isotope ratios ($\delta^{13}\text{C}$ range; -23.5 to -31.3‰) were consistent with C
200 metabolism via the Calvin-Benson-Bassham (CBB) cycle (Table 1). Nitrogen stable isotope
201 ratios indicated a predominance of *in situ* soil nitrate assimilation processes [13], with only two
202 samples providing evidence of nitrogen fixation ($\delta^{15}\text{N}$ range, 2.7 to -11.8‰).

203

204 We used shotgun metagenomic sequencing to evaluate the community structure and functional
205 potential of the soil microbiomes (a summary of sequencing statistics is provided in Table S3).
206 Sequencing produced ~50 Gbp of high-quality sequence data, sufficient to describe more than
207 95% of the soil microbial diversity (Fig. S1). After sequence assembly, we found that bacterial
208 contigs dominated all metagenomes (94 – 99% of contigs), while Eukaryotic contigs ranged

209 from 0.2 to 5.0%, and *Archaea* represented less than 1.5% of the community. Contigs assigned
210 to viruses were extremely rare (absent to 0.1%), but those identified were principally assigned
211 as *Caudovirales* [47].

212

213 *Bacteroidetes* (34 – 73%), *Acidobacteria* (4 – 26%), *Proteobacteria* (6 – 18%) and
214 *Cyanobacteria* (2 – 10%) were the dominant bacterial phyla in all soil communities (Fig. 2A,
215 Table S4). Surprisingly, all communities were dominated by members of the *Bacteroidetes* and
216 *Acidobacteria*, which together accounted for more than 68% of contigs longer than 200 bp.
217 Other common community members included *Actinobacteria*, *Firmicutes*, *Verrucomicrobia* and
218 *Chloroflexi*.

219

220 Overall, soil microbial composition was significantly influenced by site altitude (ANOSIM, $P <$
221 0.005) and soil N content ($P < 0.005$), with more subtle differences attributed to soil P ($P < 0.02$)
222 and magnesium ($P < 0.05$) content (Fig. 2B). The mean estimates of inferred species diversity
223 (alpha diversity: α) of Mackay Glacier region soils (mean $\alpha = 452.5$, $n = 18$) were slightly lower
224 than those from McMurdo Dry Valley soil metagenomes that are publicly available on MG-RAST
225 (mean $\alpha = 557.6$; $n = 11$, $P > 0.05$).

226

227 We analysed the functional potential of each Mackay glacier soil community metagenome to
228 gain a deeper understanding of the capacity for microbial biochemical cycling at challenging
229 C:N:P ratios (Table S5). We found that 17 of the 18 metagenomes harboured signature genes
230 for CO₂ fixation via the Calvin-Benson-Bassham (CBB) cycle, which was consistent with our δ
231 ¹³C data trends. Just over half of the ribulose-1,5-bisphosphate carboxylase oxygenase
232 (RuBisCO) ($n=79$) and phosphoribulokinase (*prkB*) ($n=48$) genes identified were assigned to
233 *Cyanobacteria* (Fig. 3), which are the dominant photosynthetic carbon fixers in most desert soils
234 [10, 48, 49], and were relatively common here. The remaining 83 gene assignments belonged to

235 potentially chemosynthetic guilds, including *Actinobacteria*, *Bacteroidetes*, *Proteobacteria* and
236 *Planctomycetes* (Table S6), which may together serve as important primary producers in soil,
237 and is consistent with the known importance of alternative primary producers in Antarctic soils
238 [50]. Genes involved in the Arnon-Buchanan cycle were also common (*korAB*, 2-oxoglutarate:
239 ferredoxin oxidoreductase; $n=1652$), suggesting an additional active mechanism of CO_2 fixation.
240 Carbon monoxide oxidation genes (*coxLMS*) mainly belonged to *Bacteroidetes* ($n=218$) and
241 *Acidobacteria* ($n=62$), which potentially offers a viable alternative carbon scavenging
242 mechanism to carbon fixation in this carbon limited environment.

243
244 The depleted $\delta^{15}\text{N}$ ratios (2.7 to -11.8‰) suggest that nitrogen fixation was not a dominant N-
245 assimilation pathway in the Mackay Glacier region soil microbiomes [51]. This was consistent
246 with the observation that indicator genes for N_2 fixation (*nifDHK*) were uncommon (6 significant
247 matches across all metagenomes), despite the presence of phylogenetic signals for
248 heterocystous *Cyanobacteria* in all soil samples. Instead, the assembled metagenomes were
249 rich in genes from nitrate assimilation and nitrogen mineralization pathways, most of which were
250 assigned to the *Bacteroidetes* and *Acidobacteria* (Table S6).

251
252 Indicator genes for respiratory ammonification (*nrfA*) were most common in samples collected at
253 higher altitudes (>550 m above sea level). In contrast, *narGH* genes that are indicative of nitrate
254 reduction were found only in low altitude (coastal) soil communities (Fig. 4). The subsequent
255 step in the nitrogen cycle, denitrification of NO_3^- to N_2 gas is indicated by *norBC* genes, which
256 were assigned to *Bacteroidetes* and *Verrucomicrobia*, although these were not present in all
257 metagenomes. Ammonia oxidation pathway genes, *amoABC*, were taxonomically assigned to
258 known ammonia-oxidising guilds within the *Thaumarchaeota* and *Proteobacteria*.

259

260 We reconstructed and refined seven high-quality draft genomes of dominant taxa from an initial
261 set of 80 metagenome-assembled genomes (MAGs). Here we describe the functional attributes
262 of the two most complete draft genomes, belonging to the members of the dominant phyla
263 *Bacteroidetes* and *Acidobacteria* (Table S7). Both reconstructed genomes constituted near-
264 complete MAGs; i.e., $\geq 90\%$ completeness and $\leq 5\%$ contamination [39, 52].

265

266 The first MAG, designated as *Chitinophagales* bacterium 62-2, comprised 4.9 Mbp of sequence
267 in 756 contigs (92.5% completeness). This MAG was phylogenetically similar to members of the
268 genus *Segetibacter* (family *Chitinophagaceae*; *Bacteroidetes*; Fig. 5B). Contigs belonging to the
269 genus *Segetibacter* were abundant in all metagenomes, with a range of 0.5 – 3.9%, and a mean
270 relative abundance of 2.1%. The *Chitinophagales* bacterium 62-2 MAG was smaller than the
271 closest sequenced isolate, *Segetibacter koreensis* (6.1 Mbp), which was obtained from
272 temperate soil [53]. Nonetheless, the MAG retained many of the genomic attributes for an
273 aerobic chemosynthetic lifestyle, including genes for substrate transport, glycan import and
274 pathways for glucose fermentation and oxidation, as well as photo-receptor genes (Fig. 5A).

275

276 The second MAG, *Acidobacteria* bacterium 28-9, showed a high level of phylogenetic
277 relatedness to the genus *Pyrinomonas* (*Acidobacteria*), and comprised ~3.7 Mbp of sequence in
278 119 contigs with 92.3% completeness (Fig. 6A, B). Members of the genus *Pyrinomonas*
279 contributed an average of 5.4% of contigs in all metagenomes (range 0.5–11.9%). The
280 *Acidobacteria* bacterium 28-9 genome had a low G+C content (45.7%), compared to both polar
281 and temperate *Acidobacteria* isolates; *Granulicella tundricola*, *Acidobacterium capsulatum* and
282 *Ellin345* (~60.3%) [54, 55]. In comparison to temperate *Acidobacteria* genomes, we found very
283 few genes for cellular motility and chemotaxis, and no genes encoding flagellar proteins, despite
284 their ubiquity in soil isolates of this taxon.

285

286 The genome of *Acidobacteria* bacterium 28-9 encoded an aerobic, heterotrophic metabolism
287 including a near-complete Krebs cycle (Fig. 6A), genes for substrate degradation (including
288 amino acids, sugars and complex organic polymers). We also identified a range of
289 psychrotolerance and stress response mechanisms encoded in the *Acidobacteria* bacterium 28-
290 9 genome. These include genes for exopolysaccharide (EPS) production, cold-shock proteins
291 (CspA), superoxide dismutase (SOD) and catalase.

292

293 Pathways for environmental amino acid acquisition were common to both MAGs, and probably
294 represent energy conservation strategies that reduce the high metabolic cost of *de novo* amino
295 acid biosynthesis. Both MAGs also encoded heavy metal resistance proteins for cobalt, zinc and
296 mercury export. All genes for the complete trehalose biosynthesis pathway, a well-known
297 desiccation resistance mechanism, were present in both draft genomes.

