

Live-cell single particle imaging reveals the role of RNA polymerase II in histone H2A.Z eviction

Anand Ranjan¹, Vu Q. Nguyen¹, Sheng Liu¹, Jan Wisniewski^{2,3}, Jee Min Kim¹, Xiaona Tang¹, Gaku Mizuguchi¹, Ejlal Elalaoui¹, Timothy J. Nickels¹, Vivian Jou¹, Brian P. English³, Qinsi Zheng³, Ed Luk⁴, Luke D. Lavis³, Timothee Lionnet⁵, Carl Wu^{1, 6, *}

¹Department of Biology, Johns Hopkins University, Baltimore, MD 21218, USA

²Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA

³ Current address: Experimental Immunology Branch, National Cancer Institute, Bethesda, MD 20892, USA

⁴Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794, USA

⁵Institute of Systems Genetics, Langone Medical Center, New York University, New York, NY 10016, USA

⁶Department of Molecular Biology and Genetics, Johns Hopkins School of Medicine, Baltimore, MD 21287, USA

*Correspondence: wuc@jhu.edu (C.W.)

1 **Abstract**

2 The H2A.Z histone variant, a genome-wide hallmark of permissive chromatin, is
3 enriched near transcription start sites in all eukaryotes. H2A.Z is deposited by the
4 SWR1 chromatin remodeler and evicted by unclear mechanisms. We tracked H2A.Z in
5 living yeast at single-molecule resolution, and found that H2A.Z eviction is dependent
6 on RNA Polymerase II (Pol II) and the Kin28/Cdk7 kinase, which phosphorylates Serine
7 5 of heptapeptide repeats on the carboxy-terminal domain of the largest Pol II subunit
8 Rpb1. These findings link H2A.Z eviction to transcription initiation, promoter escape and
9 early elongation activities of Pol II. Because passage of Pol II through +1 nucleosomes
10 genome-wide would obligate H2A.Z turnover, we propose that global transcription of
11 noncoding RNAs prior to premature termination, in addition to transcription of mRNAs,
12 are responsible for eviction of H2A.Z. Such usage of yeast Pol II suggests a general
13 mechanism coupling eukaryotic transcription to erasure of the H2A.Z epigenetic signal.

14 ***Introduction***

15 The H2A.Z variant of canonical histone H2A serves as a key chromatin constituent of
16 the epigenome, providing a unique nucleosome architecture and molecular signature for
17 eukaryotic gene transcription and other chromosome activities (Weber and Henikoff,
18 2014). H2A.Z is enriched at most promoters and enhancers genome-wide, and plays a
19 role in establishing a permissive chromatin state for regulated transcription (Weber and
20 Henikoff, 2014). H2A.Z is incorporated in nucleosomes flanking DNase hypersensitive,
21 nucleosome-depleted regions (NDRs), especially at the so-called '+1 nucleosome'
22 overlapping with or immediately downstream of the transcription start site (TSS) (Albert
23 et al., 2007; Weber and Henikoff, 2014). The deposition of H2A.Z in budding yeast is
24 catalyzed by the conserved SWR1 chromatin remodeling complex in an ATP-dependent
25 reaction involving exchange of nucleosomal H2A-H2B for H2A.Z-H2B dimers
26 (Mizuguchi et al., 2004).

27

28 Genome-wide studies have shown that compared to nucleosomes in the gene body, the
29 +1 nucleosome undergoes higher turnover, which is not correlated with the level of
30 mRNA transcription by Pol II (Dion et al., 2007; Grimaldi et al., 2014; Rufiange et al.,
31 2007). Thus, the disruptive passage of Pol II through +1 nucleosomes during infrequent
32 mRNA transcription is unlikely to account for H2A.Z eviction on a global scale.
33 Biochemical studies have suggested that yeast H2A.Z eviction could be due to
34 chromatin remodeling in reverse mediated by SWR1 itself (Watanabe et al., 2013) or
35 the related INO80 remodeler (Papamichos-Chronakis et al., 2011), but other studies
36 found no supporting evidence (Wang et al., 2016). Alternatively, genome-wide assembly

37 of the transcription pre-initiation complex (PIC) has been proposed to evict H2A.Z, but
38 the key event in this multistep process remains elusive (Tramantano et al., 2016). To
39 determine the dominant mechanism of H2A.Z turnover after incorporation, we took an
40 independent approach using single-particle tracking that directly measures the levels of
41 chromatin-free and bound H2A.Z in the physiological environment of living yeast cells,
42 in wild type and conditional mutants for histone eviction.

43

44 Single-particle tracking (SPT) of fluorescently tagged proteins in live cells has emerged
45 as a robust imaging technique to determine kinetic behaviors of protein factors (Elf and
46 Barkefors, 2018; Liu and Tjian, 2018). For chromatin-interacting proteins, SPT is
47 complementary to genome-wide chromatin immunoprecipitation-DNA sequencing
48 technologies (ChIP-seq) without the general caveats of chemical fixation and chromatin
49 manipulations. SPT directly measures the fast-diffusing, chromatin-free population as
50 well as the quasi-immobile, chromatin-bound fraction tracking with macroscopic
51 chromosome movements (Liu and Tjian, 2018; Taddei and Gasser, 2012).

52

53 **Results**

54 We fused the self-labeling HaloTag to H2A.Z, H2B, and Swr1 (the catalytic subunit of
55 the SWR1 complex) for sole source expression under native promoter control and
56 validated the function of these fusion constructs (Fig. S1.1A). Yeast cultures were
57 fluorescently labeled to saturation with Janelia Fluor 646 (Grimm et al., 2015) (Fig.
58 S1.1B, C), and movies of single molecules were recorded at high temporal resolution
59 (10 ms exposure) in live cells (Rust et al., 2006) (Movies S1-6). Single molecule

60 trajectories ($n > 1000$ and ≥ 6 frames for each trajectory) were obtained from over 50
61 yeast cells for each strain. The data is presented as histograms of particle frequency
62 over the diffusion coefficient ($\log D$) extracted from mean squared displacements (MSD)
63 (Fig. 1 A-D, and methods). For a more robust quantitation of diffusive populations, we
64 also applied a kinetic modeling approach ('Spot-On') based on single particle
65 displacements (Hansen et al., 2018) (Fig. 1E, F). We performed Spot-On analysis on
66 single-molecule trajectories (≥ 3 frames), cite Spot-On values for chromatin-bound and
67 chromatin-free fractions in the text, and provide results from both Spot-On and MSD
68 analyses in all figures.

69 The SPT profiles for H2A.Z and H2B were best fitted by a simple model
70 comprised of two diffusive populations—a major, slow-diffusing chromatin-bound
71 fraction (H2A.Z: 82%, H2B: 76%, average $D: 0.03 \mu\text{m}^2\text{s}^{-1}$), and a minor, fast-diffusing
72 chromatin-free fraction (H2A.Z: $1.18 \mu\text{m}^2\text{s}^{-1}$, H2B: $1.29 \mu\text{m}^2\text{s}^{-1}$) (Fig. 1E, F & Fig. S1.2A,
73 B, E). Additional minor populations of H2A.Z and H2B with distinct diffusive values are
74 not excluded. The fraction of chromatin-bound H2A.Z was consistent with a previous
75 estimate by *in vivo* cross-linking (Mohan et al., 2018), and the D value of bound yeast
76 H2B was also consistent with that of mammalian H2B ($0.02 \mu\text{m}^2\text{s}^{-1}$) in a previous report
77 (Hansen et al., 2018). The 'free' H2A.Z fraction represents soluble H2A.Z-H2B dimers
78 biochemically associated with histone chaperones, in addition to a minor population in
79 complex with the ~ 1 MDa SWR1 complex (Luk et al., 2007). We observed similar
80 frequencies of chromatin-bound and free H2A.Z in cells growing synchronously after
81 release from G1 arrest into S phase (Fig. S1.3).

82

83 In contrast to the steady-state behaviors of the histones, the SWR1 complex (Swr1-Halo
84 subunit) showed more chromatin-free diffusion. In addition, deletion of Swc2, a key
85 subunit involved in the recruitment of SWR1 to gene promoters (Ranjan et al., 2013),
86 substantially reduced the chromatin-bound fraction from 47% to 21% (Fig. 1C, D, F).
87 (Our imaging regime captures both stable and transiently bound SWR1 in the slow-
88 diffusing population; the remaining 21% of slow molecules for the *swc2Δ* mutant may be
89 largely attributed to transient binding). With these validations, we proceeded to
90 investigate regulators of H2A.Z dynamics, based on the fractional changes in
91 chromatin-bound and free H2A.Z. Notably, while the aforementioned labeling of
92 HaloTag was adequately conducted with the JF646 dye, a superior fluorophore JF552
93 became available in the course of this work, prompting its use in subsequent
94 experiments for improved signal to noise (Zheng et al., 2019). (Fig. S1.1F).

95
96 The steady-state chromatin occupancy for H2A.Z is a function of competing deposition
97 and eviction pathways. To highlight H2A.Z eviction in live cells, we blocked the H2A.Z
98 incorporation pathway at gene promoters by conditional ‘anchor-away’ (AA) depletion of
99 the Swc5 subunit, which is not required for Swr1 recruitment (Fig. S2.1), but essential
100 for SWR1 activity (Haruki et al., 2008; Sun and Luk, 2017; Tramantano et al., 2016). In
101 the AA system, rapamycin mediates heterodimerization of FRB and FKBP12 moieties
102 fused to Swc5 and the ribosomal protein RPL13A, respectively (i.e. Swc5-FRB and
103 RPL13A-FKBP12), thus depleting Swc5 from the nucleus along with pre-ribosomal
104 subunit export (Haruki et al., 2008). Upon Swc5 AA, we found the expected decrease of
105 chromatin-bound H2A.Z from 79% to 49% (Fig. 2A-C), consistent with ChIP-seq results

106 showing genome-wide reduction of H2A.Z at +1 nucleosomes under similar conditions
107 (Tramantano et al., 2016). The remaining chromatin-bound H2A.Z may be due to
108 histone chaperone-mediated H2A.Z deposition in nucleosomes over the entire genome,
109 as suggested by in vivo cross-linking studies (Mohan et al., 2018). Our live-cell findings
110 thus confirm the SWR1 requirement for H2A.Z deposition.

111

112 To identify H2A.Z eviction factors, we tested candidates that could inhibit the loss of
113 chromatin-bound H2A.Z when both deposition and eviction factors were co-depleted in
114 a double AA experiment. As the transcription PIC is constitutively enriched at the
115 majority of NDRs (Rhee and Pugh, 2012) and has been causally linked to H2A.Z
116 eviction (Tramantano et al., 2016), we first imaged the distribution of H2A.Z after
117 nuclear depletion of both Swc5 and the Rpb1 catalytic subunit of Pol II. When Swc5 and
118 Rpb1 are co-depleted by double AA, the chromatin-bound H2A.Z fraction increased
119 (66%) relative to Swc5 AA alone (49%) (compare Fig. 3A to 2C and 3C to 2D).

120 Fluorescence microscopy confirmed relocation of Swc5 to the cytoplasm in double AA
121 cells, excluding inefficient nuclear depletion as a caveat (Fig. S3.1C, D). These results
122 indicate that Pol II indeed plays a major role in H2A.Z eviction. (Single AA of Rpb1 in
123 rapamycin-treated cells showed a marginal increase from 84% to 87% of the bulk
124 chromatin-bound H2A.Z over the untreated control (Fig. S3.2A-C)).

