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Abstract

Calcium oscillations and waves are often behind instances of extra depolarization in
cardiac cells, eventually giving rise to life-threatening arrhythmias. In this work, we
study the conditions for the appearance of calcium oscillations in both a detailed
subcellular model of calcium dynamics and a minimal model that takes into account
just the minimal ingredients of the calcium toolkit. To avoid the effects of homeostatic
changes and the interaction with the action potential we consider the somewhat
artificial condition of a cell without pacing and with no calcium exchange with the
extracellular medium. This permits us to isolate the main reasons responsible for the
oscillations by controlling externally the total calcium content of the cell. We find that
as the calcium content is increased, the system transitions between two stationary
states, corresponding to one with closed ryanodine receptors (RyR) and most calcium in
the cell stored in the sarcoplasmic reticulum (SR), and another, with open RyRs and a
depleted SR. In between these states, calcium oscillations may appear. This transition
depends very sensitively in the amount of buffering in the cell. We find, for instance,
that at high values of calsequestrin (CSQ) oscillations disappear, while they are present
for a broad range of parameters at low values of CSQ. Using the minimal model, we can
relate the stability of the oscillating state to the nullcline structure of the system, and
find that its range of existence is bounded by a homoclinic and a Hopf bifurcation.

Author summary

In cardiac cells, calcium plays a very important role. An increase in calcium levels is the
trigger used by the cell to initiate contraction. Besides, calcium modulates several
transmembrane currents, affecting the cell transmembrane potential. Thus,
dysregulations in calcium handling have been associated with the appearance of
arrhythmias. Often, this dysregulation results in the appearance of periodic calcium
waves or global oscillations, providing a pro-arrhythmic substrate. In this paper, we
study the onset of calcium oscillations in cardiac cells using both a detailed subcellular
model of calcium dynamics and a minimal model that takes into account just the
minimal ingredients of the calcium toolkit. Both reproduce the main experimental
results and link this behavior with the presence of different steady-state solutions and
bifurcations that depend on the total amount of calcium in the cell and in the level of
buffering present. We expect that this work will help to clarify the conditions under
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which calcium oscillations appear in cardiac myocytes and, therefore, will represent a
step further in the understanding of the origin of cardiac arrhythmias.

Introduction

Cardiovascular diseases represent one of the main causes of death worldwide [1]. Often,
mortality is related to the appearance of rapid cardiac rhythms, such as tachycardia and
fibrillation, that result in contractibility loss, reducing cardiac output and eventually
leading to sudden cardiac death [2]. Although the onset of rapid arrhythmias can be
due to a large variety of factors [3], including changes in the properties of cardiac
tissue [4], often arrhythmias are triggered by spontaneous intracellular calcium
releases [5,6]. In cardiac cells, calcium is responsible for regulating cell contraction, but
it also modulates several currents that affect the action potential. Thus, spontaneous
calcium release in the interbeat interval, during diastole, may elicit extra action
potential depolarizations and excitation waves, potentially disrupting normal wave
propagation. This sometimes leads to the formation of rotors (functional reentry) and
eventually a disordered electrical state characteristic of fibrillation [7-9].

Often, this focal activity is due to the presence of periodic calcium waves, that result
in calcium oscillations [10-15]. In paced cardiac cells, oscillations necessarily compete
with the external pacing frequency and they may be behind occurrences of spontaneous
calcium release events during diastole [16]. Calcium oscillations arise typically due to a
malfunction of the Ryanodine Receptor (RyR) [16-19], a ligand-gated channel [20] that
controls the amplitude of the intracellular calcium transient, by regulating the release of
calcium stored at the sarcoplasmic reticulum (SR). Since calcium dynamics in cardiac
cells is regulated by the release of calcium at several tens of thousands of RyR clusters
(termed calcium release units, CaRUs), global oscillations must appear as a result of an
oscillatory regime at the local cluster level that can later be coordinated by diffusion of
free calcium. Alternatively, when synchronization is not complete, oscillations at the
local level can give rise to periodic calcium waves, providing a pro-arrhythmic
substrate [21,22]. Calcium oscillations have been observed to appear in ventricular
myocytes under elevated values of cytosolic calcium [23], due to periodic opening and
closing of the RyRs. An increase in cytosolic calcium concentration results in a higher
frequency of the oscillations until, at larger values, the SR is depleted because the RyR
becomes permanently open [23]. A similar transition has also been studied in models
under conditions of SR calcium overload [24-26].

In this paper, we use a detailed subcellular calcium model [27] to show the
appearance of periodic calcium waves and then analyze this phenomenon using a
deterministic model of calcium in a cardiac cell (or in a CaRU). Within this model, we
study the existence and stability of different solutions. We show that oscillations

typically appear at high global calcium concentration and/or high RyR, open probability.

Their appearances depend on a delicate balance between the total calcium level in the
cell and the level of buffering of calcium available. For instance, at high values of
calsequestrin (CSQ), the system presents a transition from a low concentration,
excitable state, to a high concentration state. Such a transition has been proposed to be
the basis of complex states, such as long-lasting sparks [28]. At low concentrations of
CSQ, in between these two stable states, oscillations appear. We study this transition
using a minimal model, that includes the concentration of dyadic and SR calcium and
the open probability of the RyR and show that it suffices to explain the appearance of
oscillations. A further reduction to a minimal two-dimensional model allows us to
explain the transition to the oscillatory regime in terms of the nullcline structure of the
system.
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Fig 1. a) RyR distribution in the cell. Each CaRU is formed by four simulation voxels,
each one containing 9 RyRs. Thus, all CaRUs are formed by 36 RyRs. The CaRUs are
distributed over the cell along the z-lines with a Gaussian distribution in both
transversal and longitudinal axes. b) Each RyR follows a four state model, with
stochastic transitions among the different states.