298

299 **Discussion**

300 Desert soils typically have widely varying chemical compositions and ratios of C:N:P [56, 57]. All
301 soil samples in this study were characterised by extremely low C and N contents but high soil P.
302 It is possible that the very low soil C-substrate availability and the extreme microenvironmental
303 characteristics within these soils could have limited the spectrum of *Cyanobacteria* with the
304 capacity to fix atmospheric N via diazotrophy [58, 59]. Here, we observed microbial communities
305 that exist below the C:N:P Redfield ratio for balanced microbial growth (60:7:1). The extreme
306 physiological constraints imparted by the C:N:P stoichiometric imbalance (~6200:9:1) almost
307 certainly limit biogeochemical cycling within this region of the Antarctic continent. Other
308 continental Antarctic soils, i.e. those studied in the McMurdo Dry Valley region, have
309 biochemical balances much nearer the predicted ratio for optimal microbial growth (10:1:1),
310 although these ratios vary widely according to soil type, soil age, proximity to lacustrine deposits
311 and the exchange of soil nutrients facilitated by liquid water [6].

312

313 The rates of soil microbial respiration in the Mackay Glacier region were up to an order of
314 magnitude lower than some Dry Valley soils ($0.9 - 4 \mu\text{g C/g}^{-1} \text{ soil/d}^{-1}$) [14, 60]. Heterotrophic
315 respiration rates are sensitive to both moisture content and temperature [16, 61], and our data
316 show that limited substrate availability is a substantial constraint on microbial respiration
317 regardless of site altitude [15, 60]. The C and N concentrations are very low compared to some
318 Dry Valley regions known for their oligotrophic status, including the low altitude Miers [62] and
319 Wright Valleys [63], and the high altitude Beacon Valley [64]. We infer that the very low
320 respiration rates but high inferred phylogenetic diversity in these soils is a likely consequence of
321 capturing a high proportion of dormant cells in our analysis. Dormancy is a common strategy for
322 microbial survival in hyperarid soils, whereby microbes suspend their metabolism until
323 conditions improve [65]. In Antarctica, cellular metabolism is undoubtedly low compared to
324 warmer climates, yet our data provide evidence for ongoing nutrient cycling processes.

325

326 Our carbon isotopic data were consistent with values documented from previous analyses of
327 Dry Valley soils [13]. The soil $\delta^{13}\text{C}$ values were in line with the conclusion, from our
328 metagenomic sequence data, that the Calvin cycle is probably the dominant carbon fixation
329 mechanism in oligotrophic Antarctic soils [66]. The $\delta^{15}\text{N}$ values provided little evidence of *in situ*
330 nitrogen fixation, in contrast to other dryland soil environments [67, 68]. This may be the result
331 of community composition or unbalanced soil nutrient stoichiometry, in particular the limitation of
332 substrate C that is essential for N fixation [6, 59]. Moreover, the $\delta^{15}\text{N}$ data suggested a
333 prevalence of nitrate assimilation, which is catalysed by nitrate reductase enzymes (Table 1; Fig.
334 S4). Soil nitrate is depleted of ^{15}N in Antarctic soils [13], and our data support previous findings
335 that soil nitrate in the desert sub-surface may be an essential reservoir of bioavailable nitrogen
336 used by microorganisms to overcome nitrogen deficiency [69]. Interestingly, a recent
337 metatranscriptomic study of microbial functionality in desiccated hot desert soils [70] showed

338 high levels of nitrate reductase gene expression but little or no nitrogenase gene expression,
339 suggesting that nitrate was also the primary source of metabolic N in this edaphic environment.

340

341 High NO_3^- assimilation rates in arid soils are also associated with very low rates of biotic
342 denitrification [69]. In our metagenomic surveys, genes for denitrification (*norBC*, *nosZ*) were
343 almost completely absent from all communities, suggesting that only a minor fraction of soil N is
344 lost from the system via microbial-mediated nitrate reduction. Other contributions to the nitrogen
345 cycle, by ammonification and ammonia oxidation should not be ignored, and recent findings
346 have hinted at their importance in depauperate soil systems [71]. Combined these lines of
347 evidence suggest that Mackay Glacier soils are major sinks for nitrate yet minimal sites for
348 denitrification. However this hints that NO_3^- flux out of these soils may occur under different
349 environmental cues including water receipt or temperature when denitrification, and possibly
350 nitrogen fixation, may become predominant nitrogen pathways [66, 72].

351

352 Our redundancy analysis indicated that site altitude and soil nitrogen content were the most
353 important drivers of microbial taxonomic diversity patterns within these soils. Soil N and altitude
354 also influenced viral guilds in Mackay Glacier region soils [47], and it is likely that the biotic
355 relationship between viruses and their cognate hosts also shapes microbial community structure
356 in these environments, as indicated in thawing permafrost communities from the Arctic [73, 74].

357 Abiotic features such as soil pH, fertility and moisture content, are known to explain
358 compositional differences between soil communities in the Antarctic [62, 75, 76], and elsewhere
359 [77]. Differences in water availability correlate strongly with site altitude [78], which possibly
360 explains the significant negative correlation between altitude and cyanobacterial relative
361 abundance observed here (Fig. S2A). *Cyanobacteria* are more sensitive to water availability
362 than many other taxa [79-81]. In continental Antarctica, temperatures decrease with increasing
363 altitude, which reduces the active zone (seasonal melting permafrost) to a point where the ice-

364 to-liquid water-to-gaseous water transition is reduced to a solid-to-gas transition. At this point,
365 bioavailable water is insufficient to support soil microbial communities [82].

366

367 Our extensive metagenomic characterisation of the microbial communities indicated that the
368 Mackay Glacier region soils were fundamentally distinct from those of the more southern
369 McMurdo Dry Valleys. In the former, most contigs and 16S rRNA genes were affiliated with
370 *Bacteroidetes* and *Acidobacteria*. In contrast, *Actinobacteria* and *Proteobacteria* are typically
371 dominant bacterial phyla in the Dry Valleys, with *Bacteroidetes* and *Acidobacteria* comprising a
372 relatively minor fraction of sequences [64, 83-85]. For example, a recent comprehensive NGS
373 analysis of soil communities from Victoria Valley showed a dominance of *Actinobacteria* and
374 *Gemmatimonadetes*, with only minor representation from *Acidobacteria* and *Bacteroidetes* [86].

375

376 The ecological significance of these differences in the dominant taxonomic groups is unclear,
377 but the identification of certain chemosynthetic genes, particularly those encoding non-
378 photoautotrophic RuBisCO and carbon monoxide dehydrogenase, with affiliations to the phylum
379 *Acidobacteria*, may provide a valid clue. Several recent studies [50, 87, 88] have suggested that
380 trace gas (H₂, CO) scavenging is an important energy acquisition physiology in extremely
381 oligotrophic soils, and that members of both the *Bacteroidetes* and *Acidobacteria* are implicated
382 in this process [87].

383

384 The assembly of representative MAGs from the two dominant phyla, *Bacteroidetes* and
385 *Acidobacteria*, supported this view. The implied physiology of both organisms indicated a
386 specialised mixed chemosynthetic and heterotrophic lifestyle, with a range of adaptations to low
387 substrate concentrations. Consequently, we found that both MAGs encoded genes for oxygen-
388 dependent [NiFe]-hydrogenase metallocentre assembly proteins (*hyp*) and CO dehydrogenase
389 maturation factors (*coxF*) indicating potential alternative chemosynthetic pathways [88]. The

390 gene analysis also suggested that both organisms have the capacity to import amino acids,
391 peptides and a range of carbohydrate substrates. *Bacteroidetes* are typically specialist
392 degraders of high molecular weight compounds [89] and *Acidobacteria* are metabolisers of
393 complex organic substrates [90].

394

395 *Acidobacteria* are common soil colonists of oligotrophic habitats [55], and their dominance in
396 these low carbon soils is consistent with *K*-strategist ecology, in which slow-growth is favoured
397 over rapid replication rates [91]. Genome reduction has also been observed in bacteria living in
398 nutrient-limited environments (Baumgartner *et al* 2017). The reduced genome size of
399 Chitinophagales bacterium 62-2 MAG, compared to its closest homologue, is suggestive of such
400 an evolutionary effect in the Antarctic hyper-arid and oligotrophic soils.

401

402 Determinants of psychotolerance and stress mitigation strategies were also widespread in both
403 assembled genomes. Genes involved in cryoprotection included those encoding the production
404 of cryoprotective agents such as betaine and trehalose, which act by lowering the freezing point
405 of the cytoplasm [92]. Genes for exopolysaccharide production were present in both MAGs. *De*
406 *novo* EPS production is triggered by low temperatures [93] and desiccation [94], and is a
407 fundamental microbial survival strategy in many extreme environments, where EPS structured
408 biofilms provide protection against desiccation and UV irradiance, enhance conductivity and
409 support microbial growth [95].