125

126 To examine the role of the INO80 remodeler in H2A.Z eviction, we analyzed the H2A.Z
127 distribution for Swc5 and Ino80 co-depletion by double AA and found no rise in bound
128 H2A.Z compared to the single AA of Swc5 (compare Fig. 3B to 2C and 3C to 2D). (We

129 observed no change in chromatin-bound H2A.Z for single AA of Ino80 (Fig S3.2D-F)).
130 Taken together, we conclude that Pol II, but not the INO80 remodeler, has a major role
131 in H2A.Z eviction. Minor contributions by other factors such as the ANP32E histone
132 chaperone found in mammalian cells are not excluded (Mao et al., 2014; Obri et al.,
133 2014).

134
135 Transcription by Pol II is a complex process involving PIC assembly, Pol II initiation,
136 promoter escape, productive elongation and termination (Jonkers and Lis, 2015;
137 Sainsbury et al., 2015). Given that site-specific phosphorylation of the Rpb1 subunit of
138 Pol II regulates the progression of transcription, targeted depletion of transcriptional
139 kinases provides an opportunity to identify the step involved in H2A.Z eviction. A key
140 post-initiation step involves Serine 5 phosphorylation (Ser5-P) of heptapeptide repeats
141 on the C-terminal domain (CTD) of Pol II (Rpb1) (Corden, 2013; Harlen and
142 Churchman, 2017). Ser5-P is catalyzed by the yeast Kin28/Cdk7 kinase, a component
143 of the kinase module (Kin28-Ccl1-Tfb3) of TFIIH, and is linked to capping of nascent
144 RNA, Pol II release from the Mediator complex, promoter escape and early elongation.
145 Recently, the Bur1/Cdk9 kinase was shown to phosphorylate the Rpb1 linker just
146 upstream of CTD, at residues Thr 1471 and Ser 1493 (Chun et al., 2019), facilitating Pol
147 II transition from early elongation to productive elongation. Furthermore, the Ctk1/Cdk12
148 kinase mediates Ser2 phosphorylation of the CTD associated with productive elongation
149 through protein-coding regions (Corden, 2013; Harlen and Churchman, 2017; Wong et
150 al., 2014). To investigate which phosphorylated state of Pol II is linked to H2A.Z
151 eviction, we examined H2A.Z distributions in double AA cells conditionally deficient for

152 Swc5 in combination with each of the three CTD kinases. Only Kin28 is required for
153 H2A.Z eviction, as indicated by 65% chromatin-bound H2A.Z in the Kin28 and Swc5
154 double AA relative to 49% in the single AA of Swc5 (compare Fig. 4B to 2C and 4F to
155 2D). Consistent with its role in H2A.Z eviction, depletion of Kin28 alone showed a
156 marginal 4% increase in chromatin-bound H2A.Z (from 78% to 82%, Fig. S4.1A, 4.1B).
157 In contrast, double AA of Swc5 and the Bur1 kinase did not inhibit loss of chromatin-
158 bound H2A.Z, nor did double AA of Swc5 and the Ctk1 kinase (Fig. 4C, 4D, 4F).

159

160 In the wake of Pol II initiation, nascent RNA is co-transcriptionally capped by the
161 sequential activity of three enzymes—Cet1, Ceg1 and Abd1—and is completed when
162 RNA reaches ~100 nt (Lidschreiber et al., 2013). Capping of the 5' end of nascent RNA
163 is initiated by the Cet1-Ceg1 complex, which recognizes the 5' triphosphate on the RNA
164 and Ser5-P on the Pol II CTD (Martinez-Rucobo et al., 2015). To examine whether RNA
165 capping or associated activities are required for H2A.Z eviction, we performed double
166 AA of Swc5 and Cet1, and found no increase in chromatin-bound H2A.Z compared to
167 single AA of Swc5 (compare Fig. 4E, to 2C, and 4F to 2D). Thus, H2A.Z eviction is not
168 dependent on RNA capping. Likewise, we found no increase of chromatin-bound
169 H2A.Z upon double AA of Swc5 and Rrp6, the 3'-5' exonuclease responsible for
170 degradation of noncoding RNA (Fig. S4.1E, F). Taken together, we conclude that an
171 early stage of transcription elongation closely linked to Pol II CTD Ser5 phosphorylation
172 by Kin28 is required for robust eviction of chromatin-bound H2A.Z.

173

174 **Discussion**

175 Transcription of most yeast genes is infrequent and nucleosome turnover along gene
176 bodies is low, but the +1 nucleosome constitutively turns over at a 3-fold higher rate
177 (Dion et al., 2007; Grimaldi et al., 2014; Yen et al., 2013). Similarly, H2A.Z is
178 constitutively displaced from +1 nucleosomes for both active and rarely transcribed
179 genes, on a timescale of <15 min (Tramantano et al., 2016). The live-cell SPT approach
180 reveals that Pol II rather than the INO80 sub-family of remodelers plays a key role in
181 H2A.Z eviction. Furthermore, the dependence on Kin28/Cdk7 kinase for robust H2A.Z
182 displacement suggests that PIC assembly per se, i.e. the recruitment of general
183 transcription factors and Pol II to promoter, is not sufficient for H2A.Z eviction but Kin28-
184 dependent phosphorylation of Ser5 of the CTD heptapeptide repeats is important (Fig.
185 5, box). A role for Kin28 in Ssl2-facilitated TSS scanning by Pol II is not excluded for
186 H2A.Z eviction, although it has been shown that depletion of Kin28 by AA does not alter
187 TSS usage (Murakami et al., 2015).

188

189 Inhibition of H2A.Z eviction upon depletion of Kin28/Cdk7 kinase, but not Bur1/Cdk9 or
190 Ctk1/Cdk12 kinases narrows the relevant state of Pol II to early elongation after
191 promoter escape, but not to productive elongation. (We note that the PIC remains
192 largely intact upon Kin28/Cdk7 depletion, as shown by accumulation of TFIID, Mediator
193 and Pol II at gene promoters (Knoll et al., 2019) (Wong et al., 2014)). The exclusive
194 dependence on Kin28/Cdk7 is further underscored by no reduction of H2A.Z eviction on
195 depletion of Cet1, the 5' RNA capping enzyme, or depletion of Rrp6, the 3'-5'
196 exonuclease for noncoding RNA degradation. Thus, H2A.Z eviction is independent of

197 RNA modifying and metabolizing activities just downstream of CTD Ser5
198 phosphorylation.

199
200 Transcriptional elongation by Pol II is known to cause displacement of nucleosomal
201 histones in biochemical assays (Lorch et al., 1987), providing a mechanism for H2A.Z
202 turnover at the +1 nucleosome in the process of transcription through protein-coding
203 regions. We propose a similar mechanism for genes that do not engage in productive
204 transcription of mRNA, but exhibit genome-wide, constitutive transcription of noncoding
205 RNAs which are prematurely terminated by the Nrd1-Nab3-Sen1 pathway in budding
206 yeast (Schaughency et al., 2014). The early elongation activity of Pol II would dislodge
207 H2A.Z-H2B dimers from the histone octamer of the +1 nucleosome. Displacement of the
208 more stably bound H3-H4 tetramer likely requires assistance from histone chaperones
209 and/or other remodelers (Fig 5).

210
211 After displacement of core histones, reassembly of a canonical nucleosome on gapped
212 chromatin should occur, mediated by the mass action of the predominating H2A-H2B
213 histone pool and histone chaperones, nucleosome positions being reset by chromatin
214 remodelers such as ISWI, RSC, and INO80 (Lai and Pugh, 2017) (Fig.5). Maintenance
215 of a NDR of sufficient length (>60 bp DNA) by remodelers and subsequent histone
216 acetylation recruits SWR1 to canonical +1 nucleosomes, the essential substrate for
217 SWR1 (Ranjan et al., 2013). Stimulation of the catalytic Swr1 ATPase by nucleosome
218 and H2A.Z-H2B dimer substrates then triggers histone dimer exchange (Luk et al.,
219 2010; Ranjan et al., 2013), completing the cycle of H2A.Z/H2A replacement (Fig. 5).

220

221 We envision that H2A.Z eviction is coupled to transcription not only from protein-coding
222 genes transcribed by Pol II but also ribosomal, 5S and tRNA genes transcribed by Pol I
223 and Pol III. Because H2A.Z eviction is not correlated with mRNA transcription by Pol II
224 (Tramantano et al., 2016), the constitutive global transcription of noncoding RNA by Pol
225 II is additionally coupled to H2A.Z eviction. There is substantial evidence for low-level,
226 heterogenous transcripts of several hundred nucleotides, initiating from multiple start-
227 sites within yeast NDRs (Pelechano et al., 2013). For budding yeast, these noncoding
228 RNA transcripts evidently result from Pol II initiation without substantial pausing (Booth
229 et al., 2016). At metazoan promoters, turnover of H2A.Z enriched in +1 nucleosomes
230 may be similarly coupled to transcription in the process of Pol II pausing and release
231 (Tome et al., 2018). Likewise at metazoan enhancers, infrequent Pol II transcription of
232 eRNAs (Tippens et al., 2018) could be responsible for eviction of H2A.Z, representing
233 erasure of a permissive histone variant mark on the epigenome. Much remains to be
234 learned about the functional significance of this process and its relationship to
235 productive mRNA transcription, presenting an outstanding problem for future studies of
236 chromatin dynamics in eukaryotic gene regulation.

237 **Acknowledgements**

238 This work is dedicated to the memory of Maxime Dahan, former project leader of the
239 HHMI-Janelia Transcription Imaging Consortium. We thank Anita Corbett for reagents,
240 Zhe Liu, Brian Mehl, and Herve Rouault for discussions, Felix Wu for image processing,
241 Anders Hansen, Maxime Woringer, and Xavier Darzacq for consultation on the Spot-On
242 program, Prashant Mishra and Munira Basrai for assistance with FACS analysis, and
243 James Brandt and Yumi Kim for deconvolution microscopy. The study was supported by
244 HHMI-Janelia Transcription Imaging Consortium funding to C.W., T.L., and L.L, the
245 Damon Runyon Cancer Research Foundation (V.N.), the Johns Hopkins Bloomberg
246 Distinguished Professorship (C.W.), a grant to E.L. from the National Institutes of Health
247 (GM104111), a grant to T.L. from National Institutes of Health (GM127538), and a grant
248 to C.W. from the National Institutes of Health (GM125831).

249

250 **Figure Legends**

251 **Figure 1. Diffusive behaviors of protein fusions to HaloTag (Halo) reveal**
252 **chromatin-bound and free populations in live yeast.** (A, B) Normalized histograms
253 and two-component Gaussian fits for H2A.Z-Halo (A) and Halo-H2B (B) show the log
254 diffusion coefficient distributions. The Gaussian fit for HaloTag is shown for reference
255 (“Halo only” in A). (C, D) Normalized histograms and two-component Gaussian fits for
256 Swr1-Halo in WT cells (C) and the *swc2Δ* mutant (D). Solid line: sum of two-component
257 fit; dashed line: individual component. Percent value of the slow component along with
258 Bootstrap resampling errors and the number of trajectories (n) are indicated. (E)
259 Cumulative distribution functions (CDF) of 10 ms displacements. (F) Spot-On results
260 with fitting errors showing fractions of chromatin-bound molecules derived from
261 modeling CDFs over 10-50 ms intervals. All molecules tracked with JF646 dye except
262 Halo only, which was imaged with JF552.

