bioRxiv preprint doi: https://doi.org/10.1101/2020.02.13.947549; this version posted February 14, 2020. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

10

11

12

13
14

15

16

17

18

19

20

21

22

23

24

25

26

27

perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

Global Dynamic Molecular Profiles of Stomatal Lineage Cell Development by
Single-Cell RNA Sequencing

Zhixin Liu*', Yaping Zhou'', Jinggong Guo'', Jiaoai Li*', Zixia Tian®, Zhinan zZhu',
Jiajing Wang®, Rui Wu', Bo Zhang®, Yongjian Hu?, Yijing Sun? Yan Shangguan?,
Weigiang Li!, Tao Li% Yunhe Hu? Chenxi Guo', Jean-David Rochaix®, Yuchen

Miao®, Xuwu Sun *?*

1 State Key Laboratory of Cotton Biology, Key Laboratory of Plant Stress Biology,
School of Life Sciences, Henan University, 85 Minglun Street, Kaifeng 475001,
China,

2 College of Life Sciences, Shanghai Normal University, Guilin Road 100, Shanghai,
200234, China,

3 Departments of Molecular Biology and Plant Biology, University of Geneva,

Geneva, 1211, Switzerland.

1 These authors have contributed equally to this work.
*Correspondence:

Contact: Dr. Xuwu Sun

State Key Laboratory of Cotton Biology

Henan University

85 Minglun Street

Kaifeng 475001

P.R.China

sunxuwussd@sina.com

Tel: +86 13524016285

1/37


https://doi.org/10.1101/2020.02.13.947549
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.02.13.947549; this version posted February 14, 2020. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

28
29

30 ABSTRACT

31  The regulation of stomatal lineage cell development has been extensively investigated.
32 However a comprehensive characterization of this biological process based on
33  single-cell transcriptome analysis has not yet been reported. Here, we performed
34 RNA-seq on over 12,844 individual cells from the cotyledons of five-day-old
35  Arabidopsis seedlings. We identified 11 cell clusters corresponding mostly to cells at
36  specific stomatal developmental stages with a series of new marker genes.
37  Comparative analysis of genes with the highest variable expression in these cell
38  clusters revealed three transcriptional networks that regulate the development of
39  mesophyll and guard cells, as well as the differentiation from protodermal to guard
40  mother cells. We investigated the developmental dynamics of marker genes via
41  pseudo-time analysis which revealed potential interactions between them. The
42  identification of several novel marker genes suggests new regulatory mechanisms

43 during development of stomatal cell lineage.
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56 INTRODUCTION

57  Stomata, which are formed by paired guard cells, have played crucial roles in the
58  colonization of land by plants (von Groll and Altmann, 2001). Turgor-driven stomatal
59  movement requires ion and water exchange with neighboring cells and controls
60  transpiration and gas exchange between plants and the environment. To function
61  efficiently, the development of stomata follows a one-cell-spacing rule, in which two
62  stomata are separated by at least one non-stomatal cell (Bergmann and Sack, 2007;
63  Pillitteri and Torii, 2012). In Arabidopsis, stomata develop from protodermal cells
64 (PDC) through a series of asymmetrical and symmetrical divisions (Han and Torii,
65 2016). PDCs produce pavement cells (PCs) and self-renewing meristemoids (Ms) that
66  divide asymmetrically several times, generating Ms and PCs known as stomatal
67 lineage ground cells (SLGCs) (Rudall et al., 2013). Ms can eventually differentiate
68 into guard mother cells (GMCs) and a final symmetrical division of a GMC produces
69  two guard cells (GCs) (Geisler et al., 2000). The final spacing between stomata is the
70  result of these M divisions (Pillitteri and Torii, 2012).

71 Several key genes and regulatory networks underlying stomatal development
72 have been uncovered by molecular and genetic analyses. The closely related basic
73 helix-loop-helix (bHLH) transcription factors SPEECHLESS (SPCH), MUTE, and
74 FAMA control sequential cell fate transitions from meristemoid mother cell (MMC)
75  to M, M to GMC, and GMC to GC, respectively (Ohashi-Ito and Bergmann, 2006;
76 MacAlister et al., 2007; Pillitteri et al., 2007). To specify each cell state differentiation,
77 SPCH, MUTE, and FAMA form heterodimers with two paralogous bHLH-leucine
78  zipper (bHLH-LZ) transcription factors, SCREAM (SCRM) and SCRM2 (Kanaoka et
79 al., 2008). In addition, two partially redundant R2R3 MYB transcription factors,
80 FOUR LIPS (FLP) and MYB88, control stomatal terminal differentiation
81  independently of FAMA (GMC to GCs) (Lai et al., 2005; Ohashi-Ito and Bergmann,
82  2006). Two secreted cysteine-rich peptides, EPIDERMAL PATTERNING FACTOR1
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83 (EPF1) and EPF2, are expressed at later and earlier stages of stomatal development,
84  respectively. These peptides are perceived by the cell-surface receptors, ERECTA
85 (ER)-family leucine-rich repeat receptor kinases (LRR-RKSs), ER-LIKE1 (ERL1) and
86  ERLZ2, resulting in inhibition of stomatal development (Shpak et al., 2005; Hara et al.,
87  2007; Hunt and Gray, 2009b; Lee et al., 2012). The receptor-like protein TOO
88 MANY MOUTHS (TMM) modulates the signaling strength of ER-family receptor
89  kinases in a domain-specific manner (Nadeau and Sack, 2002; Lee et al., 2012).
90  Genetic evidence suggests that these signals are mediated via a mitogen-activated
91  protein kinase (MAPK) cascade, which eventually downregulates the transcription
92  factors responsible for initiating stomatal lineage via direct phosphorylation
93  (Bergmann et al., 2004; Lampard et al., 2008; Lampard et al., 2009; Kim et al., 2012).
94  Stomagen (also known as EPF-LIKE9) peptide promotes stomatal development by
95  competing with EPF2 for binding to ER (Sugano et al., 2010; Zhang et al., 2014;
96  Hronkova et al., 2015). One homeodomain-leucine zipper IV (HD-ZIP V) protein,
97 HOMEODOMAIN GLABROUS2 (HDG2), acts as a key epidermal component
98  promoting stomatal differentiation (Peterson et al., 2013). It is highly expressed in
99  meristemoids, and a hdg2 mutant exhibits delayed meristemoid-to-GMC transition
100  (Peterson et al., 2013).

101 Gene expression profiles for different types of stomatal lineage cells are
102 currently lacking, resulting in a poor understanding of the regulatory mechanisms
103  controlling the PDC to MMC transition. To gain new insights into this process, we
104  isolated protoplasts from cotyledons of five-day-old Arabidopsis seedlings for
105  single-cell RNA sequencing (scRNA-seq). We classified the major cell types and
106  employed transcriptomic analysis to identify several potential key regulators and
107  signaling pathways present in these heterogeneous cell populations. Our analysis led
108  to the identification of a regulatory network of transcription factors for specific
109  developmental stages of stomatal lineage cells. Pseudo-time analysis was employed to
110  uncover the interactions and mutual regulation among key marker genes at different
111  developmental stages. We also identified several novel marker genes that play
112 important roles in regulating stomatal development. These results provide insights
113  into how single-cell transcriptomics can be used to further elucidate the regulatory
114  mechanisms controlling the differentiation of stomatal lineage cells.
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115 RESULTS
116  Gene Expression Pattern of Stomatal Lineage Cells

