

1 **Reversal of β -amyloid induced microglial toxicity *in vitro* by activation of Fpr2/3**

2
3 Edward S. Wickstead^{1,2}, Husnain A. Karim¹, Roberta E. Manuel¹, Christopher Biggs², Stephen
4 J. Getting² & Simon McArthur^{1,*}

5
6 ¹Institute of Dentistry, Barts & the London School of Medicine & Dentistry, Queen Mary,
7 University of London, Blizard Institute, 4, Newark Street, London, E1 2AT, UK

8 ²College of Liberal Arts & Sciences, University of Westminster, 115, New Cavendish Street,
9 London W1W 6UW, UK

10
11 * Correspondence to Dr Simon McArthur, s.mcarthur@qmul.ac.uk

12
13
14
15
16
17

18 **Abstract**

19

20 **Background and Purpose**

21 Microglial inflammatory activity is thought to be a major contributor to the pathology of
22 neurodegenerative conditions such as Alzheimer's disease (AD), and strategies to restrain
23 their behaviour are under active investigation. Classically, anti-inflammatory approaches aim
24 to suppress pro-inflammatory mediator production, but exploitation of inflammatory resolution,
25 the endogenous process whereby an inflammatory reaction is terminated, has not been fully
26 investigated as a therapeutic approach in AD. In this study, we sought to provide proof-of-
27 principal that the major pro-resolving actor, formyl peptide receptor 2, Fpr2, could be targeted
28 to reverse microglial activation induced by the AD-associated pro-inflammatory stimulus,
29 oligomeric β -amyloid (oA β).

30

31 **Experimental Approach**

32 The immortalised murine microglial cell line BV2 was employed as a model system to
33 investigate the pro-resolving effects of the Fpr2 ligand QC1 upon oA β -induced inflammatory,
34 oxidative and metabolic behaviour. Cytotoxic behaviour of BV2 cells was assessed through
35 use of co-cultures with retinoic acid-differentiated human SH-SY5Y cells.

36

37 **Key Results**

38 Stimulation of BV2 cells with oA β at 100nM did not induce classical inflammatory marker
39 production but did stimulate production of reactive oxygen species (ROS), an effect that could
40 be reversed by subsequent treatment with the Fpr2 ligand QC1. Further investigation revealed
41 that oA β -induced ROS production was associated with NADPH oxidase activation and a shift
42 in BV2 cell metabolic phenotype, activating the pentose phosphate pathway and NADPH
43 production, changes that were again reversed by QC1 treatment. Microglial oA β -stimulated
44 ROS production was sufficient to induce apoptosis of bystander SH-SY5Y cells, an effect that
45 could be prevented by QC1 treatment.

46

47 **Conclusion and Implications**

48 In this study, we provide proof-of-concept data that indicate exploitation of the pro-resolving
49 receptor Fpr2 can reverse damaging oA β -induced microglial activation. Future strategies
50 aiming to restrain neuroinflammation in conditions such as AD should examine pro-resolving
51 actors as a mechanism to harness the brain's endogenous healing pathways and limit
52 neuroinflammatory damage.

53

54 **Keywords:** Fpr2/3, Microglia, Oxidative stress, Alzheimer's disease

55 **Background**

56

57 AD is the single greatest cause of dementia, affecting approximately 4% of individuals aged
58 over 65 years and with a global disease burden of around 37 million individuals [1]. This figure
59 is set to increase as the population ages, and is expected to reach around 78 million people
60 by 2050 [2]. There are currently no effective treatments for the condition.

61

62 Whilst the two core pathological lesions of AD, extracellular β -amyloid (A β) plaques and
63 intraneuronal tau tangles, have long been studied, the contribution to pathology provided by
64 neuroinflammation, and the role of the microglia in AD pathogenesis, has only recently been
65 appreciated [3,4]. Several lines of evidence indicate a pathological role for microglial activity:
66 studies of genetic risk factors for idiopathic AD have identified numerous immune-related risk
67 loci, clinical imaging studies indicate a positive correlation between microglial activity and both
68 A β load and neurodegeneration [5], and chronic neuroinflammation is a feature of multiple
69 independent animal models of the disease [6]. More directly, A β can act as a damage-
70 associated molecular pattern [7], stimulating microglial activation through a range of different
71 receptors, including the receptor for advanced glycation end products, toll-like receptors, and
72 CD36 [8].

73

74 Under normal conditions, inflammation is self-resolving, with numerous factors acting to
75 'switch off' inflammatory processes [9]. A central actor in this process is the G protein-coupled
76 receptor formyl peptide receptor 2 (FPR2) or its murine functional homologues Fpr2/3 [10].
77 Strong evidence exists for the pro-resolving potential of this receptor in peripheral
78 inflammation, where it promotes neutrophil apoptosis [11], and regulates
79 monocyte/macrophage recruitment [12,13], phenotype [14] and behaviour [15]. Importantly,
80 protective effects have been identified for this receptor in diverse inflammatory settings,
81 including sepsis [16], heart failure [17] and atherosclerosis [18].