263

264 **Figure S1.1. Cell growth, labeling and SPT analysis of Halo-tagged proteins**
265 (A) Growth of strains bearing *SWR1*, H2A.Z (*HTZ1*) and H2B (*HTB1*) fusions to
266 HaloTag. Saturated cultures at optical density 1.0 were spotted (1:5 serial dilutions) on
267 CSM plates with or without 1% formamide or 150 mM HU (hydroxyurea) and incubated
268 for 2-3 days at the indicated temperatures. WT and mutant strains *htz1Δ* and *swr1Δ* are
269 shown for comparison. (B) Cells expressing H2A.Z-Halo and Swr1-Halo were stained
270 with JF646 and the cell lysate was resolved on SDS-PAGE. Fluorescent scan of
271 duplicate lanes show specific labeling of Halo-tagged H2A.Z and Swr1 proteins. (C)
272 SDS-PAGE shows 10 nM JF646 saturates H2A.Z-Halo in yeast cells in a routine 2 hr

273 staining period. (D) Normalized histogram and two-component Gaussian fit for HaloTag
274 (fused to NLS). The slow fraction is 5%. (E) Top: Profile of H2A.Z-Halo diffusivity in
275 biological replicate, same condition as Fig. 1A experiment. (F) Profile of H2A.Z-Halo
276 diffusivity in cells stained with JF552. All molecules tracked with JF552 dye except (E),
277 which was tracked with JF552.

278

279 **Figure S1.2. Spot-On kinetic modeling analysis.** (A) Histogram of displacements
280 over time intervals of 10, 20, 30, 40 and 50 ms (dt 1-5) for H2A.Z. First four
281 displacements were included for each track. Kinetic fitting shown as dashed line and
282 measured displacements in color. Data was generated using the Spot-On web-interface
283 (<https://SpotOn.berkeley.edu>). (B) Spot-On analysis of H2B. (C,D) Spot-On analysis of
284 Swr1 in WT and *swc2Δ* cells. (E) Comparison of diffusive parameters for H2A.Z, H2B,
285 Swr1 and Swr1 in the *swc2Δ* strain, extracted from MSD-based and Spot-On analytic
286 platforms. Bootstrap resampling errors shown for MSD and fitting errors shown for Spot-
287 On. All molecules tracked with JF646 dye.

288

289 **Figure S1.3. H2A.Z-Halo distribution in cell division cycle.** (A) FACS analysis shows
290 DNA content of the synchronized cell population upon time of release from α -factor
291 arrest, from 0' – 120.' (B,C) Normalized histogram and two-component Gaussian fit for
292 H2A.Z-Halo in cells synchronized in pre-S phase, and in S phase. (D) Spot-On results
293 shows both Pre-S and S phase cells have 84 % chromatin bound H2A.Z. All molecules
294 tracked with JF646 dye.

295

296 **Figure 2. H2A.Z chromatin binding is substantially reduced upon abrogation of**
297 **the deposition pathway by SWR1 inactivation.** (A) Time course of H2A.Z-Halo
298 labeling, rapamycin treatment and image acquisition in Swc5-AA cells. Rapamycin
299 treatment for an hour before SPT, and imaging performed in continued presence of
300 rapamycin. (B, C) Normalized histograms and two-component Gaussian fits for H2A.Z-
301 Halo imaged in the Swc5-AA cells. Imaging data were acquired in absence of
302 rapamycin (B) or presence of rapamycin (C). Spot-On results show that Swc5 depletion
303 causes a reduction in chromatin-bound H2A.Z. (E) Overlay of tracks, color-coded
304 according to log diffusion coefficients, obtained from representative nuclei. Number of
305 tracks (n) is indicated for each nucleus. All molecules tracked with JF552 dye.

306

307 **Figure S2.1. Swc5 is required post-recruitment for SWR1 activity.** (A,B) Normalized
308 histograms and two-component Gaussian fits for Swr1-Halo imaged in Swc5-AA cells in the
309 absence (A) or presence (B) of rapamycin. (C) Spot-On analysis of the same imaging data.
310 Anchor away of Swc5 did not reduce the fraction of chromatin-bound Swr1, which is
311 consistent with ChIP-PCR results showing Swr1 binds to gene promoters in absence of
312 swc5 (Morillo-Huesca et al., 2010), and *in vitro* data showing efficient nucleosome
313 binding by the purified SWR1(swc5 Δ) complex (Ranjan et al., 2013). All molecules
314 tracked with JF646 dye.

315

316 **Figure 3. RNA polymerase II is critical for H2A.Z eviction.** (A) Normalized
317 histograms and two-component Gaussian fits for H2A.Z-Halo imaged in cells co-
318 depleted for Rpb1 and Swc5. (B) H2A.Z-Halo distributions in cells co-depleted for Ino80

319 and Swc5. (C) Spot-On results showing co-depletion of Rpb1 along with Swc5 inhibits
320 H2A.Z eviction. All molecules tracked with JF552 dye.

321

322 **Figure S3.1. Efficient nuclear depletion of Swc5 in double anchor-away (SWC5-
323 *FRB; RPB1-FRB*) strain.** (A, B) Deconvolution fluorescence microscopy shows nuclear
324 depletion of Swc5-AA in rapamycin-treated, single anchor-away cells, and in Swc5-AA;
325 Rpb1-AA double anchor-away cells. Images of JF646-labeled H2A.Z-Halo locate nuclei.
326 Z-axis steps of 200 μ m were captured on a DeltaVision fluorescence microscope and
327 deconvoluted ten-stacks were projected.

328

329 **Figure S3.2. H2A.Z diffusion histograms in cells for single AA of Rpb1 and Ino80.**
330 (A, B) H2A.Z-Halo distributions in Rpb1-AA strain without (A) and with (B) depletion of
331 Rpb1. (C) Spot-On results for chromatin bound H2A.Z upon Rpb1 depletion. Single AA
332 of Rpb1 causes only a slight increase in chromatin-bound H2A.Z, which is likely due to
333 concomitant inhibition of SWR1's biochemical activity at reduced concentration of free
334 H2A.Z-H2B dimer (Wang et al., 2016). (D, E) H2A.Z distributions in single anchor-away
335 of Ino80. (F) Spot-On results show Ino80 depletion has no effect on level of chromatin-
336 bound H2A.Z. All molecules tracked with JF552 dye.

337

338 **Figure 4. Kin28 phosphorylation of RNA polymerase II CTD is critical for H2A.Z
339 eviction.** (A) Schematic representation shows the three Pol II kinases Kin28, Bur1 and
340 Ctk1 recruited at initiation, early-elongation and elongation phases respectively of Pol II
341 and corresponding phosphorylation of indicated Rpb1 CTD sites. Set1 is the first of the

342 three RNA capping enzymes; it removes γ -phosphate from the RNA 5' end to generate
343 5' diphosphate. (B, C, D, E) Normalized histograms and two-component Gaussian fits
344 for H2A.Z-Halo imaged in cells co-depleted for Swc5 along with Kin28 (B), Bur1 (C),
345 Ctk1 (D) and Cet1 (E). (F) Spot-On results show Kin28 is required to evict H2A.Z. All
346 molecules tracked with JF552 dye.

347

348 **Figure S4.1. H2A.Z diffusion histograms in cells after single depletion of Kin28.**
349 (A, B) H2A.Z-Halo distributions in Kin28-AA strain without (A) and with (B) depletion of
350 Kin28. (C) Spot-On results for chromatin bound H2A.Z upon Kin28 depletion. (D)
351 Reproduction of Gaussian fits for H2A.Z-Halo distributions in rapamycin-treated Swc5-
352 AA cells (from Fig. 2C). (E) H2A.Z-Halo distributions in cells co-depleted for Swc5 and
353 Rrp6. (F) Spot-On results for chromatin-bound H2A.Z upon double depletion of Swc5
354 and Rrp6. All molecules tracked with JF552 dye.

355

356 **Figure 5. Cycle of H2A.Z eviction and deposition.** RNA polymerase II assembled
357 genome-wide in the PIC and Rpb1 CTD Ser5 phosphorylated by Kin28 constitutively
358 transcribes short noncoding RNAs (with m7G cap) and evicts H2A.Z-H2B dimers from
359 the +1 nucleosome prior to termination. H2A.Z eviction should also occur in the course
360 of mRNA transcription. Additional factors may be necessary for displacement of H3-H4
361 tetramer. The directional arrow indicates the annotated transcription start site. The gap
362 is filled by histone chaperone-mediated deposition of canonical histones to reform an
363 H2A-containing +1 nucleosome, which is positioned by chromatin remodelers and
364 sequence-specific transcription factors, maintaining the NDR. This recruits SWR1 which

365 is activated upon recognition of H2A-nucleosome and H2A.Z-H2B dimer substrates to
366 activate one or two rounds of H2A.Z deposition. See text for discussion.

367

368 ***List of Supplementary Movies and Table***

369 **Movie S1:** H2A.Z-Halo imaged in wild type cells. Single molecules from four nuclei are
370 observed.

371 **Movie S2:** H2A.Z-Halo imaged after anchor-away of Swc5. Single molecules from six
372 nuclei are observed.

373 **Movie S3:** H2A.Z-Halo imaged in Swc5-FRB cells in absence of rapamycin. Single
374 molecules from four nuclei are observed.

375 **Movie S4:** Swr1-Halo imaged in wild type cells. Single molecules from three nuclei are
376 observed.

377 **Movie S5:** Swr1-Halo imaged in *swc2Δ* cells. Single molecules from three nuclei are
378 observed.

379 **Movie S6:** Free-Halo tag molecule imaged in nuclei. Single molecules from five nuclei
380 are observed.

381 **Supplementary file 1:** List of strains used in this study

382 **Supplementary file 2:** List of results from MSD and Spot-On analysis

383 **Materials and Methods**

384 **Yeast strains and plasmids**

385 The plasmid for HaloTag (Halo) fusions was generated by cloning HaloTag (Promega)
386 in the pBluescript SK (-) vector followed by insertion of a KanMx cassette (Kanamycin)
387 or NatMx cassette (Nourseothricin), following standard procedures (Gelbart et al.,
388 2001). PCR amplification and standard yeast transformation methods were used for
389 tagging the protein of interest at the C-terminus, with a serine-glycine (SG₄)₂ linker to
390 HaloTag.

391

392 For Halo-H2B, plasmid HTA1-SNAP-HTB1 (pEL458, gift from Ed Luk) was modified to
393 replace the SNAP coding sequence with HaloTag, with a four amino acid GA₃ linker
394 between HaloTag and the N-terminus of H2B. The plasmid expressing Halo-H2B was
395 introduced in the FY406 strain (gift from Fred Winston) by the plasmid shuffle procedure
396 (Hirschhorn et al., 1995). The endogenous H2B promoter drives expression of Halo-
397 H2B as the sole gene copy in cells.

398

399 Free HaloTag was fused at the N-terminus to a bipartite SV40 NLS
400 (KRTADGSEFESPKKKRKV, where two clusters of basic residues are underlined)
401 (Hodel et al., 2006) and expressed from the pRS416 vector. Plasmid pAC1056
402 expressing BPSV40 NLS-GFP (gift from Anita Corbett) was modified for free Halo
403 expression.