117  To systematically resolve gene expression patterns in specific stomatal lineage cells at
118  different developmental stages, we prepared protoplasts by enzymatic digestion from
119  the cotyledons of five-day-old seedlings. The protoplasts were screened with a 40 um
120  pore cell strainer to obtain more than 20,000 individual cells. Single cells were
121 labeled using 10x Genomics barcode technology, followed by reverse transcription to
122 obtain a single cell cDNA library (Figure S1). This cDNA library was utilized for
123 high throughput sequencing (Figure S1). After extensive analysis of the sequencing
124 results, we obtained transcriptome information for 13,999 single cells (Figure S2). We
125 also identified mitochondrial (mito), chloroplast (pt) and ribosomal (ribo)
126 transcriptomes. Transcripts from these subcellular organelles were excluded from
127 subsequent analysis, resulting in 12,844 single-cell transcriptomes that were further
128  analyzed. They were classified into 11 clusters using t-distributed stochastic
129  neighborhood embedding (t-SNE) (Figure 1). We selected representative marker
130  genes to identify each different cell type: for mesophyll cells (MPC), we used
131 Ribulose Bisphosphate Carboxylase Small Subunit (RBCS) and light-harvesting
132 chlorophyll a/b-binding protein (LHCB) as markers that encode chloroplast proteins
133 and are high expressed in MPC; for the epidermal cell populations, we selected EPF2,
134  BASL, TMM and SPCH as markers for PDC (Pillitteri and Dong, 2013); POLAR,
135 SPCH, TMM, MUTE, HDG2 and EPF2 were used for MMC (Pillitteri and Dong,
136 2013); MUTE, BASL, SPCH and EPF2 were selected for early stage meristemoid (EM)
137 cell identification (Pillitteri and Dong, 2013); BASL, MUTE and EPF1 were chosen
138  for late stage meristemoid (LM) cells, while EPF1, HIC, FAMA and SCRM were used
139  for GMC (Pillitteri and Dong, 2013); RBCS, FAMA and EPF1 were utilized for young
140  guard cells (YGC) (Pillitteri and Dong, 2013); high expression of HIC, RBCS, FAMA
141 combined with low expression of EPF1 and EPF2 was used as a marker for GC
142  (Pillitteri and Dong, 2013); ROP2, ROP6, ARP2, ARP3, IQD5 and RBCS for PC (Xu
143  etal., 2011; Zhang et al., 2013; Barton et al., 2016; Liang et al., 2018). Because there
144  are chloroplasts in GC, YGC and PC, we also used RBCS as marker for these cells
145  (Barton et al., 2016).
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146 The expression profiles of the above selected marker genes have been
147  determined previously. SPCH is expressed in the developing leaf epidermis
148  (MacAlister et al., 2007). A transcriptional green fluorescent protein (GFP) reporter
149  (SPCHpro::nucGFP) and a translational reporter (SPCHpro::SPCH-GFP) are
150 expressed in a subset of epidermal cells that lack overt signs of differentiation
151  (MacAlister et al., 2007). In cotyledons, SPCH expression is often observed in two
152 neighbouring cells, a pattern consistent with expression in the dividing cell population
153  (MacAlister et al.,, 2007). In older organs, SPCHpro::SPCH-GFP expression
154  continues to be restricted to small cells in the epidermis, including cells that have
155  recently divided next to stomatal lineage cells (MacAlister et al., 2007). In
156  meristemoids, SPCH expression is downregulated and MUTE expression commences
157  (MacAlister et al., 2007). MUTE is required to limit the number of rounds of
158  meristemoid division and expressed strongly in meristemoids and at lower levels in
159  GMCs and GCs (Pillitteri et al., 2007). FAMA is expressed in GMCs and is necessary
160 and sufficient to promote GC identity (Ohashi-lto and Bergmann, 2006). The
161 PROFAMA:GFP expression is restricted to the stomatal lineage (Ohashi-Ito and
162  Bergmann, 2006). The PROFAMA:GFP is not expressed in meristemoids but is
163  strongly expressed in GMCs and in YGCs (Ohashi-Ito and Bergmann, 2006). BASL
164  and POLAR show largely overlapping localization at the cell cortex during stomatal
165 asymmetric divisions (Dong et al., 2009). In the cotyledon and leaf epidermis,
166  BASL::GUS is highly expressed in the asymmetrically dividing MMCs and
167  meristemoids, and it is undetectable in later stomatal lineage cells (Dong et al., 2009).
168  ProTMM::TMM-GFP is expressed in proliferating stomatal lineage cells, but not in
169  other epidermal cells or in mature stomata (Nadeau and Sack, 2002). EPF2 is
170  produced in SPCH-expressing PDC (MMCs) early in the lineage, whereas EPF1 is
171 produced in late-stage meristemoids, GMCs and young guard cells (Hara et al., 2007,
172 Hunt and Gray, 2009a). Consistent with the report on HDG2pro::GUS (Nakamura et
173 al., 2006), the GFP signals of the HDG2 transcriptional reporter

174  (HDG2pro::nls-3xGFP) are strongly expressed in meristemoids and SLGCs (Peterson
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175 etal., 2013). The HDG2 translational reporter (HDG2pro::HDG2-GFP) accumulates
176  in the nuclei of meristemoids and SLGCs (Peterson et al., 2013). ROP2 and ROP6 are
177  locally activated at the opposing sides of the cell wall and are mutually exclusive
178  along the plasma membrane within PCs (Fu et al., 2005; Xu et al., 2011). In addition,
179  microtubule-associated protein 1Q67 DOMAIN 5 (1IQD5) is localized in PC (Liang et
180 al., 2018). The GFP:1QD5 colocalizes with the microtubule marker mCherry:TUB6
181  (mCherry fused to B-tubulin6) in both leaf PC and hypocotyl epidermal cells (Liang et
182  al., 2018). The scheme in Figure 1A, B displays the expression pattern of selected

183  marker genes in different stomatal cell types.

184  ldentification of the cell types with marker genes

185  To determine the cell type with the above maker genes, we analyzed the pattern of
186  selected marker genes in each cell cluster. As shown in Figure S3A and B, FAMA
187  expression is high in clusters 6 and 7. SCRM is expressed in clusters 6,7,8 and 10
188  (Figure S3A and B). SPCH expression is high in clusters 7,8 and 9 (Figure S3A).
189  MUTE is expressed in cluster 8 (Figure S3A). BASL is expressed in clusters 1, 4 and
190 10 (Figure S3A). High expression of POLAR is found in clusters 6, 7 and 8 (Figure
191  S3A). EPF1 is expressed in clusters 6, 7 and 8, while EPF2 is expressed in clusters 6,
192 7, 9 and 10 (Figure S3A). EPFL9, ROP2, ROP6 and 1QD5 are highly expressed in
193  cluster 0 (Figure S3A). Based on the expression patterns of these marker genes, we
194  can determine the cell type of each cluster as follows: cluster 0 is PC, cluster 1 is PDC,
195  cluster 8 is MMC, cluster 3 is EM, cluster 4 is LM, cluster 10 is GMC, cluster 7 is
196  YGC and cluster 6 is GC (Figure 1C). The expression of RBCS and PSAB is mainly
197  enriched in clusters 2 and 5 indicating that they correspond to MPCs. To distinguish
198  them, we named them MPC_2 and MPC_5 respectively (Figure 1C). For cluster 9, we
199  could not determine its cell type with the known marker genes. However amongst the
200  genes that belong to this cluster, we checked the stomatal pattern in the corresponding
201  mutants. As an example we found that BCL-2-ASSOCIATED ATHANOGENE 6 (bag6)

202  affects the distribution of GC and produces some double and adjacent GCs, as well as
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203  an increase of SI compared with WT (Figure 1A, Figure S4). Plant BAG proteins are
204  homologs of mammalian regulators of apoptosis and play important roles in
205  regulating apoptotic-like processes ranging from pathogen attack, to abiotic stress, to
206  plant development (Kabbage and Dickman, 2008; Li et al., 2016; Fu et al.,
207  2019). Expression of BAG6 in leaves was strongly induced by heat stress (Fu et al.,
208  2019). Loss of function of BAG6 in fesla bag6 double mutant partially rescued the
209  sensitive of fesla to heat stress (Fu et al., 2019). The bag6 mutant shows enhanced
210  susceptibility to the fungal pathogen Botrytis cinerea, both in terms of severity of
211  lesions and rate of spread (Li et al., 2016). Since stomata are important entry sites for
212 fungal pathogens (Melotto et al., 2006; Underwood et al., 2007; Dutton et al., 2019;
213  Zhang et al., 2019), the increased number of stomata in bag6 may lead to the fast
214  spread of Botrytis cinerea. Another mutant from cluster 9 marker genes, bzip6, does
215 not significantly affect the development of stomata. The expression of
216  bZIP6::ER-GFP occurs specifically in two pericycles in the phloem pole starting
217  from the early root elongation zone (Lee et al., 2006) . These results suggest that
218  bZIP6 is not a marker gene of stomata. and that cluster 9 does not belong to epidermal
219  cells although the bag6 mutant is defective in the distribution of GC.