Materials and methods

The methods used in this paper have two clear different natures. First, we use a fully
detailed subcellular stochastic model of calcium handling to report numerical results
showing calcium oscillations. We analyze under which conditions oscillations appear in
a controlled scenario where no external pacing is present, and there are no calcium
fluxes with the extracellular medium. Later, to gain insight regarding the origin of the
oscillations that we observe in the full model, we construct a minimal deterministic
model for the local dynamics of calcium at the level of the Calcium Release Unit. The
numerical and mathematical analysis of this model allows us to focus on the substrate
of the oscillations disregarding the coordination effects of the full model.

Detailed subcellular calcium model

We model the spatial structure of the cell as in a previous model of a cardiomyocyte
presented in Marchena and Echebarria [27], which has been modified to add the effects
of calsequestrin. The equations of the model read:

%?t) = Jrel(r,t) = Jup(r,t) + V- [Di(r)Ve;(r, t)] — Jpi(r, t) (1)
L = ) = D04 T D) Ve (0] (2
LU g

where ¢; is the calcium concentration in the cytosol, ¢t the total calcium concentration
in the SR, and c¢p; represents the concentration of a given buffer in the cytosol. Besides,
Jrer and Jy,;, are the release flux from the SR and the uptake by SERCA, respectively,
and Jy; represents the binding of free calcium to the different buffers in the cytosol
(TnC, SR binding buffer and CaM). These currents are given by:

Jret = grelORyR(Csr - Ci) (4)
& Kz)2 — \Csr Ksr 2
T = Gun ( /. .2( /Ksr) ! (5)
14 (ci/K)? 4 (csr/Ksr)
Jvi = koniCi(Br — i) — koff.iCri- (6)

The spatial structure of the model includes cytoplasmic and SR spaces, with a spatial
discretization of 100 nm. The volume fraction between cytosolic and SR spaces, v; /v,
is considered to vary spatially, with different values whether the point is close to the
z-line or in the inter z-line space. The release flux J,..; carries Ca®T ions from the SR to
the cytoplasm through the RyRs. The RyR channels, indicated by a yellow dot in Fig.
la, are distributed over the cell along the z-lines with a Gaussian distribution in both
transversal and longitudinal axes. A collection of grid points presenting RyRs forms a
cluster, i.e., a CaRU. We consider that a CaRU contains 36 RyRs, divided equally
among 4 grid points, each one containing 9 RyRs. Each RyR can be in one of four
states: open (0O), close (C) and two inactivated states (I3 and Iz) as it is shown in Fig.
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1b. The transitions among these states is considered to be stochastic. In the release flux,
the variable Ogy R is the fraction of RyRs that are in the open state and is calculated for
all grid points that have a group of RyRs. All the details of the spatial model structure
and the values of the parameters can be found in Marchena and Echebarria [27].

Besides the concentration of calcium in the SR and the cytosol, we also consider in
the model the concentrations of several buffers. In particular, TnC, CaM and SR-bound
buffers in the cytosol [27] and Calsequestrin (CSQ) in the SR. Due to the addition of
CSQ in the model, two parameters have been adjusted from the parameters published
in Marchena and Echebarria [27]: the opening rate parameter, now k, = 2.1 - 1073
uM~2ms™!, and the dependence of the open probability of the RyR on luminal calcium,
now FEC50_sr = 450 pM. Contrary to the buffers in the cytosol, the dynamics of CSQ
is considered to be fast [29-31] compared with the release time scale. If we denote by
cpsq the calcium concentration bound to CSQ in the SR, then, the amount of bound
calcium is given by:

deps
dtQ = konsqCsr(Bsq — cbsQ) — koff5QCbSQ (7)
Assuming fast binding, the stationary condition for cysg (¢psg = 0) is:
BSQCST
— AN 8
CbsQ Ko + (8)

where Kgq = koffsQ/kongQ is the dissociation constant. From this, the concentration
of free calcium can be obtained solving Eq. (2) for the total amount of calcium in the
SR, ctot

BS C
tot QCsr
— = e 9
Cor = Cor F CosQ = Cor g (9)
Solving this equation we obtain the value of free calcium in the SR,
1
Cor = 5 |t = Ksq = Bso + \/(C’éﬂt — Ksq — Bsq)? +4c¢i' Ksq (10)

The advantage of using this formulation of the rapid buffer approximation over the
more usual, for example in [32], is that it conserves mass exactly.

Under physiological conditions, the total amount of calcium in the cell at steady
state is fixed by calcium homeostasis, i.e. the complex interaction of LCC, exchanger,
and pumps, which affect the steady state level at which the calcium entering the cell
balances the calcium extruding. In this work, we are interested in studying instabilities
in calcium cycling, under constant cell calcium content. This allows us to focus the
analysis on the conditions for the appearance of calcium oscillations under different
possible calcium homeostatic levels. Thus, we neglect calcium exchange with the
extracellular medium, setting the conductances of the L-type calcium channels and the
NCX equal to zero. Then, the total amount of calcium in the cell, Q, is given by:

Q1 = vi(¢; + co,rne + Cb,5R + Cb,cam) + Vsr(Cor + C15Q)- (11)

For a better comparison with the results from a reduced calcium model, described later,
we will consider as our control parameter the average calcium content of the cell

¢r = Qr/(v; + vsr). Thus, in our simulations, ér is a constant value that is determined
by the initial conditions for cytosolic and luminal calcium (free and bound to buffers).

