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Abstract

Calcium oscillations and waves are often behind instances of extra depolarization in
cardiac cells, eventually giving rise to life-threatening arrhythmias. In this work, we
study the conditions for the appearance of calcium oscillations in both a detailed
subcellular model of calcium dynamics and a minimal model that takes into account
just the minimal ingredients of the calcium toolkit. To avoid the effects of homeostatic
changes and the interaction with the action potential we consider the somewhat
artificial condition of a cell without pacing and with no calcium exchange with the
extracellular medium. This permits us to isolate the main reasons responsible for the
oscillations by controlling externally the total calcium content of the cell. We find that
as the calcium content is increased, the system transitions between two stationary
states, corresponding to one with closed ryanodine receptors (RyR) and most calcium in
the cell stored in the sarcoplasmic reticulum (SR), and another, with open RyRs and a
depleted SR. In between these states, calcium oscillations may appear. This transition
depends very sensitively in the amount of buffering in the cell. We find, for instance,
that at high values of calsequestrin (CSQ) oscillations disappear, while they are present
for a broad range of parameters at low values of CSQ. Using the minimal model, we can
relate the stability of the oscillating state to the nullcline structure of the system, and
find that its range of existence is bounded by a homoclinic and a Hopf bifurcation.

Author summary

In cardiac cells, calcium plays a very important role. An increase in calcium levels is the 1

trigger used by the cell to initiate contraction. Besides, calcium modulates several 2

transmembrane currents, affecting the cell transmembrane potential. Thus, 3

dysregulations in calcium handling have been associated with the appearance of 4

arrhythmias. Often, this dysregulation results in the appearance of periodic calcium 5

waves or global oscillations, providing a pro-arrhythmic substrate. In this paper, we 6

study the onset of calcium oscillations in cardiac cells using both a detailed subcellular 7

model of calcium dynamics and a minimal model that takes into account just the 8

minimal ingredients of the calcium toolkit. Both reproduce the main experimental 9

results and link this behavior with the presence of different steady-state solutions and 10

bifurcations that depend on the total amount of calcium in the cell and in the level of 11

buffering present. We expect that this work will help to clarify the conditions under 12
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which calcium oscillations appear in cardiac myocytes and, therefore, will represent a 13

step further in the understanding of the origin of cardiac arrhythmias. 14

Introduction 15

Cardiovascular diseases represent one of the main causes of death worldwide [1]. Often, 16

mortality is related to the appearance of rapid cardiac rhythms, such as tachycardia and 17

fibrillation, that result in contractibility loss, reducing cardiac output and eventually 18

leading to sudden cardiac death [2]. Although the onset of rapid arrhythmias can be 19

due to a large variety of factors [3], including changes in the properties of cardiac 20

tissue [4], often arrhythmias are triggered by spontaneous intracellular calcium 21

releases [5, 6]. In cardiac cells, calcium is responsible for regulating cell contraction, but 22

it also modulates several currents that affect the action potential. Thus, spontaneous 23

calcium release in the interbeat interval, during diastole, may elicit extra action 24

potential depolarizations and excitation waves, potentially disrupting normal wave 25

propagation. This sometimes leads to the formation of rotors (functional reentry) and 26

eventually a disordered electrical state characteristic of fibrillation [7–9]. 27

Often, this focal activity is due to the presence of periodic calcium waves, that result 28

in calcium oscillations [10–15]. In paced cardiac cells, oscillations necessarily compete 29

with the external pacing frequency and they may be behind occurrences of spontaneous 30

calcium release events during diastole [16]. Calcium oscillations arise typically due to a 31

malfunction of the Ryanodine Receptor (RyR) [16–19], a ligand-gated channel [20] that 32

controls the amplitude of the intracellular calcium transient, by regulating the release of 33

calcium stored at the sarcoplasmic reticulum (SR). Since calcium dynamics in cardiac 34

cells is regulated by the release of calcium at several tens of thousands of RyR clusters 35

(termed calcium release units, CaRUs), global oscillations must appear as a result of an 36

oscillatory regime at the local cluster level that can later be coordinated by diffusion of 37

free calcium. Alternatively, when synchronization is not complete, oscillations at the 38

local level can give rise to periodic calcium waves, providing a pro-arrhythmic 39

substrate [21,22]. Calcium oscillations have been observed to appear in ventricular 40

myocytes under elevated values of cytosolic calcium [23], due to periodic opening and 41

closing of the RyRs. An increase in cytosolic calcium concentration results in a higher 42

frequency of the oscillations until, at larger values, the SR is depleted because the RyR 43

becomes permanently open [23]. A similar transition has also been studied in models 44

under conditions of SR calcium overload [24–26]. 45

In this paper, we use a detailed subcellular calcium model [27] to show the 46

appearance of periodic calcium waves and then analyze this phenomenon using a 47

deterministic model of calcium in a cardiac cell (or in a CaRU). Within this model, we 48

study the existence and stability of different solutions. We show that oscillations 49

typically appear at high global calcium concentration and/or high RyR open probability. 50

Their appearances depend on a delicate balance between the total calcium level in the 51

cell and the level of buffering of calcium available. For instance, at high values of 52

calsequestrin (CSQ), the system presents a transition from a low concentration, 53

excitable state, to a high concentration state. Such a transition has been proposed to be 54

the basis of complex states, such as long-lasting sparks [28]. At low concentrations of 55

CSQ, in between these two stable states, oscillations appear. We study this transition 56

using a minimal model, that includes the concentration of dyadic and SR calcium and 57

the open probability of the RyR and show that it suffices to explain the appearance of 58

oscillations. A further reduction to a minimal two-dimensional model allows us to 59

explain the transition to the oscillatory regime in terms of the nullcline structure of the 60

system. 61
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Fig 1. a) RyR distribution in the cell. Each CaRU is formed by four simulation voxels,
each one containing 9 RyRs. Thus, all CaRUs are formed by 36 RyRs. The CaRUs are
distributed over the cell along the z-lines with a Gaussian distribution in both
transversal and longitudinal axes. b) Each RyR follows a four state model, with
stochastic transitions among the different states.