410

411 The repertoire of functional genes detected, the measurements of microbial activity and the
412 isotope data are all indicative of functional microbial communities even under the harsh
413 environment conditions, consistent with many previous studies. The fact that these
414 complementary and mutually confirmatory signals have been detected under conditions that
415 would be considered the be stoichiometrically disadvantages suggests two, non-mutually

416 exclusive, possibilities. First, the soil microbial communities could be especially well adapted to
417 the extreme nutrient conditions, perhaps by very efficient recycling and nutritional parsimony.
418 Second, the chemical speciation of the nutrient elements and physical interactions between
419 nutrient elements and the soil physical components in these Antarctic soils differ from many
420 other soils so that larger fractions of the soil N and P pools are available to the microorganisms.

421

422 **Acknowledgements**

423 This research was supported by the South African National Research Foundation (Grant ID.
424 97891 MWVG, 99320 TPM) and the South African National Antarctic Program (SANAP Grant ID
425 93074). SV received support from the Claude Leon Foundation. We also acknowledge the
426 University of Pretoria (Genomics Research Institute and Research Development Program).
427 Field logistic and financial support were provided to IH and DAC by Antarctica New Zealand and
428 the New Zealand Antarctic Research Institute (NZARI).

429

430 **Author contributions:** T.P.M., D.A.C., and I.D.H. designed the research; M.W.V.G., G.H.,
431 T.J.A. performed the analyses; M.W.V.G., S.V., D.W.H., and S.W. analysed the data; M.W.V.G.,
432 S.V., D.W.H., S.W., I.D.H., D.A.C. and T.P.M. wrote the paper.

433

434 **Data availability:** The unassembled metagenomes are available on the MG-RAST server under
435 sample accession numbers 4667018.3 - 4667036. The contigs have been deposited in the
436 NCBI database and are available under the BioProject ID: PRJNA376086.

437 **References**

- 438 1. Falkowski PG, Fenchel T, Delong EF: **The microbial engines that drive Earth's biogeochemical**
439 **cycles.** *science* 2008, **320**:1034-1039.
- 440 2. Höglberg P, Nordgren A, Buchmann N, Taylor AF, Ekblad A, Höglberg MN, Nyberg G, Ottosson-
441 Löfvenius M, Read DJ: **Large-scale forest girdling shows that current photosynthesis drives soil**
442 **respiration.** *Nature* 2001, **411**:789-792.
- 443 3. Kowalchuk GA, Stephen JR: **Ammonia-oxidizing bacteria: a model for molecular microbial**
444 **ecology.** *Annual Reviews in Microbiology* 2001, **55**:485-529.
- 445 4. Cleveland CC, Liptzin D: **C: N: P stoichiometry in soil: is there a “Redfield ratio” for the**
446 **microbial biomass?** *Biogeochemistry* 2007, **85**:235-252.
- 447 5. Spohn M, Chodak M: **Microbial respiration per unit biomass increases with carbon-to-nutrient**
448 **ratios in forest soils.** *Soil Biology and Biochemistry* 2015, **81**:128-133.
- 449 6. Barrett JE, Virginia RA, Lyons WB, McKnight DM, Priscu JC, Doran PT, Fountain AG, Wall DH,
450 Moorhead D: **Biogeochemical stoichiometry of Antarctic dry valley ecosystems.** *Journal of*
451 *Geophysical Research: Biogeosciences* 2007, **112**.
- 452 7. Priscu JC: **Phytoplankton nutrient deficiency in lakes of the McMurdo Dry Valleys, Antarctica.**
453 *Freshwater Biology* 1995, **34**:215-227.
- 454 8. Cowan DA, Russell NJ, Mamais A, Sheppard DM: **Antarctic Dry Valley mineral soils contain**
455 **unexpectedly high levels of microbial biomass.** *Extremophiles* 2002, **6**:431-436.
- 456 9. Pointing SB, Belnap J: **Microbial colonization and controls in dryland systems.** *Nature Reviews*
457 *Microbiology* 2012, **10**:551.
- 458 10. Makhalyane TP, Van Goethem MW, Cowan DA: **Microbial diversity and functional capacity in**
459 **polar soils.** *Current Opinion in Biotechnology* 2016, **38**:159-166.
- 460 11. Makhalyane TP, Valverde A, Velázquez D, Gunnigle E, Van Goethem MW, Quesada A, Cowan
461 DA: **Ecology and biogeochemistry of cyanobacteria in soils, permafrost, aquatic and cryptic**
462 **polar habitats.** *Biodiversity and Conservation* 2015:1-22.
- 463 12. Cary SC, McDonald IR, Barrett JE, Cowan DA: **On the rocks: the microbiology of Antarctic Dry**
464 **Valley soils.** *Nat Rev Microbiol* 2010, **8**:129-138.
- 465 13. Hopkins DW, Sparrow AD, Gregorich EG, Elberling B, Novis P, Fraser F, Scrimgeour C, Dennis PG,
466 Meier-Augenstein W, Greenfield LG: **Isotopic evidence for the provenance and turnover of**
467 **organic carbon by soil microorganisms in the Antarctic dry valleys.** *Environ Microbiol* 2009,
468 **11**:597-608.
- 469 14. Cable JM, Ogle K, Lucas RW, Huxman TE, Loik ME, Smith SD, Tissue DT, Ewers BE, Pendall E,
470 Welker JM: **The temperature responses of soil respiration in deserts: a seven desert synthesis.**
471 *Biogeochemistry* 2011, **103**:71-90.
- 472 15. Ryan MG, Law BE: **Interpreting, measuring, and modeling soil respiration.** *Biogeochemistry*
473 2005, **73**:3-27.
- 474 16. Davidson EA, Janssens IA: **Temperature sensitivity of soil carbon decomposition and feedbacks**
475 **to climate change.** *Nature* 2006, **440**:165-173.
- 476 17. Van Goethem MW, Pierneef R, Bezuidt OK, Van De Peer Y, Cowan DA, Makhalyane TP: **A**
477 **reservoir of ‘historical’antibiotic resistance genes in remote pristine Antarctic soils.**
478 *Microbiome* 2018, **6**:40.
- 479 18. Terauds A, Chown SL, Morgan F, J Peat H, Watts DJ, Keys H, Convey P, Bergstrom DM:
480 **Conservation biogeography of the Antarctic.** *Diversity and Distributions* 2012, **18**:726-741.

481 19. Beet CR, Hogg ID, Collins GE, Cowan DA, Wall DH, Adams BJ: **Genetic diversity among**
482 **populations of Antarctic springtails (Collembola) within the Mackay Glacier ecotone.** *Genome*
483 2016.

484 20. McGaughran A, Hogg ID, Stevens MI: **Patterns of population genetic structure for springtails**
485 **and mites in southern Victoria Land, Antarctica.** *Molecular phylogenetics and evolution* 2008,
486 46:606-618.

487 21. Bestelmeyer BT, Ward JP, Havstad KM: **SOIL-GEOMORPHIC HETEROGENEITY GOVERNS PATCHY**
488 **VEGETATION DYNAMICS AT AN ARID ECOTONE.** *Ecology* 2006, 87:963-973.

489 22. Nordgren A: **Apparatus for the continuous, long-term monitoring of soil respiration rate in**
490 **large numbers of samples.** *Soil Biology and Biochemistry* 1988, 20:955-957.

491 23. Miller D, Bryant J, Madsen E, Ghiorse W: **Evaluation and optimization of DNA extraction and**
492 **purification procedures for soil and sediment samples.** *Applied and environmental microbiology*
493 1999, 65:4715-4724.

494 24. Schmieder R, Edwards R: **Quality control and preprocessing of metagenomic datasets.**
495 *Bioinformatics* 2011, 27:863-864.

496 25. Magoč T, Salzberg SL: **FLASH: fast length adjustment of short reads to improve genome**
497 **assemblies.** *Bioinformatics* 2011, 27:2957-2963.

498 26. Meyer F, Paarmann D, D'Souza M, Olson R, Glass EM, Kubal M, Paczian T, Rodriguez A, Stevens R,
499 Wilke A: **The metagenomics RAST server—a public resource for the automatic phylogenetic and**
500 **functional analysis of metagenomes.** *BMC bioinformatics* 2008, 9:386.

501 27. Nurk S, Meleshko D, Korobeynikov A, Pevzner PA: **metaSPAdes: a new versatile metagenomic**
502 **assembler.** *Genome research* 2017:gr. 213959.213116.

503 28. Van der Walt AJ, Van Goethem MW, Ramond J-B, Makhalanyane TP, Reva O, Cowan DA:
504 **Assembling metagenomes, one community at a time.** *BMC genomics* 2017, 18:521.

505 29. Mikheenko A, Saveliev V, Gurevich A: **MetaQUAST: evaluation of metagenome assemblies.**
506 *Bioinformatics* 2015:btv697.