82

83 Expression of FPR2 within the brain has been reported in the endothelium and in selected
84 hippocampal and cerebellar neurones [19], but it is also expressed by microglia [20], and is
85 rapidly upregulated following inflammatory insult [21]. Significantly, FPR2 expression has
86 been reported in inflammatory cells infiltrating A β plaques in AD [22], is involved in chemotaxis
87 to high concentrations of A β [23] and has been indirectly implicated in microglial A β
88 phagocytosis [24]. Given the importance of this receptor in the resolution of peripheral
89 inflammation, we hypothesised that FPR2 agonists would be able to reverse the pro-
90 inflammatory effects of A β upon microglia, restoring normal homeostasis.

91

92 **Methods**

93

94 *Drugs & Reagents*

95 The FPR2 agonist Quin-C1 (QC1; 4-Butoxy-N-[1,4-dihydro-2-(4-methoxyphenyl)-4-oxo-
96 3(2H)-quinazolinyl]benzamide) and antagonist WRW₄ (Trp-Arg-Trp-Trp-Trp-NH₂) were
97 purchased from Tocris Ltd, UK. Isolated and purified lipopolysaccharides developed in
98 *Escherichia coli*, serotype O111:B4 were purchased from Perck Millipore, Ltd, UK. HFIP-
99 treated human A β ₁₋₄₂ peptide was purchased from JPT Peptide Technologies, Berlin,
100 Germany.

101

102 *A β oligomerisation*

103 HFIP-treated A β ₁₋₄₂ stored at -80°C in DMSO was oligomerised by dilution and vortexing in
104 PBS followed by incubation overnight at 4°C [25]. Oligomer formation was confirmed by native
105 Tricine-SDS-polyacrylamide gel electrophoresis. Briefly, 2 μ g oligomeric A β (oA β) was
106 resuspended in non-denaturing sample buffer (62.5 mM Tris-base, 25% glycerol, 1% (w/v)
107 Coomassie Blue R-250) and loaded onto a 10% acrylamide:bis-acrylamide gel and separated
108 by electrophoresis alongside molecular weight markers. Gels were incubated with Coomassie
109 stain (60mg/l Coomassie Blue R-250, 10% v/v acetic acid, both Sigma, UK) Following 24h de-
110 staining in 10% v/v acetic acid, 50% v/v methanol (Sigma, UK), gels were imaged using a
111 ChemiDoc MP Imaging System (Bio-Rad Ltd., UK). Oligomeric A β migrated at approximately
112 35kDa, indicating the presence of hexamers/heptamers (Supplemental Figure 1).

113

114 *Cell culture*

115 The murine microglial line BV2 were a generous gift from Prof. E. Blasi (Università degli Studi
116 di Modena e Reggio Emilia, Italy); the human neuroblastoma SH-SY5Y line was purchased
117 from the European Collection of Authenticated Cell Cultures (ECACC, Salisbury, UK). Both
118 lines were cultured in DMEM medium supplemented with 5% fetal calf serum and 100 μ M
119 non-essential amino acids, 2 mM L-alanyl-L-glutamine and 50 mg/ml penicillin-streptomycin
120 (all ThermoFisher Scientific, UK) at 37°C in a 5% CO₂ atmosphere. SH-SY5Y cells were
121 differentiated to a neurone-like phenotype prior to experimentation by incubation with 10 μ M
122 trans-retinoic acid (Sigma, UK) for 5 days [26].

123

124 *Reactive oxygen species (ROS) assays*

125 Total intracellular ROS production was quantified using 6-chloromethyl-2',7'-
126 dichlorodihydrofluorescein diacetate, acetyl ester (CM-H₂DCFDA; ThermoFisher Scientific,
127 UK) according to the manufacturer's recommendations. Briefly, cells were plated at 200,000
128 cells/cm² in phenol red-free DMEM, serum starved overnight and pre-loaded with 5 μ M CM-

129 H₂DCFDA for 20 minutes at 37°C. Following removal of unbound dye, fresh phenol red free-
130 DMEM was added and experimental treatments were begun. Following administration of
131 treatments, cellular fluorescence was determined every 5 minutes for 1 hr at 37°C using a
132 CLARIOstar fluorescence microplate reader (BMG Labtech, Germany) with excitation and
133 emission filters set at 492nm and 517nm respectively.