220 To investigate the abundance of gene transcripts in different cell types, we
221 counted the number of cells and the number of transcripts identified in each cell type
222 (Figure S5A and B and Supplemental Table S1). Note that the number of different
223 cell types identified here does not directly reflect the relative number of different cell
224 types in the cotyledons of plants. The number of identified cells only reflects the
225  relative number of each cell type in the cell samples we obtained. At the same time,
226  the number of transcripts identified in each cell type was also quantitatively analyzed
227 by determining the average number of transcripts identified in each cell for
228  comparison (Figure S5C). The results show that the number of average transcripts in
229  PC was lowest, whereas it was highest in GMC. In contrast, a relatively high number

230  of transcripts was identified in MMC, PDC and EM (Figure S5C).

231  Expression of marker genes in stomatal lineage cells
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232 To further test the cell type that we identified, we analyzed the expression of several
233  known marker genes that are involved in regulating the development of stomatal
234 lineage cells. As shown in Figure S3B, FAMA, TMM, HIC and SCRM are specifically
235  expressed in YGC and GMC, while other marker genes are not only expressed in
236 YGC and GMC, but also in other cell types (Figure S3B), suggesting that their
237 functions may not be only restricted to the regulation of stomatal lineage cell
238  development. To explore the potential regulators of stomatal lineage cells, we
239  analyzed gene expression profiles in different clusters and identified highly expressed
240  marker genes in each individual cell cluster (Figure 2A). Feature plot analysis
241  indicated that the expression of newly identified marker genes is clearly increased in
242 their corresponding clusters (Figure 2B and Supplemental Table S2). Some of these
243 marker genes could potentially be involved in regulating the development of stomatal
244 lineage cells. SLAC1 and SCAP1(DOF5.7) play important roles in regulating the
245  development of stomatal lineage cells (Engineer et al., 2015; Chen et al., 2016).
246  Consistently, a high level of expression of SLAC1 and DOF5.7 was detected in YGC
247 and GMC (Figure 2A). Furthermore, a pectin methylesterase gene, PMES, is highly
248  expressed in YGC and GMC (Figure 2A). As reported, PMESG is highly expressed in
249  guard cells and required for stomatal function (Amsbury et al., 2016). Guard cells
250 from pme6-1 mutant have walls enriched in methyl-esterified pectin and show a
251  decreased dynamic range in response to elevated osmoticum, suggesting that the
252 mechanical change in the guard cell wall can affect stomatal function (Amsbury et al.,
253  2016). The Arabidopsis K* channel gene, KAT2, is expressed in guard cells (Pilot et
254 al., 2001). KAT2 is a major determinant of the inward K" current through the guard
255  cell membrane (Pilot et al., 2001). Interestingly, the expression of ARABIDOPSIS
256  THALIANA MERISTEM LAYER1(ATML1) was high in MMC, where the established
257 marker genes SPCH and MUTE were also highly expressed (Figure 2A).

258 In GC, we identified 10 top marker genes that may be involved in regulating the
259  function of GC (Figure 2A). Stomata are not only required for gas exchange with the

260 environment and for controlling water loss, but they also provide routes for pathogen
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261  entry into plants (Zeng et al., 2010). Therefore plants have evolved mechanisms to
262  regulate stomatal aperture as an immune response against bacterial invasion (Zeng et
263 al., 2010). A recent study showed that bacterial infection can induce systemic
264  signaling to inhibit the development of stomata in new leaves to restrict pathogen
265 entry (Dutton et al., 2019). The bacterial peptide flg22 or the phytohormone salicylic
266  acid (SA) induce a similar systemic decrease in stomatal density (Dutton et al., 2019).
267  This developmental process can be regulated by AZELAIC ACID INDUCED 1
268  (AZI1), which is involved in the priming of SA induction and systemic
269  immunity triggered by pathogen or azelaic acid (Pitzschke et al., 2016). KTI1 encodes
270  an Arabidopsis serine protease (Kunitz trypsin) inhibitor and plays important roles in
271 modulating PCD in plant-pathogen interactions (Li et al., 2008). Expression of
272 AtKTI1 is induced late in response to bacterial and fungal elicitors and to salicylic
273 acid (Li et al., 2008). Besides SA, camalexin is also involved in regulating the defense
274 response of plants. One of cytochrome P450 enzymes, CYP71A12 is an important
275  component in the biosynthetic pathway of camalexin and related metabolites (Mucha
276  etal., 2019). Pathogen infection can induce the expression of CYP71A12, which leads
277  to dehydration of IAOXx to form indole-3-acetonitrile (IAN) during the biosynthesis of
278  camalexin (Nafisi et al., 2007; Muller et al., 2015). CYP71A12 is involved in the
279  biosynthetic pathway to 4-hydroxyindole-3-carbonyl nitrile (4-OH-ICN), the level of
280  all ICN derivatives with the exception of A6 in cyp71al2 mutant is about 10% of WT
281 (Rajniak et al., 2015). 4-OH-ICN plays roles in inducing the pathogen defense
282 (Rajniak et al.,, 2015). CYP71A12 is co-expressed with a flavin-dependent
283  oxidoreductase 1 (FOX1), and levels of ICN metabolites in the fox1 mutant are
284  decreased three- to fivefold compared with WT (Rajniak et al., 2015).

285 Consistent with these findings, KT1, CYP71A12 and FOXL1 are expressed in GC
286  (Figure 2A) further supporting that stomatal cells may fight against pathogens by
287  producing IAN and OCN. Opening of stomata in response to various stimuli is
288 regulated by K* uptake through inward-rectifying K channels in the plasma

289  membrane (Szyroki et al., 2001). CHX17 encodes a putative K'/H* exchanger.
10/37


https://doi.org/10.1101/2020.02.13.947549
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.02.13.947549; this version posted February 14, 2020. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

290 CHX17 cDNA complements the phenotypes of the khalDelta mutation in S.
291  cerevisiae cells, which shows a growth defect at increased pH and hygromycin
292 sensitivity (Maresova and Sychrova, 2006). Under its native promoter,
293  AtCHX17(1-820)-GFP is localized in the prevacuolar compartment and in plasma
294  membrane in roots (Chanroj et al., 2013). Expression of CHX17 in GC suggests that it
295  may be involved in regulating the opening of stomata.