507 30. Hyatt D, Chen G-L, LoCascio PF, Land ML, Larimer FW, Hauser LJ: **Prodigal: prokaryotic gene**
508 **recognition and translation initiation site identification.** *BMC bioinformatics* 2010, 11:1.

509 31. Buchfink B, Xie C, Huson DH: **Fast and sensitive protein alignment using DIAMOND.** *Nature*
510 *methods* 2015, 12:59.

511 32. Huson DH, Auch AF, Qi J, Schuster SC: **MEGAN analysis of metagenomic data.** *Genome research*
512 2007, 17:377-386.

513 33. Oksanen J, Blanchet FG, Kindt R, Oksanen MJ, Suggs M: **Package ‘vegan’.** *Community ecology*
514 *package Version* 2013, 2:0-0.

515 34. Kindt R, Kindt MR: **Package ‘BiodiversityR’.** 2015.

516 35. Rodriguez-R LM, Konstantinidis KT: **Nonpareil: a redundancy-based approach to assess the**
517 **level of coverage in metagenomic datasets.** *Bioinformatics* 2014, 30:629-635.

518 36. Eren AM, Esen ÖC, Quince C, Vineis JH, Morrison HG, Sogin ML, Delmont TO: **Anvi'o: an**
519 **advanced analysis and visualization platform for ‘omics data.** *PeerJ* 2015, 3:e1319.

520 37. Alneberg J, Bjarnason BS, de Bruijn I, Schirmer M, Quick J, Ijaz UZ, Lahti L, Loman NJ, Andersson
521 AF, Quince C: **Binning metagenomic contigs by coverage and composition.** *Nat Meth* 2014,
522 11:1144-1146.

523 38. Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS, Lesin VM, Nikolenko SI,
524 Pham S, Prjibelski AD: **SPAdes: a new genome assembly algorithm and its applications to**
525 **single-cell sequencing.** *Journal of Computational Biology* 2012, 19:455-477.

526 39. Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW: **CheckM: assessing the quality**
527 **of microbial genomes recovered from isolates, single cells, and metagenomes.** *Genome*
528 *Research* 2015, **25**:1043-1055.

529 40. Wu M, Scott AJ: **Phylogenomic analysis of bacterial and archaeal sequences with AMPHORA2.**
530 *Bioinformatics* 2012, **28**:1033-1034.

531 41. Saitou N, Nei M: **The neighbor-joining method: a new method for reconstructing phylogenetic**
532 **trees.** *Molecular biology and evolution* 1987, **4**:406-425.

533 42. Kumar S, Stecher G, Tamura K: **MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0**
534 **for Bigger Datasets.** *Molecular Biology and Evolution* 2016.

535 43. Langmead B, Salzberg SL: **Fast gapped-read alignment with Bowtie 2.** *Nat Meth* 2012, **9**:357-
536 359.

537 44. Aziz RK, Bartels D, Best AA, DeJongh M, Disz T, Edwards RA, Formsma K, Gerdes S, Glass EM,
538 Kubal M, et al: **The RAST Server: Rapid Annotations using Subsystems Technology.** *BMC*
539 *Genomics* 2008, **9**:75.

540 45. Moriya Y, Itoh M, Okuda S, Yoshizawa AC, Kanehisa M: **KAAS: an automatic genome annotation**
541 **and pathway reconstruction server.** *Nucleic Acids Research* 2007, **35**:W182-W185.

542 46. Carver T, Thomson N, Bleasby A, Berriman M, Parkhill J: **DNAPlotter: circular and linear**
543 **interactive genome visualization.** *Bioinformatics* 2009, **25**:119-120.

544 47. Adriaenssens EM, Kramer R, Van Goethem MW, Makhalaanyane TP, Hogg I, Cowan DA:
545 **Environmental drivers of viral community composition in Antarctic soils identified by viromics.**
546 *Microbiome* 2017, **5**:83.

547 48. Novis PM, Whitehead D, Gregorich EG, Hunt JE, Sparrow AD, Hopkins DW, Elberling B,
548 Greenfield LG: **Annual carbon fixation in terrestrial populations of Nostoc commune**
549 **(Cyanobacteria) from an Antarctic dry valley is driven by temperature regime.** *Global Change*
550 *Biology* 2007, **13**:1224-1237.

551 49. Chan Y, Van Nostrand JD, Zhou J, Pointing SB, Farrell RL: **Functional ecology of an Antarctic dry**
552 **valley.** *Proceedings of the National Academy of Sciences* 2013, **110**:8990-8995.

553 50. Ji M, Greening C, Vanwonterghem I, Carere CR, Bay SK, Steen JA, Montgomery K, Lines T,
554 Beardall J, van Dorst J: **Atmospheric trace gases support primary production in Antarctic desert**
555 **surface soil.** *Nature* 2017, **552**:400.

556 51. Vitousek PM, Cassman K, Cleveland C, Crews T, Field CB, Grimm NB, Howarth RW, Marino R,
557 Martinelli L, Rastetter EB: **Towards an ecological understanding of biological nitrogen fixation.**
558 *Biogeochemistry* 2002, **57**:1-45.

559 52. Bowers RM, Kyrpides NC, Stepanauskas R, Harmon-Smith M, Doud D, Reddy T, Schulz F, Jarett J,
560 Rivers AR, Eloe-Fadrosh EA: **Minimum information about a single amplified genome (MISAG)**
561 **and a metagenome-assembled genome (MIMAG) of bacteria and archaea.** *Nature*
562 *biotechnology* 2017, **35**.

563 53. An D-S, Lee H-G, Im W-T, Liu Q-M, Lee S-T: **Segetibacter koreensis gen. nov., sp. nov., a novel**
564 **member of the phylum Bacteroidetes, isolated from the soil of a ginseng field in South Korea.**
565 *International journal of systematic and evolutionary microbiology* 2007, **57**:1828-1833.

566 54. Ward NL, Challacombe JF, Janssen PH, Henrissat B, Coutinho PM, Wu M, Xie G, Haft DH, Sait M,
567 Badger J: **Three genomes from the phylum Acidobacteria provide insight into the lifestyles of**
568 **these microorganisms in soils.** *Applied and environmental microbiology* 2009, **75**:2046-2056.

569 55. Rawat SR, Männistö MK, Bromberg Y, Häggblom MM: **Comparative genomic and physiological**
570 **analysis provides insights into the role of Acidobacteria in organic carbon utilization in Arctic**
571 **tundra soils.** *FEMS microbiology ecology* 2012, **82**:341-355.

572 56. Trumper K, Ravilious C, Dickson B: **Carbon in drylands: desertification, climate change and**
573 **carbon finance.** *A UNEP-UNDP/UNCCD Technical note for discussions at CRIC 2008*, **7**:1-12.

574 57. Pointing SB, Belnap J: **Disturbance to desert soil ecosystems contributes to dust-mediated**
575 **impacts at regional scales.** *Biodiversity and Conservation* 2014, **23**:1659-1667.

576 58. Vitousek PM, Farrington H: **Nutrient limitation and soil development: experimental test of a**
577 **biogeochemical theory.** *Biogeochemistry* 1997, **37**:63-75.

578 59. Vance C, Heichel G: **Carbon in N₂ fixation: limitation or exquisite adaptation.** *Annual review of*
579 *plant biology* 1991, **42**:373-390.

580 60. Hopkins D, Sparrow A, Elberling B, Gregorich E, Novis P, Greenfield L, Tilston E: **Carbon, nitrogen**
581 **and temperature controls on microbial activity in soils from an Antarctic dry valley.** *Soil*
582 *Biology and Biochemistry* 2006, **38**:3130-3140.

583 61. Burkins MB, Virginia RA, Wall DH: **Organic carbon cycling in Taylor Valley, Antarctica:**
584 **quantifying soil reservoirs and soil respiration.** *Global Change Biology* 2001, **7**:113-125.

585 62. Stomeo F, Makhalyane TP, Valverde A, Pointing SB, Stevens MI, Cary CS, Tuffin MI, Cowan DA:
586 **Abiotic factors influence microbial diversity in permanently cold soil horizons of a maritime-**
587 **associated Antarctic Dry Valley.** *FEMS microbiology ecology* 2012, **82**:326-340.

588 63. Aislalbie JM, Chhour K-L, Saul DJ, Miyauchi S, Ayton J, Paetzold RF, Balks MR: **Dominant bacteria**
589 **in soils of Marble point and Wright valley, Victoria land, Antarctica.** *Soil Biology and*
590 *Biochemistry* 2006, **38**:3041-3056.

591 64. Lee CK, Barbier BA, Bottos EM, McDonald IR, Cary SC: **The Inter-Valley Soil Comparative Survey:**
592 **the ecology of Dry Valley edaphic microbial communities.** *ISME J* 2012, **6**:1046-1057.

593 65. Lebre PH, De Maayer P, Cowan DA: **Xerotolerant bacteria: surviving through a dry spell.** *Nature*
594 *Reviews Microbiology* 2017.