Materials and methods 62

The methods used in this paper have two clear different natures. First, we use a fully 63

detailed subcellular stochastic model of calcium handling to report numerical results 64

showing calcium oscillations. We analyze under which conditions oscillations appear in 65

a controlled scenario where no external pacing is present, and there are no calcium 66

fluxes with the extracellular medium. Later, to gain insight regarding the origin of the 67

oscillations that we observe in the full model, we construct a minimal deterministic 68

model for the local dynamics of calcium at the level of the Calcium Release Unit. The 69

numerical and mathematical analysis of this model allows us to focus on the substrate 70

of the oscillations disregarding the coordination effects of the full model. 71

Detailed subcellular calcium model 72

We model the spatial structure of the cell as in a previous model of a cardiomyocyte 73

presented in Marchena and Echebarria [27], which has been modified to add the effects 74

of calsequestrin. The equations of the model read: 75

dci(r, t)

dt
= Jrel(r, t)− Jup(r, t) +∇ · [Di(r)∇ci(r, t)]− Jbi(r, t) (1)

dctotsr (r, t)

dt
= − vi(r)

vsr(r)
[Jrel(r, t)− Jup(r, t)] +∇ · [Dsr(r)∇csr(r, t)] (2)

dcbi(r, t)

dt
= Jbi(r, t) (3)

where ci is the calcium concentration in the cytosol, ctotsr the total calcium concentration 76

in the SR, and cbi represents the concentration of a given buffer in the cytosol. Besides, 77

Jrel and Jup are the release flux from the SR and the uptake by SERCA, respectively, 78

and Jbi represents the binding of free calcium to the different buffers in the cytosol 79

(TnC, SR binding buffer and CaM). These currents are given by: 80

Jrel = grelORyR(csr − ci) (4)

Jup = gup
(ci/Ki)

2 − (csr/Ksr)2

1 + (ci/Ki)2 + (csr/Ksr)2
(5)

Jbi = kon,ici(BT − cb,i)− koff,icbi. (6)

The spatial structure of the model includes cytoplasmic and SR spaces, with a spatial 81

discretization of 100 nm. The volume fraction between cytosolic and SR spaces, vi/vsr, 82

is considered to vary spatially, with different values whether the point is close to the 83

z-line or in the inter z-line space. The release flux Jrel carries Ca2+ ions from the SR to 84

the cytoplasm through the RyRs. The RyR channels, indicated by a yellow dot in Fig. 85

1a, are distributed over the cell along the z-lines with a Gaussian distribution in both 86

transversal and longitudinal axes. A collection of grid points presenting RyRs forms a 87

cluster, i.e., a CaRU. We consider that a CaRU contains 36 RyRs, divided equally 88

among 4 grid points, each one containing 9 RyRs. Each RyR can be in one of four 89

states: open (O), close (C) and two inactivated states (I1 and I2) as it is shown in Fig. 90
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1b. The transitions among these states is considered to be stochastic. In the release flux, 91

the variable ORyR is the fraction of RyRs that are in the open state and is calculated for 92

all grid points that have a group of RyRs. All the details of the spatial model structure 93

and the values of the parameters can be found in Marchena and Echebarria [27]. 94

Besides the concentration of calcium in the SR and the cytosol, we also consider in 95

the model the concentrations of several buffers. In particular, TnC, CaM and SR-bound 96

buffers in the cytosol [27] and Calsequestrin (CSQ) in the SR. Due to the addition of 97

CSQ in the model, two parameters have been adjusted from the parameters published 98

in Marchena and Echebarria [27]: the opening rate parameter, now ka = 2.1 · 10−3
99

µM−2ms−1, and the dependence of the open probability of the RyR on luminal calcium, 100

now EC50−SR = 450 µM. Contrary to the buffers in the cytosol, the dynamics of CSQ 101

is considered to be fast [29–31] compared with the release time scale. If we denote by 102

cbSQ the calcium concentration bound to CSQ in the SR, then, the amount of bound 103

calcium is given by: 104

dcbSQ

dt
= konSQcsr(BSQ − cbSQ)− koffSQcbSQ (7)

Assuming fast binding, the stationary condition for cbSQ (ċbSQ = 0) is: 105

cbSQ =
BSQcsr

KSQ + csr
(8)

where KSQ = koffSQ/konSQ is the dissociation constant. From this, the concentration 106

of free calcium can be obtained solving Eq. (2) for the total amount of calcium in the 107

SR, ctotsr 108

ctotsr = csr + cbSQ = csr +
BSQcsr

KSQ + csr
(9)

Solving this equation we obtain the value of free calcium in the SR, 109

csr =
1

2

[
ctotsr −KSQ −BSQ +

√
(ctotsr −KSQ −BSQ)2 + 4ctotsr KSQ

]
(10)

The advantage of using this formulation of the rapid buffer approximation over the 110

more usual, for example in [32], is that it conserves mass exactly. 111

Under physiological conditions, the total amount of calcium in the cell at steady 112

state is fixed by calcium homeostasis, i.e. the complex interaction of LCC, exchanger, 113

and pumps, which affect the steady state level at which the calcium entering the cell 114

balances the calcium extruding. In this work, we are interested in studying instabilities 115

in calcium cycling, under constant cell calcium content. This allows us to focus the 116

analysis on the conditions for the appearance of calcium oscillations under different 117

possible calcium homeostatic levels. Thus, we neglect calcium exchange with the 118

extracellular medium, setting the conductances of the L-type calcium channels and the 119

NCX equal to zero. Then, the total amount of calcium in the cell, QT , is given by: 120

QT = vi(ci + cb,TnC + cb,SR + cb,CaM ) + vsr(csr + cbSQ). (11)