Reduced calcium model

The minimal model for the local dynamics of calcium is based on the schematics shown
in Fig. 2. We consider a simplified description of the system, with dynamics of the total
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Fig 2. Sketch of the different compartments considered in the simplified model, with
the internal variables and the equations of the respective calcium fluxes.

calcium concentration in the SR, ¢, and in the cytosolic space close to the RyR2, or

dyadic space, cq, and of the open probability of the RyR, P,,

dcd
— = Jya—J 12
= — (12)
dctot v; Vg
st iJu — e 13
dt Ver P v T (13)
dP,
= = kyc2(1— P,) — kP, (14)
with the currents given by
2
Ccq — G c;
Jrel = gPo(Csr - Cd)a Ja = T , Jup = gupm (15)

A detailed derivation of these equations and their range of validity can be found in
Appendix A. Notice that, as in the full model, we consider a situation where no external
pacing is imposed. In this sense, neither external intake from the LCC is considered, nor
any extrusion via the sodium-calcium exchanger.

For simplicity, we consider a SERCA pump without an equilibrium condition, that
always pumps calcium from the cytosol to the SR. This gives a basal solution at
¢; = ¢q = 0, instead of the physiological value of ~ 100nM. However, given that, at basal
conditions, c¢g. ~ 1mM, this is a reasonable simplification. As in the detailed subcellular
model, we assume the approximation of rapid CSQ buffer, so we can compute the
amount of free luminal calcium cg, from the total luminal calcium c!%' from Eq. (9).

To close the system we should introduce an extra equation for calcium concentration
in the cytosol ¢;. However, as we assume that the total calcium content in the cell is
constant, then we have a conservation equation. Therefore, we can compute ¢; solving
the following quadratic equation for the conservation of ¢p

_ Vi Byc; UVq Usr  tot
er = (ci + + cq+ o (16)
Veell Ky +c; Veell Veell
where vy is the unit volume defined as veeyp = v; + vsr + v, and By is the

concentration of a generic buffer in the cytosol.

To simplify the analysis, we proceed to work with the assumption that the dynamics
of the RyRs is faster than that of calcium concentration (PO ~ 0), obtaining then a
minimal two-variable model. This will be our base-line minimal model. However, we
will later also consider an alternative model with fast dynamics for the dyadic calcium
concentration (¢4 ~ 0). A third possibility, with fast dynamics of luminal calcium,
although theoretically possible, does not have much physiological sense, as SERCA is
typically slow compared to release or diffusion from the dyadic space.

Fast RyR dynamics

In this case, we assume that the open and close dynamics of the RyR are fast, so we can
assume that it is in a quasi-steady state (P, ~ 0). Then, from Eq. (14), we obtain:

2
Cd

Py=—9
Kt

(17)

where the parameter K2 = k,,/k, is the ratio of the open and close rates of the RyR.
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Fig 3. A: Calcium traces obtained with the full subcellular model and three different
values of the average calcium concentration, ¢p. B: Line-scans at different values of the
load. Increasing the load, the system undergoes a transition from a low cytosolic
calcium state (at ¢z = 47uM), where RyRs remain in the closed state, to spontaneous
oscillations, giving rise to calcium waves (¢r = 65uM). Finally, at high calcium loads
(er = 73uM) oscillations give rise to a high cytosolic calcium state, where the RyRs
remain open, resulting in SR calcium depletion.

Then, with these assumptions, the simplified model becomes

deg cﬁ Cq — C;

" E A 18

dt gK§+c§( v~ ¢a) Ti (18)
dctot v; c? Vd 2

dt v "PE2 42 v, VK2 + 3 (csr = ca) (19)

Fast dyadic calcium dynamics

In order to test the robustness of the analysis, we also consider a simplified model given
by Egs. (12)-(14), in the limit of fast dynamics in the dyadic space and take ¢4 ~ 0.
Then, from Eq. (12):

TigPoCsr + ¢

20
].-|—TigPO ( )

Cq =

Substituting this expression in Egs. (13) and (14), we obtain another minimal model,
given by

dctot v c? V4
A = — u —_— - — Po sr 21
0t o PRI 2 Y (Cor — Ca) (21)
dP,
i —~km Py + kpci(1 — P,) (22)

where again, ¢; must be computed solving the quadratic equation for the conservation of
mass ¢r [Eq. (16)]. For simplicity we will consider the case when no calsequestrin is
present Bgg = 0.

Results

We first present the results of the numerical simulations of both the full detailed model
and the minimal model of calcium cycling. Both produce the same basic scenarios for
intracellular calcium dynamics, with three different dynamical behaviors, which we then
proceed to analyze. The goal of the development of the minimal model is, precisely, to
be able to perform this analytical treatment and check how the behavior depends on
total calcium and buffering levels.

Subcellular model

The full detailed model allows us to investigate the different behaviors present in
cardiomyocyte calcium cycling when there is no external pacing. We should point out
that, under these conditions, the average calcium concentration in the cell ¢p is
conserved since the total amount of calcium @Qr in the cell is constant. We produce
simulations with different levels of average calcium concentration and observe very
different behaviors (Fig. 3a). For the lowest value of ér, the RyR remains almost closed,
and most of the calcium content is stored in the SR. Despite the stochasticity of the
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Fig 4. The average period of oscillations at different values of the average calcium
concentration ¢r, for a concentration of CSQ of Bgg = 2mM (green dots), and in the
absence of CSQ (blue dots).

system, the average values obtained are reproduced reliably with only the presence of
local sparks as fluctuations of this global state. This state corresponds to an excitable
state, which is the expected behavior of the cell if it has to react properly to external
excitation. We call this general state a global shutdown state.

