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Abstract

One of the major goals in large-scale genomic studies is to identify genes with a prog-
nostic impact on time-to-event outcomes which provide insight into the disease’s pro-
cess. With rapid developments in high-throughput genomic technologies in the past two
decades, the scientific community is able to monitor the expression levels of tens of thou-
sands of genes and proteins resulting in enormous data sets where the number of ge-
nomic features is far greater than the number of subjects. Methods based on univariate
Cox regression are often used to select genomic features related to survival outcome;
however, the Cox model assumes proportional hazards (PH), which is unlikely to hold for
each feature. When applied to genomic features exhibiting some form of non-proportional
hazards (NPH), these methods could lead to an under- or over-estimation of the effects.
We propose a broad array of marginal screening techniques that aid in feature ranking
and selection by accommodating various forms of NPH. First, we develop an approach
based on Kullback-Leibler information divergence and the Yang-Prentice model that in-
cludes methods for the PH and proportional odds (PO) models as special cases. Next,
we propose R? indices for the PH and PO models that can be interpreted in terms of
explained randomness. Lastly, we propose a generalized pseudo-R? measure that in-
cludes PH, PO, crossing hazards and crossing odds models as special cases and can
be interpreted as the percentage of separability between subjects experiencing the event
and not experiencing the event according to feature expression. We evaluate the per-
formance of our measures using extensive simulation studies and publicly available data
sets in cancer genomics. We demonstrate that the proposed methods successfully ad-
dress the issue of NPH in genomic feature selection and outperform existing methods.
The proposed information divergence, R? and pseudo-R? measures were implemented in
R (www.R-project.org) and code is available upon request.
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1 Introduction

There have been significant developments in high-throughput genomic and related tech-
nologies in the past two decades. Examples include microarray technology to mea-
sure mRNA and microRNA expression, methylation arrays to quantify DNA methylation,
SNP arrays to measure allele-specific expression and DNA copy number variation, next-
generation sequencing technologies such as RNA-Seq, ChIP-Seq, etc. for the measure-
ment of digital gene expression as well as mass spectroscopy and nuclear magnetic res-
onance spectroscopy for the measurement of protein and metabolite expression. With the
wealth of data available from large-scale genomic studies, researchers can now attempt
to understand and estimate the effects of specific genomic features on various diseases
and characteristics associated with those diseases. A genomic feature may represent a
gene that codes for a protein or a non-gene-centric element such as a microRNA, CpG
site or a particular genomic region of interest. One specific area of interest is in study-
ing the relationship between the expression of genomic features and time to death or
recurrence of some disease, often referred to as “survival time”. Let Y and C denote,
respectively, the survival and censoring times, and let 6 = I(Y < (') be the indicator of
whether the event has been observed. Because of censoring, it is not possible to observe
all true survival times, so we let 7" = min(Y, C) be the observed survival time. In this
study, we will deal with p features measured for each of n subjects, where p > n. We let
Z denote the n x p matrix of features and z represent the p-vector of features for a subject.

These high-dimensional data sets offer some explicit challenges when applying
standard statistical methods. One of the most commonly used models in survival analysis
is the Cox proportional hazards (PH) regression model (Cox, 1972) which postulates that
the risk (or hazard) of death of an individual, given their feature measurement, is simply
proportional to their baseline risk in the absence of the feature. It is a multiplicative haz-

ards model that implies constant hazard ratio (HR). In a high-throughput genomic study,
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for instance, the PH assumption would imply a constant effect of feature expression on
survival over the entire period of follow-up in a study. However, this assumption cannot be
verified for each feature and it is also unlikely that PH will actually hold for each feature.
Moreover, there is empirical evidence indicating that feature expression may not have a
multiplicative effect on the hazard and that non-proportional hazards (NPH) can occur
when feature effect increases or decreases over time leading to converging or diverging
hazards (CH or DH); in some studies, features with DH are found more often than fea-
tures with CH (Bhattacharjee et al., 2001; Xu et al., 2005; Dunkler et al., 2010; Rouam
et al., 2011). It is, therefore, unreasonable to expect the expression levels of the many
thousands of features to exhibit PH. In a review of survival analyses published in can-
cer journals, it was revealed that only 5% of all studies using the Cox PH model actually
checked the PH assumption (Altman et al., 1995). Applying the PH model to data that
do not support the underlying assumptions may result in inaccurate and sometimes er-
roneous conclusions. For instance, it could lead to under- or over-estimation of effects
for a considerable number of features. Consequently, some features are falsely declared
as important in predicting survival and other relevant features are completely missed.
Furthermore, if some features exhibit NPH then their HRs, estimated by ignoring their
time-dependence, are not comparable to those of features with PH or of features exhibit-
ing different patterns of NPH. Although NPH typically arises from time-dependent effects
of features on survival, it could also result from model mis-specification such as from
omitting relevant clinical covariates like age at diagnosis and stage of disease. Feature
selection methods involving univariate analyses are particularly prone to this problem.
The goal of this study is to discuss alternative models and methods that can be used
to link large-scale genomic data to a survival outcome, with the ultimate goal of feature
selection under different types of hazards that may be present.

This paper is organized as follows. In §2 we survey a variety of well known survival

models, many of which are designed to handle non-proportional hazards (NPH), and
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provide an overview of marginal screening methods that currently exist in the literature.
In §3, we use real-life genomic data to motivate the need for these models. Through
this analysis, we identify specific models that fit a large proportion of genomic features
and allow for NPH. Then in §4, we propose several feature selection methods that do not
rely on the PH assumption and, instead, are developed from models capable of handling
NPH. These methods are evaluated using extensive simulations and publicly available
large-scale data sets in cancer genomics in §5 and §6. Finally, §7 provides a summary

and some concluding remarks.

2 Abrief survey of survival models and existing methods

2.1 The PH model and its generalization

The Cox PH model is a semi-parametric regression model proposed by Cox (1972). The
hazard rate, \(t|z), is defined as the instantaneous risk of an event at time ¢ for covariate

vector z, with A(t|z) representing the cumulative hazard function. The model is given by
A(tz) = Ao(t) exp(B'z) and  A(t|z) = Ao(t) exp(B'z), (2.1)

where t > 0, A\,(t) and A,(t) are the baseline hazard and cumulative hazards functions,
and 3 is a vector of regression coefficients. Estimation for the coefficient 3 can be done
by maximizing the log partial likelihood 1(3) = S, 4 {zg-,@ ~log [Zjem) eXp(Z’jﬁ)] }
where t; is the survival time for subject i, ¢; is the censoring indicator, and R(¢;) is the risk
set, the individuals who have yet to experience the event at time ¢;.

The hazard ratio corresponding to two different feature vectors z and z*, given by

AA(Sf"ZZB) — exp|@'(z — z*)], depends only on the features and not on time. This fundamental
assumption is unlikely to hold for all p features in the genomic setting. A semi-parametric
generalization of the Cox PH model which allows crossing hazards is described in De-

varajan & Ebrahimi (2011). In this model, the cumulative hazard and survival functions
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are, respectively,

A(t|z) = P 2{A(t)}*P0'D and  S(t|z) = exp{—e??[—log Sy (t)]P'?)}. (2.2)

This model has a more flexible, general form, but retains the Cox PH model as a special
case when v = 0. Since the partial likelihood approach cannot be applied, Devarajan &
Ebrahimi (2011) utilize a flexible parametric approach via a cubic B-spline approximation
for the baseline hazard to estimate the model parameters. Rouam et al. (2011) consid-
ered the special case obtained by setting 3 = 0 and proposed a pseudo-R? measure for
genomic feature selection. In this paper, we refer to this special case as the crossing

hazards (CH) model.

2.2 The proportional odds (PO) model and its generalization

The PO model is an alternative to the PH model, and it does not require the assumption
of PH. It allows some forms of NPH and, instead, assumes that the effect of covariates
will proportionately increase or decrease the odds of dying or recurrence at time ¢. The

PO model is given by
1—S(tlz) 1—S,(t)

SWa s P 23

where S,(t) and y(t) = 1@5&@ are the baseline survival and odds functions, respectively,
at time t. The multiplier exp(3'z) quantifies the amount of proportionate increase or de-
crease in the odds associated with covariate z. A semi-parametric generalization of the

PO model can be specified as

exp(v'z)
1 - S(t|z) _ {1 — So(t)} exp(B'z), (2.4)

S(t|z) So(t)

where v = 0 results in the PO model. This model allows for both crossing hazards and

crossing odds. Later, we consider the special case where v = 3 and refer to it as the
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crossing odds (CO) model.

2.3 Yang-Prentice (YP) model

Yang & Prentice (2005; 2012) proposed the YP model as a generalization of both the PH

and PO models. Its hazard and survival functions are given by

Ao(t) exp [(B +7)'7]

Altlz) = exp(B'z) — So(t) exp(B'z) + So(t) exp(v'z) (@9
and
. So(t) exp('2) e
Stl=) = <exp(5/z) — So(t) exp(8'z) + So(t) eXP(’Y/Z)> ’ e

respectively. Note that when v = 3, it becomes the PH model, and when v = 0, it
becomes the PO model. Thus, it is a versatile and useful model that encompasses both
the PH and PO models, as well as a host of other models, and allows for time-varying
hazards. However, a practical limitation of this model is that inferential procedures are

available only for a single dichotomized covariate z.

2.4 Existing methods for feature selection

Few specific methods are currently available in the literature for the purpose of feature
selection when the PH assumption is violated. Dunkler et al. (2010) proposed concor-
dance regression, using a generalized concordance probability as a measure of the effect
size, to select genes in microarray studies that are related to survival irrespective of the
type of hazard. The basic concordance probability is ¢ = P(T7 < Tp), where Ty is a
randomly chosen survival time from group 1 and 7j is a randomly chosen survival time

from group 0, and is independent of the PH assumption. This is generalized to contin-

uous data which has the form ¢ = ﬁ’;ﬁ’g&) where ~ are the log odds that the survival

time decreases if the gene expression is doubled. Then, ¢’ is modeled through its log

odds by P(T; < Tj|lz; > x;) = exp(x?;l))fei;;(m), where the likelihood is computed as the

summation over all risk pairs (z, j) such that t; < ¢; and ¢’ is estimated by maximizing this
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likelihood. When ¢; is censored, it is not clear if ¢; < t; and appropriate weights are used
to account for the possible over-representation of some subjects (Schemper et al., 2009).
This model can be viewed as conditional logistic regression where the dependent variable
is the concordance of the risk pair (i, j). Genes are ranked based on the absolute effect
size ¢/, = .5+|¢ —.5|. Using simulated and microarray gene expression data Dunkler et al.
(2010) showed that when some of the genes showed a time-dependent effect on survival,
concordance regression produced the least biased and most stable estimates compared
to methods based on Cox regression. Rouam et al. (2010, 2011) developed pseudo-?
measures for genomic feature selection based on the PH and CH models which rely on

the partial likelihood of the respective model and utilizes the score statistic.