296 ATMLL1 is involved in regulating the development of stomatal lineage
297  cells

298  To explore the potential regulator of MMC, we analyzed the marker genes in MMC
299 and found that ATML1, PDF1, MUTE and SPCH have highly similar expression
300 profiles (Figure 2A and Figure S3A). To investigate the roles of ATMLL1 in the
301 regulation of epidermal cell differentiation, Takada et al generated a construct
302  proRPS5A-ATML1 that uses the promoter region of AtRPS5A to drive the expression
303 of ATML1 (Takada et al., 2013). The resulting construct was transformed into a
304  transgenic plant containing STOMAGEN-GUS to investigate the effects of ATMLL1 on
305 the expression of the mesophyll-specific STOMAGEN-GUS reporter (Takada et al.,
306  2013). In the transgenic plants of proRPS5A-ATML1, the expression of ATML1 was
307 induced by treating the seedlings with p-estradiol (Takada et al., 2013).
308  Overexpression of ATML1 induced stomata-like structures in the inner cells of the
309 cotyledons in independent lines (Takada et al., 2013). These ectopic guard cell-like
310  cells expressed the guard cell marker KAT1-GUS, suggesting that these cells have
311  guard cell identity (Takada et al., 2013). This result also suggested that overexpression
312 of ATML1 can induce the development of stomata. Moreover, induction of ATML1
313 can inhibit the expression of mesophyll-specific STOMAGEN-GUS and result in
314  miss-shaped leaves with ectopic patches of transparent cells among the green
315 mesophyll tissues (Takada et al., 2013). These results suggest that induction of
316 ATML1 can enhance the biogenesis of stomata but inhibit the development of

317  mesophyll tissues. Although STOMAGEN can enhance the biogenesis of stomata
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318  (Leeetal., 2015), induction of ATML1 does not inhibit the biogenesis of stomata even
319 if the expression of STOMAGEN is suppressed by ATML1, suggesting that ATML1
320 may rely on a STOMAGEN-independent pathway to enhance the biogenesis of
321  stomata. Furthermore, the SI of the atml mutant is decreased, while the SI of
322 ATML1-OX transgenic plant overexpressing ATMLL is increased (Peterson et al.,
323  2013), suggesting that ATMLL1 is involved in regulating the development of stomata.
324  To investigate the effects of ATML1 on the biogenesis of stomatal lineage cells, we
325  used mutants of ATML1. As expected, atml1-2 and atml1-3 plants are deficient in the
326  development of stomatal lineage cells (Figure 3A-F). Further RT-PCR analysis
327  indicated that the expression levels of SPCH and MUTE in atml1-2 and atml1-3 were
328  lower than in WT (Figure 3G), suggesting that ATMLL1 can regulate the development
329  of stomatal lineage cells by modulating the expression of both SPCH and MUTE.

330 GO Analysis of the genes enriched in different cell types

331 To investigate the potential biological function of genes expressed in each cell type,
332 we performed GO analysis on all cell clusters (Figure 4 and Figure S6). There were
333  significant differences in the number of enriched genes identified in different cell
334  types. In general, the majority of enriched terms were associated with individual cell
335  types, however those GO terms associated with multiple cell types represent more
336  general biological processes (e.g., response to oxidative stress and salt stress, and
337  vesicle-mediated transport) (Figure 4A and Figure S6). As a measure of the reliability
338  of our method in identifying cell type—expressed genes and of our ability to correctly
339  annotate biological processes to a cell type, we compared a list of genes enriched in
340  GCs in our analysis with a previous study that profiled GC functions. In agreement
341  with these published reports (Gray, 2005; Lawson, 2009; Song et al., 2014; Niu et al.,
342  2018; Huang et al., 2019), we found genes that respond to oxidative stress, salt stress,
343  bacteria, cadmium ions and are involved in stomatal movement and photosynthesis,
344  are preferentially expressed in GCs (Figure 4A and Figure S6). Our analysis further

345 increased the spectrum of biological processes associated with GC development to
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346  include protein transport, vesicle-mediated transport, and cell death (Figure 4A and
347  Figure S6). Since this result indicated that our method is suitable, we used gene
348  categories that are preferentially expressed to infer the function of other cell types.
349  Gene ontology (GO) heatmap analysis indicated that the genes expressed in PC and
350 MPC are mainly involved in photosynthesis and carbohydrate metabolism (Figure
351  4A). The genes with increased expression in GCs and YGCs are also involved in
352  photosynthesis, which is consistent with the presence of chloroplasts in these cells
353  (Figure 4A). The genes expressed in cluster 9 are mainly implicated in the response to
354  abiotic and biotic stress and protein transport (Figure 4A). We could not assign a cell
355  type to cluster 9 due to the uncertainty about marker genes (Figure 4A). GO heatmap
356  analysis revealed that MMC, EM, LM and GMC are similar (Figure 4A and B). In
357 these cells, the expressed genes are not involved in photosynthesis (Figure 4A).
358  Unexpectedly, we found that genes preferentially expressed in these cells are involved
359 inregulating the response to all kinds of environmental stress and stimulus (Figure 4A
360 and B and Figure S6). For instance, genes that respond to bacteria are highly
361  expressed in MMC (Figure 4B). Compared with LM and GMC, the most important
362  feature of MMC is the lack of gene expression associated with the respiratory chain
363 and oxidative phosphorylation (Figure 4B), suggesting that MMCs have relatively
364 low metabolic activity. However, genes enriched in PDC and MMC are involved in
365  protein transport, vesicle-mediated transport and membrane protein complexes
366  (Figure 4A and Figure S6), suggesting that PDC and MMC show higher activity of
367  protein expression.

368  Analysis of the regulatory network of transcription factors (TFs) in
369 different cell types

370  To investigate the mechanisms that regulate the development of different cell types,
371 we analyzed the regulatory network of TFs in each of them. We first analyzed the
372 number of TFs in different cell types, as shown in Figure 5A. In PDC, we identified
373  the highest number of TFs, while in MPC_5, we identified the lowest number of TFs.
374  More TFs were identified in EM, LM, MMC and GMC, but less in GC and YGC.
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375  Accumulation of TFs in PDC, EM, LM, MMC and GMC showed that gene
376  expression was higher at the early stage of development of stomatal cells, and the
377  number of TFs needed was also higher. In GC and YGC, gene expression was
378  relatively low. Surprisingly, we found that the number of TFs in MPC_2 and MPC_5
379  was lower than in other cell types. Although MPCs are important for photosynthesis
380 and for a series of important metabolic reactions, their gene expression is relatively
381 low. This is consistent with the low average number of highly expressed genes in
382  MPC cells (Figure S5A and B). The mRNAs of the transcription factors (TFs) BASIC
383  PENTACYSTEINE1(BPC1), BPC6, and WRKY33 are highly expressed in PC and
384 MPC (Figure 5A). We further analyzed the regulatory network of these TFs by
385 analyzing the genes co-expressed with them and extracted the top 1,000 links showing
386  positive correlation with BPC6 and WRKY33 (Figure 5A). We found that BPC6 and
387 WRKY33 are core TFs in regulating the development and function of PC and MPC
388  (Figure 5A). Analysis of the regulatory network of TFs in YGC and GC suggests that
389 BPC1, BPC6 and SCRM may act as the core TFs regulating the development and
390  function of PC and GC (Figure 5B). SCRM has been shown to interact with FAMA to
391  regulate the differentiation from GMC to GC (Kanaoka et al., 2008). Thus, our results
392  suggest that BPC1 and BPC6 may mediate the development of GC in conjunction
393  with SCRM. Analysis of the regulatory network of TFs in MMC, EM, LM and GMC
394 indicates that they have fewer close interactions with known transcription factors
395  (except for SCRM, SPCH and SCRM2), but they are all associated with BPC1 and
396 BPC6 based on co-expression (Figure 5C). There is also a close regulatory
397  relationship between BPC1 and BPC6, which form the core of the transcriptional
398  regulatory network in these cell types (Figure 5C). This finding suggests that BPC1
399 and BPC6 may regulate the differentiation from PDC to GMC by interacting with
400  other transcription factors. Furthermore, we also found that PIF5, BPC1, BPCS,
401 WRKY33, ATML1, and SCRM can act as core TFs to regulate the differentiation
402  from PDC to GMC (Figure 5D). Feature plot analysis indicated that expression of
403 BPC1, BPC2, BPC4 and BPC6 is mainly enhanced in MMC, EM, LM, GMC, YGC
404  and GC, while the expression of WRKY33 can be detected in all cell types (Figure 6A).
405  Analysis of the stomatal developmental pattern indicated that the number of GC in

406  wrky33 is decreased, while the numbers of M and GMC in wrky33 are increased,
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407  compared with WT (Figure 6B and C), suggesting that WRKY33 is involved in
408  regulating the development of GC from GMC.