When the calcium load increases, the system starts to spontaneously show calcium
waves. These waves persist in time with different shapes and durations, giving rise to a
nearly periodic oscillation in the global calcium signal. Roughly, we observe one calcium
wave per second (Fig. 4). Waves are normally initiated at different sites each time but
they appear systematically indicating a strong oscillation at the substrate level that we
will address in the discussion.

Finally, at large values of ¢ oscillations disappear, giving place to a stable state
with a high level of calcium in the cytosolic space and a depleted SR. In this state, the
RyRs are generally open allowing for the depletion of the SR and the increase of
cytosolic calcium. Except for local fluctuations this state is globally stable and we can
call it the open state. This state would not respond to external pacing, however, it
would produce the activation of the NCX exchanger which would slowly decrease the
average concentration model. As we pointed out previously, the elimination of the
calcium intake and extrusion in the model allows us to focus on the general behavior of
the cell under different homeostatic scenarios. Numerical simulations indicate that as
the calcium level is increased, the cell goes from a shut-down and ready-to-respond state
to an oscillatory regime to a global open state where the cell does not respond.

We must point out that a similar trend has been observed experimentally by Stevens
et al [23], even if in the experimental preparation the control parameter was the amount
of cytosolic calcium, and not total calcium, as in our simulations. Oscillations appear as
the amount of calcium in the cell increases, giving rise to a state with depleted SR
calcium (and RyRs in the open state), at high calcium concentrations. Furthermore,
experimentally it has been shown that changes in buffering levels can have also
important effects on this transition. More specifically, Stevens et. al [23] have shown
that the reduction of CSQ in the SR bulk enhances the appearance of oscillations. We
have checked if this situation is also present in our simulation and found this to be the
case. As shown in Fig. 4, when we reduce the CSQ concentration, the oscillations
appear at lower values of ¢r, they have a higher frequency and the range of oscillations
in terms of ér becomes broader.

Minimal model without calsequestrin

We proceed to explain the results obtained in the minimal model where we find the
same qualitative behavior as in the results obtained with the full subcellular stochastic
model. We have performed simulations in the approximation of fast RyR dynamics at
different values of the cell average calcium concentration ¢z. We consider first the case
when no calsequestrin is present, Bsg = 0. As we observed in the full subcellular model,
at low values of ¢ the system remains in a low concentration steady state (Fig. 5). In
this state the system is excitable, so the fixed point is locally stable, but a large enough
perturbation produces an increase in calcium concentration, resulting in a calcium
transient typical from CICR. On the other hand, at high calcium loads, there is a new
fixed point with high cytosolic calcium concentration, that has been related to the
appearance of long-lasting sparks [28]. As in the subcellular model, in between the low
concentration fixed point and the permanently open state, the system presents
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Fig 5. Time traces of the different calcium concentrations for different values of total
calcium concentration, ¢r, and calsequestrin concentration set to zero (Bgg = 0). After
a transient, the system ends up in either a steady state which is excitatory at low levels
of total calcium in the cell with observed low levels of calcium in the cytosol, in an
oscillatory state with intermediate levels of total calcium in the cell, or in a state of high
total levels of calcium in the cell with observed high cytosolic calcium levels.

Fig 6. Plot of the function f(c;) for different values of the &7 concentration. a) At low
concentrations there is a single fixed point. b) At higher concentrations two extra
unstable fixed points appear. c¢) At high concentrations the upper fixed point becomes
stable.

oscillations (Fig. 5), that are stable for a quite broad range of loads.
Indeed, the number of stationary solutions changes with the calcium concentration
¢r. The fixed points of the system can be found from:

c?i Cq — G

0=g-—%—=(csr — — 23
I (o — )~ (23
0 Vg 2 ( )+ v; c? (24)
vsrgKE T 03 sr d Vor Gup K2+ sz
together with:
Byc; 1
¢ + #j% = o (vET — VgCq — vsrci‘ff) (25)

Egs. (23)-(25) represent three algebraic equations that give the concentrations ¢;, ¢4
and cg, as a function of total calcium concentration in the cell ér. When no
calsequestrin is present, Bgg = 0, it is easy to obtain that

o V; C?
ca=ci + aﬁ‘yupm (26)
1 BbC'
tot — _—_ |wep — —v; | ¢ + ——— 27
Cg, o |:’UCT V4Cqd — V; (c + Kb+ci>:| ( )

Introducing these expressions into Eq. (23) we obtain an equation of the form
f(ei;er) = 0. For each value of ¢ we can obtain the values of ¢; that solve the
equation. For instance, for a global average calcium concentration of é¢r = 32 uM we
have only one solution, as shown in Fig. 6a. This solution, given by ¢4 = ¢; = 0 and
clot = v /vg.er, exists for all values of ér. At high values of the average concentration,

¢r = 54 and 75 uM, another two solutions appear, as depicted in Figs. 6b and c.

Fig 7. Solutions for cytosolic calcium concentration, ¢;, as a function of total calcium
concentration, ¢r. Discontinuous lines represent unstable solutions while continuous
lines stable ones.