For a better comparison with the results from a reduced calcium model, described later, 121

we will consider as our control parameter the average calcium content of the cell 122

c̄T = QT /(vi + vsr). Thus, in our simulations, c̄T is a constant value that is determined 123

by the initial conditions for cytosolic and luminal calcium (free and bound to buffers). 124

Reduced calcium model 125

The minimal model for the local dynamics of calcium is based on the schematics shown 126

in Fig. 2. We consider a simplified description of the system, with dynamics of the total 127
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Fig 2. Sketch of the different compartments considered in the simplified model, with
the internal variables and the equations of the respective calcium fluxes.

calcium concentration in the SR, ctotSR, and in the cytosolic space close to the RyR2, or 128

dyadic space, cd, and of the open probability of the RyR, Po, 129

dcd
dt

= Jrel − Jd (12)

dctotsr

dt
=

vi
vsr

Jup −
vd
vsr

Jrel (13)

dPo

dt
= kpc

2
d(1− Po)− kmPo (14)

with the currents given by 130

Jrel = gPo(csr − cd), Jd =
cd − ci
τi

, Jup = gup
c2i

K2
s + c2i

(15)

A detailed derivation of these equations and their range of validity can be found in 131

Appendix A. Notice that, as in the full model, we consider a situation where no external 132

pacing is imposed. In this sense, neither external intake from the LCC is considered, nor 133

any extrusion via the sodium-calcium exchanger. 134

For simplicity, we consider a SERCA pump without an equilibrium condition, that 135

always pumps calcium from the cytosol to the SR. This gives a basal solution at 136

ci = cd = 0, instead of the physiological value of ∼ 100nM. However, given that, at basal 137

conditions, csr ∼ 1mM, this is a reasonable simplification. As in the detailed subcellular 138

model, we assume the approximation of rapid CSQ buffer, so we can compute the 139

amount of free luminal calcium csr from the total luminal calcium ctotsr from Eq. (9). 140

To close the system we should introduce an extra equation for calcium concentration 141

in the cytosol ci. However, as we assume that the total calcium content in the cell is 142

constant, then we have a conservation equation. Therefore, we can compute ci solving 143

the following quadratic equation for the conservation of c̄T 144

c̄T =
vi
vcell

(
ci +

Bbci
Kb + ci

)
+

vd
vcell

cd +
vsr
vcell

ctotsr , (16)

where vcell is the unit volume defined as vcell ≡ vi + vsr + vd, and Bb is the 145

concentration of a generic buffer in the cytosol. 146

To simplify the analysis, we proceed to work with the assumption that the dynamics 147

of the RyRs is faster than that of calcium concentration (Ṗo ' 0), obtaining then a 148

minimal two-variable model. This will be our base-line minimal model. However, we 149

will later also consider an alternative model with fast dynamics for the dyadic calcium 150

concentration (ċd ' 0). A third possibility, with fast dynamics of luminal calcium, 151

although theoretically possible, does not have much physiological sense, as SERCA is 152

typically slow compared to release or diffusion from the dyadic space. 153

Fast RyR dynamics 154

In this case, we assume that the open and close dynamics of the RyR are fast, so we can 155

assume that it is in a quasi-steady state (Ṗo ' 0). Then, from Eq. (14), we obtain: 156

Po =
c2d

K2
o + c2d

(17)

where the parameter K2
o = km/kp is the ratio of the open and close rates of the RyR. 157
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Fig 3. A: Calcium traces obtained with the full subcellular model and three different
values of the average calcium concentration, cT . B: Line-scans at different values of the
load. Increasing the load, the system undergoes a transition from a low cytosolic
calcium state (at cT = 47µM), where RyRs remain in the closed state, to spontaneous
oscillations, giving rise to calcium waves (cT = 65µM). Finally, at high calcium loads
(cT = 73µM) oscillations give rise to a high cytosolic calcium state, where the RyRs
remain open, resulting in SR calcium depletion.

Then, with these assumptions, the simplified model becomes 158

dcd
dt

= g
c2d

K2
o + c2d

(csr − cd)− cd − ci
τi

(18)

dctotsr

dt
=

vi
vsr

gup
c2i

K2
s + c2i

− vd
vsr

g
c2d

K2
o + c2d

(csr − cd) (19)

Fast dyadic calcium dynamics 159

In order to test the robustness of the analysis, we also consider a simplified model given 160

by Eqs. (12)-(14), in the limit of fast dynamics in the dyadic space and take ċd ' 0. 161

Then, from Eq. (12): 162

cd =
τigPocsr + ci

1 + τigPo
(20)

Substituting this expression in Eqs. (13) and (14), we obtain another minimal model, 163

given by 164

dctotsr

dt
=

vi
vsr

gup
c2i

K2
s + c2i

− vd
vsr

gPo(csr − cd) (21)

dPo

dt
= −kmPo + kpc

2
d(1− Po) (22)

where again, ci must be computed solving the quadratic equation for the conservation of 165

mass c̄T [Eq. (16)]. For simplicity we will consider the case when no calsequestrin is 166

present BSQ = 0. 167

Results 168

We first present the results of the numerical simulations of both the full detailed model 169

and the minimal model of calcium cycling. Both produce the same basic scenarios for 170

intracellular calcium dynamics, with three different dynamical behaviors, which we then 171

proceed to analyze. The goal of the development of the minimal model is, precisely, to 172

be able to perform this analytical treatment and check how the behavior depends on 173

total calcium and buffering levels. 174

Subcellular model 175

The full detailed model allows us to investigate the different behaviors present in 176

cardiomyocyte calcium cycling when there is no external pacing. We should point out 177

that, under these conditions, the average calcium concentration in the cell c̄T is 178

conserved since the total amount of calcium QT in the cell is constant. We produce 179

simulations with different levels of average calcium concentration and observe very 180

different behaviors (Fig. 3a). For the lowest value of c̄T , the RyR remains almost closed, 181

and most of the calcium content is stored in the SR. Despite the stochasticity of the 182
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Fig 4. The average period of oscillations at different values of the average calcium
concentration c̄T , for a concentration of CSQ of BSQ = 2mM (green dots), and in the
absence of CSQ (blue dots).