404

405 Strains and plasmids used for anchor-away studies were obtained from Euroscarf. The
406 transporter gene PDR5 was deleted in all strains for retention of HTL-dye conjugate in
407 live yeast cells. Strain genotypes are listed in Table 1.

408

409 **Flow cytometry analysis**

410 Cells were fixed by adding two volumes of 100 % ethanol and stored for one hour at
411 4°C. Cells were washed with 50 mM Tris-HCl (pH 7.5) buffer and digested with RNase
412 (1 mg/ml) and RNase A (0.2 mg/ml) overnight at 37°C on a rotator. Proteins were
413 digested with Proteinase K (1 µg/µl) at 50°C for 30 minutes. Cells were stained with 2
414 µM SYTOX (Tris buffer) at 4°C for 4 hours and sonicated on Diagenode Biorupter 300
415 for 10 sec at high setting. Cells were scanned on LSR II FACS instrument.

416

417 **Cell culture and labeling**

418 Cells were grown and imaged in CSM media (Complete Supplement Mixture)
419 supplemented with 40 mg/L adenine hemisulfate. The JF646-HaloTag ligand was
420 synthesized as previously described (Grimm et al., 2015). The new JF552 dye has a
421 higher signal to noise ratio and is more photostable than JF646. The JF552 dye is a
422 modification of JF549, with similar brightness, but enhanced cell permeability that allows
423 its use for SPT in yeast (Zheng et al., 2019). For *in vivo* labeling, early log phase cells
424 (O.D₆₀₀ 0.2) were labeled with JF-HaloTag ligand (10 nM for JF646 and 20 nM for
425 JF552) for two hours at 30 degrees in suspension culture. Cells were washed four times
426 with CSM to remove free dye.

427

428 Prior to use, 0.17 mm coverslips (\varnothing 25 mm, Electron Microscopy Services) were flamed
429 to remove punctuated surface auto-fluorescence and to suppress dye binding, and
430 coated with Concanavalin A (2 mg/ml) for 30 min at room temperature, and air-dried for
431 one hour. Coverslips were assembled in a \varnothing 35 mm Attofluor chamber (Invitrogen). A 1
432 ml cell suspension was immobilized for 10 minutes and live cells were imaged in CSM
433 media at room temperature. For anchor away experiments, rapamycin (1 μ g/ml) was
434 added one hour prior to imaging, and cells were imaged in the presence of rapamycin.

435

436 **Cell cycle synchronization**

437 Cells were synchronized in G1 by adding α factor for 2 hours (3 μ g/ml at 0 min and
438 additional 2 and 1 μ g/ml at 60 and 90 minute respectively). High autofluorescence did not
439 allow SMT in presence of α factor, which was removed by replacing culture medium.
440 Cells released from G1 at room temperature took 40 minutes to enter S phase. Both for
441 Pre-S and S phase SMT, cells were stained and synchronized in suspension culture
442 and immobilized right before SMT.

443

444 **Wide-field single molecule Imaging with epi-illumination microscope**

445 Single-molecule imaging was conducted on a Zeiss Observer Z1 microscope with a
446 Zeiss Plan-Apochromat 150X/1.35 glycerin-immersion objective. Cells of interest were
447 identified under infrared illumination (750nm, 10nm FWHM) using a near IR-CCD
448 camera (IDS UI-3370CP-NIR-GL) and Semrock 743nm/25nm FWHM filter. A 555nm
449 (Crystalaser) or 637nm (Vortran) laser was used for dye excitation, typically at 100mW
450 total power (TTL pulsed). All laser beams were spectrally filtered and combined using a

451 custom beam combiner (by J.W., details available upon request). A Semrock FF01-
452 750/SP filter was included at the output to remove any residual near infrared emission
453 from lasers. Combined laser beams were collimated into a 2m-long Qioptic fiber
454 (kineFLEX-P-2-S-405.640-0.7-APC-P2) with output through a 12mm EFL reflective
455 collimator (Thorlabs). The resulting Ø6mm Gaussian beam was introduced into the back
456 port of the microscope. The following cubes were utilized in the microscope turret to
457 direct excitation light towards the sample and filter fluorescence: 1) for JF646 - 648
458 beamsplitter and 676/29 nm filter, 2) for JF552 - 561 beamsplitter and 612/69 nm filter.
459 Images were acquired with a Hamamatsu C9100-13 back-illuminated EM-CCD camera
460 through additional FF01-750/SP and NF03-405/488/561/635E quad-notch filters. The
461 camera was operated at -80°C with a typical EM gain of 1200 and directly controlled by
462 laser emission via the TTL signal.

463

464 **Image acquisition**

465 Images were obtained using either 637-nm laser (JF646) or 555-nm laser (JF552), of
466 excitation intensity \sim 1KW/cm² and for each field of view \sim 7000 frames were captured.
467 Single molecules were tracked using DiaTrack Version 3.05 software, with the following
468 settings; remove blur 0.1, remove dim 70-100, maximum jump 6 pixels. Single molecule
469 images were collected after pre-bleach of initial intense fluorescence (glow). While
470 imaging with JF646, a 405-nm laser excitation (1-10mW/cm², TTL pulses 2-5 ms per
471 frame) was triggered to maintain single fluorophore detection density. Immobilized cells
472 in CSM media were imaged over a 90-minute imaging session.

473

474 **Analysis of single-molecule images**

475 Movies with two dimensional single molecule data were analyzed by DiaTrack Version
476 3.05 (Vallotton and Olivier, 2013), which determines the precise position of single
477 molecules by Gaussian intensity fitting and assembles particle trajectories over multiple
478 frames. In Diatrace remove blur was set to 0.1, remove dim set at 70 and max jump set
479 at 5 pixels, where each pixel was 107 nm. Trajectory data exported from Diatrace was
480 further analyzed by a custom computational package ‘Sojourner’ (by S.L.). The package
481 is available on Github (<https://rdrr.io/github/sheng-liu/sojourner/>). The Mean Squared
482 Displacement (MSD) was calculated for all trajectories 6 frames or longer. Diffusion
483 coefficients for individual molecules were calculated by unconstrained linear fit ($R^2 > 0.8$)
484 of the MSD values computed for time lags ranging from 2 dt to 5 dt , where $dt = 10$ ms is
485 the time interval between frames, and slope of linear fit was divided by 4 (pre-factor for
486 2-dimensional brownian motion) (Qian et al., 1991). The histogram of log converted
487 diffusion coefficients was fitted with double gaussian function from the ‘mixtools’
488 package (Benaglia et al., 2009) to estimate the fraction of chromatin-bound molecules
489 (mean range between $0.050 - 0.112 \mu\text{m}^2 \text{ s}^{-1}$). Standard error on the mean of each
490 gaussian fit parameter was estimated using a bootstrap resampling approach (Efron,
491 1979).

492

493 The Spot-On analysis was performed on trajectories three frames or longer using the
494 web-interface <https://spoton.berkeley.edu/> (Hansen et al., 2018). The bound fractions
495 and diffusion coefficients were extracted from the CDF of observed displacements over
496 different time intervals. For Brownian motion in two dimensions, the probability that a

497 particle starting from origin will be found within a circle of radius r at time interval $\Delta\tau$ is
498 given as follows.

$$P(r, \Delta\tau) = \frac{r}{2D\Delta\tau} e^{\frac{-r^2}{4D\Delta\tau}}$$

499 where D is diffusion coefficient. In Spot-On, the cumulative displacement histograms
500 were fitted with a 2-state model.

$$p(r, \Delta\tau) = F_1 \frac{r}{2(D_1\Delta\tau + \sigma^2)} e^{\frac{-r^2}{4(D_1\Delta\tau + \sigma^2)}} + Z_{CORR}(\Delta\tau, \Delta Z, D_2) F_2 \frac{r}{2(D_1\Delta\tau + \sigma^2)} e^{\frac{-r^2}{4(D_1\Delta\tau + \sigma^2)}}$$

501 where F_1 and F_2 are bound and free fractions, σ is single molecule localization error,
502 D_1 and D_2 are diffusion coefficients of bound and free fractions, and Z_{CORR} is correction
503 factor for fast molecules moving out of axial detection range (Hansen et al. 2018). The
504 axial detection range for JF646 on our setup is 650 nm. The following settings were
505 used on the Spot-On web interface: bin width 0.01, number of time points 6, jumps to
506 consider 4, use entire trajectories-No, Max jump (μm) 1.2. For model fitting the following
507 parameters were selected: D_{bound} ($\mu\text{m}^2/\text{s}$) min 0.001 max 0.1, D_{free} ($\mu\text{m}^2/\text{s}$) min 0.15
508 max 5, F_{bound} min 0 max 1, Localization error (μm)- Fit from data-Yes min 0.01 max 0.1,
509 dZ (μm) 0.65 for JF646 and dZ 0.6 for JF552, Use Z correction- Yes, Model Fit CDF,
510 Iterations 3.

References

511 Albert, I., Mavrich, T.N., Tomsho, L.P., Qi, J., Zanton, S.J., Schuster, S.C., and Pugh,
512 B.F. (2007). Translational and rotational settings of H2A.Z nucleosomes across the
513 *Saccharomyces cerevisiae* genome. *Nature* **446**, 572-576.

514 Benaglia, T., Chauveau, D., Hunter, D.R., and Young, D.S. (2009). mixtools: An R
515 Package for Analyzing Finite Mixture Models. *J Stat Softw* **32**, 1-29.

516 Booth, G.T., Wang, I.X., Cheung, V.G., and Lis, J.T. (2016). Divergence of a conserved
517 elongation factor and transcription regulation in budding and fission yeast. *Genome Res*
518 **26**, 799-811.

519 Chun, Y., Joo, Y.J., Suh, H., Batot, G., Hill, C.P., Formosa, T., and Buratowski, S.
520 (2019). Selective Kinase Inhibition Shows That Bur1 (Cdk9) Phosphorylates the Rpb1
521 Linker In Vivo. *Mol Cell Biol* **39**.

522 Corden, J.L. (2013). RNA polymerase II C-terminal domain: Tethering transcription to
523 transcript and template. *Chem Rev* **113**, 8423-8455.

524 Dion, M.F., Kaplan, T., Kim, M., Buratowski, S., Friedman, N., and Rando, O.J. (2007).
525 Dynamics of replication-independent histone turnover in budding yeast. *Science* **315**,
526 1405-1408.

527 Efron, B. (1979). 1977 Rietz Lecture - Bootstrap Methods - Another Look at the
528 Jackknife. *Ann Stat* **7**, 1-26.

529 Elf, J., and Barkefors, I. (2018). Single-Molecule Kinetics in Living Cells. *Annu Rev
530 Biochem*.

531 Gelbart, M.E., Rechsteiner, T., Richmond, T.J., and Tsukiyama, T. (2001). Interactions
532 of Isw2 chromatin remodeling complex with nucleosomal arrays: analyses using
533 recombinant yeast histones and immobilized templates. *Mol Cell Biol* **21**, 2098-2106.

534 Grimaldi, Y., Ferrari, P., and Strubin, M. (2014). Independent RNA polymerase II
535 preinitiation complex dynamics and nucleosome turnover at promoter sites in vivo.
536 *Genome Res* **24**, 117-124.