595 66. Niederberger TD, Sohm JA, Gunderson T, Tirindelli J, Capone DG, Carpenter EJ, Cary SC: **Carbon-**
596 **fixation rates and associated microbial communities residing in arid and ephemeral wet**
597 **Antarctic Dry Valley soils.** *Frontiers in microbiology* 2015, **6**.

598 67. Belnap J: **Nitrogen fixation in biological soil crusts from southeast Utah, USA.** *Biology and*
599 *fertility of soils* 2002, **35**:128-135.

600 68. Hopkins D, Newsham K, Dungait J: **Primary production and links to carbon cycling in Antarctic**
601 **soils.** In *Antarctic Terrestrial Microbiology*. Springer; 2014: 233-248

602 69. Walvoord MA, Phillips FM, Stonestrom DA, Evans RD, Hartsough PC, Newman BD, Striegl RG: **A**
603 **reservoir of nitrate beneath desert soils.** *Science* 2003, **302**:1021-1024.

604 70. León-Sobrino C, Ramond J-B, Maggs-Kölling G, Cowan DA: **Nutrient acquisition, rather than**
605 **stress response over diel cycles, drives microbial transcription in a hyper-arid Namib Desert**
606 **soil.** *Frontiers in microbiology* 2019, **10**:1054.

607 71. Vikram S, Guerrero LD, Makhalyane TP, Le PT, Seely M, Cowan DA: **Metagenomic analysis**
608 **provides insights into functional capacity in a hyperarid desert soil niche community.** *Environmental*
609 *microbiology* 2016.

610 72. Ogilvie B, Nedwell D, Harrison R, Robinson A, Sage A: **High nitrate, muddy estuaries as nitrogen**
611 **sinks: the nitrogen budget of the River Colne estuary (United Kingdom).** *Marine Ecology*
612 *Progress Series* 1997, **150**:217-228.

613 73. Emerson JB, Roux S, Brum JR, Bolduc B, Woodcroft BJ, Jang HB, Singleton CM, Soden LM, Naas
614 AE, Boyd JA: **Host-linked soil viral ecology along a permafrost thaw gradient.** *Nature*
615 *microbiology* 2018, **3**:870.

616 74. Trubl G, Jang HB, Roux S, Emerson JB, Solonenko N, Vik DR, Soden L, Ellenbogen J, Runyon AT,
617 Bolduc B: **Soil viruses are underexplored players in ecosystem carbon processing.** *MSystems*
618 2018, **3**:e00076-00018.

619 75. Siciliano SD, Palmer AS, Winsley T, Lamb E, Bissett A, Brown MV, van Dorst J, Ji M, Ferrari BC,
620 Grogan P: **Soil fertility is associated with fungal and bacterial richness, whereas pH is**

associated with community composition in polar soil microbial communities. *Soil Biology and Biochemistry* 2014, **78**:10-20.

Van Horn DJ, Van Horn ML, Barrett JE, Gooseff MN, Altrichter AE, Geyer KM, Zeglin LH, Takacs-Vesbach CD: **Factors Controlling Soil Microbial Biomass and Bacterial Diversity and Community Composition in a Cold Desert Ecosystem: Role of Geographic Scale.** *PLoS One* 2013, **8**:e66103.

Rousk J, Bååth E, Brookes PC, Lauber CL, Lozupone C, Caporaso JG, Knight R, Fierer N: **Soil bacterial and fungal communities across a pH gradient in an arable soil.** *The ISME journal* 2010, **4**:1340.

Körner C: **The use of 'altitude' in ecological research.** *Trends in ecology & evolution* 2007, **22**:569-574.

Belnap J: **The potential roles of biological soil crusts in dryland hydrologic cycles.** *Hydrological Processes: An International Journal* 2006, **20**:3159-3178.

Angel R, Conrad R: **Elucidating the microbial resuscitation cascade in biological soil crusts following a simulated rain event.** *Environmental microbiology* 2013, **15**:2799-2815.

Karaoz U, Couradeau E, Da Rocha UN, Lim H-C, Northen T, Garcia-Pichel F, Brodie EL: **Large blooms of *Bacillales* (Firmicutes) underlie the response to wetting of cyanobacterial biocrusts at various stages of maturity.** *mBio* 2018, **9**:e01366-01316.

McKay CP: **Snow recurrence sets the depth of dry permafrost at high elevations in the McMurdo Dry Valleys of Antarctica.** *Antarctic Science* 2009, **21**:89-94.

Pointing SB, Chan Y, Lacap DC, Lau MC, Jurgens JA, Farrell RL: **Highly specialized microbial diversity in hyper-arid polar desert.** *Proc Natl Acad Sci U S A* 2009, **106**:19964-19969.

Babalola OO, Kirby BM, Roes-Hill L, Cook AE, Cary SC, Burton SG, Cowan DA: **Phylogenetic analysis of actinobacterial populations associated with Antarctic Dry Valley mineral soils.** *Environmental microbiology* 2009, **11**:566-576.

Zeglin LH, Dahm CN, Barrett JE, Gooseff MN, Fitzpatrick SK, Takacs-Vesbach CD: **Bacterial Community Structure Along Moisture Gradients in the Parafluvial Sediments of Two Ephemeral Desert Streams.** *Microbial Ecology* 2011, **61**:543-556.

Van Goethem MW, Makhalanyane TP, Valverde A, Cary SC, Cowan DA: **Characterization of bacterial communities in lithobionts and soil niches from Victoria Valley, Antarctica.** *FEMS microbiology ecology* 2016, **92**:fiw051.

Greening C, Carere CR, Rushton-Green R, Harold LK, Hards K, Taylor MC, Morales SE, Stott MB, Cook GM: **Persistence of the dominant soil phylum Acidobacteria by trace gas scavenging.** *Proceedings of the National Academy of Sciences* 2015, **112**:10497-10502.

Greening C, Berney M, Hards K, Cook GM, Conrad R: **A soil actinobacterium scavenges atmospheric H₂ using two membrane-associated, oxygen-dependent [NiFe] hydrogenases.** *Proceedings of the National Academy of Sciences* 2014, **111**:4257-4261.

Fernández-Gómez B, Richter M, Schüler M, Pinhassi J, Acinas SG, González JM, Pedrós-Alió C: **Ecology of marine Bacteroidetes: a comparative genomics approach.** *The ISME journal* 2013, **7**:1026-1037.

Joseph SJ, Hugenholtz P, Sangwan P, Osborne CA, Janssen PH: **Laboratory cultivation of widespread and previously uncultured soil bacteria.** *Applied and environmental microbiology* 2003, **69**:7210-7215.

Kielak AM, Barreto CC, Kowalchuk GA, van Veen JA, Kuramae EE: **The ecology of Acidobacteria: moving beyond genes and genomes.** *Frontiers in microbiology* 2016, **7**.

Hubalek Z: **Protectants used in the cryopreservation of microorganisms.** *Cryobiology* 2003, **46**:205-229.

667 93. Krembs Ce, Eicken H, Junge K, Deming J: **High concentrations of exopolymeric substances in**
668 **Arctic winter sea ice: implications for the polar ocean carbon cycle and cryoprotection of**
669 **diatoms.** *Deep Sea Research Part I: Oceanographic Research Papers* 2002, **49**:2163-2181.
670 94. Colica G, Li H, Rossi F, Li D, Liu Y, De Philippis R: **Microbial secreted exopolysaccharides affect**
671 **the hydrological behavior of induced biological soil crusts in desert sandy soils.** *Soil Biology*
672 *and Biochemistry* 2014, **68**:62-70.
673 95. Sutherland IW: **Biofilm exopolysaccharides: a strong and sticky framework.** *Microbiology* 2001,
674 **147**:3-9.

675

676 **Figures legends**

677 **Figure 1.** Satellite image of the Mackay Glacier region with the sampling sites indicated. Map of
678 Antarctic is superimposed with the region of interest highlighted. Source: Landsat Image Mosaic
679 of Antarctica (LIMA) Digital Database.

680

681 **Figure 2.** Microbial community composition and functional patterns across the 18 soil
682 communities. (A) Metagenomic taxonomy classified by major phyla. Samples are arranged in
683 order of increasing altitude, from 157 m.a.s to 1109 m.a.s, left to right. (B) Redundancy analysis
684 (RDA) bi-plot of community structure and abiotic parameters (left). Only the abiotic features that
685 significantly explained variation in microbial community structure are fitted onto the ordination
686 (blue arrows). The length of the arrow is proportional to the rate of change. The direction of the
687 arrow corresponds to the direction of maximum change of that variable.

688

689 **Figure 3.** Taxonomic assignments of functionally-annotated ORFs for genes involved in carbon
690 cycling classified at the phylum level for the 18 metagenomes. Samples are arranged by
691 increasing altitude.