system, the average values obtained are reproduced reliably with only the presence of 183

local sparks as fluctuations of this global state. This state corresponds to an excitable 184

state, which is the expected behavior of the cell if it has to react properly to external 185

excitation. We call this general state a global shutdown state. 186

When the calcium load increases, the system starts to spontaneously show calcium 187

waves. These waves persist in time with different shapes and durations, giving rise to a 188

nearly periodic oscillation in the global calcium signal. Roughly, we observe one calcium 189

wave per second (Fig. 4). Waves are normally initiated at different sites each time but 190

they appear systematically indicating a strong oscillation at the substrate level that we 191

will address in the discussion. 192

Finally, at large values of c̄T oscillations disappear, giving place to a stable state 193

with a high level of calcium in the cytosolic space and a depleted SR. In this state, the 194

RyRs are generally open allowing for the depletion of the SR and the increase of 195

cytosolic calcium. Except for local fluctuations this state is globally stable and we can 196

call it the open state. This state would not respond to external pacing, however, it 197

would produce the activation of the NCX exchanger which would slowly decrease the 198

average concentration model. As we pointed out previously, the elimination of the 199

calcium intake and extrusion in the model allows us to focus on the general behavior of 200

the cell under different homeostatic scenarios. Numerical simulations indicate that as 201

the calcium level is increased, the cell goes from a shut-down and ready-to-respond state 202

to an oscillatory regime to a global open state where the cell does not respond. 203

We must point out that a similar trend has been observed experimentally by Stevens 204

et al [23], even if in the experimental preparation the control parameter was the amount 205

of cytosolic calcium, and not total calcium, as in our simulations. Oscillations appear as 206

the amount of calcium in the cell increases, giving rise to a state with depleted SR 207

calcium (and RyRs in the open state), at high calcium concentrations. Furthermore, 208

experimentally it has been shown that changes in buffering levels can have also 209

important effects on this transition. More specifically, Stevens et. al [23] have shown 210

that the reduction of CSQ in the SR bulk enhances the appearance of oscillations. We 211

have checked if this situation is also present in our simulation and found this to be the 212

case. As shown in Fig. 4, when we reduce the CSQ concentration, the oscillations 213

appear at lower values of c̄T , they have a higher frequency and the range of oscillations 214

in terms of c̄T becomes broader. 215

Minimal model without calsequestrin 216

We proceed to explain the results obtained in the minimal model where we find the 217

same qualitative behavior as in the results obtained with the full subcellular stochastic 218

model. We have performed simulations in the approximation of fast RyR dynamics at 219

different values of the cell average calcium concentration c̄T . We consider first the case 220

when no calsequestrin is present, BSQ = 0. As we observed in the full subcellular model, 221

at low values of c̄T the system remains in a low concentration steady state (Fig. 5). In 222

this state the system is excitable, so the fixed point is locally stable, but a large enough 223

perturbation produces an increase in calcium concentration, resulting in a calcium 224

transient typical from CICR. On the other hand, at high calcium loads, there is a new 225

fixed point with high cytosolic calcium concentration, that has been related to the 226

appearance of long-lasting sparks [28]. As in the subcellular model, in between the low 227

concentration fixed point and the permanently open state, the system presents 228
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Fig 5. Time traces of the different calcium concentrations for different values of total
calcium concentration, c̄T , and calsequestrin concentration set to zero (BSQ = 0). After
a transient, the system ends up in either a steady state which is excitatory at low levels
of total calcium in the cell with observed low levels of calcium in the cytosol, in an
oscillatory state with intermediate levels of total calcium in the cell, or in a state of high
total levels of calcium in the cell with observed high cytosolic calcium levels.

Fig 6. Plot of the function f(ci) for different values of the c̄T concentration. a) At low
concentrations there is a single fixed point. b) At higher concentrations two extra
unstable fixed points appear. c) At high concentrations the upper fixed point becomes
stable.

oscillations (Fig. 5), that are stable for a quite broad range of loads. 229

Indeed, the number of stationary solutions changes with the calcium concentration 230

c̄T . The fixed points of the system can be found from: 231

0 = g
c2d

K2
o + c2d

(csr − cd)− cd − ci
τi

(23)

0 = − vd
vsr

g
c2d

K2
o + c2d

(csr − cd) +
vi
vsr

gup
c2i

K2
s + c2i

(24)

together with: 232

ci +
Bbci

Kb + ci
=

1

vi

(
vc̄T − vdcd − vsrctotsr

)
(25)

Eqs. (23)-(25) represent three algebraic equations that give the concentrations ci, cd
and csr as a function of total calcium concentration in the cell c̄T . When no
calsequestrin is present, BSQ = 0, it is easy to obtain that

cd = ci +
vi
vd
τigup

c2i
K2

s + c2i
(26)

ctotsr =
1

vsr

[
vc̄T − vdcd − vi

(
ci +

Bbci
Kb + ci

)]
(27)

Introducing these expressions into Eq. (23) we obtain an equation of the form 233

f(ci; c̄T ) = 0. For each value of c̄T we can obtain the values of ci that solve the 234

equation. For instance, for a global average calcium concentration of c̄T = 32 µM we 235

have only one solution, as shown in Fig. 6a. This solution, given by cd = ci = 0 and 236

ctotsr = v/vsr c̄T , exists for all values of c̄T . At high values of the average concentration, 237

c̄T = 54 and 75 µM, another two solutions appear, as depicted in Figs. 6b and c. 238

Fig 7. Solutions for cytosolic calcium concentration, ci, as a function of total calcium
concentration, c̄T . Discontinuous lines represent unstable solutions while continuous
lines stable ones.