537 Grimm, J.B., English, B.P., Chen, J., Slaughter, J.P., Zhang, Z., Revyakin, A., Patel, R.,
538 Macklin, J.J., Normanno, D., Singer, R.H., *et al.* (2015). A general method to improve
539 fluorophores for live-cell and single-molecule microscopy. *Nat Methods* **12**, 244-250,
540 243 p following 250.

541 Hansen, A.S., Wöringer, M., Grimm, J.B., Lavis, L.D., Tjian, R., and Darzacq, X. (2018).
542 Robust model-based analysis of single-particle tracking experiments with Spot-On. *Elife*
543 **7**.

544 Harlen, K.M., and Churchman, L.S. (2017). The code and beyond: transcription
545 regulation by the RNA polymerase II carboxy-terminal domain. *Nat Rev Mol Cell Biol* **18**,
546 263-273.

547 Haruki, H., Nishikawa, J., and Laemmli, U.K. (2008). The anchor-away technique: rapid,
548 conditional establishment of yeast mutant phenotypes. *Mol Cell* **31**, 925-932.

549 Hirschhorn, J.N., Bortvin, A.L., Ricupero-Hovasse, S.L., and Winston, F. (1995). A new
550 class of histone H2A mutations in *Saccharomyces cerevisiae* causes specific
551 transcriptional defects in vivo. *Mol Cell Biol* **15**, 1999-2009.

552 Hodel, A.E., Harreman, M.T., Pulliam, K.F., Harben, M.E., Holmes, J.S., Hodel, M.R.,
553 Berland, K.M., and Corbett, A.H. (2006). Nuclear localization signal receptor affinity

554 correlates with in vivo localization in *Saccharomyces cerevisiae*. *J Biol Chem* **281**,
555 23545-23556.

556 Jonkers, I., and Lis, J.T. (2015). Getting up to speed with transcription elongation by
557 RNA polymerase II. *Nat Rev Mol Cell Biol* **16**, 167-177.

558 Knoll, E.R., Zhu, Z.I., Sarkar, D., Landsman, D., and Morse, R.H. (2019). Kin28
559 depletion increases association of TFIID subunits Taf1 and Taf4 with promoters in
560 *Saccharomyces cerevisiae*. *bioRxiv*.

561 Lai, W.K.M., and Pugh, B.F. (2017). Understanding nucleosome dynamics and their
562 links to gene expression and DNA replication. *Nat Rev Mol Cell Biol* **18**, 548-562.

563 Lidschreiber, M., Leike, K., and Cramer, P. (2013). Cap completion and C-terminal
564 repeat domain kinase recruitment underlie the initiation-elongation transition of RNA
565 polymerase II. *Mol Cell Biol* **33**, 3805-3816.

566 Liu, Z., and Tjian, R. (2018). Visualizing transcription factor dynamics in living cells. *J
567 Cell Biol* **217**, 1181-1191.

568 Lorch, Y., LaPointe, J.W., and Kornberg, R.D. (1987). Nucleosomes inhibit the initiation
569 of transcription but allow chain elongation with the displacement of histones. *Cell* **49**,
570 203-210.

571 Luk, E., Ranjan, A., Fitzgerald, P.C., Mizuguchi, G., Huang, Y., Wei, D., and Wu, C.
572 (2010). Stepwise histone replacement by SWR1 requires dual activation with histone
573 H2A.Z and canonical nucleosome. *Cell* **143**, 725-736.

574 Luk, E., Vu, N.D., Patteson, K., Mizuguchi, G., Wu, W.H., Ranjan, A., Backus, J., Sen,
575 S., Lewis, M., Bai, Y., *et al.* (2007). Chz1, a nuclear chaperone for histone H2AZ. *Mol
576 Cell* **25**, 357-368.

577 Mao, Z., Pan, L., Wang, W., Sun, J., Shan, S., Dong, Q., Liang, X., Dai, L., Ding, X.,
578 Chen, S., *et al.* (2014). Anp32e, a higher eukaryotic histone chaperone directs
579 preferential recognition for H2A.Z. *Cell Res* **24**, 389-399.

580 Martinez-Rucobo, F.W., Kohler, R., van de Waterbeemd, M., Heck, A.J., Hemann, M.,
581 Herzog, F., Stark, H., and Cramer, P. (2015). Molecular Basis of Transcription-Coupled
582 Pre-mRNA Capping. *Mol Cell* **58**, 1079-1089.

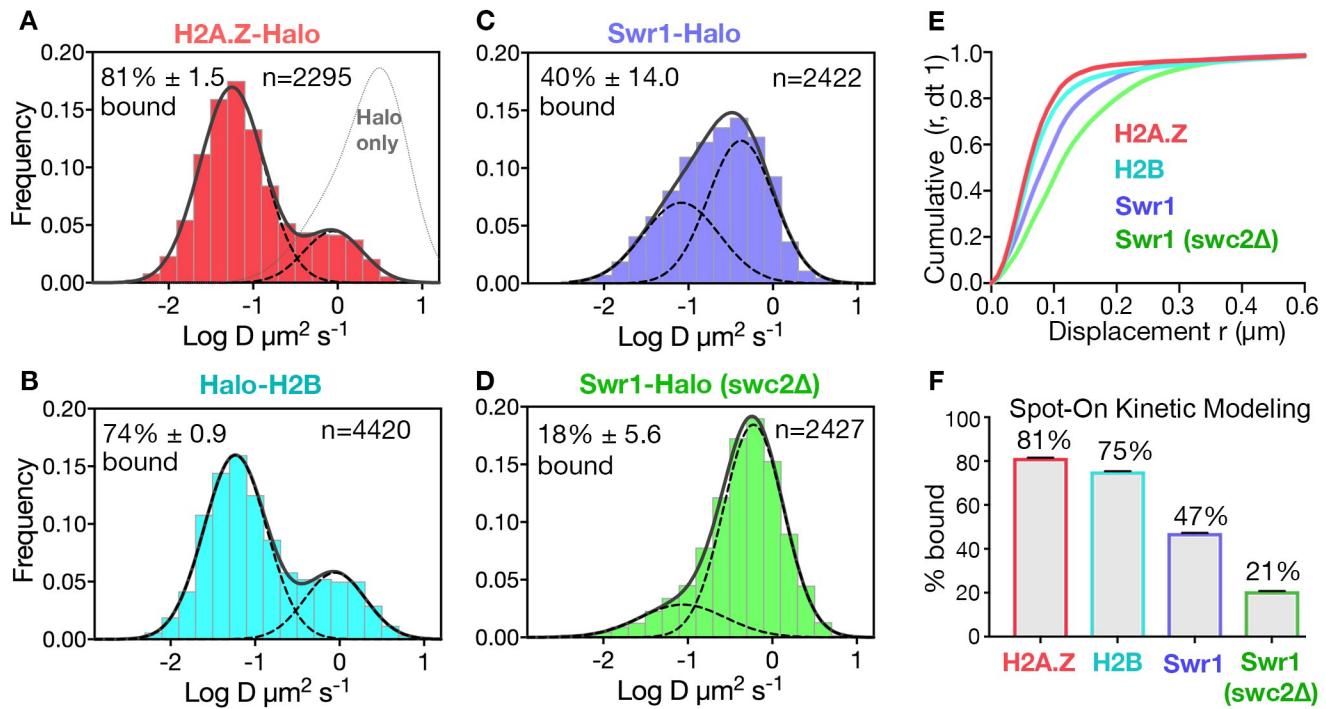
583 Mizuguchi, G., Shen, X., Landry, J., Wu, W.H., Sen, S., and Wu, C. (2004). ATP-driven
584 exchange of histone H2AZ variant catalyzed by SWR1 chromatin remodeling complex.
585 *Science* **303**, 343-348.

586 Mohan, C., Kim, L.M., Hollar, N., Li, T., Paulissen, E., Leung, C.T., and Luk, E. (2018).
587 VivosX, a disulfide crosslinking method to capture site-specific, protein-protein
588 interactions in yeast and human cells. *Elife* **7**.

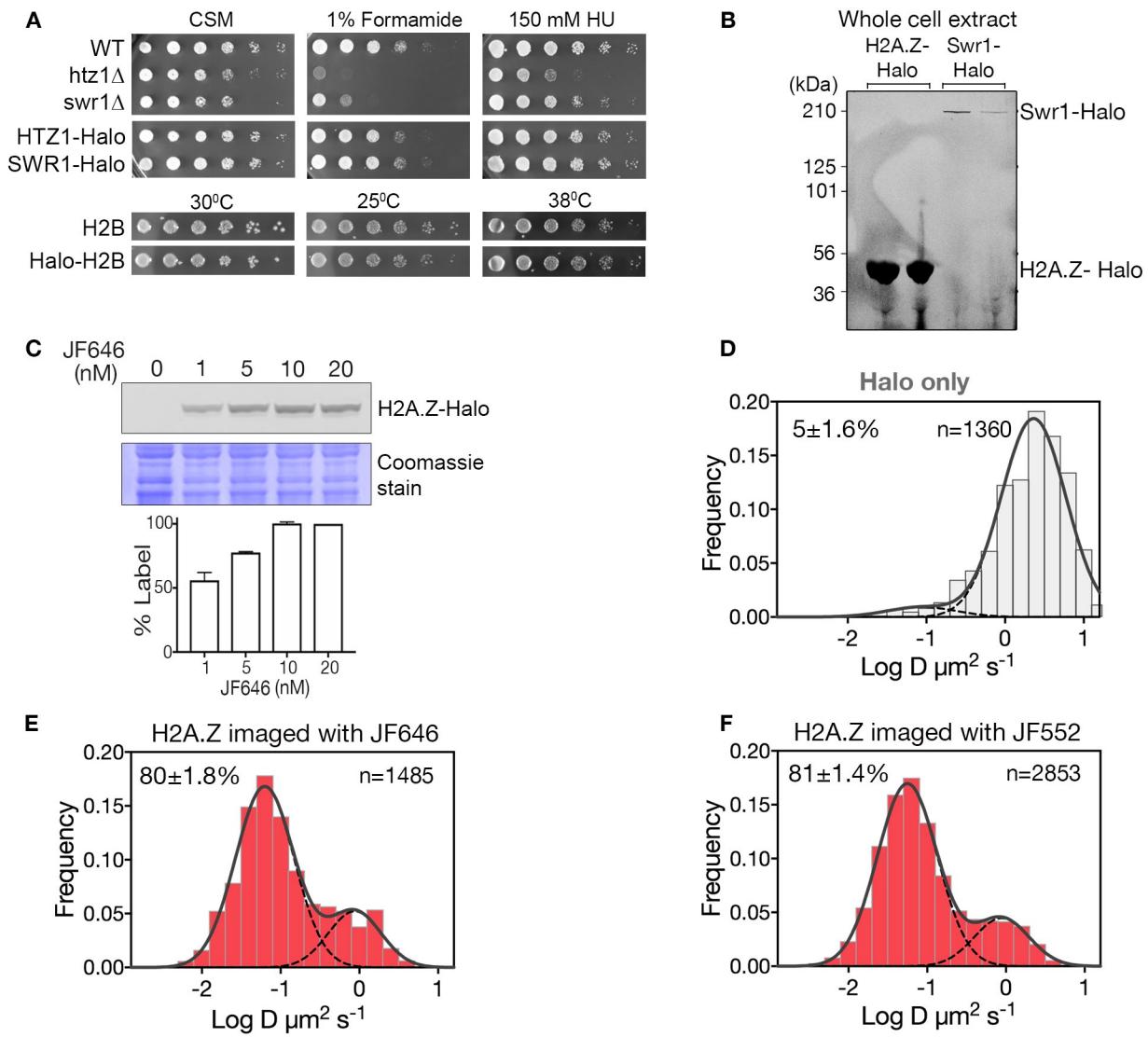
589 Morillo-Huesca, M., Clemente-Ruiz, M., Andujar, E., and Prado, F. (2010). The SWR1
590 histone replacement complex causes genetic instability and genome-wide transcription
591 misregulation in the absence of H2A.Z. *PLoS One* **5**, e12143.