3 Motivating examples

We motivate our problem using five data sets from large-scale studies in cancer utilizing
a variety of high-throughput genomic technologies. Data sets 1 and 2 consist of DNA
methylation and microRNA expression profiles, respectively, measured on glioblastoma
samples while data set 3 consists of digital gene expression profiles obtained using RNA
sequencing from subjects with head and neck squamous cell carcinoma (The Cancer
Genome Atlas (TCGA), http://cancergenome.nih.gov). Data sets 4 and 5 consist of gene
expression data obtained using Affymetrix and HG 1.ST microarrays, respectively, from
patients with ovarian and oral cancer (Tothill et al, 2008; Saintigny et al, 2011). Raw data
was pre-processed using standard methods for each data set as described in the Supple-
mentary Information (SI): Data Sets and Implementation (§8). Relevant characteristics of
these data sets are outlined in Tables 1 & 2. In what follows, we describe a comprehensive
analysis of these data sets using the PH, PO and YP models to test for the goodness-of-fit
(GOF) of each model using the methods outlined in Grambsch & Therneau (1994), Mar-
tinussen & Scheike (2006) and Yang & Prentice (2012), respectively. All analyses were

performed at the genomic feature level, the purpose of which is to identify features that
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exhibit some form of NPH and to demonstrate the need for alternatives to the PH model.
Wherever possible, clinical covariates such as age at diagnosis and stage of cancer were
adjusted for in the analysis (data sets 3-5, Table 1). The currently available method for the
YP model is only capable of handling a single dichotomized covariate (Yang & Prentice,
2005; 2012), and, hence, we utilized dichotomized expression of genomic features and
did not adjust for age and stage in analyses reported in Table 2. This enabled direct com-
parison of results from different models. The ¢-value approach was employed to estimate
the false discovery rate (FDR) and to evaluate the effect of testing multiple hypotheses
(Storey & Tibshirani, 2003). In summary, GOF results based on continuous expression
for the PH and PO models (data sets 1-5) as well as dichotomized expression for the PH,
PO and YP models (data sets 1, 2 & 4) are presented in Tables 1 and 2, respectively.
Use of continuous expression - typically on a variance stabilized and normalized
scale that depends on the data type of the genomic feature - offers a comprehensive
approach to our problem and can be used to compute all the R*-type and information
divergence measures developed in this work. It facilitates a straightforward interpretation
of the hazard ratio as the fold-change in hazard that corresponds to a unit change in ex-
pression on the transformed scale; however, currently it cannot be used for estimation
in the YP model and for visualization. On the other hand, dichotomized expression of
genomic features - particularly gene expression - is commonly used in real-life applica-
tions as evidenced by the literature in high-throughput genomic data analyses (Dunkler
et al., 2010; Rouam et al, 2011; Peri et al., 2013). In this approach, the expression of
each feature is typically categorized as a “high” or “low” value for each subject based on
the median split. Although imperfect, it enables graphical summary of the results in the
form of Kaplan-Meier survival curves for subjects with “high” and “low” expression where
the hazard ratio is interpreted as the fold-change in hazard between the “low” and “high”
expression groups. It can be used for all three models of interest in our problem; however,

it is applicable only to information divergence measures.
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In Tables 1 and 2, we employ the following abbreviations: Subset A represents
genomic features for which the PH model does not fit; B and C refer to subsets of features
for which the PO and YP models fit, respectively; and B’ refers to the subset for which the
PO model does not fit. As seen from Table 1, the FDR is controlled at an acceptable level
(g-value < 0.25) in nearly all analyses involving continuous expression. Overall, the PO
model is observed to fit a large fraction of genomic features across all data sets (85-92%,
subset B). There is clear evidence that the PH model does not fit a significant number
of features in these data sets, particularly 2, 4 & 5, where the actual number itself varies
across these sets (14-29%, subset A). However, it is important to note that for a majority
of the features in these subsets the PO model provides a good fit (52-65%, subset A N
B), thereby making this model an attractive alternative to the PH model when continuous
expression is considered and potential confounders need to be accounted for. The results
for data sets 3, 4 & 5 are further strengthened by an adjustment for confounders such as
age at diagnosis and stage of disease. Although the PH model is seen to provide a good
fit to most features in data set 1, it is interesting to note that the PO model fits 78% of
features (170 out of 217) for which the PH model does not fit. Thus, it would be beneficial
to develop methods based on the PO model because it has been shown to handle NPH
(Martinussen & Scheike, 2006). In each data set, there exists a reasonable number of
features for which neither the PH nor the PO model fits (subset A N B’). This subset
contains a median 35% of features for which the PH model does not fit and, in particular,
for data set 3 it represents 62% of features (464 out of 752). These observations suggest
the need for a more general survival model such as the YP.

As noted earlier, the YP model cannot be used on continuous expression due to
current limitation in methods. However, as shown in Table 2, when applied to dichotomized
expression the YP model provides a good fit to a majority of the features in each data set
considered (92-97%, subset C). This is not surprising given the flexible form of the YP

model and its inclusion of the PH and PO models as special cases. More importantly, the
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PO model is observed to fit a large fraction of genomic features across all data sets (91-
94%, subset B). In each data set, the PH model does not fit a large number of features
(10-18%, subset A). Once again, the PO model provides a good fit for an overwhelming
fraction of features for which PH does not fit - 91%, 88% and 69%, respectively, for data
sets 1, 2 and & 4 as shown in Table 2 (subset A N B). In addition, the YP model provides
a good fit to an even larger fraction of features for which the PH does not fit - 95%, 98%
and 91%, respectively, for these data sets (subset A N C). Furthermore, the YP model
serves as a useful alternative for genomic features for which both the PH and PO models
do not provide a good fit. In our examples, the YP model provides a good fit for 89-94%
of genomic features for which neither PH nor PO fits (subset A N B’ N C). Thus, the YP
model shows versatility and the ability to fit a large number of features when the PH and
PO models do not. The PO and YP models, therefore, provide flexible alternatives to the
PH model when dichotomized expression is considered and it would be useful to develop
methods based on these models for handling various forms of NPH. In summary, these
results serve as motivation for developing methods based on the PO and YP models
because of their ability to fit not only a large number of genomic features in general, but
specifically features for which the PH assumption is violated.

Table 1: Summary of model fits: continuous data

Data set 1 2 3 4 5
P 9,452 454 19,341 24,739 12,776
n 280 416 221 276 86
% Censored 26% 19% 62% 32% 59%

A: PH (lack of fit) 217 (2%)c 130 (29%)" 752 (4%)* 3,881 (16%)" 1,810 (14%)"
B: PO (good fit) 8,708 (92%)> 385 (85%)" 17,349 (90%)® 22,424 (91%)" 11,544 (90%)"
ANB 170 85 288 2,513 947
ANB 47 45 464 1,368 863

p: Number of features; n: Number of observations; ¢g-value: 0.99%; < 0.25%: ~ 0.5¢
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Table 2: Summary of model fits: dichotomized data

Data set 1 2 4
P 9,452 454 24,739
n 280 416 276
% Censored 26% 19% 32%

A: PH (lack of fit) 941 (10%)® 82 (18%)" 3,366 (14%)"
B: PO (good fit) 8,880 (94%)° 426 (94%)" 22,628 (91%)°
C: YP (good fit) 9,038 (96%)° 441 (97%)" 22,796 (92%)°

ANB 854 72 2,325
ANC 896 80 3,051
ANB (NC) 87 (82) 10 (9) 1,041 (926)

p: Number of features; n: Number of observations; g-value: 0.99%; < 0.26°; 0.33-0.53¢

4 Proposed methods for feature selection and ranking

In §3, we demonstrated the need for alternative methods to the PH model that can handle
various types of NPH. We also showed in Tables 1 and 2 that there are many features for
which the PH model does not fit but the PO or YP model does; and for some features,
we observed that both the PH and PO models do not fit thereby suggesting the need for
more complex models such as the YP or CO.

In this section, we construct several marginal screening approaches based on the
PO, CO and YP models. First, we adopt an information-theoretic approach and develop a
test for genomic feature effect under the YP model using Kullback-Leibler (KL) information
divergence. This approach includes tests as well as R? measures for its two important
special cases - the PO and PH models. Following this, we propose a unified framework
to compute pseudo-R? measures for a wide range of survival models that allow different
types of NPH. It includes the PH, CH, PO and CO models and generalizes prior work

(Rouam et al., 2010; 2011). Finally, we propose k* measures for the PO model based on
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the likelihood ratio. The utility of these new marginal screening methods is demonstrated

using simulated and real-life genomic data sets and by comparison to existing methods.

4.1 Methods based on information divergence
4.1.1 Test for genomic feature effect under the YP model

Within the framework of the YP model, we would like to test the null hypothesis H, :
A(t|z) = Ao(t) against the alternative H, : A(t f)\ t|z)dt, where \(t|z) is as specified
in equation (2.5). These hypotheses can be rewrltten as Hy: =0,y=0vs. H : p #
0,7 # 0, i.e., we are interested in testing whether a particular genomic feature has an
effect on survival time according to the YP model. To this end, we utilize KL information
divergence and construct a test statistic. Let fy(¢) and f(¢|z) denote the densities of
T under Hy, and H,, respectively, and let F, and F' be the corresponding distribution

functions. Then KL information divergence is defined as

o) = [ srios {440 L, 1)

and is the directed divergence that measures the discrepancy between F; and F. Equa-

tion (4.1) quantifies the divergence between the null and alternative hypotheses and can

2 1) We wil

be viewed as a weighted log-likelihood ratio, i.e., I(F, : F) = Ej, (log{
use this quantity to develop a test for genomic feature effect.

Under the YP model in equations (2.5) and (2.6), we have f(t|z) = A(t|z)S(t|z)
and fo(t) = Xo(t)So(t). Hence, feature-specific KL information divergence for the YP
model has the form

Iy p(Fy : F|2) /fo { Aot (( )) } df = exp(Bz) [Bzexp(yz) — vz — 2] — exp(y2) [yz exp(Bz) — Bz — 2]'

S(t| exp(fz) — exp(7z)
(4.2)

Let z; represent the expression for individual i« and feature j, where i = 1,...,n and

j =1,...,p. We estimate this measure by replacing 5 and ~ with 3 and 4, the pseudo
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maximum likelihood estimates obtained using the approach in Yang & Prentice (2005;
2012), and by summing over the n individuals in a study. Thus, we obtain the following

estimate of I, , for feature j

i i exp(Bzij) {Bzij exp(Yzij) — Yzij — 2] —exp(Yzij) | Vzij eXP(BZij) - Bzij - 2] (4.3)
yp — exp(Bzi;) — exp(§zi;) . .

From Theorem 1 (see Sl: Methods, §9.1) it can be seen that Iy » is a maximum likelihood
estimator and is asymptotically normal with mean Iy p. Despite the complexity of the YP
model, Iy p has the computational advantage of not requiring an estimate of the baseline.
In addition, it combines feature effects quantified by the two model parameters 5 and ~
into a single measure and provides a simpler interpretation of feature effect. However,
a practical limitation of the currently available estimation method for this model is that it
requires dichotomized feature expression (Yang & Prentice, 2005; 2012). Therefore, we
propose Iyp as a measure for ranking feature effect. In our applications, Iy was esti-
mated using 3 and 4 obtained by fitting the YP model to feature expression dichotomized

by the median. Details on the derivation of Iy p are provided in Sl: Methods (§9.1).