To calculate the stability of the stationary solutions, we have computed the value of 239

the eigenvalues of the Jacobian matrix, corresponding to Eqs. (18)-(19). We find that, 240

while the lower branch is always stable, the other branch of solutions is unstable for a 241

large range of parameters (Fig. 7), due to the appearance of oscillations. The stability of 242

the corresponding periodic orbit has been calculated using XPPAUT [33] (Fig. 8). We 243

obtain that, as c̄T is increased, a limit cycle appears in a global homoclinic bifurcation, 244

with zero frequency (Fig. 8c). Increasing c̄T , this limit cycle finally disappears in a Hopf 245

bifurcation, at which the upper fixed point becomes stable (Fig. 8b). 246
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Fig 8. a) Solutions for cytosolic calcium concentration, ci, as a function of total
calcium concentration, c̄T . Discontinuous lines represent unstable solutions and
continuous lines stable ones. When reducing the total concentration, at c̄T ≈ 66 µM, a
limit cycle emerges in a Hopf bifurcation, from the upper state, that then becomes
unstable. The red lines represent the lower and upper values of the limit cycle. At,
c̄T ≈ 50 µM, the intermediate unstable fixed point collides with the limit cycle, that
disappears in a homoclinic bifurcation. Below c̄T ≈ 39 µM, the RyR close state is the
only solution. c) Oscillation periods as a function of c̄T .

Fig 9. Number of fixed points and stability of those fixed points as a function of total
calcium in the unit, for different values of calsequestrin concentration.

Minimal model with calsequestrin 247

We present now the main results of the simulation in the fast RyR minimal model when 248

calsequestrin is present. We use Eqs. (18)-(19), with Eq. (9) that relates free with 249

CSQ-bound SR calcium concentrations. Typically KSQ = 650µM and BSQ somewhere 250

between zero and 20 mM. We have then calculated the different fixed points as a 251

function of the total concentration c̄T for different values of BSQ (Fig. 9). When 252

BSQ 6= 0, increasing c̄T , the appearance of two extra solutions occurs at larger values of 253

c̄T , meaning that the close state solution is stable for a wider range of c̄T . Besides, the 254

oscillatory range becomes narrower when BSQ increases, until at certain point 255

oscillations disappear. The disappearance of oscillations is due to the transformation of 256

the bifurcation at which the upper fixed value gains stability, from a Hopf bifurcation 257

into a saddle-node bifurcation. 258

In addition, at this point, the system presents five fixed points where only the lowest 259

and uppermost are stable. It is important to note that this shows that CSQ enhances 260

the elimination of oscillations. Finally, for high values of c̄T , the system has again three 261

fixed points. 262

Analytical results 263

The mathematical tractability of the minimal model allows us to get a better 264

understanding of the transition to the upper state via oscillations. A first insight can be 265

obtained by plotting the nullclines of the system (Fig. 10), which can help us understand 266

the main mechanisms behind the transition to the oscillatory state. In particular, we 267

obtain the critical average calcium concentration for the onset of oscillations, which 268

depends on buffering levels, and the conditions for the appearance of the upper state. 269

Nullclines and stability of solutions. Besides the transition from one to three 270

solutions (Figs. 10a and b), nullclines present a clear restructuring of their branches 271

well before the upper state becomes stable. Increasing the total concentration, there is a 272

sudden pinch-off in the cd-nullcline (Figs. 10b and c). Before this change in nullcline 273

topology, the lower state (with all the calcium in the luminal space and none in the 274

cytosol) is the only stable attractor. Once the cd-nullclines split, oscillations may appear 275

around the upper unstable fixed point. 276

We can understand the effect of the pinch-off, plotting the trajectories for values of 277

c̄T close to the transition. Below the pinch-off, the trajectory follows the fast dynamics 278

of the cd-nullcline (the black line in Figs. 10 and 11), until it reaches the fixed point. As 279

the load is increased, the branches of the cd-nullclines come closer until at a certain 280

point the break-up occurs (Fig. 11c). Due to the emergence of the pinch-off, the system 281

dynamics follows the lower nullcline up to the tip, at the largest value of csr, where, due 282
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Fig 10. Structure of the nullclines at different values of c̄T indicated in the title of each
panel. The black line indicates the first nullcline ċd = 0, while the orange lines
corresponds to ċsr = 0. Dots indicate the fixed points. Filled dot: stable fixed point and
unfilled dot: unstable fixed point.

Fig 11. Structure of the nullclines at different values of c̄T indicated in the title of each
panel. The black line indicates the nullcline ċd = 0, while the orange line corresponds to
ċsr = 0. The red curve is a trajectory with a direction indicated by the red arrows.

to the fast dynamics in the cd direction, it jumps to follow again the nullcline, at larger 283

values of ci. Since there is no stable point, the trajectory starts a persistent oscillation 284

around the unstable fixed point. We can state that, for this problem, the nullcline 285

break-up is the necessary and sufficient condition to obtain oscillations. 286

Onset of oscillations. Using this observation, we can calculate analytically the 287

critical value of c̄T beyond which the system oscillates. At the pinch-off of the nullclines, 288

the cubic solution of ċd = 0 (black nullcline) loses two of the three solutions at a given 289

csr. To calculate this point analytically, first we observe that the pinch-off occurs at 290

values of cd < Ko (Ko = 15µM). To simplify the calculations, let us make the 291

approximations that, at the pinch off, the cd satisfies cd � Ko and cd � csr. Being this 292

the case, then Eq. (18) reduces to 293

dcd
dt

= 0 = g
c2d
K2

o

csr −
cd − ci
τi

(28)

Furthermore, from Eq. (25), we can write ci in terms of csr (assuming BSQ = 0, 294

cd � csr) 295

ci +
Bbci

Kb + ci
=
vc̄T − vsrcsr

vi
(29)

Assuming that the concentration of bound cytosolic calcium is much larger than that of 296

free cytosolic calcium, we obtain 297

ci =
Kb(vc̄T − vsrcsr)

viBb − (vc̄T − vsrcsr)
(30)