592 Murakami, K., Mattei, P.J., Davis, R.E., Jin, H., Kaplan, C.D., and Kornberg, R.D.
593 (2015). Uncoupling Promoter Opening from Start-Site Scanning. *Mol Cell* **59**, 133-138.

594 Obri, A., Quararhni, K., Papin, C., Diebold, M.L., Padmanabhan, K., Marek, M., Stoll, I.,
595 Roy, L., Reilly, P.T., Mak, T.W., *et al.* (2014). ANP32E is a histone chaperone that
596 removes H2A.Z from chromatin. *Nature* **505**, 648-653.


597 Papamichos-Chronakis, M., Watanabe, S., Rando, O.J., and Peterson, C.L. (2011).
598 Global regulation of H2A.Z localization by the INO80 chromatin-remodeling enzyme is
599 essential for genome integrity. *Cell* **144**, 200-213.

600 Pelechano, V., Wei, W., and Steinmetz, L.M. (2013). Extensive transcriptional
601 heterogeneity revealed by isoform profiling. *Nature* **497**, 127-131.
602 Qian, H., Sheetz, M.P., and Elson, E.L. (1991). Single particle tracking. Analysis of
603 diffusion and flow in two-dimensional systems. *Biophys J* **60**, 910-921.
604 Ranjan, A., Mizuguchi, G., FitzGerald, P.C., Wei, D., Wang, F., Huang, Y., Luk, E.,
605 Woodcock, C.L., and Wu, C. (2013). Nucleosome-free region dominates histone
606 acetylation in targeting SWR1 to promoters for H2A.Z replacement. *Cell* **154**, 1232-
607 1245.
608 Rhee, H.S., and Pugh, B.F. (2012). Genome-wide structure and organization of
609 eukaryotic pre-initiation complexes. *Nature* **483**, 295-301.
610 Rufiange, A., Jacques, P.E., Bhat, W., Robert, F., and Nourani, A. (2007). Genome-
611 wide replication-independent histone H3 exchange occurs predominantly at promoters
612 and implicates H3 K56 acetylation and Asf1. *Mol Cell* **27**, 393-405.
613 Rust, M.J., Bates, M., and Zhuang, X. (2006). Sub-diffraction-limit imaging by stochastic
614 optical reconstruction microscopy (STORM). *Nat Methods* **3**, 793-795.
615 Sainsbury, S., Bernecke, C., and Cramer, P. (2015). Structural basis of transcription
616 initiation by RNA polymerase II. *Nat Rev Mol Cell Biol* **16**, 129-143.
617 Schaugency, P., Merran, J., and Corden, J.L. (2014). Genome-Wide Mapping of Yeast
618 RNA Polymerase II Termination. *Plos Genetics* **10**.
619 Shim, S.H., Xia, C., Zhong, G., Babcock, H.P., Vaughan, J.C., Huang, B., Wang, X., Xu,
620 C., Bi, G.Q., and Zhuang, X. (2012). Super-resolution fluorescence imaging of
621 organelles in live cells with photoswitchable membrane probes. *Proc Natl Acad Sci U S*
622 **A** **109**, 13978-13983.
623 Sun, L., and Luk, E. (2017). Dual function of Swc5 in SWR remodeling ATPase
624 activation and histone H2A eviction. *Nucleic Acids Res* **45**, 9931-9946.
625 Taddei, A., and Gasser, S.M. (2012). Structure and function in the budding yeast
626 nucleus. *Genetics* **192**, 107-129.
627 Tippens, N.D., Vihervaara, A., and Lis, J.T. (2018). Enhancer transcription: what, where,
628 when, and why? *Genes Dev* **32**, 1-3.
629 Tome, J.M., Tippens, N.D., and Lis, J.T. (2018). Single-molecule nascent RNA
630 sequencing identifies regulatory domain architecture at promoters and enhancers. *Nat*
631 *Genet* **50**, 1533-1541.
632 Tramantano, M., Sun, L., Au, C., Labuz, D., Liu, Z., Chou, M., Shen, C., and Luk, E.
633 (2016). Constitutive turnover of histone H2A.Z at yeast promoters requires the
634 preinitiation complex. *Elife* **5**.
635 Vallotton, P., and Olivier, S. (2013). Tri-track: free software for large-scale particle
636 tracking. *Microsc Microanal* **19**, 451-460.
637 Wang, F., Ranjan, A., Wei, D., and Wu, C. (2016). Comment on "A histone acetylation
638 switch regulates H2A.Z deposition by the SWR-C remodeling enzyme". *Science* **353**,
639 358.
640 Watanabe, S., Radman-Livaja, M., Rando, O.J., and Peterson, C.L. (2013). A histone
641 acetylation switch regulates H2A.Z deposition by the SWR-C remodeling enzyme.
642 *Science* **340**, 195-199.
643 Weber, C.M., and Henikoff, S. (2014). Histone variants: dynamic punctuation in
644 transcription. *Genes Dev* **28**, 672-682.


645 Wong, K.H., Jin, Y., and Struhl, K. (2014). TFIIH phosphorylation of the Pol II CTD
646 stimulates mediator dissociation from the preinitiation complex and promoter escape.
647 *Mol Cell* 54, 601-612.

648 Yen, K., Vinayachandran, V., and Pugh, B.F. (2013). SWR-C and INO80 chromatin
649 remodelers recognize nucleosome-free regions near +1 nucleosomes. *Cell* 154, 1246-
650 1256.

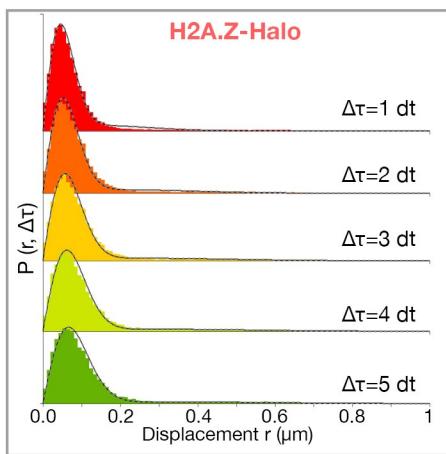
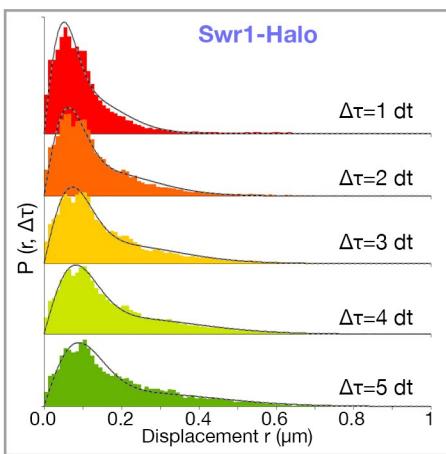
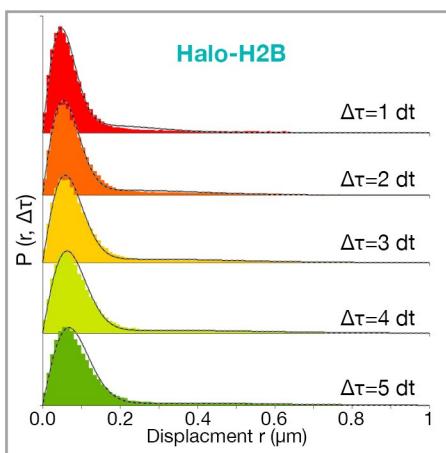
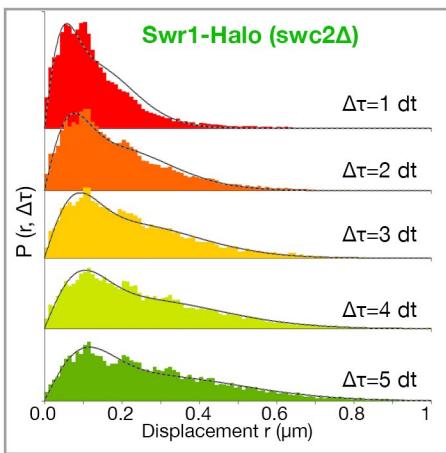




651 Zheng, Q., Ayala, A.X., Chung, I., Weigel, A.V., Ranjan, A., Falco, N., Grimm, J.B.,
652 Tkachuk, A.N., Wu, C., Lippincott-Schwartz, J., *et al.* (2019). Rational Design of
653 Fluorogenic and Spontaneously Blinking Labels for Super-Resolution Imaging. *ACS*
654 *Cent Sci* 5, 1602-1613.