To calculate the stability of the stationary solutions, we have computed the value of
the eigenvalues of the Jacobian matrix, corresponding to Eqs. (18)-(19). We find that,
while the lower branch is always stable, the other branch of solutions is unstable for a
large range of parameters (Fig. 7), due to the appearance of oscillations. The stability of
the corresponding periodic orbit has been calculated using XPPAUT [33] (Fig. 8). We
obtain that, as ¢r is increased, a limit cycle appears in a global homoclinic bifurcation,
with zero frequency (Fig. 8c). Increasing ¢z, this limit cycle finally disappears in a Hopf
bifurcation, at which the upper fixed point becomes stable (Fig. 8b).
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Fig 8. a) Solutions for cytosolic calcium concentration, ¢;, as a function of total
calcium concentration, ¢p. Discontinuous lines represent unstable solutions and
continuous lines stable ones. When reducing the total concentration, at cr ~ 66 uM, a
limit cycle emerges in a Hopf bifurcation, from the upper state, that then becomes
unstable. The red lines represent the lower and upper values of the limit cycle. At,

cr ~ 50 pM, the intermediate unstable fixed point collides with the limit cycle, that
disappears in a homoclinic bifurcation. Below ér == 39 uM, the RyR close state is the
only solution. c) Oscillation periods as a function of ¢p.

Fig 9. Number of fixed points and stability of those fixed points as a function of total
calcium in the unit, for different values of calsequestrin concentration.

Minimal model with calsequestrin

We present now the main results of the simulation in the fast RyR minimal model when
calsequestrin is present. We use Egs. (18)-(19), with Eq. (9) that relates free with
CSQ-bound SR calcium concentrations. Typically Kgg = 650uM and Bsg somewhere
between zero and 20 mM. We have then calculated the different fixed points as a
function of the total concentration ér for different values of Bgg (Fig. 9). When

Bgg # 0, increasing ¢r, the appearance of two extra solutions occurs at larger values of
¢r, meaning that the close state solution is stable for a wider range of ¢r. Besides, the
oscillatory range becomes narrower when Bgsq increases, until at certain point
oscillations disappear. The disappearance of oscillations is due to the transformation of
the bifurcation at which the upper fixed value gains stability, from a Hopf bifurcation
into a saddle-node bifurcation.

In addition, at this point, the system presents five fixed points where only the lowest
and uppermost are stable. It is important to note that this shows that CSQ enhances
the elimination of oscillations. Finally, for high values of ¢, the system has again three
fixed points.

Analytical results

The mathematical tractability of the minimal model allows us to get a better
understanding of the transition to the upper state via oscillations. A first insight can be
obtained by plotting the nullclines of the system (Fig. 10), which can help us understand
the main mechanisms behind the transition to the oscillatory state. In particular, we
obtain the critical average calcium concentration for the onset of oscillations, which
depends on buffering levels, and the conditions for the appearance of the upper state.

Nullclines and stability of solutions. Besides the transition from one to three
solutions (Figs. 10a and b), nullclines present a clear restructuring of their branches
well before the upper state becomes stable. Increasing the total concentration, there is a
sudden pinch-off in the ¢g-nullcline (Figs. 10b and c). Before this change in nullcline
topology, the lower state (with all the calcium in the luminal space and none in the
cytosol) is the only stable attractor. Once the cg-nullclines split, oscillations may appear
around the upper unstable fixed point.

We can understand the effect of the pinch-off, plotting the trajectories for values of
cr close to the transition. Below the pinch-off, the trajectory follows the fast dynamics
of the ¢g-nullcline (the black line in Figs. 10 and 11), until it reaches the fixed point. As
the load is increased, the branches of the c4-nullclines come closer until at a certain
point the break-up occurs (Fig. 11c). Due to the emergence of the pinch-off, the system
dynamics follows the lower nullcline up to the tip, at the largest value of cg,., where, due
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Fig 10. Structure of the nullclines at different values of ¢p indicated in the title of each
panel. The black line indicates the first nullcline ¢4 = 0, while the orange lines
corresponds to ¢ = 0. Dots indicate the fixed points. Filled dot: stable fixed point and
unfilled dot: unstable fixed point.

Fig 11. Structure of the nullclines at different values of é7 indicated in the title of each
panel. The black line indicates the nullcline ¢4 = 0, while the orange line corresponds to
¢sr = 0. The red curve is a trajectory with a direction indicated by the red arrows.

to the fast dynamics in the ¢4 direction, it jumps to follow again the nullcline, at larger
values of ¢;. Since there is no stable point, the trajectory starts a persistent oscillation
around the unstable fixed point. We can state that, for this problem, the nullcline
break-up is the necessary and sufficient condition to obtain oscillations.

Onset of oscillations. Using this observation, we can calculate analytically the
critical value of ér beyond which the system oscillates. At the pinch-off of the nullclines,
the cubic solution of ¢4 = 0 (black nullcline) loses two of the three solutions at a given
csr- To calculate this point analytically, first we observe that the pinch-off occurs at
values of ¢y < K, (K, = 15uM). To simplify the calculations, let us make the
approximations that, at the pinch off, the ¢y satisfies ¢4 < K, and ¢q < c4-. Being this
the case, then Eq. (18) reduces to

deg cfl Cq — C;
4 0)=qg-¢e. — 28
dt g K02 Cor T; ( )
Furthermore, from Eq. (25), we can write ¢; in terms of ¢;, (assuming Bgg = 0,
Cq < Csr)
Bbci VCP — VsrCor
¢ + = 29
YKyt v; (29)