134

135 Mitochondrial superoxide production was quantified using the tracer MitoSOX Red
136 (Thermofisher Scientific, UK) according to the manufacturer's recommendations and a loading
137 concentration of 2.5 µM. Following administration of treatments, cellular fluorescence was
138 determined every 5 minutes for 1 hr at 37°C using a CLARIOstar fluorescence microplate
139 reader (BMG Labtech, Germany) with excitation and emission filters set at 510nm and 580nm
140 respectively.

141

142 Hydrogen peroxide production was quantified using the ROS-Glo H₂O₂ assay (Promega,
143 Southampton, UK) according to the manufacturer's recommendations. Following experimental
144 treatment, luminescence of cell lysates at 37°C was determined using a CLARIOstar
145 luminescence microplate reader (BMG Labtech, Germany), in comparison to a H₂O₂ standard
146 curve (0.013 µM – 10 mM).

147

148 *GSH:GSSG ratio analysis*

149 The ratio of reduced (GSH) to oxidised (GSSG) glutathione was determined using a
150 commercial assay (GSH:GSSG-Glo assay, Promega Co, Southampton, UK) according to the
151 manufacturer's instructions, with cells plated at 200,000 cells/cm² on black walled 96-well
152 plates. A CLARIOstar spectrophotometer (BMG Labtech, Germany) was used to measure
153 relative luminescence with comparison to a total glutathione standard curve (0.25 µM – 16
154 µM).

155

156 *Cytokine ELISA*

157 Tumour necrosis factor alpha (TNF α), was assayed by murine-specific sandwich ELISA using
158 commercially available kits, according to the manufacturer's protocols (ThermoFisher
159 Scientific, UK). A CLARIOstar spectrophotometer (BMG Labtech, Germany) was used to
160 measure absorbance at 450 nm.

161

162 *E. coli* bioparticle phagocytosis

163 Microglial phagocytic capacity was determined using BODIPY-FL conjugated *Escherichia coli*
164 (K-12 strain) bioparticles (ThermoFisher Scientific, UK). Following experimental treatments,
165 cells were incubated with bioparticle conjugates at a ratio of 50 particles per cell in PBS for 30

166 minutes at 37°C in the dark. Cells were washed, fluorescence of non-engulfed particles was
167 quenched by addition of 0.2% Trypan blue (ThermoFisher Scientific, UK) for 1 min, and cellular
168 fluorescence was determined using a FACS Canto II flow cytometer (BD Biosciences, UK)
169 equipped with a 488nm laser and FlowJo 8.8.1 software (Treestar Inc. FL, USA). A total of
170 10,000 singlet events per sample were quantified.

171

172 *Flow cytometry*

173 BV2 or SH-SY5Y cells alone or in co-culture were labelled with APC-conjugated rat
174 monoclonal anti-mouse CD11b, PE-Cy7-conjugated rat monoclonal anti-mouse CD40
175 (Biolegend, UK) or PerCP-Cy5.5-conjugated mouse monoclonal anti-human CD200 (all
176 Biolegend, UK) for analysis by flow cytometry. Immunofluorescence was analysed for 10,000
177 singlet events per sample using a BD FACSCanto II (BD Biosciences, UK) flow cytometer;
178 data were analysed using FlowJo 8.8.1 software (Treestar Inc., CA, USA).

179

180 *Annexin A5 apoptosis assay*

181 SH-SY5Y cells were differentiated as described above and treated according to experimental
182 design, either alone or in co-culture with BV2 cells. cultures were in PBS, detached using a
183 cell scraper and incubated with FITC-conjugated annexin A5 (0.45 µg/ml in 0.01 M PBS, 0.1%
184 bovine serum albumin, 1 mM CaCl₂), and in the case of co-cultures, APC-conjugated rat
185 monoclonal anti-mouse CD11b and PerCP-Cy5.5-conjugated mouse monoclonal anti-human
186 CD200 (all Biolegend, UK) on ice in the dark for 30 min. Samples were washed and analysed
187 by flow cytometry. Immunofluorescence was analysed for 10,000 singlet events per sample
188 using a BD FACSCanto II (BD Biosciences, UK) flow cytometer; data were analysed using
189 FlowJo 8.8.1 software (Treestar Inc., CA, USA).