4.1.2 Tests for genomic feature effect under the PO and PH models

As outlined earlier, the YP model contains the PO and PH models as special cases. In
equations (2.5) and (2.6), setting v = 3 results in the PH model and setting v = 0 results
in the PO model. In each model there is a single parameter 5 and we are interested
evaluating feature effect under the respective model by testing the null hypothesis H :
B = 0 against the alternative H, : 5 # 0.

The test statistic for feature j under the PO model is obtained by setting v = 0 in

equation (4.2) and using equation (4.3) which simplifies to

=3 Bzij exp(Bzij) — 2exp(Pzij) + Fzij + 2’ (4.4)
— exp(fz;;) — 1
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where £ is the modified partial likelihood estimator (Martinussen & Scheike, 2006). From
Theorem 2 (see Sl: Methods, §9.1, for details on Ip0), it can be seen that /o is @ max-
imum likelihood estimator and is asymptotically normal with mean 5. The variance of

Ipo can be estimated using the delta method and Taylor series expansion as

n n

- 1
Var(Ipo) ~ Z — 2220, (4.5)

where ¢ is the variance under H,. Details on the derivation of Var(Ipp) are provided in

Sl: Methods (§9.1). Using (4.5) we can reject H if

I2
(o = ——2— > x1. (4.6)

The test statistic for feature j under the PH model, Iy, is obtained by setting v = 4 in
equation (4.3) resulting in a test similar to those outlined above for the YP and PO models.
This is outlined in Devarajan & Ebrahimi (2009); however, it has not been applied to large-
scale genomic data and could potentially over- or under-estimate feature effects when the
PH assumption is violated. In that regard, the proposed methods based on YP and PO

models benefit from the simplicity of this approach while addressing the issue of NPH.

4.1.3 Feature ranking and selection

Since I quantifies the effect of a genomic feature according to the particular model of
interest, it can be directly used to serve as a measure for feature ranking. Both Iy, and
Iy p can be calculated for each feature in a data set where a higher I indicates a larger
effect on survival based on the particular model chosen. Similarly, the test statistic in
equation (4.6) based on the PO model can be used to to compute a p-value for each
feature and features can be selected by controlling the FDR, at a pre-determined level

such as 5%, using the Benjamini-Hochberg approach (Benjamini & Hochberg, 1995). A
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similar approach can be used for feature selection and ranking using /p;; under the PH
model. It is straightforward to account for potential confounders (such as age and stage
of disease) by utilizing the model parameter estimate from the adjusted model in the
computation of Iy, and Ipy and their respective test statistics. Moreover, standard GOF
tests such as those used in §3 can be used to determine which of the three measures to

use.

4.2 Measures of explained randomness
4.2.1 R? measures based on information divergence

We utilize tests for genomic feature effect proposed in §4.1.2 to develop R? measures,
that quantify the fraction of variation explained, for the PO and PH models. These indices
take values on the [0, 1] scale and are easy to interpret. From equation (4.2), feature-
specific KL information divergence for the PO model can be obtained by setting v = 0 and

expressed as

Ino(Fy: Flz) = Pzexp(Bz) — 2exp(Bz) + Bz +2 _ R

exp(fz) — 1

206z
exp(Bz) — 1

(4.7)

where z represents feature expression. Similarly, feature-specific KL information diver-

gence for the PH model can be written as

Ipy(Fy: Flz) = exp(Bz) — fz — 1. (4.8)

which is obtained in the limit as 5 — ~ in equation (4.2). In §4.1.1 and §4.1.2, we de-
rived tests for feature effect in the YP and PO models using the respective I by summing
over n individuals in a data set. This approach accounts for the feature expression of
each individual in the study. Here we propose an alternative, but more robust, approach

by integrating over the covariate distribution; in this case, the distribution of feature ex-
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pression. A normalizing transformation stabilizes the variance and can be applied to a
variety of large-scale genomic data for this purpose. Examples include the logarithmic
transformation for mRNA and miRNA gene expression, the log(z + 1) transformation for
digital gene expression and the logit transformation for DNA methylation while copy num-
ber variation is expressed as log-ratios. In addition, if we standardize the expression of
each feature to have zero mean and unit standard deviation, then Z = z;; w Normal(0, 1),
where i = 1,....,nand j = 1,...,p. We define I as the expectation of I(F, : F) with

respect to the marginal distribution of Z,

I =E4[I(Fy: F)] = /_Oo I(Fy: F|2)éz(2)dz, (4.9)

oo

where ¢(z) is the standard normal density. I is computed for the PO and PH models

using I(F, : F|z) in equations (4.7) and (4.8), respectively. An R? is then defined as
Ri=1- exp(—21) (4.10)

(Joe, 1989; Soofi et al., 1995). For the PO model, I»o is calculated using Taylor series

expansion as

N o 1
fro= [ Iro(3:2)on(:)dz ~ (5% @11)

and, hence,
R%PO =1 —exp(—2Ipo) =1— exp(—%ﬁz), (4.12)

where £ is replaced by 3, the modified partial likelihood estimator in the PO model ob-
tained using standardized feature expression (Martiussen & Scheike, 2006). For the PH

model, we calculate I directly using Ipy as

T = [ Tou(5: 2162200z = exo (%ﬁ) 1 (4.13)
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Hence,

R2  =1—exp(—2Ipy), (4.14)

Ipg

where 3 in Ipy is replaced by 3, the partial likelihood estimator parameter in the PH model
obtained using standardized feature expression (Cox, 1972). Details regarding the deriva-
tion of Ipo and Ipy are provided in SI: Methods (§9.2). Both R; and R} can be easily
seen to fall in the [0, 1] range and can be used for feature ranking and selection where
genomic features with larger R? values can be interpreted as exhibiting larger effects
on survival under the respective models. These measures have an information-theoretic
foundation and are easy to compute; from equations (4.11) and (4.13), we observe that
both measures are simple functions of the respective model parameter $ which contains
the required information if feature expression can be normalized to follow the standard

normal model.

4.2.2 R? measures based on the likelihood ratio

We propose three different 2? measures for the PO model based on likelihood ratio (LR),
log %, where L(0) and L(3) denote the modified partial likelihood for this model under
the null and alternative hypotheses, respectively, and the parameter /3 is estimated using
the approach outlined in Martinussen & Scheike (2006) (see S| Methods, §9.3, for the
modified partial likelihood). These measures parallel corresponding R? measures for the
PH model that exist in the literature and can be interpreted as the proportion of variation
explained by the PO model (Allison, 1995; Nagelkerke, 1991; O’Quigley et al., 2005). The
first measure is based on Allison’s index (Allison, 1995) which uses a transformation of

the log partial likelihood ratio. It has the form B2, , = 1 — exp (—% [log %D where N
is the number of subjects. The second measure is a modified version of Allison’s index
based on the work in O'Quigley et al. (2005) where N in R}y , is replaced by k, the

number of failures. It is less sensitive to censoring which is beneficial in our application
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due to the observed high fraction of censored observations in large-scale genomic data
sets. It is given by
L(p)

Ripo=1—exp (-% llogm ) . (4.15)

The last measure is based on Nagelkerke’s index (Nagelkerke, 1991) and is another mod-

ified version of Allison’s index obtained by dividing the index by its maximum possible

R2
value. It has the form R}, \ = =+ where R’

2
Rmacv max

= 1 — exp (2 log L(0)). While these
measures result in different values and ranges for a specified data set, we note from em-
pirical observation that their rankings are the same. In our simulated study, we found that
although their values differed, R7 , 4, R}z o, and R y resulted in the same feature rank-
ings. Hence, we choose to use R}, for the remainder of the analysis. For simplicity of

notation, we will refer to R , as R going forward.

4.3 A generalized pseudo-R? measure

We develop pseudo-R? measures for the PO and CO models, denoted by R%, and R%,,
as well as a generalized pseudo-R? measure that embeds such measures for the PH,
CH, PO and CO models. The proposed approach utilizes the partial likelihood of the
respective models and does not require an estimate of the parameter 5 in these models.
It generalizes the work of Rouam et al. (2010, 2011) where measures for the PH and CH
models, which we denote by R%, and R%,, respectively, were proposed. These pseudo-
R? measures can be interpreted in terms of the difference in the expression of a genomic
feature between subjects experiencing and not experiencing the event of interest, and can
be used as tools for feature ranking and selection under a variety of scenarios involving
NPH. An obvious disadvantage of R%,, is that it is based on the PH model. In the CH
model, the hazard ratio between two individuals with feature expression z and z* cross
over time (Rouam et al., 2011). Thus, while R%,, does address the inherent problem with

R%,,, it forces crossing hazards. Therefore, the measure itself is specifically designed
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to identify crossing hazards. The advantage of the PO model is that it can handle non-
proportional hazards while still allowing for proportional hazards, and therefore, is more
generally applicable to the variety of hazard structures observed in genomic data. This
is evidenced by the results shown in Tables 1 and 2 where PO fits features that exhibit
both PH and some forms of NPH. The CO model generalizes the PO model in the same
manner as the CH model generalizes the PH model and, thus, has a more versatile form.
For our purposes, we will use the special case v = S in equation (2.4). Hence, the
measures R%, and R%,, based on these models offer significant advantages and flexibility
that is not afforded by currently available measures.

The generalized pseudo-R? index can then be expressed as

no 2
(E)
R =5 (4.16)
VVZZ
) S5\ g S Velts\ .
where W; = 5 (t;) | 2 — 50— | =D, 22 | 5 — == |, z; is the expression
> Yj(t) j=1 Yr(t5) > Ye(t;)

of a given feature for subject i, k is the number of uncensored failure times and Y = zn: Y;
is the number of subjects at risk at time ¢; (see Sl: Methods, §9.3, for details). This ieréIex
can be seen as the robust score statistic divided by the number of distinct uncensored
failure times, a quantity that falls between 0 and 1 and can be interpreted in terms of
the percentage of separability between subjects experiencing and not experiencing the
event in relation to the expression of a genomic feature. Using equation (4.16), indices
corresponding to the PH, CH, PO and CO models based on model-specific choice of
the weight, w(t), determined by the respective partial likelihood can be obtained (see Sl:
Methods, §9.3, for a derivation of weights). The estimated weight, w(t), for each special

case is shown in Table 3 and can be interpreted as the derivative of the log hazard ratio

for the corresponding model with respect to the parameter g evaluated at 5 = 0. In
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Table 3, Ay(t) is estimated by the left-continuous version of Nelson’s estimator and Sy(t)
is estimated using the Kaplan-Meier (KM) estimator. We note that R%,, and R%,, are the
measures described in Rouam et al. (2010, 2011) while R%, and R%, are our newly
proposed measures that allow for various types of NPH as well as PH. In order to avoid
numerical issues, we applied empirical corrections in the computation of R%,, and R%,

(see Sl: Methods, §9.3, for details).