692

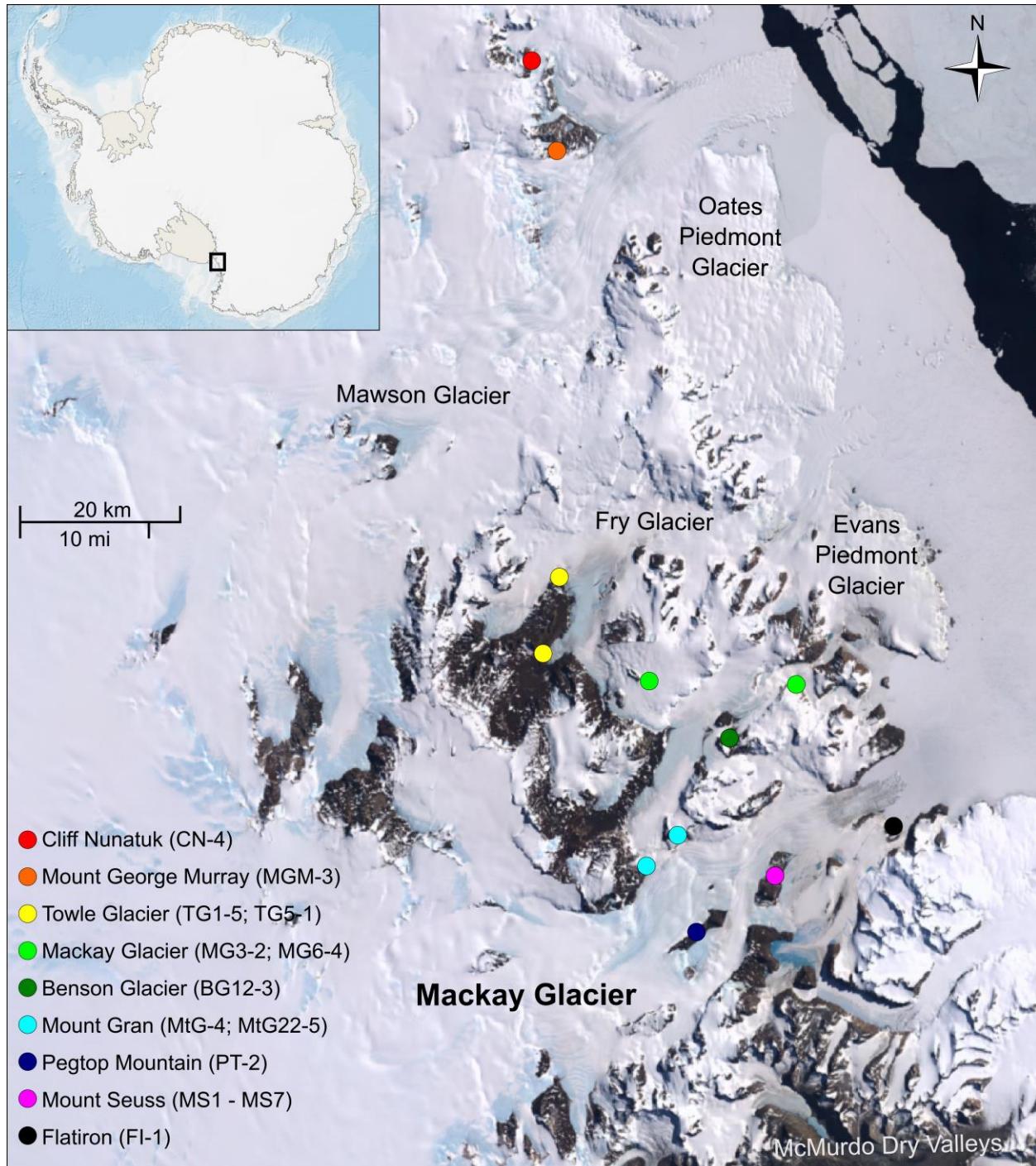
693 **Figure 4.** Taxonomic assignments of functionally-annotated ORFs for genes involved in
694 nitrogen cycling classified at the phylum level for the 18 metagenomes. Samples are arranged
695 by increasing altitude.

696

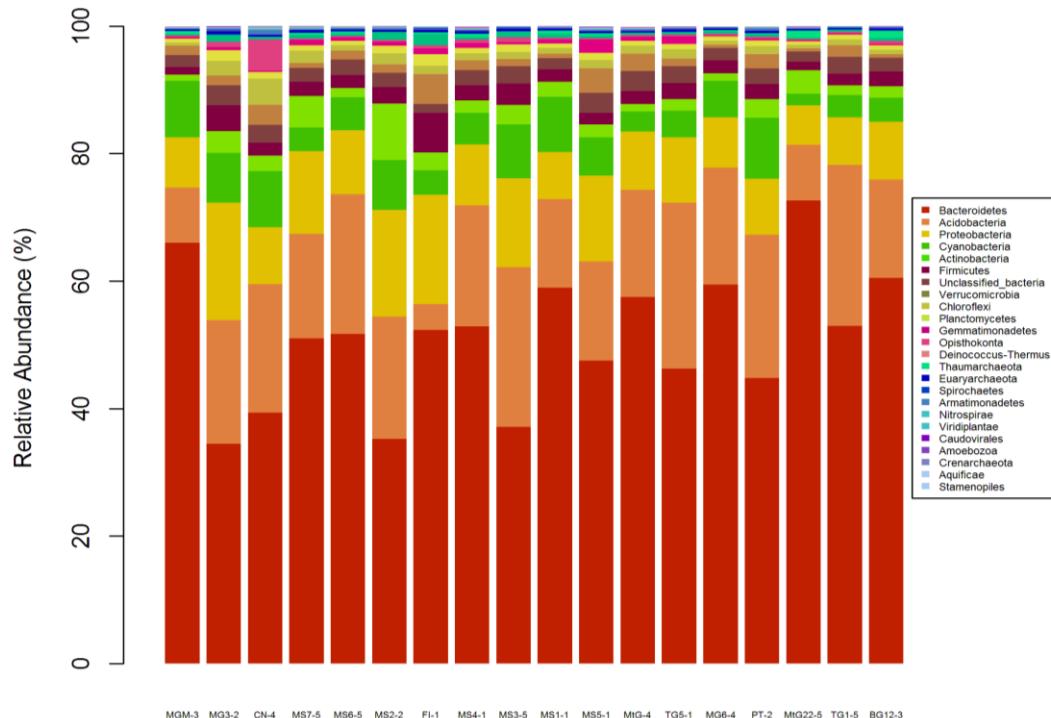
697 **Figure 5.** (A) Schematic overview of the *Bacteroidetes* (Bin_62-2_MS4-1) MAG indicating
698 important genes involved in C and N cycling. Furthermore, various stress response adaptations,
699 including those involved in DNA repair and osmoprotection are indicated as well as
700 transmembrane transporters, mechanisms of sulphur cycling and genes associated with cold
701 stress responses. The assignments were based the RAST and KAAS web servers. (B)
702 Phylogenetic tree placing Bin_62-2_MS4-1 within the *Segetibacter* (Chitinophagales).

703

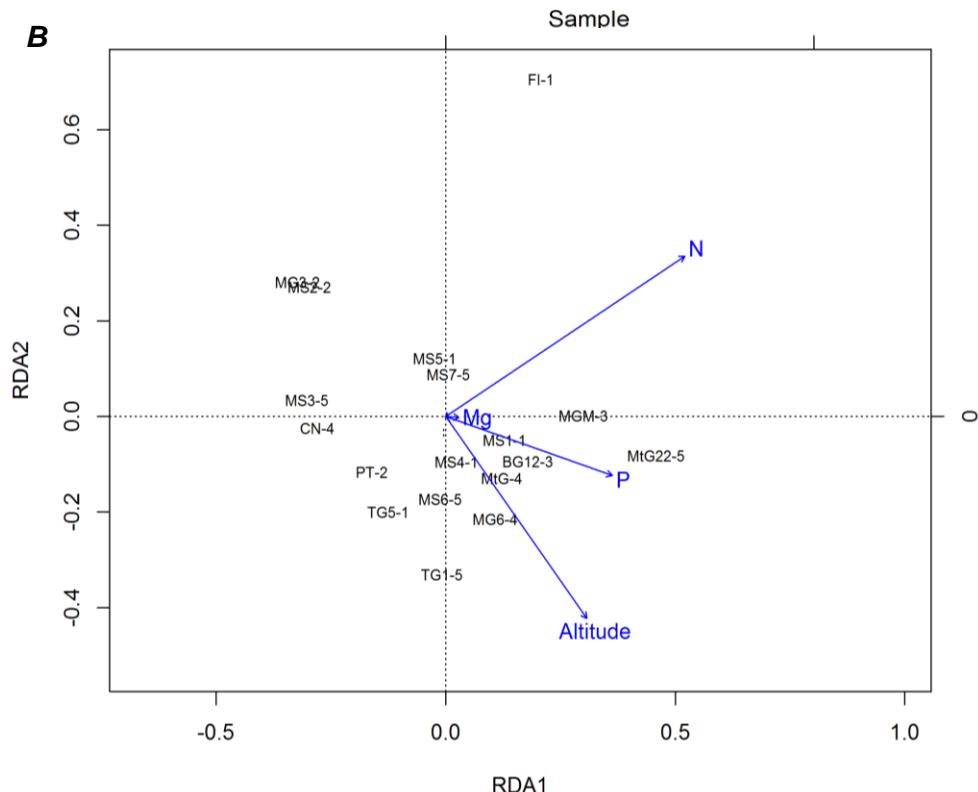
704 **Figure 6.** (A) Schematic overview of the *Acidobacterium* (Bin_28-9_MtG-4) MAG indicating
705 important genes involved in C and N cycling. Furthermore, various stress response adaptations,
706 including those involved in DNA repair, osmoprotection and heavy metal efflux and genes
707 associated with cold stress responses. The assignments were based the RAST and KAAS web
708 servers. (B) Phylogenetic tree placing Bin_28-9_MtG-4 within the *Pyrinomonas* (Acidobacteria).