190

191 *Western blot analysis*

192 Samples boiled in 6× Laemmli buffer were subjected to standard SDS-PAGE (10%) and
193 electrophoretically blotted onto Immobilon-P polyvinylidene difluoride membranes (Merck,
194 UK). Total protein was quantified using Ponceau S staining (Merck, UK) and membranes were
195 blotted using antibodies raised against murine haem oxygenase-1 (HO-1; rabbit polyclonal,
196 1:1000, Cell Signaling Technology, Leiden, The Netherlands) or superoxide dismutase 2
197 (SOD2; rabbit monoclonal, 1:1000, Cell Signaling Technology, Leiden, The Netherlands) in
198 Tris-buffer saline solution containing 0.1% Tween-20 and 5% (w/v) non-fat dry milk overnight
199 at 4°C. Membranes were washed with Tris-buffer saline solution containing 0.1% Tween-20,
200 and incubated with secondary antibody (horseradish peroxidase-conjugated goat anti-rabbit
201 1:5,000; ThermoFisher Scientific, UK), for 90 min at room temperature. Proteins were then
202 detected using enhanced chemiluminescence detection (2.5 mM luminol, 0.4 mM p-coumaric

203 acid, 7.56 mM H₂O₂ in 1 M Tris, pH 8.5) and visualised on X-ray film (Scientific Laboratory
204 Supplies Limited, Nottingham, UK). Films were digitized and analysed using ImageJ 1.51w
205 software (National Institutes of Health).

206

207 *Immunofluorescence & confocal microscopy*

208 Following experimental treatment, BV2 cells cultured in chambered microslides were fixed by
209 incubation in 2% formaldehyde in PBS for 10 min at 4°C, washed and non-specific antibody
210 binding was minimised by incubation for 30 min at room temperature in PBS containing 10%
211 FCS and 0.05% Triton X-100 (all ThermoFisher Scientific, UK). Cells were then incubated with
212 rabbit anti-mouse p67Phox monoclonal antibody (1:500, clone EPR5064, Abcam Ltd,
213 Cambridge, UK) and mouse anti-mouse gp91phox monoclonal antibody (1:50, clone 53, BD
214 Biosciences, UK) overnight at 4°C in PBS with 1% FCS and 0.05% Triton X-100. Cells were
215 washed and incubated with AF488-conjugated goat anti-mouse and AF647-conjugated goat
216 anti-rabbit secondary antibodies (both 1:500, ThermoFisher Scientific, UK) in PBS with 1%
217 FCS and 0.05% Triton X-100 at room temperature for 1 hr. Cells were washed with PBS,
218 nuclei were defined by incubation with 180 nM DAPI in ddH₂O for 5 min, and cells were
219 mounted under Mowiol mounting solution. Cells were imaged using an LSM710 confocal
220 microscope (Leica, UK) fitted with 405nm, 488nm and 647nm lasers and a 63x oil immersion
221 objective lens (NA 1.4mm, working distance 0.17mm). Images were captured with ZEN Black
222 software (Zeiss, Cambridge, UK) and analysed with ImageJ 1.51w (National Institutes of
223 Health, USA).

224

225 *Glucose 6-phosphate dehydrogenase activity assay*

226 Glucose 6-phosphate dehydrogenase (G6PD) activity was assessed using a commercial
227 assay (Cell Signalling Technology, UK) according to the manufacturer's instructions. Following
228 treatment according to experimental design, cells were lysed by ultrasonication (2 x 20s at
229 20kHz) in assay lysis buffer (22 mM Tris-HCl, 150 mM NaCl, 1 mM Na₂EDTA, 1 mM EGTA,
230 1% Triton X-100, 20 mM sodium pyrophosphate, 25 mM sodium fluoride, 1 mM β-
231 glycerophosphate, 1 mM sodium orthovanadate, 1 µg/ml leupeptin, 1 mM phenylmethane
232 sulfonyl fluoride, pH 7.5, 4°C) using a Soniprep 150 (BMG Labtech, UK), centrifuged at
233 14000g and 4°C for 10 min, and lysates were collected. Samples were diluted to 0.2 mg/ml in
234 assay buffer, incubated at 37°C for 15 min with assay substrate and fluorescence analysed
235 using a CLARIOstar spectrophotometer (BMG Labtech, Germany) with excitation and
236 emission filters set at 540nm and 590nm respectively.

237

238 *Mitochondrial function assay*

239 Mitochondrial function was assessed using a Seahorse XF24 cell MitoStress Test (Agilent
240 Technologies, California, USA) according to the manufacturer's instructions. BV2 cells plated
241 at 2×10^6 cells/cm² were serum starved overnight and treated according to experimental
242 design. Medium was replaced with Seahorse XF DMEM supplemented with 1 g/L glucose and
243 1 mM sodium pyruvate, pH 7.4 (Sigma, UK) and cells were incubated at 37°C without CO₂ for
244 45 min prior to analysis of oxygen consumption rate (OCR) and extracellular acidification rate
245 (ECAR). Basal respiration was initially determined prior to subsequent serial cellular
246 treatments with 4 μ M oligomycin, 0.6 μ M FCCP and 1 μ M rotenone/antimycin A to measure
247 ATP production, maximal respiratory capacity and non-mitochondrial respiration, respectively.
248 For each treatment, readings were taken in triplicate every 5 min. Cells were lysed in RIPA
249 buffer and protein content was assessed by Bradford's method for sample normalisation.
250 Rates of glycolytic and oxidative ATP production were then calculated as described in [27].
251