409 BPC6 has been shown to participate in the regulation of ABI4 (Mu et al., 2017),
410  and subcellular localization indicated that BPC6-GFP is in the nucleus of guard cells
411  (Figure 7A). To detect whether BPCs can directly regulate the expression of key
412  marker genes of stomatal development, we analyzed the transcript levels of both
413  SCRM and SCRM2, which can form a complex to regulate the functions of SPCH,
414  MUTE, and FAMA (Pillitteri and Torii, 2012). RT-PCR analysis indicated that the
415  expression levels of SCRM and SCRM2 in the bpcl bpc2 bpc3 bpcd bpc6 bpc7
416  sextuple mutant are lower than in WT (Figure 7B). Further analysis showed that the
417  Stomatal Index (SI) was increased in the bpcl bpc2 bpc4 bpc6 quadruple mutant and
418  the bpcl bpc2 bpc3 bpcd bpcb bpc7 sextuple mutant, whereas the SI of BPC6-GFP
419  was decreased compared with WT (Figure 7C-E). These results suggest that BPCs can
420  mediate stomatal development by regulating the expression of SCRM and SCRM2.

421  Developmental Pseudo-time Analysis of Marker Gene Expression

422  To reconstruct the developmental trajectory during differentiation, we performed
423  pseudo-temporal ordering of cells (pseudo-time) from our scRNAseq data using
424 Monocle 2(Trapnell et al., 2014). In total, the pseudo-time path has three branches
425  (Figure 8A and B), and different cell clusters can be arranged relatively clearly at
426  different branch sites of the pseudo-time path (Figure 8B). In general, the different
427  developmental processes of stomatal lineage cells can be seen from PDC to GC
428  (Figure 8B). Surprisingly, PC was concentrated in a pseudo-time branch that was
429  significantly different from the other cell types (Figure 8B). Intriguingly, we found
430 that PDC and GMC could not be clearly distinguished on the pseudo-time curve
431  (Figure 8B). In principle, the distribution characteristics of different cell types on the
432  development trajectory can preliminarily determine the relationship between these
433  cells during the development period. The distribution of GMC and YGC in the
434  development trajectory is relatively concentrated, but MPC_2 and MPC 5 can be
435  found at several time points along the development trajectory, suggesting that the cell

436  development stage of MPC is more complex. Interestingly, we found that PDC and
15/37


https://doi.org/10.1101/2020.02.13.947549
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.02.13.947549; this version posted February 14, 2020. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

437 EM show relatively similar distribution patterns in the development trajectory,
438  suggesting that their developmental stages are close. Although PC is mainly
439  distributed in branch 1 at the end stage of the development trajectory, it is also
440  distributed at other time points, which is consistent with the earlier development stage
441  of PC cells compared to stomatal cells. To investigate the pseudo-time patterns of
442  genes in each cluster, we performed heatmap analysis for all the highly expressed
443  genes (Figure 8C). In general, the pseudo-time patterns of all genes can be divided
444 into three clusters (Figure 8C). To analyze the pseudo-time patterns of representative
445  marker genes, we selected the top 5 marker genes in each cluster to analyze their
446  pseudo-time patterns (Figure 8D). As shown in Figure 8D, the heatmap of
447  pseudo-time of the top 5 marker genes shows that their pseudo-time pattern can be
448  classified into two clusters (Figure 8D). In the first cluster, the expression of all the
449  marker genes increases gradually along with the pseudo-time (Figure 8D). In contrast,
450  expression of marker genes in cluster 2 decreases at the end of the pseudo-time axis
451  (Figure 8D). In the first cluster, the marker genes are mainly from PC, suggesting that
452  PCs are at a more mature stage of development (Figure 8D). The second cluster can
453  be divided into three branches: in the first, expression of marker genes mainly from
454  GMC,YGC,GC and MPC first gradually increases to a maximum level, and then
455  decreases quickly along the pseudo-time; in the second branch, expression of marker
456  genes mainly from PDC and LM is very high at the beginning of development, but
457  quickly decreases along the pseudo-time; in the third branch, expression of the marker
458  genes mainly from MMC and EM is lower in all of the developmental periods along
459  the pseudo-time, and further declines at the last stage of pseudo-time (Figure 8D). It
460  can be seen from the heatmap and curves of pseudo-time that expression of SPCH,
461  MUTE and FAMA occurs mainly between PDC and MMC, MMC and M, and GMC
462  and GC (Figure 9A and B). Expression of the marker genes EPF1, SPCH and MUTE
463 is highly similar at the early stages of development (Figure 9A and B). As expected,
464  EPF2, FAMA and SCRM are mainly expressed in the EM and LM stages and exhibit a

465  similar pseudo-time pattern (Figure 9A and B). Although SCRM and SCRM2 have
16/37


https://doi.org/10.1101/2020.02.13.947549
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.02.13.947549; this version posted February 14, 2020. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

466  some functional interactions with MUTE and SPCH in the regulation of stomatal
467  lineage cell development, our pseudo-time results show that expression of the SCRM,

468  SCRM2, MUTE and SPCH genes is significantly different (Figure 9A and B).

469 DISCUSSION

470  Stomatal lineage cell fate decisions are traceable, irreversible, and produce
471 well-known differentiated cell types. We were able to investigate the interplay of
472 multiple fate-specific genetic programs and the effects of external environmental
473  factors on the fate decision of different cell types at the single cell level. A
474  combination of known marker genes and GO analysis enabled us to reliably classify
475  and define cell types (Figure 1, Figure S3). Transcripts of some marker genes (SPCH,
476  MUTE and FAMA) are enriched in specific types of stomatal lineage cells (Figure S3),
477 while those of other marker genes (CRY1, PP2C, BCA4 and CALS10) are not (Figure
478  S3). Furthermore, a series of new marker genes were identified in different cell types
479  (Figure 2). We also analyzed the effects of some marker genes on stomatal lineage
480  cell development by checking the stomatal developmental patterns in the cotyledons
481  of the corresponding mutants (Figures 3, 6, and 7).

482  Determination of cell types and marker genes

483  The stomatal lineage cells can be classified into seven different types including PDC,
484 MMC, EM, LM, GMC, YGC and GC based on their developmental stages. To
485  determine the cell type we analyzed the feature plot of the selected marker genes in
486  specific cell types (Figure S3B). We used more than one marker genes for identifying
487  one cell type because marker genes are often expressed in more than one cell type and
488  to different levels (Figure 1). In the case of PDC, no known marker genes can be used,
489  but some marker genes are possibly expressed in PDC before entry into the stomatal
490 lineage cell pathway, such as EFP2, TMM, BASL, SPCH although their expression
491  levels are less than in MMC. The MMC, EM, LM, YGC and GC can be clearly
492  identified based on the existence of specific marker genes in each cluster. PC contains
493  chloroplasts and is difficult to distinguish from MPC (Figure 1C). Auxin is required
494  for the formation of the interdigitated cell pattern in leaf pavement cells through the
495  coordination of the two mutually exclusive ROP2 and ROP6 pathways (Xu et al.,

496  2011). The auxin-activated ROP2 pathway is essential for PIN1 polar localization at
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497  the lobe apex by inhibiting its internalization (Xu et al., 2010). Therefore, we used
498 ROP2 and ROP6 as marker genes to identify PC. Based on these considerations we
499  propose that cluster 0 represents PC. We could not determine the cell type of cluster 9
500  with known marker genes (Figure 1C). Interestingly, we found that one marker gene,
501 BAGS6, may be involved in regulating the biogenesis and distribution of stomata
502  (Figure S4). However, bZIP6, another marker gene of cluster 9, is specifically
503  expressed in the two pericycles in the phloem pole starting from the early root
504 elongation zone, suggesting that cluster 9 does not belong to epidermal cells. We
505  selected the top 10 marker genes in each cluster as representative marker genes for the
506  different cell types (Figure 2). Analysis of the marker genes in GC indicated that
507 some of them are involved in regulating the development and function of stomata
508  (Figure 2A), suggesting that the marker genes identified can be used for determining

509  the cell type.