Assuming that the concentration of bound cytosolic calcium is much larger than that of
free cytosolic calcium, we obtain

Ky (UET - USTCST)

(30)

e viBb - (vET - Usrcsr)
From the polynomial equation for ¢4, Eq. (28), solutions of ¢4 are lost at values of ¢,
given by 1 — 4gc;cs, < 0, with § = gr;/K?2. Expanding, this gives the critical value of
Ci. as:

v; By — ver + vgrch, — 4gch, Kp(ver — vgpcl.) =0 (31)

The same equation can be written as

vsr — 4gKpver v; By — ver
4§Kbvsr 4§Kbvsr

(cE)? + ¢k,

ST

=0 (32)
Once the pinch-off has been produced (Fig. 10c), there are two values of ¢,
corresponding to the lowest and highest values of the upper and lower nullclines,
respectively. Just at the pinch-off these two points merge. This allows to establish the
critical value at which the oscillation appears as the one that makes zero the
discriminant of the second order polynomial of ¢%,. After some algebra, the condition
for the critical ¢} becomes

(ver — 4GKpvEs)? — 16 Ky gug,. (viBy — véy) = 0 (33)
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Fig 12. Dependency of the onset of oscillations with buffer parameters. The filled dots
represent the control values B, = 80uM, Kj = 0.5uM, given in Table 1.

Fig 13. Structure of the nullclines at two different values of a) ¢ = 54 uM, b) ér = 75
uM. A black line corresponds to the nullcline ¢; = 0, while the orange line indicates
¢sr = 0. The functions f; and go are the elements of the diagonal of the Jacobian
matrix defined as f; = 0.,¢q and g2 = O, Csr.

which can be written as

2
VUsr _x (o 'UsrviBb

—* \2
_ =0 34
(%)+2mgﬁ%+1wngw G, 02 (34)

UsrviBb Vgr
&=/ - 35
T 02K, 45Ky (35)

Using the parameters in Table 1, this expression gives a critical value for the onset of
oscillations at around ¢} = 50 uM, that given the approximations considered, agrees
quite well with the value obtain from the simulations of ¢} ~ 51 pM. Thus, when the
total calcium content exceeds this critical value €7, corresponding to a calcium
concentration in the SR of ¢s = v/v,,8 = 2.28mM (in the lower state), the system
starts to oscillate, at a value of diastolic SR calcium load, given by:

e e g (36)
205y 89Ky 2\ vsrg Ky 49Ky,

which gives a value of ¢, = 0.86 mM. At the onset of oscillations, there is thus a sudden
decrease in basal SR calcium concentration, to less than half its previous value before
the oscillations.

An increase in the quantity of cytosolic buffers (higher By) results in a delay in the
onset of oscillations, that would occur at higher calcium load (Fig. 12a). A higher
calcium affinity (lower K3) on the contrary, would result in oscillations at lower loads
(Fig. 12b). It is interesting to notice, too, that the strength of SERCA does not affect
the onset of oscillations.

This gives

Transition to the upper state. The oscillations disappear at a Hopf bifurcation
when the upper state becomes stable. It is possible to relate this transition to the
structure of the nullclines in Fig. 10. For that, let us recover the definition of the

Jacobian matrix J:
Sla D4 i fa
=g Gl =[0 5] (31)
Bey Ocer g1 92

A fixed point will be stable provided f; + g2 < 0. When f1g2 — fog1 > 0 the stable fixed
point corresponds to a node and if fi1gs — fog1 < 0 to a stable spiral. We can use this to
relate the slope of the nullclines to the stability of the upper fixed point. Let us denote
a = ¢q and [ = ¢, the time derivatives of the independent variables.

At large values of the total concentration (see Fig. 13a, with ¢ = 75 uM), the slope
of the black nullcline (a = 0) at the fixed point is positive, while the slope of the orange
nullcline (5 = 0) is negative. Then, increasing ¢4 at constant cg,., o goes from being
positive to negative. This means that f; = da/0cy < 0. Using the same argument, it is
easy to check that also go = 98/0cs, < 0, and therefore the fixed point is stable. At
lower values of the total concentration (see, for instance, Fig. 13a, for ¢ = 54 uM) the
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slope of the black nullcline becomes negative. Thus, in this case, while go is still
negative, f1 becomes positive, and it is not possible to determine the stability of the
fixed point. It will depend on the speed of rate of ¢4 and ¢y, close to the fixed point. If
the dynamics of ¢4 is faster, then one expects this point to be unstable, if it is cg, that
varies fast, then stable. One would then expect that buffers that change the dynamics
either in the cytosol or in the SR would effect the stability of the fixed point and,
therefore, the range of existence of the limit cycle.

Robustness of the results. Fast dyadic calcium dynamics

Fig 14. Solutions as a function of total calcium concentration ¢r, with calsequestrin
concentration set to zero when the fast dyadic approximation is used. We obtain the
same type of structure as expected.The system can be in a monostable state, which is
excitatory (low load), in an oscillatory state (intermediate load), or in a bistable state
(high loads), where it usually ends in a state of open RyR and depleted SR calcium
concentration.

It is useful to check that the basic points of our discussion hold when different
possible approximations are applied to the minimal model. Namely, if the time scale of
RyR opening is not as fast as the time scale of calcium diffusion near the dyadic space
we should analyze the fast dyadic calcium approximation and not the fast RyR opening
approximation to obtain information from the nullcline analysis. To this end, we have
performed simulations of Eqs (21)-(22) at different values of the total calcium
concentration ¢p (Fig. 14) and test that we find the same basic behavior: at low values
of ¢r the system remains in a low concentration steady state (Fig. 15), but oscillations
appear for a range of ¢, up to a limit where an upper state becomes stable.