252 *Statistical analysis*

253 Sample sizes were calculated to detect differences of 15% or more with a power of 0.85 and
254 α set at 5%, calculations being informed by previously published data [28,29]. All experimental
255 data are presented as mean \pm SEM, repeated using a minimum of $n = 3$ independent culture
256 flasks; assays were performed in triplicate. In all cases, normality of distribution was
257 established using the Shapiro–Wilk test, followed by analysis with two-tailed Student's t tests
258 to compare two groups or, for multiple comparison analysis, one- or two-way ANOVA followed
259 by Tukey's HSD *post hoc* test, a $p < 0.05$ was considered statistically significant. All statistical
260 analysis was performed using Graph Pad Prism 8 software (GraphPad Software, CA, USA).
261

262 **Results**

263

264 *AD-relevant concentrations of A β do not induce an inflammatory response in BV2 microglia*
265 Whilst many studies have investigated the toxic properties of A β , these have in general used
266 micromolar concentrations of the peptide, levels which are unlikely to be achieved until the
267 end stages of AD [30]. We sought to determine the potential of Fpr2/3 as a target to control
268 A β -driven inflammation earlier in the disease process when oligomeric A β is found in the
269 nanomolar range [30], hence we characterised the inflammatory response of BV2 cells to AD-
270 relevant concentrations of A β . Initial studies identified a clear dose-dependent increase in BV2
271 cell reactive oxygen species (ROS) production upon A β stimulation (Figure 1A), with 100 nM
272 A β stimulating an approximately 2.5 fold increase; this concentration of A β was thus used for
273 further investigation.
274

275 In contrast to ROS production however, 100 nM A β did not elicit other inflammatory changes
276 in BV2 cells, whether assessed through production of the major inflammatory cytokine TNF α
277 (Figure 1B), induction of the inflammatory surface phenotypic marker CD40 (Figure 1C) or
278 phagocytosis of labelled *E. coli* bioparticles (Figure 1D). This was in marked contrast to the
279 effects of bacterial lipopolysaccharide (LPS) which was able to evoke a clear inflammatory
280 response from BV2 cells (Figure 1B-D).

281

282 *oA β induces ROS production through NADPH oxidase activation, a response reversed by
283 Fpr2/3 agonist treatment*

284 Microglial ROS production via the enzyme NADPH oxidase, also termed NOX2, is a key
285 response to inflammatory stimuli, primarily serving as an antimicrobial defence mechanism
286 [31]. There is evidence for activation of this enzyme in AD [32], hence we investigated whether
287 this was also the cellular source of ROS in our model. ROS production induced by stimulation
288 with 100 nM oA β was sensitive to inclusion of two different NADPH oxidase inhibitors, 1 μ M
289 diphenylene iodonium and 1 μ g/ml apocynin (Figure 2A-B), strongly suggesting the
290 involvement of this enzyme. NADPH oxidase is not the only potential cellular source of ROS
291 however, with mitochondrial superoxide production playing a significant part in many
292 physiological and pathological processes [33]. However, examination of BV2 cells stimulated
293 with 100 nM oA β found no change in mitochondrial superoxide production over 1 hr
294 (Supplemental Figure 2A), whereas exposure to the mitochondrial complex I inhibitor rotenone
295 (1 μ M) resulted in a clear increase mitochondrial superoxide production compared to untreated
296 (Supplemental Figure 2A-2B).

297

298 Having previously showing that BV2 cells express murine Fpr2/3 [28], we investigated whether
299 activation of this receptor could reverse oA β -induced ROS production. Treatment of cells with
300 the Fpr2/3 specific agonist QC1 (100nM), delivered 10 min after oA β -stimulation restored ROS
301 production to baseline levels (Figure 2C-2D). Moreover, this effect was sensitive to pre-
302 treatment with the Fpr2/3 specific antagonist WRW₄ at 10 μ M (Figure 2E). Notably, production
303 of ROS in response to oA β itself was not affected by WRW₄ inclusion, indicating that oA β is
304 not in this case signalling through Fpr2/3 (Figure 2E). Confirming these data, measurement of
305 total cellular H₂O₂ revealed that whilst this species was undetectable in unstimulated cells,
306 oA β treatment caused significant production, an effect reversed by treatment with QC1 (Figure
307 2F).