510 Potential factors that regulate the fate of stomatal lineage cells

511  The stomatal lineage cell development is regulated by many important factors, such as
512  light, temperature, metabolism, and phytohormones (Pillitteri and Dong, 2013). In the
513  past, most studies using whole plant cells, could not clearly distinguish the special
514  functions of these factors in the different cell types. For instance, light- and
515  hormone-signaling can affect the entire process of stomatal lineage cell development
516  (Pillitteri and Dong, 2013). Based on scRNA-seq, combined with GO analysis, we
517 were able to identify the potential genes that regulate stomatal lineage cell
518  development. For example, GO heatmap analysis revealed that genes preferentially
519  expressed in YGC and GC are mainly involved in the response to oxidative stress,
520 abscisic acid, osmotic stress, and vacuolar activity (Figure 4). The GO heatmap
521  analysis also showed that GO terms enriched in MMC, EM, LM, and GMC are
522  relatively similar (Figure 4A), suggesting there are intense interactions in gene
523  expression and cell functions among these cells. GO terms enriched in LM and GMC
524  are involved in regulating the respiratory chain (Figure 4B), suggesting that the
525  differentiation from LM to GMC is an energy-intensive process. It should be noted

526  that genes highly expressed in MMC are involved in the response to bacterial
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527 infection and in the MAPK signaling pathway (Figure 4B). Studies have shown that
528  bacterial infection can generate a systemic signal that is translocated from the mature
529 infected leaves to the developing leaves in the apical meristem, where it reduces
530 stomatal density by increasing epidermal cell expansion in the newly developing
531 leaves (Dutton et al., 2019). After infection fewer epidermal cells enter the stomatal
532  lineage during the early stages of leaf development (Dutton et al., 2019). Taken
533  together our results indicate that, genes expressed in MMC are required for
534  suppressing the biogenesis of stomatal cells in response to bacterial infection.
535 Interestingly, GO analysis revealed that genes expressed in PDCs and MMCs are
536 involved in the regulation of protein transport, vesicle-mediated transport and in

537  membrane protein complexes (Figure 4A).

538 Analysis of the new identified marker genes revealed that expression of ATML1
539 and PDF1 was specifically enhanced in MMC. ATML1 and PDF1 show high
540  co-expression with MUTE and SPCH (Figure 2A and Figure S3A). Further analysis
541  revealed that atml1-2 and atml1-3 are deficient in the development of stomatal lineage
542  cells (Figure 3). In addition, the expression levels of both SPCH and MUTE were
543  decreased in atml1-2 and atml1-3, compared with WT (Figure 3E). ATMLL1 encodes a
544  homeobox protein similar to GL2 and is expressed in both the apical and basal
545  daughter cells of the zygote as well as in its progeny (Peterson et al., 2013).
546  Expression of ATML1 starts at the two-cell stage of embryo development and is later
547  restricted to the outermost epidermal cell layer (lida et al., 2019). The ATML1
548  promoter is highly modular with each of its domains contributing to specific features
549  of the spatial and temporal expression of the gene (Takada et al., 2013). Double
550  mutant analysis with pdf2, another L1-specific gene, suggests that their functions are
551  partially redundant, since the loss of both genes results in abnormal shoot
552 development (Ogawa et al., 2015). Over-expression of ATML1 can induce the
553  formation of stomata-like structures in the inner cells of the cotyledons in independent
554  lines (Peterson et al., 2013). Therefore, taken together, our results suggest that
555 ~ ATML1 can regulate the development of stomatal lineage cells by modulating the
556  expression of both SPCH and MUTE.
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557  Involvement of a TF regulatory network in regulating stomatal lineage cell

558  development

559 It is well known that bHLH TFs play important roles in regulating stomatal lineage
560 cell development (MacAlister et al., 2007; Pillitteri et al., 2007). Recently, additional
561 new TFs that are involved in regulating the stomatal lineage cell development have
562  been identified, for example PIF4, MYB88, HDG2, GL2 (Casson et al., 2009;
563  Pillitteri and Dong, 2013). To identify new TFs that regulate stomatal lineage cell
564  development in special cell types, we analyzed potential TFs expressed in different
565  stomatal lineage cells. Analysis of the network of TFs indicated that PIF5, WRKY 33,
566 ~BPC1, and BPC6 may act as the core TFs that regulate the differentiation from PDC
567 to GMC (Figure 5C and D). The BPC gene family has seven members in Arabidopsis
568  (Monfared et al., 2011). BPC belongs to GAGA binding proteins (GBPs), which bind
569  GA-rich elements (Biggin and Tjian, 1988; Kooiker et al., 2005; Monfared et al.,
570  2011). These GBPs are involved in regulating gene expression by interacting with
571  chromatin remodeling complexes like NURF and FACT (Lehmann, 2004). Expression
572 of BPC genes occurs widely, but to different extents, in various organs. These genes
573  play important roles in regulating the vegetative and reproductive development
574  (Kooiker et al., 2005; Monfared et al., 2011; Simonini et al., 2012; Simonini and
575  Kater, 2014; Mu et al., 2017; Shanks et al., 2018). Our results indicate that besides the
576  core TFs (e.g. SPCH, MUTE, FAMA, etc), a TF network comprising WRKY 33,
577 BPC1/6, and PIF5 is required for modulating the development of stomatal cells.
578  Further analysis revealed that wrky33 and the bpcl bpc2 bpc4 bpc6 quadruple mutant
579 are deficient in different stomatal lineage cells (Figure 6 and Figure 7). The
580  expression levels of SCRM and SCRM2 in the bpcl bpc2 bpc3 bpcd bpc6 bpc7
581  sextuple mutant were less than in WT (Figure 7). These results suggest that WRKY 33,
582 BPCs, and PIF5 act as the core TFs that regulate the differentiation from PDC to
583 GMC.

584  The developmental trajectory of stomatal lineage cells
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585  To dissect the temporal and spatial distribution of stomatal lineage cells we performed
586  a pseudo-time analysis on scRNAseq data (Figure 8A and B). Pseudo-time patterns of
587  all genes can be divided into three clusters (Figure 8C). Further analysis of the top 5
588  selected marker genes in each cluster indicated that these marker genes can be
589  grouped into two clusters (Figure 8D). The first cluster mainly contains the markers
500 from MPC (Figure 8D). The second cluster can be divided into three sub-clusters: the
591  first sub-cluster includes the marker genes from GMC, YGC, GC and MPC; the
592  second sub-cluster contains the marker genes from PDC and LM; and the third
593  sub-cluster includes the marker genes from MMC and EM (Figure 8D). As typical
594  marker genes, SPCH and MUTE were found to be co-expressed with EPF1, MKK5
595 and MKK9 (Figure 9A and B), suggesting that EPF1-MKK?9/5 dependent signaling
596 can influence both the expression and the function of SPCH and MUTE. More
597 interestingly, light-signal receptor genes and stomatal lineage marker genes show
598  strong co-expression patterns (Figure 9A). In response to changes in light quality,
599  different light signal receptors rely on downstream COP1-YDA-MAPK signaling
600  pathways to regulate different stages of stomatal lineage development (Kang et al.,
601  2009). Our results show that SCRM2 and COP1 exhibit very similar pseudo-time
602  curves, while SCRM has the same pseudo-time curves as PHYA and PHYB (Figure 9A
603 and B). Unlike PHYA and PHYB, the pseudo-time curves of the blue receptor CRY1 is
604  significantly different from those of PHYA and PHYB (Figure 9A and B). Surprisingly,
605 although EPF1 and EPF2 play very similar roles in regulating stomatal lineage cell
606  development, they exhibit distinct expression patterns (Figure 9A and B). It has been
607  reported that EPF2 activates ER signaling, leading to subsequent MAPK activation
608  and inhibition of stomatal lineage cell development, while EPFL9 prevents signal
609  transduction of MPK3 and MPKG6 (Lee et al., 2015). In the pseudo-time course,
610  however, we observed that MPK3 has the exact opposite expression pattern compared
611  with EPF1 (Figure 9A and B).