From the polynomial equation for cd, Eq. (28), solutions of cd are lost at values of csr 298

given by 1− 4g̃cicsr ≤ 0, with g̃ = gτi/K
2
o . Expanding, this gives the critical value of 299

c∗sr as: 300

viBb − vc̄T + vsrc
∗
sr − 4g̃c∗srKb(vc̄T − vsrc∗sr) = 0 (31)

The same equation can be written as 301

(c∗sr)2 + c∗sr
vsr − 4g̃Kbvc̄T

4g̃Kbvsr
+
viBb − vc̄T

4g̃Kbvsr
= 0 (32)

Once the pinch-off has been produced (Fig. 10c), there are two values of c∗sr, 302

corresponding to the lowest and highest values of the upper and lower nullclines, 303

respectively. Just at the pinch-off these two points merge. This allows to establish the 304

critical value at which the oscillation appears as the one that makes zero the 305

discriminant of the second order polynomial of c∗sr. After some algebra, the condition 306

for the critical c̄∗T becomes 307

(vsr − 4g̃Kbvc̄
∗
T )2 − 16Kbg̃vsr(viBb − vc̄∗T ) = 0 (33)
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Fig 12. Dependency of the onset of oscillations with buffer parameters. The filled dots
represent the control values Bb = 80µM, Kb = 0.5µM, given in Table 1.

Fig 13. Structure of the nullclines at two different values of a) c̄T = 54 µM, b) c̄T = 75
µM. A black line corresponds to the nullcline ċd = 0, while the orange line indicates
ċsr = 0. The functions f1 and g2 are the elements of the diagonal of the Jacobian
matrix defined as f1 = ∂cd ċd and g2 = ∂csr ċsr.

which can be written as 308

(c̄∗T )2 +
vsr

2g̃Kbv
c̄∗T +

v2sr
16g̃2K2

b v
2
− vsrviBb

g̃Kbv2
= 0 (34)

This gives 309

c̄∗T =

√
vsrviBb

v2g̃Kb
− vsr

4g̃Kbv
(35)

Using the parameters in Table 1, this expression gives a critical value for the onset of 310

oscillations at around c̄∗T = 50 µM, that given the approximations considered, agrees 311

quite well with the value obtain from the simulations of c̄∗T ≈ 51 µM. Thus, when the 312

total calcium content exceeds this critical value c̄∗T , corresponding to a calcium 313

concentration in the SR of csr = v/vsr c̄
∗
T = 2.28mM (in the lower state), the system 314

starts to oscillate, at a value of diastolic SR calcium load, given by: 315

c∗sr =
vc̄∗T
2vsr

− 1

8g̃Kb
=

1

2

√
viBb

vsrg̃Kb
− 1

4g̃Kb
(36)

which gives a value of c∗sr = 0.86 mM. At the onset of oscillations, there is thus a sudden 316

decrease in basal SR calcium concentration, to less than half its previous value before 317

the oscillations. 318

An increase in the quantity of cytosolic buffers (higher Bb) results in a delay in the 319

onset of oscillations, that would occur at higher calcium load (Fig. 12a). A higher 320

calcium affinity (lower Kb) on the contrary, would result in oscillations at lower loads 321

(Fig. 12b). It is interesting to notice, too, that the strength of SERCA does not affect 322

the onset of oscillations. 323

Transition to the upper state. The oscillations disappear at a Hopf bifurcation 324

when the upper state becomes stable. It is possible to relate this transition to the 325

structure of the nullclines in Fig. 10. For that, let us recover the definition of the 326

Jacobian matrix J: 327

J =

[
∂ċd
∂cd

∂ċd
∂csr

∂ċsr
∂cd

∂ċsr
∂csr

]
≡
[
f1 f2
g1 g2

]
(37)

A fixed point will be stable provided f1 + g2 < 0. When f1g2 − f2g1 > 0 the stable fixed 328

point corresponds to a node and if f1g2 − f2g1 < 0 to a stable spiral. We can use this to 329

relate the slope of the nullclines to the stability of the upper fixed point. Let us denote 330

α ≡ ċd and β ≡ ċsr the time derivatives of the independent variables. 331

At large values of the total concentration (see Fig. 13a, with c̄T = 75 µM), the slope 332

of the black nullcline (α = 0) at the fixed point is positive, while the slope of the orange 333

nullcline (β = 0) is negative. Then, increasing cd at constant csr, α goes from being 334

positive to negative. This means that f1 ≡ ∂α/∂cd < 0. Using the same argument, it is 335

easy to check that also g2 ≡ ∂β/∂csr < 0, and therefore the fixed point is stable. At 336

lower values of the total concentration (see, for instance, Fig. 13a, for c̄T = 54 µM) the 337
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slope of the black nullcline becomes negative. Thus, in this case, while g2 is still 338

negative, f1 becomes positive, and it is not possible to determine the stability of the 339

fixed point. It will depend on the speed of rate of cd and csr close to the fixed point. If 340

the dynamics of cd is faster, then one expects this point to be unstable, if it is csr that 341

varies fast, then stable. One would then expect that buffers that change the dynamics 342

either in the cytosol or in the SR would effect the stability of the fixed point and, 343

therefore, the range of existence of the limit cycle. 344

Robustness of the results. Fast dyadic calcium dynamics 345

Fig 14. Solutions as a function of total calcium concentration c̄T , with calsequestrin
concentration set to zero when the fast dyadic approximation is used. We obtain the
same type of structure as expected.The system can be in a monostable state, which is
excitatory (low load), in an oscillatory state (intermediate load), or in a bistable state
(high loads), where it usually ends in a state of open RyR and depleted SR calcium
concentration.