Table 3: Pseudo R?: Special Cases

Model | Measure Weight function, w(t)
PH R%,, 1
CH R%,, 1+ log{Ay(t)}
PO R%, So(t)
CO | R, | 1+S(t)— So(t)log (f%fﬁt))

5 Application to simulated data

In this section, we evaluate our newly proposed ranking methods, /o, Iyp, R%PO, R%»H’
R%,, R%o, R3,.4cn @nd R? , using simulated data sets under a variety of scenarios and
compare their performance to existing methods, R%,,, Rz, and &, (Rouam et al., 2010,
2011; Dunkler et al.,, 2010). The goal of this study is to assess the performance of
these methods in selecting features that are truly associated with survival in the high-

dimensional setting.

5.1 Simulation schemes

We considered two different simulation schemes to generate artificial survival and ge-
nomic data sets based on the approach outlined in Dunkler et al. (2010). In order to

account for various types of hazards, survival times Y;,i = 1,...,n, were generated from

20


https://doi.org/10.1101/2020.02.14.944314
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.02.14.944314; this version posted February 14, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

each of 5 different models specified as follows: standard log-normal LN (1 = 0, o = 1);
log-logistic LL1 (a; = 2,A\; = 2,y = 4) and LL2 (a; = 3,0 = 4,A\; = 1, X = 2); and

Weibull W1 (a; = 1,A\; = 3) and W2 (a; = 3,a0 = 2, A\ = 1, Ny = %), where LL1 and W1

p
refer to the respective models where the shape parameters are the same but the scale
parameters differ, and LL2 and W2 refer to the respective models where both the shape
and scale parameters differ. In the LN model, 1z and o are the location and scale parame-
ters, respectively. We use a more informed approach that is broader in scope compared
to that of Dunkler et al. (2010), who only considered W1 in their simulations. Here, LN,
LL2 and W2 cases are of particular interest because of their ability to simulate crossing
hazards. To simulate censoring, we drew random samples with uniform follow-up times
C from U(0, 7) and defined the observed survival time as 7" = min(Y, C') with censoring
indicator 6 = I(T' = Y’). We chose 7 to get censoring proportions of 0, 33, and 67%.

For each model, we simulated censored survival times and genomic data for N =
200 subjects and p = 5000 mock features whose expression is linked to survival time
based on the logarithm of the hazard ratio (HR), 5,(t) = 5y log(HR). Genomic data was
generated from the standard normal model which covers a variety of features seen in
large-scale genomic studies. Following Klein and Moeschberger (2003), log(H R) was
calculated based on the respective model of interest. For LN, we used 5,(t) = 5o(t* — 1)
to simulate crossing hazards similar to what was done in Dunkler et al. (2010). Then, j,
was chosen so that only the first 400 features were assumed to have an effect on survival
time, with 200 having a large effect and 200 having a small effect. In Scheme 1, we
adopt a univariate approach where the expression of each feature is separately linked to
survival, and in Scheme 2 we adopt a multivariate approach that incorporates correlations
between features. More details on these steps can be found in Dunkler et al. (2010).

For each simulation scheme and censoring combination, 200 data sets were gen-
erated and assessed. The ranking methods developed §4 were applied to each data set

and genomic features were ranked based on each method. The results are summarized
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using mean AUC, specificity, sensitivity and the Youden index (Youden, 1950) across the
200 simulations in each case and used to compare the methods. The Youden index is

calculated as J = sensitivity + speci ficity — 1 where higher values are desirable.

5.2 Simulation Results

Overall, under different models (LN, LL1, LL2, W1, W2) and censoring proportions (0,
33, 67%), the proposed methods outperformed and, in some cases, performed as well
as existing methods. In most cases, we noticed some form of improvement. Detailed
simulation results under various scenarios outlined above are provided in Sl: Simulation
Results and SI: Tables 5-9 (§10). Our PO model-based methods performed strongly
overall and Iy » performed particularly well for lower censoring. RZ%, performed similarly
to RZ, in many cases, but it is important to note that our modified version, R3, .-y,
performed better than R%, in most cases and similarly to it in other cases. Overall,
depending on the simulation scheme and type of non-proportional hazards present, we
can identify the benefits of utilizing each of our measures. Most importantly, the proposed

feature selection methods are more flexible and generalize existing methods.

6 Application to genomic data

In this section, we compare the performance of the proposed methods using several data
sets representing a broad spectrum of high-throughput genomic technologies. In addition
to data sets 1-5 described in §3, we utilized the following data sets. Data set 6 consists of
microarray gene expression profiles measured on the same set of glioblastoma samples
used in data sets 1 and 2, while data sets 7 and 8 consist of DNA methylation and copy
number variation profiles, respectively, from subjects with head and neck squamous cell
carcinoma. Since we do not have prior knowledge on the number of genomic features

significantly associated with survival in real data, this approach will differ from that of the
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simulations. Here, we will rank features based on each method and compare them using
a preselected number of top features across methods. Whenever possible, parameter
estimates required for computing certain I and R? measures were obtained from respec-
tive models adjusted for potential confounders such as age and stage of disease. These
measures include Ipp, R?p, R%PO, R%PH and the absolute effect size estimate, ¢,, from
concordance regression. In addition to continuous feature expression, dichotomized ex-
pression was utilized for Ipo and ¢, and no adjustment for confounders was done for
analyses involving dichotomized data in order to enable direct comparison of results to
Iy p which accommodates only a single dichotomized covariate due to current limitations
in the YP model implementation (Yang & Prentice, 2005; 2012). Overall, the approach
outlined above for computing the proposed I and R? measures parallels the analyses
presented in §3 comparing different models.

We begin by focusing attention on the application of our proposed I measures -
Ipo and Iy p - and ¢, selecting the top 500 features based on each measure. We observe
that there are few features commonly selected by all three measures, as evidenced in the
Venn diagrams presented in Sl: Figures 1 (data sets 1, 2 and 6) and 2 (data sets 3, 7, 8,
4, and 5). This is not surprising given that these measures are based on different model
assumptions. However, it is interesting to note that in the glioblastoma data sets (1, 2 and
6) and in the HNSCC data sets 7 and 8, a large fraction of the selected features (62%,
88%, 75%, 62% and 53% respectively) are common to /po and ¢/,. Overall, relatively
fewer features appear to be commonly selected by Iy-» and ¢,. For dichotomized data, it
is evident that feature sets corresponding to different measures are much less concordant
compared to continuous expression, as shown in Sl: Figure 3 (data sets 1, 2 and 4).

Using the test statistic for 1, developed in §4 and denoted by X%p, We computed
a p-value for each feature and selected features by controlling the FDR at 5% using the
Benjamini-Hochberg approach (Benjamini & Hochberg, 1995). It should be noted that this

approach can also be used to rank features and to compare different measures. Table
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4 summarizes the results of this analysis for continuous and dichotomized feature ex-
pression for various data sets. In almost all cases, x%,, selects a much larger number of
features compared to ¢/, which does not select many features at all in the first place. This
is likely due to its more general form which accounts for PH as well some form of NPH.
Although adjustment for confounding effects of age and stage or for multiple testing typ-
ically reduce the number of features significantly associated with survival, we observed
that ¢ identified fewer features even without such adjustments and fared poorly overall
compared to x%, not only in selecting features with some type of NPH but also in se-
lecting features with PH, based on statistical significance. This limitation is recognized
in Dunkler et al. (2010) and it renders ¢/, as a tool for feature ranking only rather than
feature selection, unlike x%,, which can both be used for ranking as well as selecting fea-
tures based on a pre-specified p-value or FDR threshold. These observations provide an
argument in favor of the use of x%, for feature selection and ranking. In Sl: Application to
Genomic Data (§11) and Sl: Figures 8-12, we outline an approach to evaluate and visual-
ize the combined effect of features selected on survival. We thus recommend the use of
Ipo, X% Or Iy p because of their inherent versatility. While Iy is able to handle various
types of hazards and retains both Ipo and Ipy as special cases, its performance could
be significantly improved by developing methods to estimate the YP model parameters for
continuous data which are currently unavailable. On the other hand, Ipo performed better
than or at least similarly to ¢, in every simulation scenario considered. All three measures
are easy to calculate and the associated statistical test can be used for simple feature se-
lection at a pre-defined significance or FDR threshold, as shown in the examples in this
section.

Next, we examine the differences between genomic features selected by various
R? measures, once again selecting the top 500 features in each case. Sl: Figure 4 shows
the overlaps between PO-based R? measures - k%, k2, and R?PO - for the glioblastoma

data sets (1, 2 and 6). Since data set 2 contained a small number of features (454), the top
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Table 4: Number of features selected by x7, and ¢,

Data type | Continuous | Dichotomous
Dataset | Y2, | <. | X360 | <,
1 1097 | 99 318 0
33 0 17 0
1,580 7 1,963 2
4,784 | 17 | 6,057 0
758 | 1,473 | 4,099 | 323
310 0 -
5,799 0 3,885 | 21
464 0 64 0

ONO O~ WN

50 selected features were compared. The results are, however, consistent across these
data sets where we observe a large fraction of common features selected by different
measures. In all three data sets, a large fraction of features (> 80%) are common to all
three measures as well as between any pair of measures. Sl: Figure 5 shows the overlaps
between PO-based R? measures for the HNSCC (3, 7 and 8), ovarian (4) and oral (5)
data sets where we, once again, observe a significant fraction of features common to
different measures. Overall, 55-80% of features are common to all three measures while
61-96% of features are common between to any pair of measures. These results are not
surprising since all three measures are based on the PO model and performed similarly
in the simulations.

Venn diagrams corresponding to R%,,, R, and R%, ., are shown in Sl: Figures
6 (data sets 1, 2 and 6) and 7 (data sets 3, 7, 8, 4 and 5). We observe that there are only
minor overlaps between different measures across all data sets, with the largest overlaps
occurring between R%, and R3, .. for data sets 5 and 8 and between RZ, and R3,, .cx
for data sets 1, 6 and 8. However, there are no features common to all three measures
in data sets 3, 4, 6, 7 and 8, and only a very small number of common features in the
remaining data sets. This is not surprising since each of these methods is based on a
different model, so we would expect them to select different features. Although not shown

here, we note that k%, and R3, ,. Selected a large proportion of common features in all
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of the data sets; however, R3, ., provided a robust estimate compared to k%, due to its
computational correction. The differences in observed selected features across the three
measures are most likely related to the presence of NPH features; for example, R%,; is
specifically designed to identify crossing hazards, but a measure based on PO or YP will
provide more flexibility as it allows for different types of time-varying hazards as well as
PH. Thus, the appropriate measure can be chosen based on the goal of feature selection
and type of hazards present or expected. We emphasize that our proposed measures
provide a more versatile and general framework that allows for inclusion of various types
of hazards.