612 The transition to GMC is coordinated through cell-cycle controls and is

613  promoted by MUTE (Han et al., 2018), while FAMA and FLP/MYB88 act in parallel
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614 to antagonize GMC transition (Lai et al., 2005). The canonical G1 and
615  G1/S-regulating CYCD family member CYCD5;1 is a MUTE target, implying that it
616  may promote symmetric cell division (SCD) commitment in a MUTE-dependent
617 manner (Han et al.,, 2018). Interestingly, CYCD7;1 is not regulated by MUTE,
618 although CYCD7;1 is specifically expressed in stomatal lineage cells (Adrian et al.,
619  2015). In addition to CYCDS5;1, our results reveal that expression of CYCA2;1 is
620  highly similar to that of MUTE and SPCH (Figures 9A and B). However, the
621  expression of CYCAZ2;1 is restricted to the vascular tissues of leaves (Vanneste et al.,
622  2011). The co-expression of MUTE and CYCAZ2;1 imply that the expression of these
623 two genes can be induced at a similar development time, but the expression of

624  CYCAZ2;1 may not be regulated by MUTE.

625 METHODS
626  Screening and Verification of Mutants

627  T-DNA insertion mutants were obtained from the Arabidopsis Biological Resource
628  Center (ABRC) (Supplemental Table 3). Mutant lines homozygous for the T-DNA
629 insertion were identified by PCR analysis using gene-specific and T-DNA-specific
630  primers (Supplemental Table 4). In addition, we also generated the transgenic lines of
631 BPC6-GFP.

632  Constructs for plant transformation

633 To generate the pPB7WGF2-BPC6 constructs, the full-length cDNA of BPC6 was
634  PCR-amplified using the primer pairs as described in Supplementary Table 2. Then
635 the PCR products were purified, and first cloned into pDNOR201 by BP Clonase
636 reactions (GATEWAY Cloning; Invitrogen) according to the manufacturer’s
637 instructions to generate the pPDNOR-BPC6. The resulting plasmids were recombined
638 into pB7WGF2 using LR Clonase reactions (GATEWAY Cloning; Invitrogen) to

639  generate the final constructs.

640 PLANT TRANSFORMATION
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641  The pB7WGF2-BPC6 constructs were transformed into Agrobacterium tumefaciens
642  strain GV3105 via electroporation. Then the Agrobacterium tumefaciens that
643  contained the constructs of pPB7WGF2-BPC6 was introduced into WT. The resulting
644  T1 transgenic plants of pPB7WGF2-BPC6 were selected by BASTA as described by
645 Sun et al (Sun et al., 2016). Homozygous transgenic plants were used in all

646  experiments.

647  Cotyledon Collection and Protoplast Preparation

648  We isolated protoplasts from cotyledons of five-day-old Arabidopsis seedlings as
649  described by Yoo, et al., (2007)(Yoo et al., 2007) with slight modifications to adjust
650 to the cotyledon tissue. Briefly, the cotyledons were harvested from seedlings
651  submerged in a solution (0.5 mM CacCl,, 0.5 mM MgCl,, 5 mM MES, 1.5% Cellulase
652 RS, 0.03% Pectolyase Y23, 0.25% BSA, actinomycin D [33 mg/L], and cordycepin
653  [100mg/L], pH 5.5) by vacuum infiltration for 10 min. The samples were then
654  incubated for 4 hours to isolate protoplasts. Afterwards, the isolated cells were
655 washed three times with 8% mannitol buffer to remove Mg?*. Cells were then filtered
656  with a 40 um cell strainer. Cell activity was detected by trypan blue staining and cell

657  concentration was measured with a hemocytometer.
658  Single-cell RNA-seq Library Preparation

659 We prepared single-cell RNA-seq libraries with Chromium Single Cell 3’ Gel
660  Beads-in-emulsion (GEM) Library & Gel Bead Kit v3 according to the user manual
661  supplied by the kit. In brief, GEMs were generated and barcoded, followed by post
662 GEM-RT cleanup and cDNA Amplification, and finally 3" Gene Expression Library
663  Construction. In the first step cells were diluted so that the majority (~90-99%) of
664  GEMs contained no cells, while the remainder mostly contained a single cell. The Gel
665 Beads were then dissolved, primers were released, and any co-partitioned cell was
666 lysed in order to generate full-length cDNA from poly-adenylated mMRNA.
667  Subsequently, the first-strand cDNA from the post GEM-RT reaction mixture was
668  purified with SILANE magnetic beads. After purification, the barcoded full-length
669 cDNA was amplified via PCR to generate sufficient amounts for library construction.

670 In the third step, enzymatic fragmentation and size selection were used to optimize the
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671  cDNA amplicon size. In addition, the TruSeq Read 1 (read 1 primer sequence) was
672  added to the molecules during GEM incubation. P5, P7, a sample index, and TruSeq
673 Read 2 (read 2 primer sequence) were added via End Repair. This was followed by
674  A-tailing, adaptor ligation, and PCR. The final libraries contained the P5 and P7
675  primers used in Illumina bridge amplification.

676  Single-cell RNA-seq Data Preprocessing

677  The Cell Ranger pipeline (version 3.0.0) provided by 10x Genomics was used to
678  demultiplex cellular barcodes and map reads to the TAIR10 reference genome.
679  Transcript quantifications were determined via the STAR aligner. We processed the
680  unique molecular identifier (UMI) count matrix using the R package Seurat (version
681 2.3.4). To remove low quality cells and likely multiple captures, we further applied
682  criteria to filter out cells with UMI/gene numbers outside the limit of the mean value
683  +/- 2 standard deviations, assuming a Gaussian distribution of each cell’s UMI/gene
684  numbers. Following visual inspection of the distribution of cells by the fraction of
685  chloroplast genes expressed, we further discarded low-quality cells where >40% of
686  the counts belonged to chloroplast genes. After applying these quality control (QC)
687  criteria, 12,844 single cells and 32,833 genes in total remained and were included in
688  the downstream analyses. Library size normalization was performed in Seurat on the

689 filtered matrix to obtain normalized counts.

690 Genes with the highest variable expression amongst single cells were identified
691  using the method described in Macosko et al (Macosko et al., 2015). Briefly, the
692  average expression and dispersion were calculated for all genes, which were
693  subsequently placed into 11 bins based on expression. Principal component analysis
694 (PCA) was performed to reduce the dimensionality on the log transformed
695 gene-barcode matrices of the most variable genes. Cells were clustered via a
696  graph-based approach and visualized in 2-dimensions using tSNE. A likelihood ratio
697  test, which simultaneously tests for changes in mean expression and percentage of
698  cells expressing a gene, was used to identify significantly differentially expressed
699  genes (DEGSs) between clusters. We also performed tSNE analyses and identified the

700  DEGs between clusters for the mesophyll and stomatal lineage cell populations.
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701 Pseudotime trajectory analysis of single cell transcriptomes was conducted using
702 Monocle 2 (Trapnell et al., 2014). Genes with the most highly variable expression
703 were used for clustering the cells. Gene expression was then plotted as a function of
704  pseudo-time in Monocle 2 to track changes across pseudo-time. We also plotted TFs
705 and marker genes along the inferred developmental pseudo-time. The regulation
706 networks for the TFs and target genes were plotted by Cytoscape according to the
707  PlantTFDB database.

708  Microscopy

709  The cotyledons were observed 5 d after germination. The samples were harvested and
710  placed in 70% ethanol, cleared overnight at room temperature, and then stored in
711  Hoyer’s Solution. Images of stomata were obtained from samples stored in Hoyer’s
712 Solution and visualized using differential interference contrast microscopy with a
713 Leica DMi8 microscope. A Nikon D-ECLIPSE C1 laser confocal scanning
714 microscope was used for green fluorescent protein (GFP) fluorescence images.