More importantly, the basic structure of the nullclines determines the possible
solutions and again, oscillations appear when pinch off is produced (Fig. 14). The fixed
points in this case are the same as in Fig. 7, since they correspond to fixed points of
Egs. (12)-(14). However, different slaving conditions may change the stability of the
fixed points, that now are analyzed in the plane (cg, P,). Similarly to what we found in
the previous analysis, calculating the stability, we find that the intermediate state is
always unstable while the upper branch is stable above certain value of ¢r. Both states
appear at around ¢y ~ 54uM, indicating the robustness of our analysis.

Discussion and conclusion

Calcium oscillations play an important role in cardiac cells, from the regulation of
growth in human cardiac progenitor cells [34], to the control of the pacemaker rhythm
in both early embryonic heart cells [35,36] and in sinoatrial nodal pacemaker cells
(SANCs) [37-39]. Spontaneous calcium releases or oscillations are also related to the
appearance of early or delayed-afterdepolarizations [40], which may give rise to
reentrant waves and arrhythmic rhythms, such as tachycardia or fibrillation. Calcium
oscillations have been observed under conditions of high cytosolic calcium
concentration [23] or SR calcium overload. High levels of cytosolic calcium affect the
opening probability of the RyR, which may result in oscillations or in a permanently
open state [23,41]. Calcium overload can be obtained, for instance, by inhibition of the
Na®™-K* pump current Iy,x, that results in [Nat]; overload. The consequent build-up
of [Na*]; reduces the effectiveness of the Nat-Ca?* exchanger at removing calcium
from the cell and intracellular calcium concentrations become elevated. A similar effect
is observed in models of hypercalcemia [42]. The effect of elevated [Na't]; has been
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Fig 15. Structure of the nullclines at different values of ¢ indicated in the title of each
panel. The black line indicates the nullcline P, = 0, while the orange line corresponds
to ¢sr = 0. The red curve is a trajectory with a direction indicated with the red arrows.

studied in computational models, finding calcium oscillations [43], that, depending on
the model, appear via a supercritical Hopf [24] or a homoclinic bifurcation [25, 26].

We have shown, using a full subcellular model, that under global calcium overload,
SR oscillations appear, leading finally to a state with permanently open RyR and
depleted SR. In these simulations, oscillations give rise to periodic calcium waves, that
propagate along the myocyte. To obtain a better understanding of the origin and
parameter dependence of these transitions, we have studied them in a simplified model
of the calcium dynamics. Despite not including all the physiological details (or because
of that), minimal models are often useful to gain a better understanding of the origin of
complex calcium rhythms [44], as oscillations [45]. We have thus analyzed the different
transitions within a minimal model, that takes into account the RyR dynamics, as well
as fluxes among different compartments. This allows us to explain the origin of
oscillations using a nullcline analysis, as well as to give analytic expressions for the
different transitions. One interesting conclusion is that buffers affect heavily the
dynamics. The effect of buffers on oscillations has been studied previously [32], and
experimentally a change in CSQ levels has been observed to alter the range of values of
cytosolic calcium at which oscillations are observed [23]. Here we find that an increase
in the levels of CSQ prevents altogether the oscillations, obtaining a direct transition to
an open state, that also occurs at larger values of total calcium content. We have shown
that this picture is robust and independent on which is faster, whether the opening of
the RyR2 or the diffusion of calcium near it.

The fact that oscillations appear both in a fully detailed stochastic model and in a
simple deterministic model seems another proof of the robustness of the behavior. This
robustness is not unexpected since it has already been observed in other calcium
signaling processes, such as calcium oscillations in hepatocytes [46,47]. Nevertheless,
while the minimal deterministic model presents a sudden drop in SR calcium content at
the onset of oscillations, the subcellular stochastic model presents a gradual decrease in
the level of basal SR, in full agreement with the experimental results obtained by
Stevens et al [23]. Thus, the comparative analysis of our results seems to suggest that
the origin of oscillations in experiments arises from the smearing out of a sharp
transition to the oscillatory state, due to the stochasticity of the RyR in an extended
system.

Finally, in this paper, we consider a cell which has achieved calcium balance where
intrusion and extrusion match, and have neglected calcium fluxes across the cell
membrane to focus on the internal calcium dynamics in order to decouple both
processes. Under normal pacing, extracellular calcium fluxes typically represent about
10-20% of the total calcium fluxes, so it is not unreasonable to consider that the total
calcium content remains constant once at a steady state. Under these conditions,
cytosolic and SR calcium concentrations are not independent but linked, and a clear
control parameter is the total calcium concentration. Here we show that it uniquely
determines the state of the system. Of course, in the presence of transmembrane fluxes,
calcium oscillations or waves, or a permanently open RyR, would result in an extrusion
of calcium out of the cell and an eventual decrease in the total calcium load of the cell,
that would transition back to the quiescent state (in the absence of external pacing). It
seems interesting to study in the future the effect of oscillations and waves in the action
potential, as well as a paced cell at different periods and the interaction with the pacing
period. Observing how the time scale related to oscillations interacts with the time scale
needed to extrude the calcium in the cytosol if the open (upper state) is reached may
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lead to new interesting phenomena.
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A Full calcium model of a CaRU

In this appendix, we show how to derive the simplified model in Egs. (12)-(14) from a
detailed deterministic model of calcium handling. We consider cytosolic and luminal
spaces, each separated into different compartments, i.e, dyadic and cytosolic by the one
side, and junctional and network SR, by the other. We also consider the effect of two
buffers in the cytosol, TnC and SR, and Calsequestrin (CSQ) in the SR. The effect of
the buffers is actually very relevant, as they change the structure of possible solutions of
the system.