The R? measures can be interpreted as the percentage of separation in feature
expression between those experiencing the event of interest and those not experiencing
it. As seen in Sl: Figures 6 and 7, R%,, R%,, and R3, .., select fairly independent
subsets of features, and each set can be used for further exploration and study. The PO
model-based measures demonstrated their ability to handle PH and various forms of NPH
throughout the simulation results while R3, .-, only performed well in detecting crossing
hazards; moreover, RZ,, offers an alternative approach to R3, -5 and is better suited for
handling particular forms of time-varying hazards. Thus, each measure provides useful
information specific to a particular model of interest while PO model-based R?* measures

provide overall flexibility relative to other measures.

7 Summary and discussion

In this paper, we proposed unified methods for feature selection in large-scale genomic
data in the presence of censored survival outcomes. We illustrated the utility of these
methods using real-life studies in cancer genomics; in particular, we demonstrated their
ability to handle the challenges due to various forms of non-proportional hazards. The
proposed methods are based on models that relax the PH assumption and are able to

identify genomic features with a time-varying effect with increased specificity and sensi-
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tivity.

Our methods are flexible and generalize existing methods for feature selection by
casting them within unifying frameworks. First, we proposed a general framework to test
for the effect of a genomic feature under the YP model using KL information divergence
by developing the measure Iy p which quantifies this effect. Iy p contains corresponding
measures for the PO and PH model - Ipo and Ipy, respectively - as special cases. An
advantage of these measures is that they do not require an estimate of the baseline
hazard and, instead, are simple functions of model parameters. Using these measures,
we developed a statistical test (y%,) for genomic feature effect in the PO model where
the test-statistic or p-value could be used for feature selection. Using Ipy and Ipp, we
developed R%PH and R?pr for the PH and PO model, respectively, that only rely on the
corresponding regression coefficient; in addition, we developed alternative R measures
(R? ;) based on the likelihood ratio for the PO model. All these R* measures are easily
interpretable as the fraction of variation explained by the respective models. Finally, we
proposed a generalized pseudo-R? measure that embeds measures for the PO, CO, PH,
and CH models as special cases. These measures do not require an estimate of the
model parameter and can be easily interpreted as the percentage of separability between
subjects in the event and non-event groups according to feature expression.

All proposed R? measures can be applied to quantitative (continuous or ordered
categorical) data and I measures are applicable to quantitative or dichotomized data;
however, Iy p is currently usable only on dichotomized data. Use of (appropriately vari-
ance stabilized and normalized) quantitative feature expression aids in robust estima-
tion of time-varying effects and interpretability while dichotomized expression facilitates
visualization of results. However, it is important to be aware of the potential effect of
dichotomization - using the median split or any other arbitrary cut-off - on the PH as-
sumption. This is evidenced by the results in Tables 1 and 2 for data sets 1 and 2 where

dichotomization has a negative and positive effect, respectively, on GOF. The proposed /
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measures are useful for feature ranking in general and, in particular, when the distribution
of feature expression or a normalizing transformation for it is unknown. Furthermore, Ipo,
R%PO, R%PH and R?, can accommodate potential confounders such as age and stage of
disease directly or indirectly in their computation (as illustrated in our examples) as well as
a group of pre-selected features depending on the application of interest. While Iy p offers
an approach for feature ranking using a flexible survival model for dichotomized feature
expression, x%,, provides a method for feature ranking as well as selection for both contin-
uous and dichotomized feature expression. Typically, it selects more features at the same
significance threshold and, thus, provides a more lenient approach for feature discovery
relative to standard methods and CON as evidenced in Table 4. Moreover, our results
demonstrate that it includes a significant fraction of features identified by CON. This is a
desirable property of any feature selection method and it enables appropriate correction
for multiple testing through use of FDR based not only on the Benjamini-Hochberg ap-
proach which assumes independent hypotheses but even a more stringent method such
as Benjamini-Yekutieli that accounts for dependence amongst hypotheses. Such flexi-
bility is not possible with currently available methods for feature selection and ranking
especially within a broad framework that includes the YP, PO and PH models.

Our extensive simulation studies demonstrated that there were a variety of scenar-
ios where our proposed measures outperformed currently available methods. An impor-
tant consideration is that when marginal screening methods are utilized for the purpose
of feature ranking and selection, the issue of multiple testing becomes less important in
comparison to adjusting for potential confounders when considering different models and
measures. The proposed methods demonstrated their ability to correctly select genomic
features associated with survival in the presence of different types of time-varying effects
in real genomic data, after adjusting for potential confounders and for multiple testing, as
well as in simulated data. As genomic technologies continue to advance and as more

clinical, demographic and genomic data are generated and stored in repositories such as
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TCGA, Gene Expression Omnibus (https://www.ncbi.nim.nih.gov/geo/) etc., feature se-
lection methods will become increasingly important as we attempt to identify genomic
features with a prognostic impact on patient survival. Although we focused on genomic
feature selection in this paper, it should be noted that the proposed methods are directly
applicable to a broad array of high-throughput “omics” studies such as those involving
genome-wide association, proteomics, metabolomics, transcriptomics and radiomics. In
particular, radiomics is a rapidly developing area which involves a multitude of quanti-
tative measurements of tumor heterogeneity based on various imaging modalities such
as computed tomography and magnetic resonance imaging. There has been consider-
able interest recently in correlating intra-tumor heterogeneity based on textural features

to survival endpoints.
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Supplementary Information

8 Data Sets and Implementation

Data sets 1,2 and 6

These data sets were published by TCGA (http://cancergenome.nih.gov/). Data set 1
consists of the methylation profiles (beta values) of tumor samples from 280 patients with
glioblastoma (GBM) obtained using the Infinium HumanMethylation27 platform. The beta
values were normalized using the logit transformation. For genes with multiple methy-
lation probes, the probe most negatively correlated with expression is used. Data set
2 consists of microRNA expression profiles in the form of z-scores compared to all tu-
mors for 416 patients with GBM. Data set 6 consists of merged mRNA and microRNA
z-scores from 426 patients with GBM where mRNA expression z-scores were compared
to diploid tumors (diploid for each gene) using median values from all three mRNA expres-
sion platforms (Affymetrix U133, Affymetrix Exon, and Agilent), and microRNA z-scores
were compared to all tumors. Data sets 1, 2 and 6 contain a total of 9,452, 454 and
15,546 features, respectively.

Data sets 3, 7 and 8

These data sets were published by TCGA (http://cancergenome.nih.gov/). The raw genome-
wide methylation data for ~ 485,000 CpG sites (based on Infinium HumanMethylation450
BeadChip Kit, lllumina, Inc.) obtained from tumor samples of 286 patients with head
and neck squamous cell carcinoma (HNSCC) were retrieved from TCGA, and M-values
(methylation signal quantified by logit-transformed beta values) were calculated for each
CpG site using the Bioconductor package Minfi (Aryee et al., 2014). CpGs located in the
transcription start sites and UTR regions for each gene were retrieved and used in further
analyses. Somatic copy number variation (CNV) - expressed in discretized form as gain
orloss (-2,-1,0,1,2) - and RNA-Seq gene expression data - presented as RSEM values (Li
& Dewey, 2011) - were obtained from the Broad Institute (http:/gdac.broadinstitute.org/).
CNV data was filtered by removing genes with identical copy number variation across
subjects. RNA-seq data was normalized using the log,(z + 1) transformation. A gene
was included in the analyses only if (i) if 50% of patients have expression values for that
gene, and (ii) protein expression of that gene was observed in at least one head and neck
cancer sample in the Human Protein Atlas database (Uhlen et al., 2015). Data sets 7 and
8 consist of methylation and CNV data, respectively, for 286 patients with HNSCC while
data set 3 consists of RNA-Seq data for 221 patients with cancers of the oral cavity, a
subgroup of HNSCC. Data sets 3, 7 and 8 contain a total of 19,341, 49,270 and 5,869
features, respectively, after the above pre-processing steps.
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Data sets 4

Tothill et al. (2008) studied the relationship between recurrence-free survival and gene
expression in ovarian cancer using tumor samples from 276 subjects and Affymetrix U133
Plus 2 microarrays. This RMA normalized data set (Irizarry et al., 2003) was filtered
using a coefficient of variation threshold of 35% to remove genes with low variation in
expression and contains the expression profiles of 24,739 probe sets. In all analyses, log,
transformed data was used.

Data set 5

Saintigny et al. (2011) studied 86 subjects enrolled in a clinical chemoprevention trial
where the primary endpoint of interest was the development of oral cancer. This RMA
normalized and log, transformed data set (Irizarry et al., 2003) contains the expression
profiles of 12,776 probe sets obtained using the Human Gene 1.ST platform.

Implementation

All computations were done using the R Statistical Language and Environment (R Core
Team, 2018) and Bioconductor (Gentleman et al., 2004). The following packages were
utilized as needed: survival, timereg, YPmodel, qvalue, Minfi, affy, concreg, gplots, VennDia-
gram and latex2exp.

9 Methods

9.1 Derivation of [y p

Under the YP model defined in equations (2.5) and (2.6) and the identities f(t|z) =
A(t|2)S(t|z) and fo(t) = Ao(t)So(t), feature-specific KL information divergence for this
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model has the form

frplF /fO {A 5&2;))}“

- /fo(t) log { [exp(32) — So(t) exp(Bz) + So(t) exp(y2)] P+ } dt

exp [(8 4 7)2] exp(y2)xP(r2) Sy (t)xp(r2) -1

~(3 )z = vzexplr2) — fexp(r2) 1] [ folt)loglSo(0) de

+ [exp(yz) + 1] / Jo(t)log [exp(Bz) — So(t) exp(Bz) + So(t) exp(v2)] dt

In the second term, let u = Sy(t) and du = — fy(t)dt
In the third term, let uw = exp(8z) — So(t) exp(Bz) + So(t) exp(72)
and du = fo(t) [exp(8z) — exp(yz)] dt
exp(fz)

0
exp(yz) + 1
=—(B4+v)z —vzexp(vz) + |ex z—l/logudu+ / log udu
(B+7)z —vzexp(v2) + [exp(72) ]1 exp(B2) — exp(72) |
exp(vz

—(B+7)z —yzexp(yz) + [exp(yz) — 1]
exp(vyz) + 1
exp(Bz) — exp(yz)
_ exp(Bz) [Bzexp(yz) — vz — 2] —exp(yz) [yzexp(fz) — Bz — 2]
exp(fBz) — exp(yz) '

[Bzexp(5z) — exp(Bz) + exp(yz) — vz exp(v2)]

Theorem 1. Iy is a maximum likelihood estimator and is asymptotically normal with
mean Iy p.