It is useful to check that the basic points of our discussion hold when different 346

possible approximations are applied to the minimal model. Namely, if the time scale of 347

RyR opening is not as fast as the time scale of calcium diffusion near the dyadic space 348

we should analyze the fast dyadic calcium approximation and not the fast RyR opening 349

approximation to obtain information from the nullcline analysis. To this end, we have 350

performed simulations of Eqs (21)-(22) at different values of the total calcium 351

concentration c̄T (Fig. 14) and test that we find the same basic behavior: at low values 352

of c̄T the system remains in a low concentration steady state (Fig. 15), but oscillations 353

appear for a range of c̄T , up to a limit where an upper state becomes stable. 354

More importantly, the basic structure of the nullclines determines the possible 355

solutions and again, oscillations appear when pinch off is produced (Fig. 14). The fixed 356

points in this case are the same as in Fig. 7, since they correspond to fixed points of 357

Eqs. (12)-(14). However, different slaving conditions may change the stability of the 358

fixed points, that now are analyzed in the plane (csr, Po). Similarly to what we found in 359

the previous analysis, calculating the stability, we find that the intermediate state is 360

always unstable while the upper branch is stable above certain value of c̄T . Both states 361

appear at around c̄T ≈ 54µM, indicating the robustness of our analysis. 362

Discussion and conclusion 363

Calcium oscillations play an important role in cardiac cells, from the regulation of 364

growth in human cardiac progenitor cells [34], to the control of the pacemaker rhythm 365

in both early embryonic heart cells [35, 36] and in sinoatrial nodal pacemaker cells 366

(SANCs) [37–39]. Spontaneous calcium releases or oscillations are also related to the 367

appearance of early or delayed-afterdepolarizations [40], which may give rise to 368

reentrant waves and arrhythmic rhythms, such as tachycardia or fibrillation. Calcium 369

oscillations have been observed under conditions of high cytosolic calcium 370

concentration [23] or SR calcium overload. High levels of cytosolic calcium affect the 371

opening probability of the RyR, which may result in oscillations or in a permanently 372

open state [23, 41]. Calcium overload can be obtained, for instance, by inhibition of the 373

Na+-K+ pump current INaK , that results in [Na+]i overload. The consequent build-up 374

of [Na+]i reduces the effectiveness of the Na+-Ca2+ exchanger at removing calcium 375

from the cell and intracellular calcium concentrations become elevated. A similar effect 376

is observed in models of hypercalcemia [42]. The effect of elevated [Na+]i has been 377
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Fig 15. Structure of the nullclines at different values of c̄T indicated in the title of each
panel. The black line indicates the nullcline Ṗo = 0, while the orange line corresponds
to ċsr = 0. The red curve is a trajectory with a direction indicated with the red arrows.

studied in computational models, finding calcium oscillations [43], that, depending on 378

the model, appear via a supercritical Hopf [24] or a homoclinic bifurcation [25,26]. 379

We have shown, using a full subcellular model, that under global calcium overload, 380

SR oscillations appear, leading finally to a state with permanently open RyR and 381

depleted SR. In these simulations, oscillations give rise to periodic calcium waves, that 382

propagate along the myocyte. To obtain a better understanding of the origin and 383

parameter dependence of these transitions, we have studied them in a simplified model 384

of the calcium dynamics. Despite not including all the physiological details (or because 385

of that), minimal models are often useful to gain a better understanding of the origin of 386

complex calcium rhythms [44], as oscillations [45]. We have thus analyzed the different 387

transitions within a minimal model, that takes into account the RyR dynamics, as well 388

as fluxes among different compartments. This allows us to explain the origin of 389

oscillations using a nullcline analysis, as well as to give analytic expressions for the 390

different transitions. One interesting conclusion is that buffers affect heavily the 391

dynamics. The effect of buffers on oscillations has been studied previously [32], and 392

experimentally a change in CSQ levels has been observed to alter the range of values of 393

cytosolic calcium at which oscillations are observed [23]. Here we find that an increase 394

in the levels of CSQ prevents altogether the oscillations, obtaining a direct transition to 395

an open state, that also occurs at larger values of total calcium content. We have shown 396

that this picture is robust and independent on which is faster, whether the opening of 397

the RyR2 or the diffusion of calcium near it. 398

The fact that oscillations appear both in a fully detailed stochastic model and in a 399

simple deterministic model seems another proof of the robustness of the behavior. This 400

robustness is not unexpected since it has already been observed in other calcium 401

signaling processes, such as calcium oscillations in hepatocytes [46,47]. Nevertheless, 402

while the minimal deterministic model presents a sudden drop in SR calcium content at 403

the onset of oscillations, the subcellular stochastic model presents a gradual decrease in 404

the level of basal SR, in full agreement with the experimental results obtained by 405

Stevens et al [23]. Thus, the comparative analysis of our results seems to suggest that 406

the origin of oscillations in experiments arises from the smearing out of a sharp 407

transition to the oscillatory state, due to the stochasticity of the RyR in an extended 408

system. 409

Finally, in this paper, we consider a cell which has achieved calcium balance where 410

intrusion and extrusion match, and have neglected calcium fluxes across the cell 411

membrane to focus on the internal calcium dynamics in order to decouple both 412

processes. Under normal pacing, extracellular calcium fluxes typically represent about 413

10-20% of the total calcium fluxes, so it is not unreasonable to consider that the total 414

calcium content remains constant once at a steady state. Under these conditions, 415

cytosolic and SR calcium concentrations are not independent but linked, and a clear 416

control parameter is the total calcium concentration. Here we show that it uniquely 417

determines the state of the system. Of course, in the presence of transmembrane fluxes, 418

calcium oscillations or waves, or a permanently open RyR, would result in an extrusion 419

of calcium out of the cell and an eventual decrease in the total calcium load of the cell, 420

that would transition back to the quiescent state (in the absence of external pacing). It 421

seems interesting to study in the future the effect of oscillations and waves in the action 422

potential, as well as a paced cell at different periods and the interaction with the pacing 423

period. Observing how the time scale related to oscillations interacts with the time scale 424

needed to extrude the calcium in the cytosol if the open (upper state) is reached may 425
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lead to new interesting phenomena. 426
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A Full calcium model of a CaRU

In this appendix, we show how to derive the simplified model in Eqs. (12)-(14) from a
detailed deterministic model of calcium handling. We consider cytosolic and luminal
spaces, each separated into different compartments, i.e, dyadic and cytosolic by the one
side, and junctional and network SR, by the other. We also consider the effect of two
buffers in the cytosol, TnC and SR, and Calsequestrin (CSQ) in the SR. The effect of
the buffers is actually very relevant, as they change the structure of possible solutions of
the system.