Fig. 1

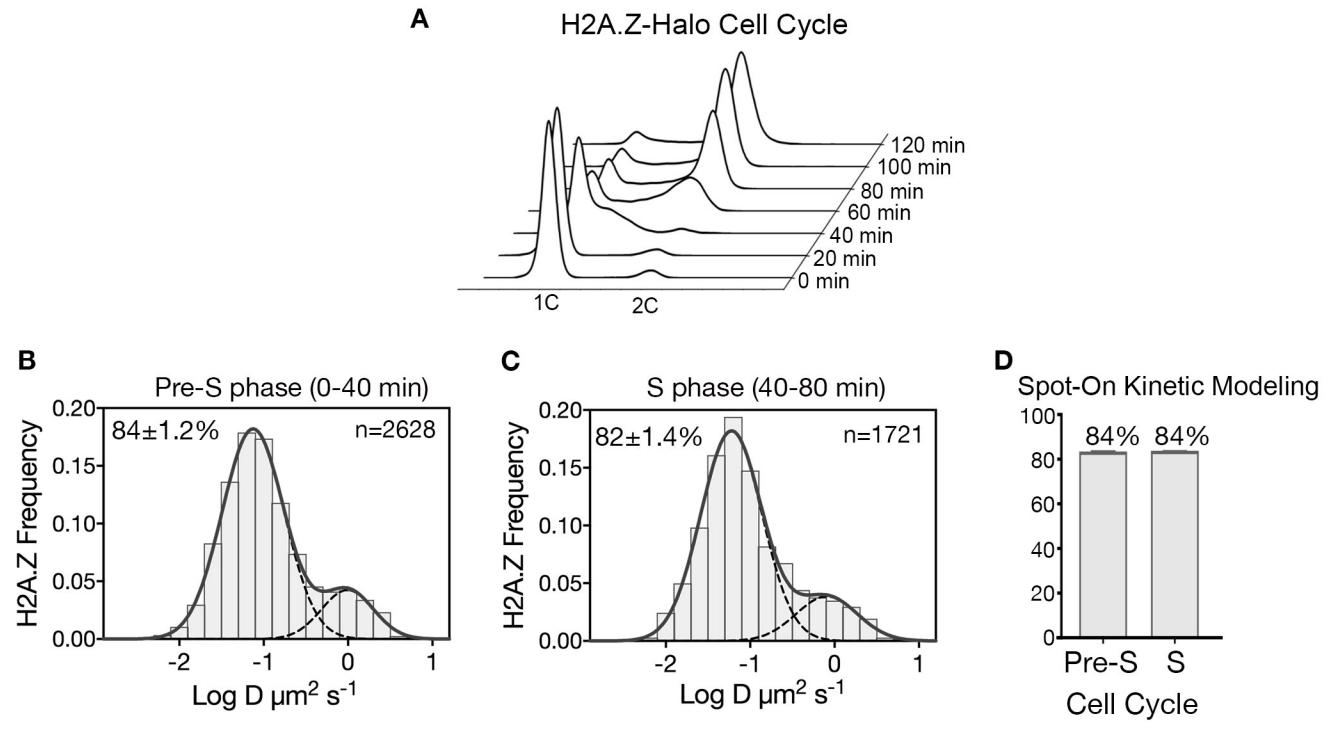
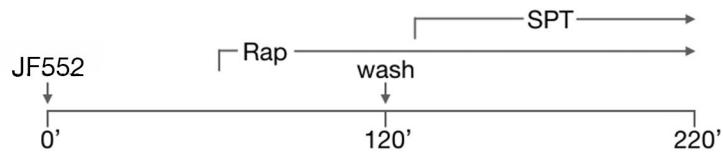
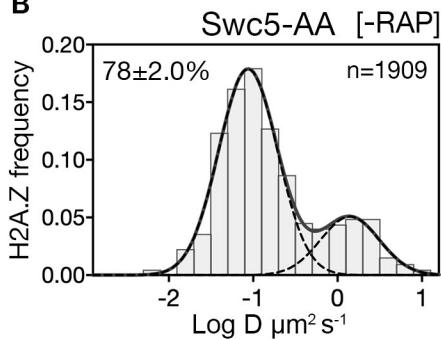
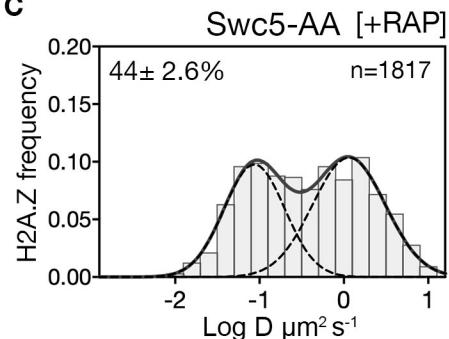
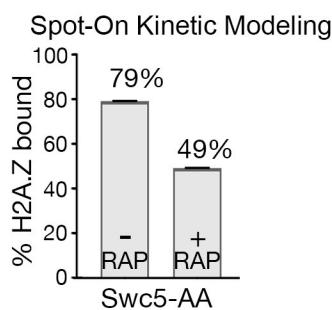
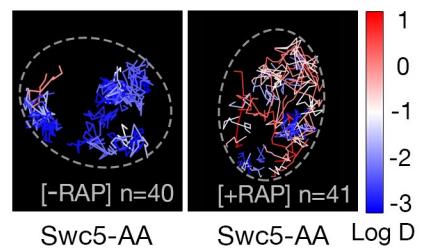
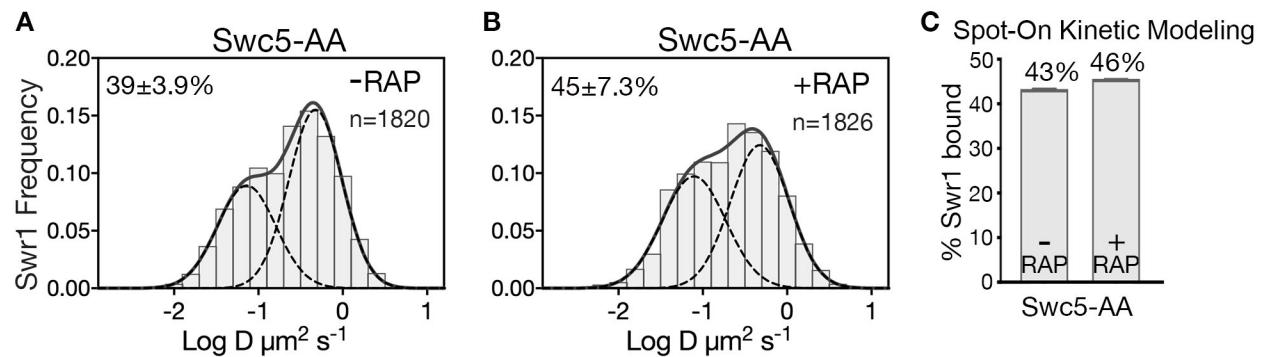


Fig. S1.1





A**C****B****D****E**

	MSD			Spot-On		
	D bound ($\mu\text{m}^2 \text{s}^{-1}$)	D free ($\mu\text{m}^2 \text{s}^{-1}$)	% bound	D bound ($\mu\text{m}^2 \text{s}^{-1}$)	D free ($\mu\text{m}^2 \text{s}^{-1}$)	% bound
H2A.Z	0.056 ± 0.002	0.886 ± 0.066	80.5 ± 1.54	0.029 ± 0.0002	1.177 ± 0.009	81.7 ± 0.07
H2B	0.058 ± 0.001	0.888 ± 0.039	73.9 ± 0.99	0.028 ± 0.0002	1.286 ± 0.008	75.6 ± 0.06
Swr1	0.082 ± 0.028	0.419 ± 0.066	39.7 ± 14.07	0.063 ± 0.0003	0.618 ± 0.002	47.2 ± 0.11
Swr1 (swc2Δ)	0.087 ± 0.034	0.598 ± 0.026	18.0 ± 5.64	0.070 ± 0.0001	0.766 ± 0.001	20.7 ± 0.07