Proof. It can be seen from equation (4.3) that Iy p is a simple transformation of the pseudo
maximum likelihood estimators 3 and 4. Since (3, 4) is asymptotically bivariate normal
with mean (3, ), using the invariance property of maximum likelihood estimators it can be
concluded that Iy » is also asymptotically normal with the mean above. For more details,
see Yang & Prentice (2005) and Devarajan & Ebrahimi (2009). O

9.2 Derivation of 1o and Var(Ipo)

Ipo(Fy @ F) is obtained by setting v = 0 in the expression for Iy p(Fy : F). It turns out
that KL information divergence is symmetric for the PO model, i.e., Ipo(Fy : F') = Ipo(F :
Fy) (Spirko, 2016). This measure is weighted equally towards the null and alternative
hypotheses.
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Theorem 2. I, is a maximum likelihood estimator and is asymptotically normal with
mean Ipg.

Proof. It can be seen from equation (4.4) that Ipo is a simple transformation of the mod-
ified partial likelihood estimator 5. Since [ is asymptotically normal with mean 3, using
the invariance property of maximum likelihood estimators it can be concluded that /po is
also asymptotically normal with the mean above. For more details, see Martinussen &
Scheike (2006) and Devarajan & Ebrahimi (2009). O

Using equation (4.4), for a given feature j with expression z, variance of Ipo can be written
in terms of § as (suppressing the subscript 5)

. L 282
Var(Ipp) = Var (Z Bz — 2+ #)
i=1

exp(f8z;) — 1
"L A 2321 QBZ]
_ Cov [ |fa—2+4 —25 | |pyy—at— D%
; ; > ([ ) exp(fBzi) — 1] [ eXp(ﬁzj) - 1])

Let /() denote Ipp in equation (4.4) expressed as a function of the parameter 3 for each
observation i. Expanding I(/3) using the first three terms of the Taylor series, we get

I(8) = 1(0) + I'(0) + 51"(0)* + 51"(0)5°

where

9) = p =2+ i
2z;lexp(Bz;)—1 72/3’zi2ex Bz;
I'(B) = =+ B e

" B [—ZB’Z? exp(ﬁzi)] [exp(Bzi)—1]%—22; exp(Bz;)[exp(Bz)—1] [221- [exp(Bzi)—1]—2822 exp(ﬂzi)]
I'(g) = exp(Bz:)—1]*

. 2,6’2? exp(2/3’zi)+25z? exp([o’zi)fllzi2 exp(Qﬁzi)+4zi2 exp(Bzi)
- exp(B2;)—1]>

I/”(ﬁ) _ 623 exp(382:) =282} exp(3B82:) —8B2] exp(28z:)—623 exp(Bz:)—28z] exp(Bzi)
- [exp(B2:)—1]*

Taking the limit as § — 0 of all four functions above, we get

lim /(5) = lim I'(B) = lim ["(5) =0

£—0 £—0 B5—0
lim I"(5) = 122
lim 1"(5) =

Thus,](6)~0+0+ ( )52+0_1 292

Now, using the above results the approximate variance of I, can be computed as follows.
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st (] i)
E5el) ()] il

i=1 j=1

n n

The fourth equality above is obtained using the fact E(5%*) = 242°" where o is the vari-
ance of 3 under H,.

9.3 Derivation of I and Ipy
PO model Forthe PO model, using equations (4.9) and (4.7),

_ B 00 B 00 B o0 Qﬂz
fro= [ Irolfee)iz= [ 2=zt | —EE e
B o0 20z
= -2+ /_OO —exp(ﬁz) — 1fz(z)dz
= =2+ Eflg(2)],
where g(z) = exp?gj)fl. Using the Taylor series expansion, we can estimate E[g(z)] by

B/ l0(2)] = o) + ¢ (1) B — ) + L0 iz

where ¢"(z) = 2ﬁ3xexp(26:r)f462eXEfpﬁ(zﬁ)giﬁl‘;’;vexp(ﬂx)Jr452 exp(Ba

g"(z) using LHopital’s rule to get

). Now, take the lir% for ¢g(z) and
Zz—

lim g(z) = 2 and lim q"(z) = $p32
z—

z—0 3
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Thus, Elg(2)] ~ 2+ 3(56%) = 2+ 3, and therefore,
- 1, 1.,
Ipo=—24+24-8%= -3 (9.1)
6 6
The R? measure is then defined as
R?Po =1 —exp(—2Ipo), (9.2)

where § in Ipo is replaced by £, the modified partial likelihood estimator in the PO model
(Martinussen and Scheike 2006).

PH model For the PH model, using equations (4.8) and (4.9),

Ipy = / Ipy(2)fz(2)dz = / exp(8z) fz(z)dz +/ (=Bz—=1)fz(2)dz
o0 1 —22
= {/Oo exp(ﬁz)mexp (T) dz} —1
= exp (%ﬁ2> — 1. (9.3)
R? is defined as
R%PH =1- exp(—2pr). (94)

where 3 in Ipy is replaced by 3, the partial likelihood estimator parameter in the PH model
(Cox 1972).

9.4 Derivation of the generalized pseudo-? measure

Following standard counting process notation for censored survival data, let N;(t) = {0, 1}
denote the number of events that have occurred for subject i,i = 1,--- ,n in the interval
(0,] and let Y;(t) = 1 indicate that subject i is at risk just before time t. Here, N(t) =
S N(t)yand Y(t) = Y| Yi(t) denote, respectively, the total number of events that have
occurred in (0, ¢t] and the number of subjects at risk at time ¢. Let 5 denote the parameter
and let U;(3;t) denote the score function for individual i obtained as the derivative of the
logarithm of partial likelihood with respect to g for a particular model of interest. For each
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model, it can be shown that the score evaluated at 5 = 0 has the form

n

! _12 Yi(s)z
Ui(0;t) = / w*(s) |z — J_n#z— dNV;(s)
0 ;YJ@) -1
e ( _ > %
B w(s)(Y(s) —1) L JER*(t;) (s
- b/ }7(8) 7 }7(8) 1 sz( )7 (95)

\

where w*(s) = w(s) (Yés();), w(s) is a weight function that is model-specific, and R*(t)

is the set of individuals not experiencing the event at time ¢. Thus, it can be seen that
this is a measure of the weighted difference in the expression of a genomic feature be-
tween subjects observed to experience the event of interest and those observed to not
experience the event. For each observation i, an estimate for U;(0; ¢) is given by

, (9.6)

where estimation of w(¢;) is discussed later in this section and ¢; is the indicator of failure
at time ¢;. Following Rouam et al. (2011), we utilize the robust score proposed in Lin &
Wei (1989) given by

W - | {u) [ = S bani, ©7)

where s (t) = E[ST(t)],r = 0,1;50(t) = S, Y;(t) and SV () = Y7 Yi(t)z. This
quantity can be estimated by

SYilt)n\ IR AE

R R R — A Yi(t — r\ty)~r

Wi = U,—EU, = 6:0(t;) | 2 — = - w(t]) W) |, - = (9.8)
YY) | S R Y) X Yilty)
Jj= r= r=

The sum of W;s is identical to the sum of U;s but W;s are independent under the PH
model. Using W;, a pseudo-R? index can then be written as

(5)

R* =
> Wy
=1

| =
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where k is the number of uncensored failure times. Next, we compute U(0;t) for the PO
and CO models defined in equations (2.3) and (2.4), respectively, and use it to derive
respective weights w(t).

PO model Forthe PO model defined in equation (2.3), the following quantities represent
the survival and hazard functions, respectively,

So(t)
) = 50 = Sy exp(52) + exp(52) 519
and
At]2) = _81n5’(t|z) B Ao(t) exp(Bz) (9.11)

ot ~ So(t) — So(t) exp(B2) + exp(Bz)’
Using equations (9.10) and (9.11), the partial likelihood for the PO model can be written
as

ANi() ANL(1)
Ao (t) eXp(IBZz)

L) =1] ﬁ - Ailtlz:) =11 ﬁ So(t)- So( ) exp(Bz) +exp(Bz:)

n )

! . exp(Bz
el PIRACICEY = | X it )
J:

where Yj(t) = 1 if the subject is at risk before time ¢, and z; represents the expression of a
given feature for subject i. For fixed ¢, log L(3) =

Z:Of{ﬁzz log [So(s) — So(s) exp(Bz;) + exp(Bz;)] — log Z RO So(é()sg;;(péff)ﬁexp(ﬁzj)] }dNi(S).

Hence,
dlog L(p3
U(B;t) = dﬁ() =
. i Y (s)zj exp(Bz;)So(s)
n / Zz exp(Bzi)[1 — So(s)] = [So(s)—So(s) exp(Bz;) +exp(B2;)]* ANi(s)
pot — So(s) exp(Bz;) + exp(Bz;i) i Y;(s) exp(B;) e
=10 74 So)=So(s) exp(Fz;)+exp(5;)
(9.12)
and setting 5 = 0, we get
3> Yj(5)%S0(s) Wt X V()2
U(0;t) Z/ 2So(s) — dN;(s) = Z/ w(s) |z — ——| 3 dNi(s),
=% > Yj(s) =14 > Y5(s)
j=1 j=1
(9.13)

where w(s) = Sy(s).
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CO model The CO model in equation (2.4) introduces another parameter into the PO
model and has the form

1-8@t2) _ [1-So(r)] &P (%)
Siz) [ So(0) ] exp(fz).

It is useful because of this generalization, and it allows the hazard functions corresponding
to two values of a covariate to cross. Here, we set v = 5 such that

1-S(t)2)) _ [1-So(t)] P>
Slz) [ 5000 ] exp(fz).

Then, the survival and hazard functions for this special case of the CO model can be
written as

1 So(t )eXp (B2)
= 5] | exp(59) 1 S 1 Sl

exp(fz) [ 50 } +1
and OlnS(t Aot 2

g = -2 _ oDew20) (g4

1= S0)] exp(2) + (1) ™
respectively. The partial likelihood is written as
AN;(t)

AN, (t) Ao (t) exp(2Bz;)

U v ¢ LTI B D ST CI
it | S v ) t<rist f: 20 expBha) s
=1 j=1 [1—So(t)] [EXD(BZj)+(1f%(Ut()t)> xp (B2 ]

where Y;(t) = 1 if the subject is at risk before time ¢. For fixed ¢, log L(3) =

n exp(Bz;)
) g‘ {2522- —log [1 — Sp(s)] — log {exp(ﬁzj) + (fgf()s)) }

=1
—log zn: Y; () exp(282;) __ AN(s)
Ll 1-80(6)][exp5)+(£285%) ™|
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(i) = T

s exp(Bzi)
z":/t {2 ziexp(Bz;) + ziexp(Bz;) log <1§%‘(0()s)) (1—5(0()5))
2
¢ & \exp(8z;)
=17 exp(Bz;) + (15%(0())> ’

s) \exp(Bz;)
Y;(s)z; exp(?Bz]-)[l—So(s)]{2<1?%5)(1)) J —log( So(é) )exp BZJ (
2

) )
ACHE

)™ et

B i Y;(s) exp(28z;) '
=1 1-50(s)] [exp</szj>+(1505;1;)“"“2”]
(9.16)
and setting 5 = 0, we get
B Z":/t {22. B z; + z; log (lfg«(os()s)) (1505'(05()5))
=17 L+ 1505(08()5)
Vi(s)z; [1 - So(o)] {2 (£25%5) —og (5525 ) (+22%5) +1}
_ - dNi(s)
2 Y(s)
j=1
n U g (3 Z:l Y](S)Z] [1 + SO(S) - SO(S) log (15(;*28(1))}
= / 2 {1—1—50( ) — So(s) log (1 0 (S))] - = — dN;(s)
=/ 0 > Yj(s)
=1
n > Yj(s)z
= / w(s) |z — jzjli dN;(s), (9.17)
=10 Zl Y;j(s)
j=

where w(s) =1+ So(s) — So(s)log (1 S( ()s))

General Form Using equations (9.13) and (9.17), the score function can be expressed
in the following generalized form

no > Yi(s) t _ 2 E
:Z/ w( i—J:,IL dNi(s):/ w(s)(}lf’—l) zi—% dN;(s),
=10 Zlyj( s) 0
j=
(9.18)

that includes the PO and CO models where w(s) is the model-specific weight function and
the other terms are as defined before. Using weights specified in Table 3 for the PH and
CH models (Rouam et al, 2010; 2011), equation (9.18) can be seen to represent the gen-
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eralized score function that includes the PH, CH, PO and CO models under consideration
in this paper.