With this, the dynamics can be described by the following set of deterministic
equations for the calcium concentration at the different compartments

dcd
dt

= gPo(cj − cd)− cd − ci
τi

(38)

dcsr
dt

=
vi
vsr

gup
c2i

K2
s + c2i

− csr − cj
τsr

(39)

dcj
dt

=
vsr
vjsr

csr − cj
τsr

− vd
vjsr

gPo(cj − cd)− konSQ cj(BSQ − CbSQ) + koffSQCbSQ(40)

where cd, cj , csr, ci stand for the concentration in dyadic space, free luminal, SR
network and cytosol, Po is the fraction of RyRs in the open state, τi and τsr are the
diffusion time constants out of the dyadic space and SR network, vi, vd, vjsr and vsr are
the volumes associated with each compartment, gup is the strength of SERCA pump, Ks

is the concentration at which SERCA closes and g is the strength of the release current.
The dynamics of the buffers are given by linear reactions with the following set of ODEs

dCbTnC

dt
= konTnCci(BTnC − CbTnC)− koffnTnCCbTnC (41)

dCbSR

dt
= konSRci(BSR − CbSR)− koffSRCbSR (42)

dCbSQ

dt
= konSQcj(BSQ − CbSQ)− koffSQCbSQ (43)

Since the total amount of calcium has just a variation of about by a 5% or 10% over a
calcium cycle, we assume that the total calcium concentration, c̄T , is fixed. In this way,
one does not have to solve a differential equation for the calcium concentration in the
cytosol. Rather, it is derived from the algebraic equation:

c̄T =
vi

vi + vsr
(ci + cb,TnC + cb,SR + cb,CaM ) +

vsr
vi + vsr

(csr + cbSQ) (44)

Homeostatic behavior of the cell will eventually load the system more or less, increasing
or decreasing c̄T .
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Gating of the RyR can been described by Markov models that describe the
transitions among different conformations of the channel. Thus, for the dynamics of the
RyR we consider a phenomenological four state model [48].

dPR

dt
= −kpc2dPR − kicdPR + krPIA + kmPo (45)

dPo

dt
= kpc

2
dPR − kicdPo + krPIB − kmPo (46)

dPIA

dt
= −kpc2dPIA + kicdPR − krPIA + kmPIB (47)

with the last equation given by the condition that the sum of probabilities is equal to 1

PIB = 1− PR − Po − PIA (48)

PR and Po are the ratios of local RyR in the recovered and open states. PIA and PIB

stand for the terminated states.
To make the model treatable we assume several hypotheses.

1. We consider rapid equilibrium of cj (ċj = 0). Thus

ċj = 0 =
vsr
vjsr

csr − cj
τsr

− vd
vjsr

gPo(cj − cd)− konSQ cj(BSQ −CbSQ) + koffSQCbSQ

(49)
then

cj = csr − τsr
[
vd
vsr

gPo(cj − cd)− vjsr
vsr

(konSQcj(BSQ − CbSQ)− koffSQCbSQ)

]
(50)

2. At first order, we approximate cj as csr in the right hand side of Eq. (50). This
approximation is valid when τsr

vd

vsr
gPo � 1 and τsr

vd

vsr
gPo � 1. Then, the ODE

for csr in Eq. (40) reads as

dcsr
dt

=
vi
vsr

gup
c2i

K2
s + c2i

− vd
vjsr

gPo(csr−cd)−vjsr
vsr

[konSQcsr(BSQ − CbSQ)− koffSQCbSQ]

(51)
where we have eliminated the dependence with cj .

3. We apply the rapid buffer approximation in the SR because CSQ is very
fast [29, 30]. The derivation of csr in terms of ctotsr have been already shown in the
main text (see Eqs. 7-10).

4. We assume that all the buffers in the cytosol are in equilibrium. Then

CbTnC =
BTnCci

KTnC + ci
, CbSR =

BSRci
KSR + ci

(52)

5. Besides, we combine both TnC and SR buffers in only one buffer with a total
concentration of Bb and an affinity of Kb, which will be

Cb =
Bbci

Kb + ci
(53)

6. Finally, we consider that the inactivated states of the RyRs do not play a role in
the mechanisms that produce oscillations. For that reason, we reduce the four
state model to a two state model
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Parameters
Parameter Units Value
vd µm3 0.001
vi µm3 0.45
vsr µm3 0.01
τi ms 0.01
gup µM/ms 0.5
Ks µM 0.2
g ms−1 20
kp µM−2ms−1 10−3

km ms−1 0.25
Ko µM 15
Bb µM 80
Kb µM 0.5

Table 1. Parameters of the model.

C
kpcd

2

−−−−⇀↽−−−
km

O

where km sets the mean open time τrec = 1/km of a RyR while kp gives the open
probability. Then, the ODE for the open probability Po is

dPo

dt
= −kmPo + kpc

2
d(1− Po) (54)

The parameters of these equations are taken from the literature where, except for
those of the RyR, are well documented. The ratio of SR to cytosol in the cell is roughly
1 to 20-30. The order of magnitude of the volume of the cleft where calcium is released is
around 10−3 µm3. SERCA is roughly activated at around 2-5 µM and closed at around
15-20 µM with the number of buffers relevant to absorption around 50-100 µM , taking
an average affinity of around 0.5 µM . The whole set of parameters is given in Table 1.
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