With this, the dynamics can be described by the following set of deterministic
equations for the calcium concentration at the different compartments

deg Cd — G
o gPo(cj — ca) — E— (38)
dcg, ; cf Cor — Cj
_ i _ 39
dt vsrg P K2 +c? Ter (39)
dc; Vgp Cop — Ci vy
il % — —=gP,(c;j — ca) — konsq ¢j(Bsq — Crsq) + ko rsCbédD)
t Vjsr Tsr Vjsr

where cq, ¢j, csr, ¢; stand for the concentration in dyadic space, free luminal, SR
network and cytosol, P, is the fraction of RyRs in the open state, 7; and 74, are the
diffusion time constants out of the dyadic space and SR network, v;, v4, vjsr and vs, are
the volumes associated with each compartment, g,,, is the strength of SERCA pump, K
is the concentration at which SERCA closes and g is the strength of the release current.
The dynamics of the buffers are given by linear reactions with the following set of ODEs

dCyrn
%C = konTnCci (BTnC - CanC) - koffnTnCCanC (41)
dcC,
;tSR = konsrCi(Bsr — Cbsr) — koftsrCosr (42)
dcC,
;ts @ konsQ¢j(Bsq — Cbsq) — korrs@Chsq (43)

Since the total amount of calcium has just a variation of about by a 5% or 10% over a
calcium cycle, we assume that the total calcium concentration, ¢r, is fixed. In this way,
one does not have to solve a differential equation for the calcium concentration in the
cytosol. Rather, it is derived from the algebraic equation:

(%

er = ——(¢i + corne + o, SR + Co.cam) +
(% + Vgr

Vsr

__sr o 44
o JrUST(O + cbsq) (44)

Homeostatic behavior of the cell will eventually load the system more or less, increasing
or decreasing cr.
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Gating of the RyR can been described by Markov models that describe the
transitions among different conformations of the channel. Thus, for the dynamics of the
RyR we consider a phenomenological four state model [48].

dPgr

el —kyc3Pp — kicaPr + k. Pr, + kP, (45)

dP, )

ar = ]{ipCdPR — kieqP, + kTP[B — kP, (46)
dP

éA = —ky2P;, + kicaPr — ke Pr, + km Pr,, (47)

with the last equation given by the condition that the sum of probabilities is equal to 1
P,=1-Pr—P,— Py, (48)

Pr and P, are the ratios of local RyR in the recovered and open states. Py, and Py,
stand for the terminated states.
To make the model treatable we assume several hypotheses.

1. We consider rapid equilibrium of ¢; (¢; = 0). Thus

Vsr Csr — Cj

. Vg
¢ =0= === = ——gP(cj — ca) ~ konsq ¢j(Bsq — Cbsq) + korssQCbsq
jsr sr jsr
(49)
then
Vd Vjsr
¢j = Cor = Tor | —=gPolcj = ca) = == (konsqc;(Bsq = Csq) = korrs@Chsq)

(50)

2. At first order, we approximate c; as ¢, in the right hand side of Eq. (50). This
approximation is valid when 7, 2+ gP, < 1 and 74, +gP, < 1. Then, the ODE
for cg in Eq. (40) reads as

dcg, v; c? Vg

2 Vigp
] jsr

= Gup 5 gpo(csr_cd)_
dt Ver K246 jer Vgp

(51)
where we have eliminated the dependence with c;.

3. We apply the rapid buffer approximation in the SR because CSQ is very
fast [29,30]. The derivation of ¢, in terms of ¢! have been already shown in the
main text (see Egs. 7-10).

4. We assume that all the buffers in the cytosol are in equilibrium. Then

Bracc _ Bgre

_ZTnC 52
Krne + ¢ (52)

Cyvrnc =

5. Besides, we combine both TnC and SR buffers in only one buffer with a total
concentration of B, and an affinity of K}, which will be

- BbCi

C Ky+to

Cy (53)

6. Finally, we consider that the inactivated states of the RyRs do not play a role in
the mechanisms that produce oscillations. For that reason, we reduce the four
state model to a two state model
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Parameters
Parameter Units Value
Vq wm? 0.001
v; wm? 0.45
Vgr wm? 0.01
T ms 0.01
Gup uM /ms 0.5
K, uM 0.2
g ms~! 20
kp puM2ms~! 1073
ko ms™! 0.25
K, uM 15
By uM 80
Ky uM 0.5

Table 1. Parameters of the model.

kyc 2
C =220
kﬂl
where k,,, sets the mean open time 7. = 1/k,, of a RyR while k, gives the open
probability. Then, the ODE for the open probability P, is

dP,

dt:-%g+@ﬁu—a) (54)

The parameters of these equations are taken from the literature where, except for
those of the RyR, are well documented. The ratio of SR to cytosol in the cell is roughly
1 to 20-30. The order of magnitude of the volume of the cleft where calcium is released is
around 1073 um3. SERCA is roughly activated at around 2-5 ©M and closed at around
15-20 pM with the number of buffers relevant to absorption around 50-100 pM, taking
an average affinity of around 0.5 pM. The whole set of parameters is given in Table 1.
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