Computational correction for R%,; and R, The measure R%, has weight w(t;) = (1+
log Agfti)) where Aq(t;) is estimated by the left-continuous version of Nelson’s estimator.
However, this weight has an inherent numerical issue when Ao( ;) = 0. To handle this
error, Rouam et al. (2011) set w(¢t;) = 1 if AOZ t;) = 0, implying that log(AOE t;)) — 0 as
AO( ;) — 0. This is unrealistic because log(Ao( ;) — —oo as AO( ;) — 0. Thus, we propose
an empirical correction for this error that uses a plot of the cumulative hazard versus the
weight to obtain an approximation for the weight as the cumulative hazard approaches
zero. In our computations, we set w(¢;) equal to this approximation when Aofti) = 0. We
call this modified measure R3, ;- Similarly, for RZ,, an empirical correction was made
to account for the numerical issue when Soﬁtl-) = 1 by obtaining a graphical approximation
for the weight as SO( ;) — 1.

10 Simulation Studies

10.1 Simulation scheme 1

First, we look at the results for scheme 1, the univariate approach. Table 5 reports the
AUCs for each method across the five models considered - LN, LL1, LL2, W1 and W2.
We note that the standard deviations of the AUCs were uniformly very small throughout
and ranged from 7X10~* to 0.02. In Table 5, we observe several scenarios where the
proposed measures outperform existing methods.

First we look at the performance of the three R? measures based on the PO model

- R%,, R%, and R2 . In each scenario and across all censoring schemes, these mea-
sures perform almost identically. In some instances, such as LL2 under 0% and 33%

censoring, we do observe a slight improvement in R2 . Next, we consider PH model-
based measures - the newly proposed R?PH and the eX|st|ng R%,,. From Table 5, we
observe that the AUCs are almost identical for these measures, W|th a slight improvement
noted in some cases for R%:H' In fact, based on the Youden indices in Table 7, we note
that the proposed R%PH outperforms R%,, for all three censoring proportions for LL2 and
for the 0% censoring case for LN; this also holds true for AUCs.

Next, we examine the LN case where we observe from Table 5 that R%,, and
¢, are outperformed by various measures under different scenarios. Specifically, RZ,
and R3, .-y perform similarly and outperform PO and PH model-based R? measures,
except for the 67% censoring case where R%,, R%., and R%PO perform the best. This
is not surprising since the LN model allows for crossing hazards. RZ, performs well for
lower censoring proportions, but its AUC decreases as censoring increases. As censoring
increases, PO model-based R? measures also outperform PH model-based measures in
terms of AUCs as well as Youden indices shown in Table 7. Iy p outperforms Ipo and ¢/,
when the censoring proportion is 0 and 33% but its performance decreases as censoring
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increases. It should be noted that 7y can only be applied to dichotomized genomic data;
thus, Iy p’s performance may be affected by its inability to accommodate continuous data.
Ipo also outperforms ¢ as censoring increases which is also evidenced by the Youden
indices in Table 7.

Under LL1, we expect PO model-based measures to perform well since the log-
logistic model is related to the PO model, and our results provide evidence in support.
While RZ; and Rj,,cy do improve as censoring increases, Rbo, Rip, and R7 st

outperform R%, and R3, .. at each censoring level. Similar to the LN case, the per-
formance of R%, and Iy p decreases as censoring increases. Under LL2, R%,,, and R?PH

perform significantly worse than other R? measures, but their AUCs do increase from ap-
proximately .50 — .54 in the 0% censoring case to .78 in the 67% censoring case. Thus,
while these measures show improved performance with higher censoring, they are still
consistently outperformed by other model-based measures. This is also evident from Ta-
ble 7, where R%, and R%PH have the lowest Youden index of all the reported measures

with the exception of RZ, under 67% censoring. The log-logistic model of LL2 allows for
crossing hazards and is related to the CO model and, not surprisingly, k%, outperforms
PO model-based R? measures in the 0 and 33% censoring cases but, similar to the LN
and LL1 models, we see its AUCs drop for 67% censoring. ¢, is outperformed by Ipo
and/or Iyp, as well as by R%,, at each censoring level, with Iy performing better for
lower censoring proportion and Ipo performing better for higher censoring proportion. In
this case, we also observe that PO model-based R* measures outperform PH model-
based methods which emphasizes the PO model’s ability to handle some forms of NPH.
These observations are further supported by the Youden indices shown in Table 7.
Under the W1 model, we observe that k%, R? ., and R}PO outperform RZ%,, and

R?%, .o atall censoring levels. This result is intuitive because this Weibull model is related
to the PH model and the PO model does allow for PH. Under the W2 model, we observe
that RZ, outperforms R%,, and R3, ,-y at all censoring levels, especially for higher cen-
soring proportions where the improvement in performance is markedly higher. Further-
more, PO model-based measures outperform R%,. The W2 model allows for crossing
hazards, and yet here, we observe a clear advantage for our PO and CO model-based
measures over R%, which was purposefully designed to handle crossing hazards. Also,
in this case we observe that k3, -, the proposed modification to RZ,,, performs signifi-
cantly better than R%,, as the censoring proportion increases. Youden indices for models
W1, W2, and LL1 under scheme 1 are listed in Table 8 and support the results in Table 5.

10.2 Simulation scheme 2

Next, we consider results from simulation scheme 2 which are shown in Table 6. In
general, AUCs are observed to be slightly lower than those in Table 5, but this is likely
due to the complexity of the scheme itself where correlations are introduced between
features. The observed trend in these results, however, mimic what was observed for
scheme 1. We note that the standard deviations of AUCs were very small for this scheme
as well, ranging from 7.X10~* to 0.02.

Similar to scheme 1, PO model-based R* measures - R%,, R?,, and R%PO - per-
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form almost identically across all scenarios and censoring levels. The PH model-based
measures - &2 and R}y - also perform similarly. Under the LN model which allows for

crossing hazards, R%, and R%PH are outperformed by the proposed PO model-based 1>

measures as well as by R%Z,; and R3%,, .. for 0 and 33% censoring cases, but for 67%
censoring the PO model-based measures perform similarly and better than the other R?
measures. The AUCs for RZ,,, R%,, and R3, - decrease as censoring increases, with
PO model-based measures having a clear advantage for all censoring proportions. ¢, is
also outperformed by /o and Iy p for 0% and 33% censoring and by ¢ for 67% censor-
ing. These differences are supported by the Youden indices shown in Table 7. Under the
LL1 model, PO and PH model-based R? measures perform similarly and result in slightly
higher AUCs than RZ, and R3,,,n- This result is also intuitive since the log-logistic
model is related to the PO model which allows for both proportional hazards as well as
some forms of non-proportional hazards. They also significantly outperform R%,, at each
censoring level. Ipp and ¢, perform similarly and outperform Iy-p, whose AUC decreases
as censoring increases. Under the LL2 model, which allows for crossing hazards, R%,
performs similarly to RZ,, and R3, ., and they all significantly outperform PO and PH
model-based R? measures. This result is expected since the LL2 model allows for cross-
ing hazards. However, similar to scheme 1, R%,’s performance falls in the 67% censoring
case. We also observe that the performance of ¢, is poor and no better than a coin toss
across all censoring proportions. Iy p outperforms Ip in the 0 and 33% censoring cases,
but consistent with previous results, its AUC drops in the 67% censoring case. This is fur-
ther corroborated by the Youden indices shown in Table 7 where Ip¢ is the best performer
under 67% censoring. However, as alluded to earlier its performance may be affected by
its inability to accommodate continuous genomic data. Under the W1 model, we observe
results similar to that of scheme 1. R}, Rjj, and R outperform RZ.; and Ri 0y at
all censoring levels which is intuitive since the PO model can accommodate proportional
hazards and the Weibull model is related to the PH model. Under W2, R%, once again
outperforms R%, and R3, ,-y at all censoring levels and particularly for higher censor-
ing where the improvement in performance is marked; in this case, we also observe that
R3,..cn performs slightly better than R%,, across all censoring proportions. Youden in-
dices for models W1, W2, and LL1 under scheme 2 are listed in Table 9 and support the
results in Table 6.
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Table 5: Simulation scheme 1: Comparison of methods (AUC)

Censoring | Measure | LN | LL1 | LL2 | W1 | W2

Tro 0.81 | 1.00 | 0.74 | 1.00 | 1.00
Iyp 1.00 | 0.96 | 0.81 | 1.00 | 1.00
&, 0.81 | 1.00 | 0.73 | 1.00 | 1.00
RZ, 0.81 | 1.00 | 0.73 | 1.00 | 1.00
R2, 0.81 | 1.00 | 0.73 | 1.00 | 1.00
0% | R 0.81 | 1.00 | 0.75 | 1.00 | 1.00
RZ, 0.99 | 0.86 | 0.84 | 0.93 | 1.00
R%, 1.00 | 0.68 | 0.87 | 0.65 | 0.98
R2, .. | 1.00]0.73|0.89 |0.69|0.98
R 0.92 | 0.99 | 0.54 | 1.00 | 1.00
R%, 0.87 | 0.99 | 0.50 | 1.00 | 1.00
Tro 0.89 | 0.99 | 0.77 | 0.99 | 1.00
Iyp 0.96 | 0.89 | 0.75 | 0.98 | 1.00
&, 0.82 | 0.99 | 0.71 | 0.99 | 1.00
RZ, 0.89 | 0.99 | 0.77 | 0.99 | 0.99
R2, 0.88 | 0.99 | 0.77 | 1.00 | 1.00
33% | R 0.88 | 0.99 | 0.78 | 1.00 | 1.00
RZ, 0.82 | 0.69 | 0.80 | 0.82 | 0.87
RZ, 0.98 | 0.82 | 0.86 | 0.70 | 0.76