308

309 NADPH oxidase is a multi-subunit enzyme, with its activation requiring the translocation of a
310 p67 subunit from the cytosol to associate with the plasma membrane-bound gp91 subunit [32].
311 Confocal microscopic analysis of BV2 cells stimulated with 100 nM oA β indicated a clear

312 appearance of co-localised p67phox and gp91phox signal at the plasma membrane of the
313 cells, an effect that was again prevented by subsequent treatment (10 min post-oA β) with 100
314 nM QC1 (Figure 2G).

315

316 *Fpr2/3 stimulation does not modify major cellular antioxidant systems*

317 Whilst we have shown the Fpr2/3 agonist QC1 to reverse oA β -induced NADPH oxidase
318 activation and ROS production, it is plausible that this could also be achieved through
319 activation of intracellular antioxidant systems. However, neither the ratio of reduced to
320 oxidised glutathione, nor expression of the antioxidant enzymes haem oxygenase-1 or
321 superoxide dismutase-2 were affected by either treatment with 100nM oA β , 100nM QC1 or a
322 combination of the two (Figure 3). These data suggest that the ROS production-suppressing
323 actions of Fpr2/3 activation occur through modulation at source rather than stimulation of
324 defensive systems.

325

326 *Promotion of the pentose phosphate pathway by oA β is reversed by Fpr2/3 stimulation*

327 An important aspect of immune cell activation is a change in their preferred source of
328 metabolic energy, with inflammatory cells tending to favour glycolysis over mitochondrial
329 oxidative phosphorylation as their primary energy source [34]. We therefore investigated how
330 oA β treatment of BV2 cells would affect their metabolism through use of the Agilent Seahorse
331 XF Analyser. Stimulation of BV2 cells with 100 nM oA β significantly suppressed basal
332 respiration without affecting either maximal respiration or spare respiratory capacity, an effect
333 reversed by treatment with 100 nM QC1 1 hr post-oA β challenge (Figure 4A-E). This change
334 in respiration resulted in a decrease in ATP production from both oxidative phosphorylation
335 (Figure 4F) and glycolysis (Figure 4G) upon oA β stimulation, an action again reversed by
336 Fpr2/3 activation with QC1 (Figure 4F-4G).

337

338 Production of ROS from NADPH oxidase is ultimately dependent, as its name suggests, upon
339 a constant source of intracellular NADPH [32]. The major source of NADPH production in the
340 cell is the pentose phosphate pathway, which siphons glucose-6-phosphate from glycolysis
341 into the production of 6-phosphogluconate and then ribose-5-phosphate, generating NADPH
342 in both steps [35]. As both glycolytic and mitochondrial respiratory rates were suppressed by
343 oA β , we investigated whether pentose phosphate pathway activity had concomitantly risen
344 through measurement of the activity of the rate limiting enzyme for this pathway, glucose-6-
345 phosphate dehydrogenase (G6PD). Treatment of BV2 cells with 100 nM oA β for 24 hrs caused
346 a significant increase in G6PD activity, an effect that was reversed to baseline upon
347 subsequent treatment with 100nM QC1 (Figure 4H, confirming the importance of this pentose
348 phosphate pathway shunt in the response to oA β .

349

350 *oA β stimulated ROS production is responsible for microglial-mediated neuronal toxicity and*
351 *can be reversed by Fpr2/3 activation*

352 Production of ROS by immune cells is primarily for the purpose of killing invading pathogens.
353 In the context of AD however, where no infectious agent has been discovered, production of
354 ROS may well damage bystander neurones, contributing to neurodegeneration. To investigate
355 the relationship between oA β -triggered microglial ROS production and neuronal health, we
356 employed an *in vitro* co-culture model using BV2 cells and trans-retinoic acid-differentiated
357 SH-SY5Y cells. Initial experiments revealed that 100 nM oA β showed no direct toxicity to
358 differentiated SH-SY5Y cells even after exposure for 24 hrs (Figure 5A). However,
359 administration of oA β to co-cultures significantly and selectively enhanced apoptosis of SH-
360 SY5Y cells (Figure 5B-C) without affecting BV2 cell survival (Figure 5C), an effect that was
361 notably prevented by treatment with 100 nM QC1 1 hr after oA β exposure. Notably,
362 differentiated SH-SY5Y cells did not express Fpr2/3 (Supplemental Figure 3). Confirming that
363 either direct contact or short-lived secretory factors were responsible for BV2 cell-mediated
364 toxicity, apoptosis of SH-SY5Y cells was not induced following treatment with conditioned
365 medium from oA β -stimulated BV2 cultures (Figure 5D). Finally, to test whether BV2 cell ROS
366 production was the mediating agent for SH-SY5Y cytotoxicity, the experiment was repeated
367 in the presence of the antioxidant molecule α -tocopherol (10 μ M). Inclusion of this antioxidant
368 prevented SH-SY5Y apoptosis in co-cultures treated with oA β , indicating a direct mediatory
369 role of microglial ROS production.