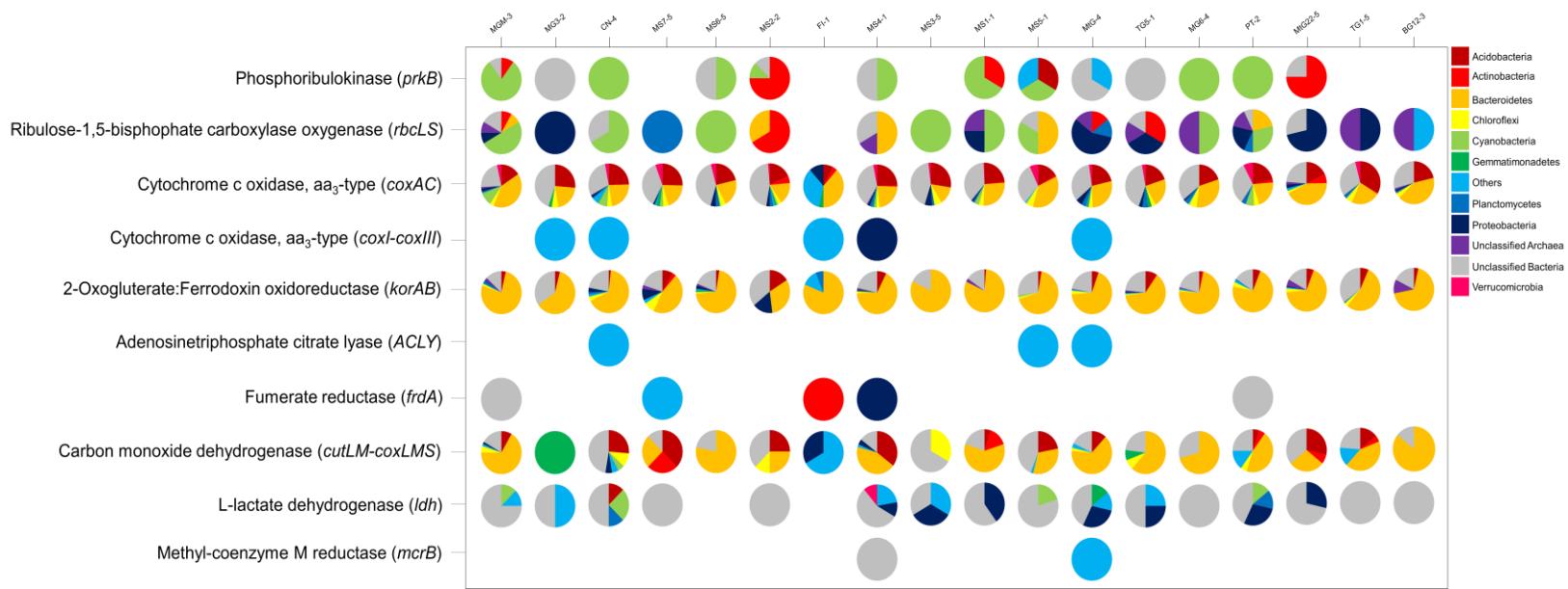

709

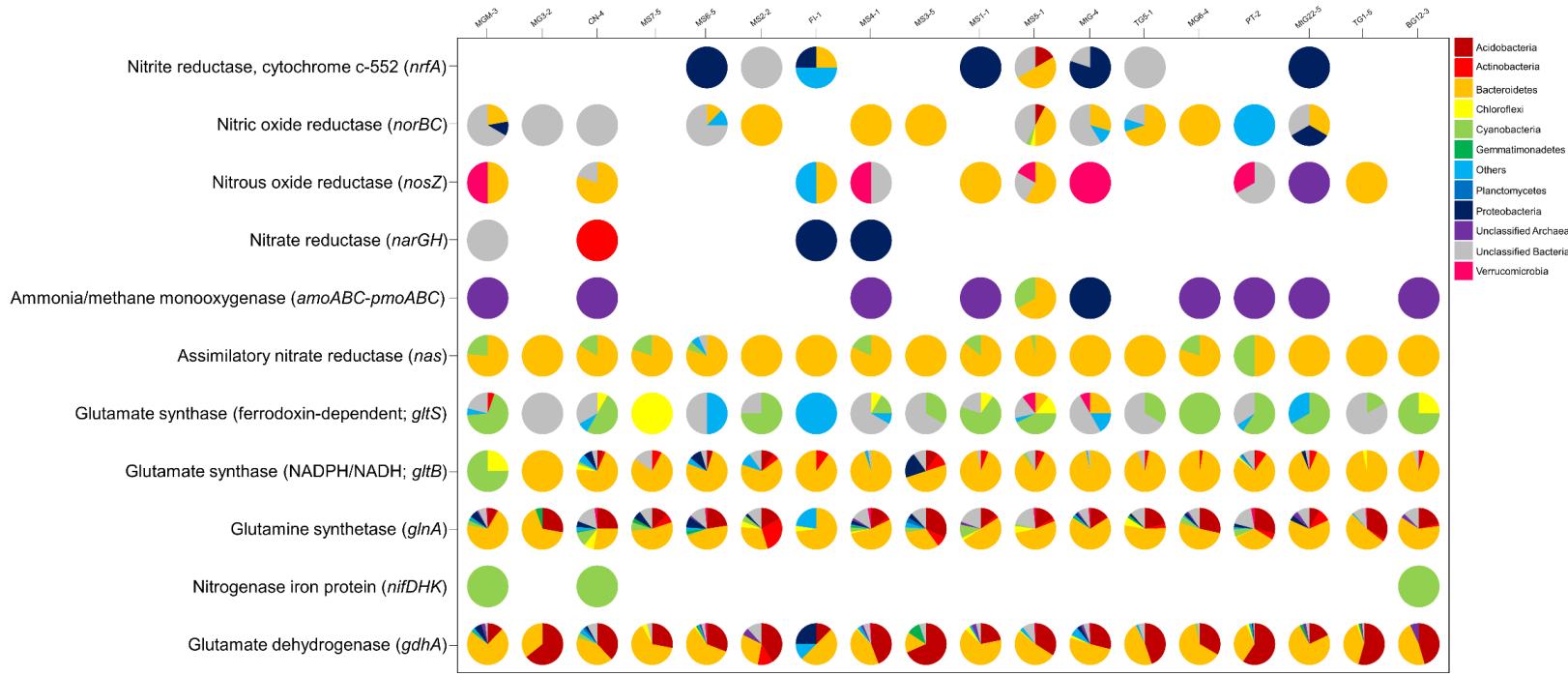
710 **Table 1.** Values of $\delta^{13}\text{C}$ and $\delta^{15}\text{N}$ (‰), soil carbon, nitrogen and phosphorus, and stoichiometric
711 ratios for Mackay Glacier soils.