R2,.cn | 0.97 084|087 074082

: 0.77 | 0.99 | 0.64 | 1.00 | 1.00
R%, 0.77 | 0.99 | 0.61 | 1.00 | 1.00
Tro 0.93 | 0.98 | 0.81 | 0.99 | 0.95
Iyp 0.83 | 0.70 | 0.58 | 0.81 | 0.93
&, 0.88 | 0.96 | 0.71 | 0.98 | 0.98
RZ, 0.93 | 0.97 | 0.81 | 0.99 | 0.95
R2, 0.93 | 0.98 | 0.81 | 0.99 | 0.95
67% | R 0.93 | 0.98 | 0.81 | 0.99 | 0.95
RZ, 0.68 | 0.63 | 0.74 | 0.51 | 0.89
R, 0.88 | 0.90 | 0.83 | 0.87 | 0.57
R2, .. | 0.87 090084087071
: 0.92 | 0.98 | 0.78 | 0.99 | 0.97
R%, 0.92 | 0.97 | 0.78 | 0.99 | 0.97

11 Application to Genomic Data

Once a subset of genomic features has been selected at a particular threshold, the com-
bined effect of these features on survival can be evaluated using a weighted average
of feature expression. Let m be the number of features in a given subset of interest.
If 8 = {61,...,8,} and Z are the corresponding regression coefficient vector and the
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Table 6: Simulation scheme 2: Comparison of methods (AUC)

Censoring | Measure | LN | LL1 | LL2 | W1 | W2

Tro 0.84 | 0.91 | 0.54 | 0.91 | 0.90
Iyp 0.86 | 0.89 | 0.77 | 0.89 | 0.89
&, 0.82 | 0.91 | 0.50 | 0.91 | 0.90
RZ, 0.84 | 0.91 | 0.55 | 0.91 | 0.90
R2, 0.84 | 0.91 | 0.56 | 0.91 | 0.90
0% | R 0.82 | 0.91 | 0.57 | 0.91 | 0.90
RZ, 0.76 | 0.51 | 0.88 | 0.51 | 0.88
R%, 0.89 | 0.86 | 0.89 | 0.86 | 0.79
R2, .., | 0.89 087089086 081
R 0.55 | 0.91 | 0.63 | 0.91 | 0.90
R%, 0.55 | 0.90 | 0.66 | 0.91 | 0.89
Tro 0.87 | 0.91 | 0.62 | 0.91 | 0.90
Iyp 0.84 | 0.85 | 0.82 | 0.88 | 0.86
&, 0.80 | 0.91 | 0.50 | 0.91 | 0.90
RZ, 0.87 | 0.90 | 0.63 | 0.90 | 0.89
R2, 0.88 | 0.91 | 0.61 | 0.91 | 0.90
33% | R: 0.86 | 0.91 | 0.64 | 0.91 | 0.90
RZ, 0.59 | 0.51 | 0.87 | 0.53 | 0.88
R%, 0.89 | 0.87 | 0.90 | 0.87 | 0.70

R%, .. | 0.88|0.87|0.89 087|074

. 0.72 | 0.90 | 0.57 | 0.90 | 0.90
R%, 0.75 | 0.90 | 0.54 | 0.90 | 0.89
Tro 0.89 | 0.90 | 0.80 | 0.90 | 0.86
Iyp 0.69 | 0.65 | 0.68 | 0.69 | 0.68
& 0.84 | 0.90 | 0.53 | 0.90 | 0.87
RZ, 0.89 | 0.90 | 0.81 | 0.90 | 0.84
R2, 0.89 | 0.90 | 0.80 | 0.90 | 0.89
67% | R: 0.88 | 0.90 | 0.80 | 0.90 | 0.89
R2,, 0.56 | 0.50 | 0.71 | 0.50 | 0.87
RZ, 0.81 | 0.88 | 0.88 | 0.88 | 0.53
R%,...; | 0.81]088|087 088055
: 0.87 | 0.90 | 0.70 | 0.90 | 0.89
R%, 0.89 | 0.90 | 0.71 | 0.90 | 0.87

n x m expression matrix for features in this subset, then a weighted average, n, can be
calculated as n = Z3. Thus, n is a vector of size n, where each subject has a weighted
average computed across all m features in a subset. This weighted average uses every
feature in each subset where each features’s contribution is quantified by the estimate of
the coefficient. It is worth noting that the linear predictor n can be interpreted as the log-
arithm of the hazard ratio for the PH model and as the logarithm of the odds ratio for the
PO model. A graphical analysis of the combined effect of features selected using 1%, (as
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Table 7: Simulation schemes 1 & 2: Comparison of methods (Youden Index)

Scheme 1 2

Censoring 0% 33% 67% 0% 33% 67%

Measure | LN LL2 | LN LL2 | LN LL2 | LN LL2 | LN LL2 | LN LL2

Ipo 0.53 0.34 | 0.61 0.42 | 0.68 0.50 | 0.23 0.03|0.24 0.09 | 0.26 0.24
Iyp 099 049|049 022|038 0.00|0.22 0.17]0.12 0.16 | 0.07 0.04
L 0.53 0.33 054 0.28|0.61 0.29|0.21 0.02|0.19 0.00 | 0.22 0.01

R%o 0.53 0.31 |0.62 0.39 |0.68 048 | 0.23 0.04 | 0.25 0.10 | 0.26 0.24
R? , 0.53 0.33|0.60 0.41 | 068 049|023 0.05]|0.25 0.07]0.26 0.22
R? 0.52 0.36 | 0.59 0.43 |0.68 0.50 | 0.20 0.06 | 0.23 0.11 ] 0.25 0.19
R%, 0.89 053|041 043|024 0.26 |0.17 0.23|0.06 0.22 | 0.07 0.14
R%, 099 059|082 056|060 052|026 0.28 |0.25 0.28 | 0.23 0.28
R% .cn 1099 061080 058|060 054|026 0.28 024 0.28|0.23 0.28
R? 0.66 0.04 | 0.49 0.18 | 0.66 0.44 | 0.02 0.06 | 0.13 0.03 | 0.24 0.13

R%,, 046 0 |049 0.12 | 066 0.41|0.04 0.09|0.17 0.02|0.25 0.16

shown in Table 4) was performed for representative data sets from different data types.
This included data sets 1 (methylation), 2 (microRNA expression), 3 (RNA sequencing),
4 (mRNA expression) and 8 (CNV). Panels (a), (b) and (c) in Figures 8-12 represent KM
survival curves, cumulative hazard curves (on the log-scale) and odds curves, respec-
tively, for subjects with high and low weighted average feature expression (determined
by the median split) for each of these data sets. We observed that when x7, was used
to select features, the PO model generally provided a good fit while the PH did not fit in
some cases (as seen in panels (a), (b) and (c) of Figures 8-12). These observations were
further corroborated by GOF tests for the PH, PO and YP models where the PO and YP
models were found to provide a good fit for weighted feature expression in all cases. This
analysis emphasizes the versatility and modeling flexibility provided by the PO and YP
models in allowing PH as well as certain forms of NPH.
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>
o
o
>
o
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N
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(a) Dataset 1 (b) Dataset 2 (c) Dataset 6

Figure 1: Top selected genes, I measures and ¢/, Glioblastoma data sets
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Table 8: Simulation Scheme 1: Comparison of methods (Youden Index)

Censoring 0% 33% 67%
Measure | LL1 W1 W2 | LL1 W1 W2 | LLT W1 W2
Tro 092 095 098|088 092 092|080 085 0.72
Iyp 0.73 092 098|041 073 0.86|0.16 0.34 0.70
&, 0.92 095 0.97|0.87 093 0.94|0.76 0.84 0.81
R, | 092 0.94 097|087 092 091|080 0.85 072
RZ, 092 098 097|088 095 092|081 086 0.73
R2 0.92 098 098|0.88 095 0.92|0.81 086 0.73
R%, |048 063 099|022 048 0.61|0.15 0.05 0.64
R%, |0.19 0.14 080|049 0.25 032|063 0.58 0.10
R, ..y | 027 022 080|052 0.31 044|063 059 0.30
R? 0.88 0.99 1.00|0.87 0.97 0.98|0.81 0.87 0.80

R%y 0.87 096 1.00 | 0.85 0.94 097 |0.79 0.86 0.79

Table 9: Simulation Scheme 2: Comparison of methods (Youden Index)

Scheme 2

Censoring 0% 33% 67%

Measure | LL1T W1 W2 | LL1T W1 W2 | LL1 W1 W2
Iro 0.32 0.33 0.30|0.31 031 0.29|0.29 0.29 0.26
Iyp 0.26 0.26 0.27 | 0.12 0.20 0.20 | 0.02 0.01 0.08
¢! 0.32 0.33 0.29|0.31 0.30 0.28 |0.27 0.28 0.25
R%, 0.31 0.31 027029 0.29 0.27 026 0.27 0.24
R%, 0.33 0.33 0.29|0.31 0.31 0.27]0.28 0.28 0.25
R2 0.32 0.32 0.30|0.31 030 0.27 | 0.28 0.28 0.25
R%, 0.02 0.02 0.21|0.01 0.01 0.21 | 0.00 0.01 0.21
R%, 0.16 0.15 0.16 | 0.16 0.16 0.10 | 0.19 0.20 0.01
R%, .oy |0.16 0.15 017 |0.17 0.17 0.11]0.20 0.20 0.01
R2 0.30 0.31 0.30]0.29 0.29 0.27|0.27 0.27 0.25

R%y 0.30 0.31 025|030 0.29 0.26 | 0.27 0.28 0.25
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Figure 2: Top selected genes, I measures and ¢, , HNSCC (3, 7, and 8), ovarian (4) and
oral (5) data sets

a) Dataset 1 b) Dataset 2 c) Dataset 4

Figure 3: Top selected genes, Dichotomized feature expression, Data sets 1, 2 and 4
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Figure 4: Top selected genes, PO-based R? measures, Glioblastoma data sets
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Figure 5: Top selected genes, PO-based R? measures, HNSCC (3, 7, and 8), ovarian (4)
and oral (5) data sets
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Figure 6: Top selected genes, Other R? measures, Glioblastoma data sets
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Figure 7: Top selected genes, Other R? measures, HNSCC (3, 7, and 8), ovarian (4) and
oral (5) data sets
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Figure 8: (a) Kaplan-Meier survival curves, (b) Cumulative hazard curves (log-scale), (c)
Odds curves. Weighted expression of features selected by x%,, for data set 1
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Figure 9: (a) Kaplan-Meier survival curves, (b) Cumulative hazard curves (log-scale), (c)
Odds curves. Weighted expression of features selected by x%,, for data set 2
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Figure 10: (a) Kaplan-Meier survival curves, (b) Cumulative hazard curves (log-scale),
(c) Odds curves. Weighted expression of features selected by x%,, for data set 3
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Figure 11: (a) Kaplan-Meier survival curves, (b) Cumulative hazard curves (log-scale),
(c) Odds curves. Weighted expression of features selected by %, for data set 4
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Figure 12: (a) Kaplan-Meier survival curves, (b) Cumulative hazard curves (log-scale),
(c) Odds curves. Weighted expression of features selected by x%, for data set 8
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