370

371 **Discussion**

372

373 Despite over 300 clinical trials having been performed targeting either of the proposed toxic
374 mediators in AD, A β and hyperphosphorylated tau, we do not as yet have any successful
375 therapeutic approaches for the disease. This suggests that, at the least, these two proteins
376 cannot be the sole factors driving the disease [36]. Increasingly, the role of neuroinflammation
377 and the behaviour of microglia in AD has come under investigation [3,37], an approach given
378 further impetus by reports that ablation of microglia can halt brain atrophy in murine models
379 of A β -driven disease [38] and tauopathy [39]. Microglial activation can be both beneficial and
380 damaging, hence strategies that can control excessive inflammatory activity and promote a
381 pro-resolving phenotype may be of great potential for therapeutic use. In this study, we have
382 used an *in vitro* cellular model to provide proof-of-principle evidence for the targeting of the
383 pro-resolving receptor Fpr2/3 as a mechanism to restrain microglial behaviour and limit the
384 ability of these cells to damage bystander neurones.

385

386 Here, we report that alongside its well-characterised function in resolving inflammation and
387 efferocytosis [40], Fpr2/3 activation can reverse oA β -induced ROS production through
388 deactivation of NADPH oxidase activity. Activation of microglial NADPH oxidase by oA β is well
389 supported [41,42], and may be critical in triggering neuroinflammation, given the damaging
390 effects of oxidative stress for neurones, as has been reported in traumatic brain injury [43].
391 Future work will determine whether the *in vitro* findings we report here can be extended to the
392 *in vivo* situation, but if so, they suggest that the use of Fpr2/3 agonists capable of reversing
393 NADPH oxidase activation may be of therapeutic potential for AD.

394

395 The effects of Fpr2/3 activation upon oA β -induced ROS production are mirrored by changes
396 in microglial metabolic phenotype. The importance of cellular metabolism in regulating
397 immune cell phenotype has become increasingly evident over the past few years, with a shift
398 from mitochondrial respiration to a glycolysis-dominant metabolism being closely associated
399 with a pro-inflammatory phenotype [34]. Metabolic changes in AD are well supported [44], but
400 the relationship between these changes and disease pathology is unclear. In the current study,
401 exposure of microglia to oA β suppressed mitochondrial respiration, but rather than being
402 accompanied by changes to glycolysis, it was associated with a significant diversion of
403 glucose to the pentose phosphate pathway. Presumably, this was due to increased NADPH
404 demand associated with NADPH oxidase-driven ROS production, as seen in peripheral
405 macrophages [45]. Notably, Fpr2/3 agonist treatment was able to reverse the effects of oA β
406 on microglial metabolism, targeting both the pentose phosphate pathway and the
407 mitochondria. This data adds to the increasing evidence suggesting that Fpr2/3 not only
408 suppresses pro-inflammatory mediator production [16,46], but aids in the regulation of the
409 underlying metabolic changes that occur in activated immune cells, as we have recently
410 shown in peripheral macrophages [14]. Importantly, microglia rapidly upregulate Fpr2/3
411 expression following inflammatory insult [47], and whilst the effects of its stimulation on
412 neuroinflammation can be agonist dependent [48], selective Fpr2/3 activation contributes to
413 neuroinflammatory resolution in a murine model of AD [46].

414

415 However, a notable finding of the current work is that we were unable to detect evidence for
416 an oA β -induced microglial inflammatory response, in contrast to previous *in vitro* studies
417 [24,47,51]. This does not appear to be due to deficiency in the BV2 cells themselves, as
418 stimulation with bacterial lipopolysaccharide was still able to trigger a potent inflammatory
419 response. Notably, studies that report pro-inflammatory effects of oA β have commonly used
420 micromolar concentrations of the peptide, several orders of magnitude greater than levels
421 reported to occur in the human brain in AD [30]. This suggests that the direct pro-inflammatory
422 effects of oA β seen in *in vitro* may not be fully recapitulated *in vivo*, although this requires

423 further validation. Nevertheless, oA β was clearly able to induce ROS production at levels
424 capable of damaging bystander cells, which if replicated *in vivo* may be a driving factor in
425 ongoing neuronal damage and secondary neuroinflammation seen in AD. Production of ROS
426 is far from the sole damaging effect of oA β in the brain, as is borne out by the, at best,
427 equivocal results from clinical trials of antioxidants in AD [50,51]. Nevertheless, targeting a
428 receptor with the potential to suppress ROS production, restore microglial metabolic
429 homeostasis and promote resolution, as is the case for Fpr2/3, has significant potential for
430 therapeutic development.