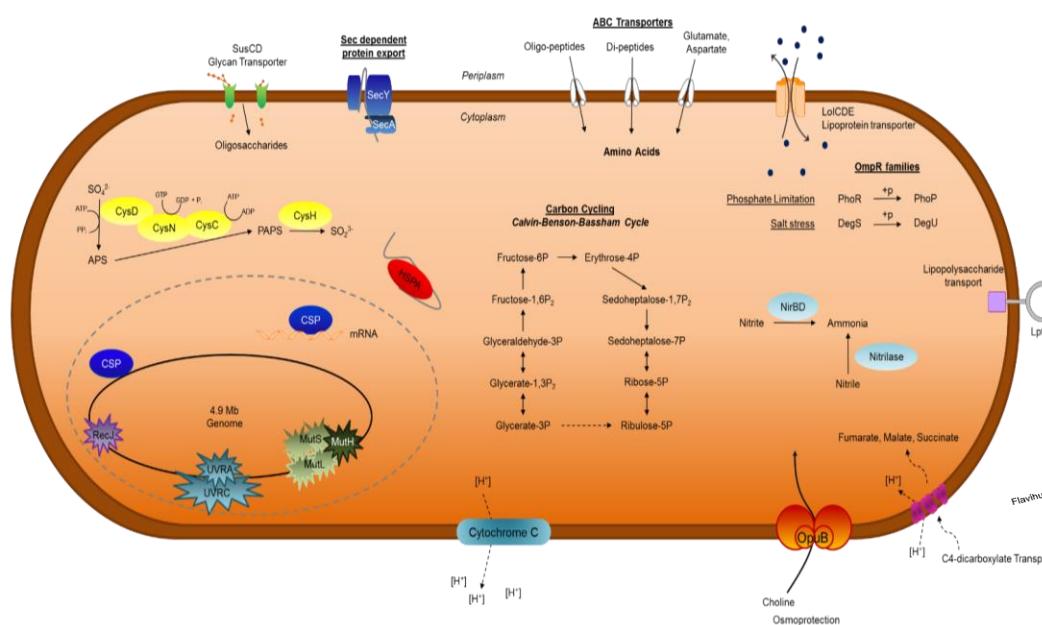

Sample ID	$\delta^{13}\text{C}$ (‰)	$\delta^{15}\text{N}$ (‰)	% C	% N	P (ppm)	C:N Ratio	N:P Ratio	C:P Ratio
BG12-3	-31.34	-10.36	0.10	0.020	11	5.0	0.0018	0.009
CN-4	-26.42	-9.755	0.14	0.016	12	8.75	0.0013	0.012
FI-1	-27.38	-0.406	0.12	0.042	20	2.88	0.0021	0.006
MG3-2	-28.46	-8.084	0.10	0.020	9	5.0	0.0022	0.011
MG6-4	-29.95	-5.786	0.12	0.016	18	7.5	0.0009	0.007
MGM-3	-26.50	-2.314	0.12	0.032	25	3.75	0.0013	0.005
MS1-1	-28.35	-1.713	0.15	0.032	22	4.69	0.0015	0.007
MS2-2	-26.47	0.019	0.12	0.016	24	7.5	0.0007	0.005
MS3-5	-28.14	-6.605	0.10	0.017	14	5.88	0.0012	0.007
MS4-1	-26.53	-5.020	0.12	0.021	17	5.71	0.0012	0.007
MS5-1	-26.82	-2.401	0.10	0.010	60	10.0	0.0002	0.002
MS6-5	-24.84	2.720	0.12	0.017	15	7.06	0.0011	0.008
MS7-5	-28.69	-8.247	0.13	0.026	23	5.0	0.0011	0.006
MtG-4	-23.72	-6.891	0.10	0.024	15	4.17	0.0016	0.007
MtG22-5	-23.45	-0.793	0.10	0.028	19	3.57	0.0015	0.005
PT-2	-27.01	-11.58	0.12	0.008	4	15.0	0.0020	0.030
TG1-5	-28.91	-11.78	0.12	0.028	12	4.29	0.0023	0.010
TG5-1	-27.29	-8.670	0.12	0.019	11	6.32	0.0017	0.011

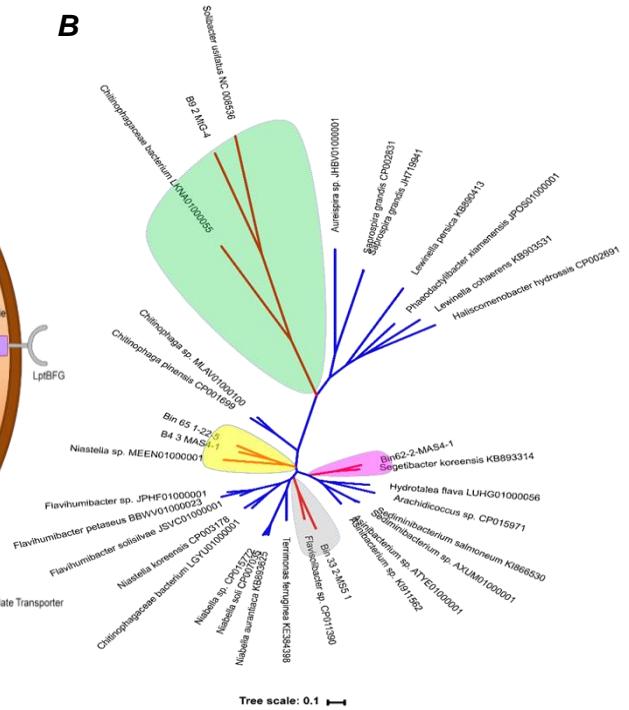
712

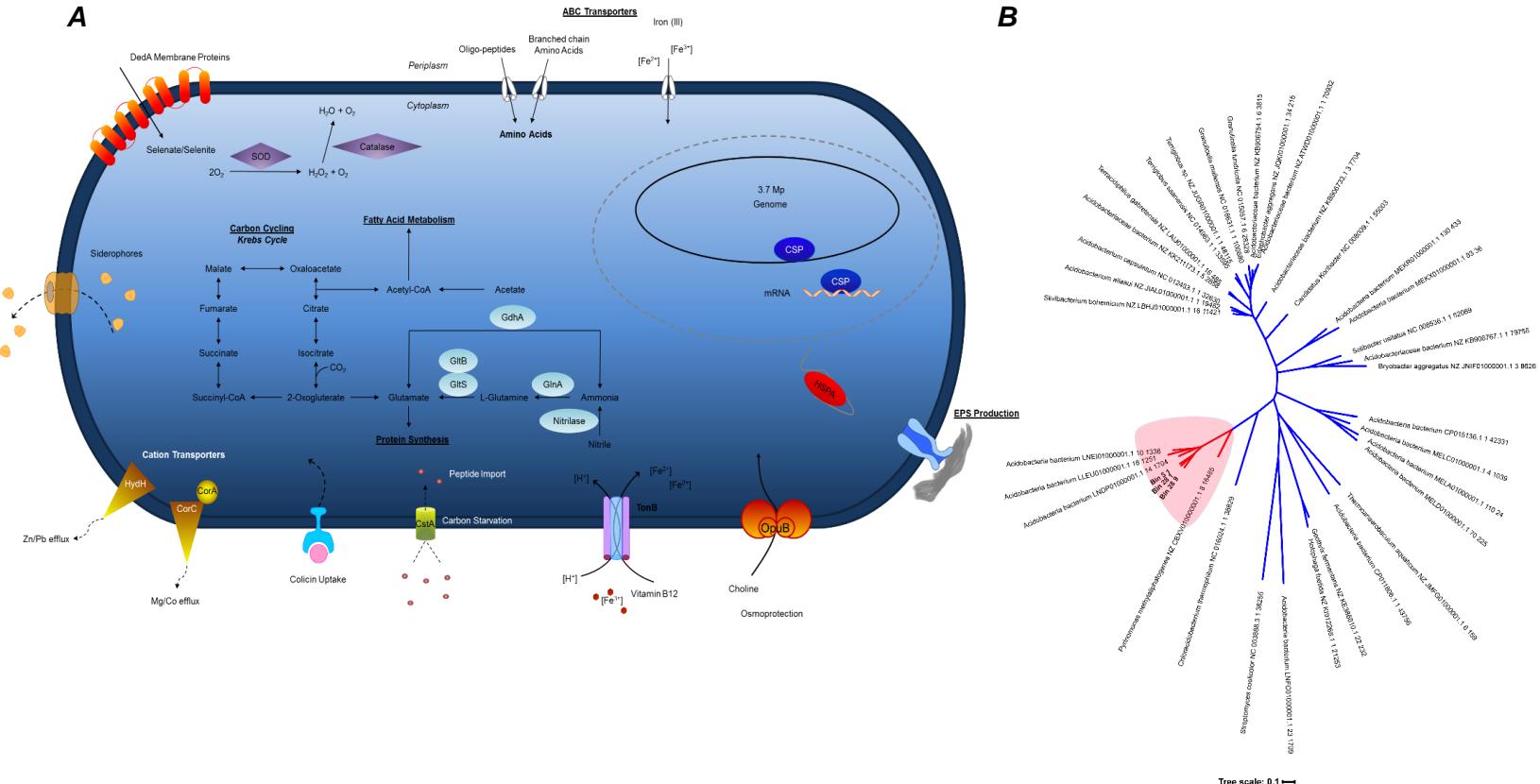

713




A


B





A

B