715  Gene Ontology (GO) Enrichment Analysis

716  The enrichment of gene ontology (GO) terms and pathways for the DEGs were
717  analyzed using Metascape (http://metascape.org/) (Zhou et al., 2019).

718  Accession Numbers

719  Sequence data from this study can be found in the Arabidopsis Genome Initiative data
720  library under the following accession numbers: WRKY33 (AT1G07890), BPC1
721 (AT2G01930), BPC2 (AT1G14685), BPC3 (AT1G68120), BPC4 (AT2G21240),
722  BPC6 (AT5G42520), BPC7 (AT2G35550), ATML1 (AT4G21750), BAG6
723 (AT2G46240), bZIP6 (AT2G22850). Single cell RNA sequence data are available at
724 the https://dataview.ncbi.nlm.nih.gov/?search=SUB6947465

725 ( https://lwww.ncbi.nlm.nih.gov ) .
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1001  FIGURE LEGENDS

1002  Figure 1. Identification of the cell types with representative marker genes. (A)
1003  Scheme of expression of marker genes in different cell types. (B) Analysis of the
1004  dynamic pattern of marker genes during development of stomata. (C) Identification of

1005 the cell types according to the expression pattern of markers in each cell cluster.

1006  Figure 2. ldentification of novel marker genes for each cluster. (A) Heatmap of
1007  expression of representative marker genes in each cluster. (B) Violin_plots show
1008  expression of representative marker genes in each of cell types. PDC: protodermal
1009  cells, PC: pavement cell, M: meristemoid, GMC: guard mother cell, GC: guard cell,
1010 MMC: meristemoid mother cell, EM: early stage meristemoid, LM: late stage

1011 meristemoid, YGC: young guard cell, MPC: mesophyll cell, u.k.: unknown.

1012  Figure 3. ATML1 is involved in regulating the development of stomata. (A-D)
1013 Analysis of stomatal development of 5-day-old seedlings of atmll-2 (in Ler
1014  background), atml1-3 (in Col background), Ler and Col are used as controls. (E-F)
1015  Quantitative analysis of A-D. (G) gPCR analysis of the expression of SPCH and

1016 MUTE in 5-day-old seedlings of atml1-2, atml1-3, Ler and Col. Error bars represent
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1017  standard errors (S.E.). *: p<0.05, **: p<0.01, one-way ANOVA analysis versus Col.
1018  Scale bar: 50 um in A-D.

1019  Figure 4. GO analysis of the genes that expressed in different cell types. (A)
1020  GO-heatmap analysis of the genes with the highest variable expression in different
1021 clusters. (B) Same analysis as in A for MMC, GMC, EM and LM.

1022 Figure 5. Identification of regulatory networks of transcription factors in different cell
1023 types. (A) ldentification of the transcription factors in different cell types. (B)
1024  Analysis of the regulatory network of transcription factors in MPC and PC. (C)
1025  Analysis of the regulatory network of transcription factors in PC and GC. (D)
1026  Analysis of the regulatory network of transcription factors in MMC, EM, LM and
1027  GMC. (E) Analysis of the regulatory network of transcription factors in PDC and
1028 GMC.

1029  Figure 6. Analysis of feature plots and function of core TFs. (A) Feature plots of the
1030  expression of representative TFs in different clusters. (B) Developmental pattern of
1031  stomatal lineage cells of cotyledons of five-day-old seedlings of wrky33, with wild
1032 type (WT) used as control. (C) Frequency of cell types calculated from (B). Error bars
1033  represent standard errors (S.E.). *: p<0.05, **: p<0.01, one-way ANOVA analysis
1034  versus WT. Scale bar: 50 um in B.

1035  Figure 7. BPC proteins are involved in regulating the development of stomata. (A)
1036  Analysis of the subcellular localization of BPC6-GFP. (B) gPCR analysis of the
1037  expression of SCRM and SCRM2 in the bpc sextuple mutant. (C) Developmental
1038  patterns of stomatal lineage cells in cotyledons of 5-day-old seedlings of bpc mutants
1039  and transgenic plants, WT was use as control. (D) Frequency of cell types calculated
1040  from (C). (E) Number of epidermal cells of mutants grown on MS medium. Error
1041  bars represent standard errors (S.E.). *: p<0.05, **: p<0.01, one-way
1042  ANOVA analysis versus WT. Scale bar: 50 um in A and C.

1043  Figure 8. Pseudotime analysis of clusters and the selected marker genes. (A)
1044  Distribution of cells of each cluster on the pseudotime trajectory. (B) Pseudotime

1045  trajectory of single-cell transcriptomics data colored according to the cluster labels.
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1046  Most cells were distributed along main stem, although two small branches were
1047  detected near the main path. (C) Clustering of all genes during pseudotime
1048  progression. (D) Clustering and expression kinetics of representative genes along

1049  pseudotime progression of stomatal lineage cells.

1050  Figure 9. Pseudo-time analysis of known marker genes. (A) Clustering of
1051  representative genes along pseudo-time progression of stomatal lineage cells. (B)

1052  Gene expression kinetics along pseudo-time progression of representative genes.
1053
1054

1055
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Figure 3. ATMLI1 is involved in regulating the development of stomata. (A-D) Analysis of stomatal
development of 5-day-old seedlings of atm/i-2 (in Ler background), atmll-3 (in Col background),
Ler and Col are used as controls. (E-F) Quantitative analysis of A-D. (G) qPCR analysis of the
expression of SPCH and MUTE in 5-day-old seedlings of atmli-2, atmli-3, Ler and Col. Error bars
represent standard errors (S.E.). *: p<0.05, **: p<0.01, one-way ANOVA analysis versus Col. Scale
bar: 50 um in A-D.
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Figure 4. GO analysis of the genes that expressed 1n different cell types. (A) GO-heatmap analysis

of the genes with the highest variable expression in different clusters. (B) Same analysis as in A for
MMC, GMC, EM and LM.
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Figure 5. Identification of regulatory networks of transcription factors in different cell types. (A)
Identification of the transcription factors in different cell types. (B) Analysis of the regulatory
network of transcription factors in MPC and PC. (C) Analysis of the regulatory network of
transcription factors in PC and GC. (D) Analysis of the regulatory network of transcription factors in
MMC, EM, LM and GMC. (E) Analysis of the regulatory network of transcription factors in PDC
and GMC.
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Figure 6. Analysis of feature plots and function of core TFs. (A) Feature plots of the expression of
representative TFs 1n different clusters. (B) Developmental pattern of stomatal lineage cells of
cotyledons of five-day-old seedlings of wrky33, with wild type (WT) used as control. (C)
Frequency of cell types calculated from (B). Error bars represent standard errors (S.E.). *: p<0.05,
*%*: p<0.01, one-way ANOVA analysis versus WT. Scale bar: 50 um in B.
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Figure 7. BPC proteins are involved in regulating the development of stomata. (A) Analysis of the
subcellular localization of BPC6-GFP. (B) qPCR analysis of the expression of SCRM and SCRM?2 in
the bpc sextuple mutant. (C) Developmental patterns of stomatal lineage cells in cotyledons of 5-day-
old seedlings of bpc mutants and transgenic plants, WT was use as control. (D) Frequency of cell
types calculated from (C). (E) Number of epidermal cells of mutants grown on MS medium. Error
bars represent standard errors (S.E.). *: p<0.05, **: p<0.01, one-way ANOVA analysis versus WT.
Scale bar: 50 um in A and C.
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Figure 8. Pseudotime analysis of clusters and the selected marker genes. (A) Distribution of cells of
each cluster on the pseudotime trajectory. (B) Pseudotime trajectory of single-cell transcriptomics
data colored according to the cluster labels. Most cells were distributed along main stem, although
two small branches were detected near the main path. (C) Clustering of all genes during pseudotime
progression. (D) Clustering and expression kinetics of representative genes along pseudotime

progression of stomatal lineage cells.
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