Fig. S1.2


Fig. S1.3

A**B****C****D****E**

H2A.Z tracks in nuclei

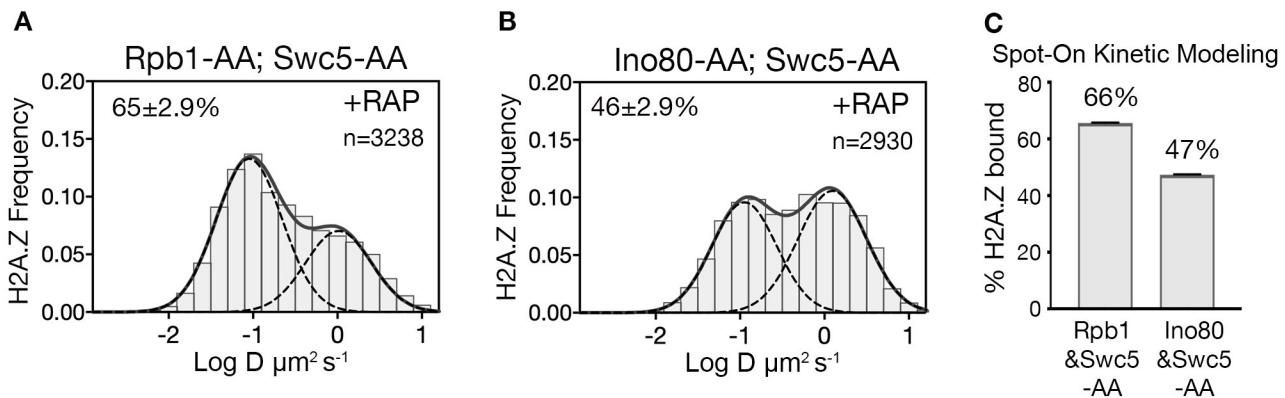


Fig. 2

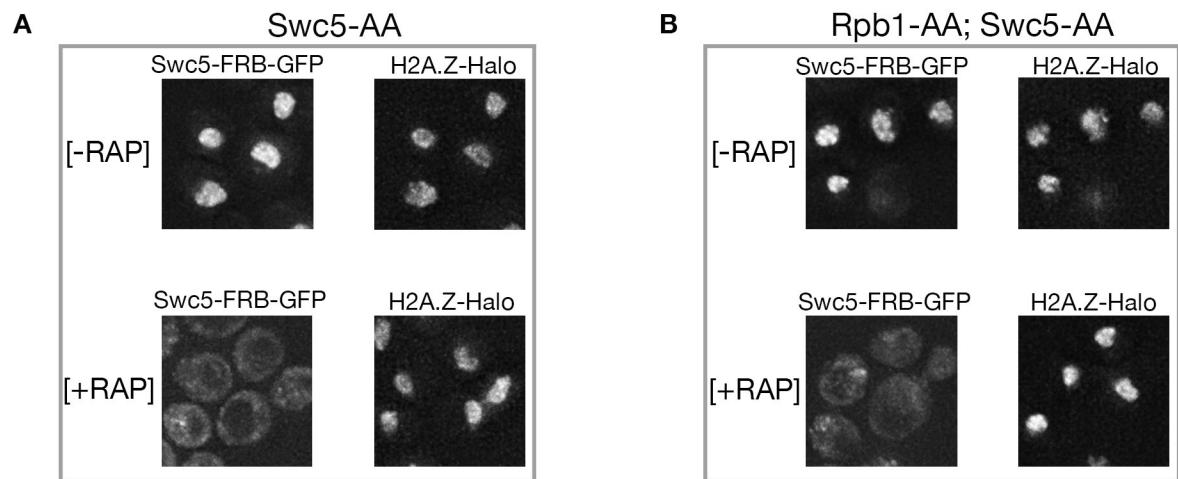
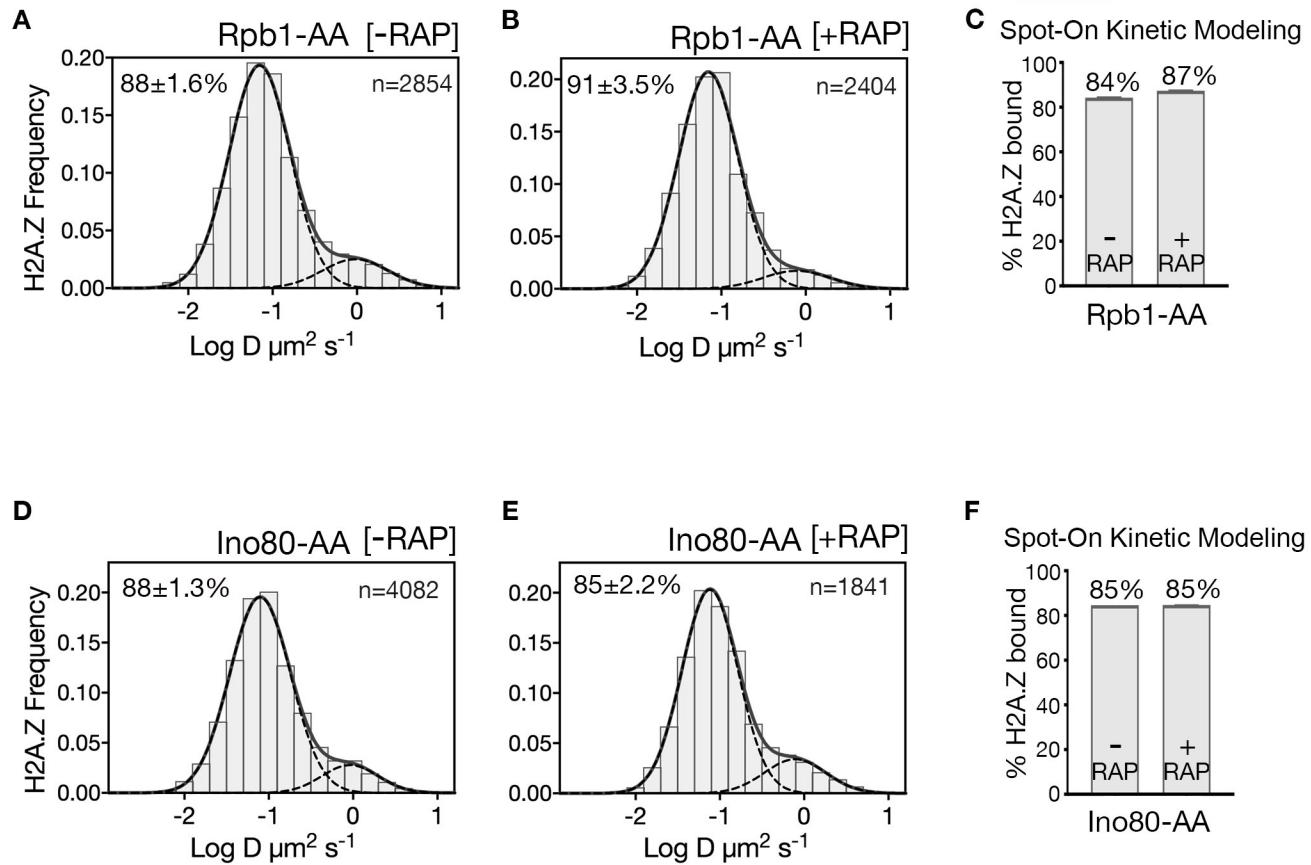
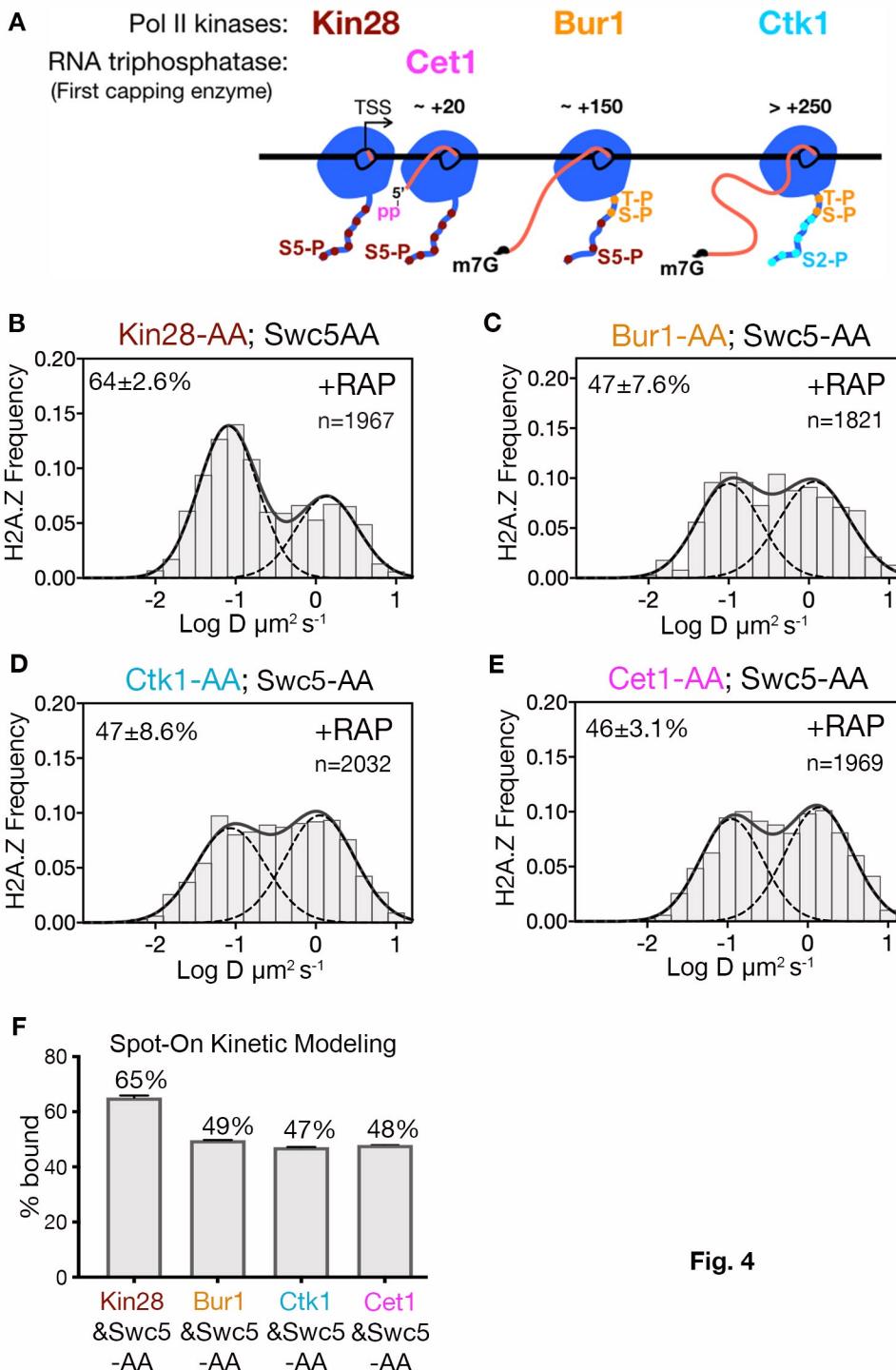


Fig. S2.1


Double AA conditions below to be compared with Fig. 2C,D


Fig. 3

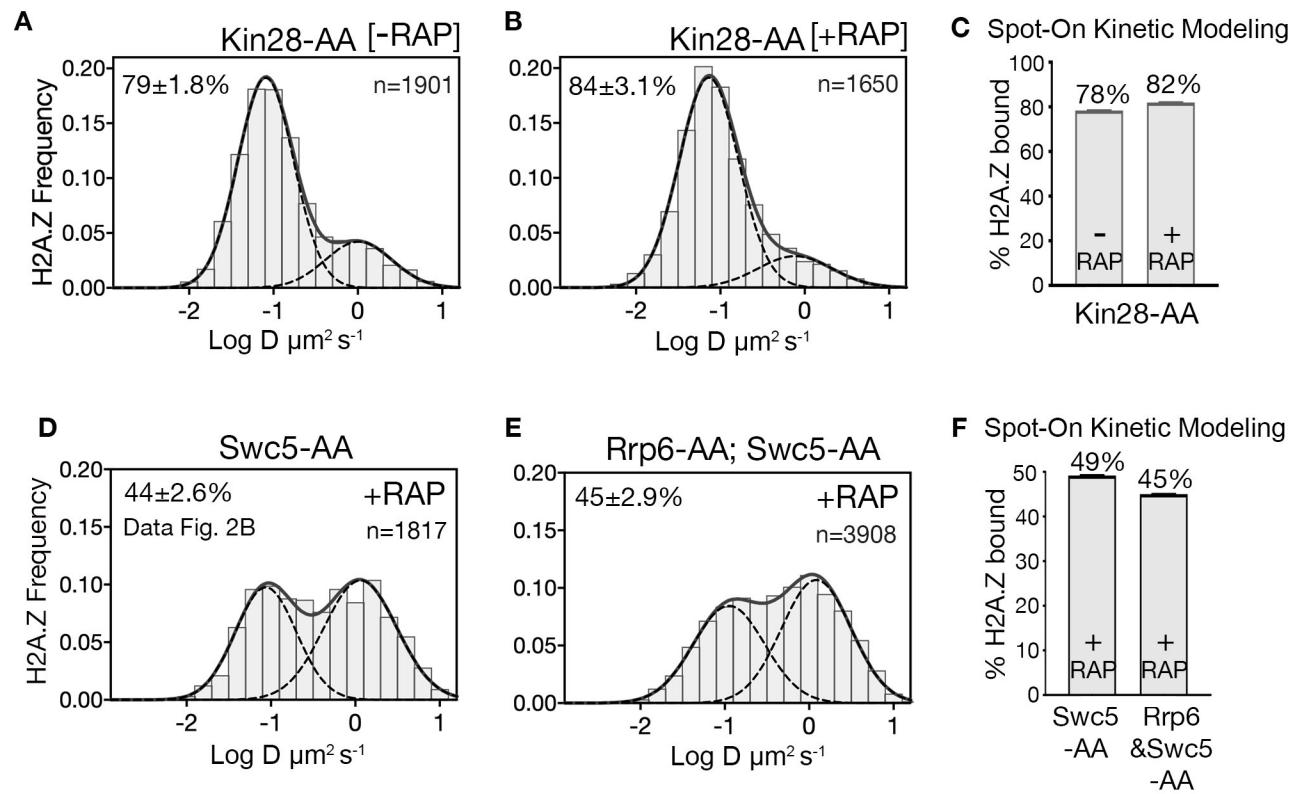

Fig. S3.1

Fig. S3.2

Fig. 4

Fig. S4.1

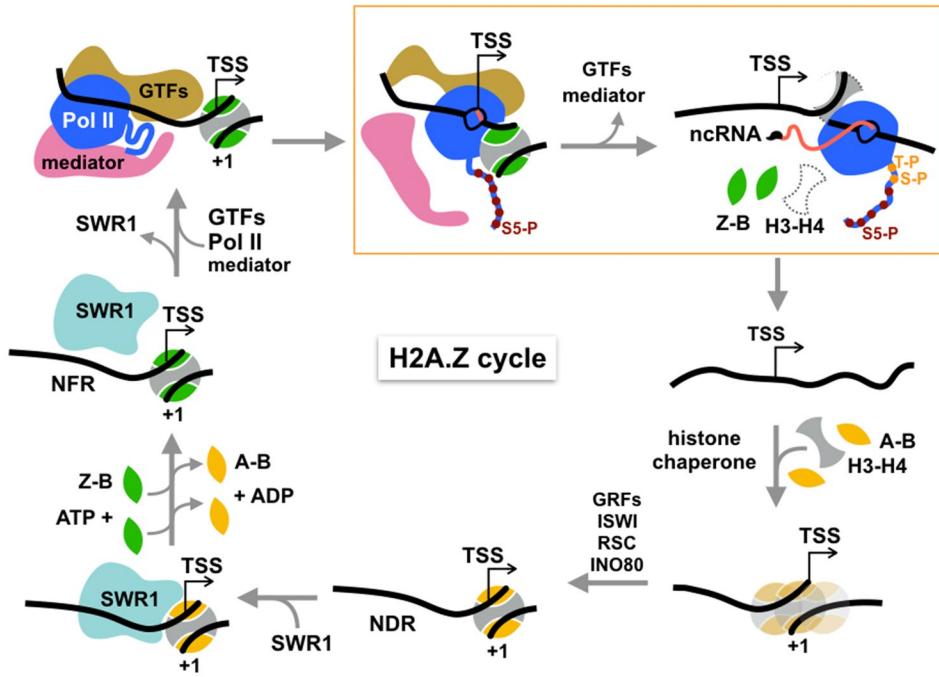


Fig. 5