431

432 The goal of this study was to provide proof-of-principle evidence that exploitation of human
433 FPR2 may hold promise as a therapeutic target for AD research. Evidently there are limitations
434 in how far the current study should be interpreted, with a particular need for further *in vivo*
435 validation of our findings. Nonetheless, the data presented do suggest that this receptor would
436 be a suitable target for anti-oxidative and metabolic therapeutic development for further AD
437 research, particularly as the effects of Fpr2/3 stimulation were apparent when stimulation
438 occurred after oA β treatment. This study therefore adds novel insights into the role of Fpr2/3
439 in modulating microglial oxidative stress and metabolism, holding promise for select Fpr2/3
440 agonists as potent and effective treatment options for inflammatory disease [9].

441

442 **Conclusions**

443 This study has identified that although pathologically relevant concentrations of oA β do not
444 appear to directly stimulate an inflammatory microglial phenotype, they are potent activators
445 of microglial ROS production via NADPH oxidase, and consequent changes to metabolic
446 phenotype. Moreover, activation of the pro-resolving receptor Fpr2/3 was able to reverse
447 these oA β -induced changes and protect bystander neurones from damage. These data
448 suggest that manipulation of Fpr2/3 may be an important target for future therapeutic
449 development in neuroinflammatory conditions such as Alzheimer's disease.

450

451 **List of abbreviations**

452

453 AD: Alzheimer's disease

454 FPR2: Human formyl peptide receptor 2

455 Fpr2/3: Murine formyl peptide receptors 2/3

456 GSH: Reduced glutathione

457 GSSG: Oxidised glutathione

458 oA β : Oligomeric β -amyloid 1-42

459 ROS: Reactive oxygen species

460 TNF α : Tumour necrosis factor alpha
461 WRW₄: Trp-Arg-Trp-Trp-Trp-Trp

462
463 **References**

464

465 1. United Nations. World Population Prospects: The 2015 Revision, Key Findings and
466 Advance Tables. *World Popul. Prospect.* 2015.

467 2. Prince MJ, Wimo A, Guerchet MMM, Gemma-Claire A, Wu Y-T, Prina M, et al. *World*
468 *Alzheimer Report 2015 - The Global Impact of Dementia: An analysis of prevalence,*
469 *incidence, cost and trends.* *Alzheimer's Dis. Int. Alzheimer's Disease International;* 2015.

470 3. Heneka MT, Carson MJ, Khoury J El, Landreth GE, Brosseron F, Feinstein DL, et al.
471 *Neuroinflammation in Alzheimer's disease.* *Lancet Neurol.* 2015;14:388–405.

472 4. Ransohoff RM, El Khoury J. *Microglia in Health and Disease.* *Cold Spring Harb. Perspect.*
473 *Cold Spring Harbor Laboratory Press;* 2015;8:a020560.

474 5. Taipa R, Ferreira V, Brochado P, Robinson A, Reis I, Marques F, et al. *Inflammatory*
475 *pathology markers (activated microglia and reactive astrocytes) in early and late onset*
476 *Alzheimer disease: a *post mortem* study.* *Neuropathol. Appl. Neurobiol.* 2018;44:298–313.

477 6. Spangenberg EE, Green KN. *Inflammation in Alzheimer's disease: Lessons learned from*
478 *microglia-depletion models.* *Brain. Behav. Immun.* 2017;61:1–11.

479 7. Heneka MT, Kummer MP, Latz E. *Innate immune activation in neurodegenerative*
480 *disease.* *Nat. Publ. Gr.* 2014;14.

481 8. Yu Y, Ye RD. *Microglial A β Receptors in Alzheimer's Disease.* *Cell. Mol. Neurobiol.*
482 2014;35:71–83.

483 9. Sugimoto MA, Vago JP, Perretti M, Teixeira MM. *Mediators of the Resolution of the*
484 *Inflammatory Response.* *Trends Immunol.* Elsevier Ltd; 2019;40:212–27.

485 10. Dufton N, Hannon R, Brancaleone V, Dalli J, Patel HB, Gray M, et al. *Anti-inflammatory*
486 *role of the murine formyl-peptide receptor 2: ligand-specific effects on leukocyte responses*
487 *and experimental inflammation.* *J. Immunol.* 2010;184:2611–9.

488 11. Solito E, Kamal A, Russo-Marie F, Buckingham JC, Marullo S, Perretti M. *A novel*
489 *calcium-dependent proapoptotic effect of annexin 1 on human neutrophils.* *FASEB J.*
490 2003;17:1544–6.

491 12. Drechsler M, de Jong R, Rossaint J, Viola JR, Leoni G, Wang JM, et al. *Annexin A1*
492 *counteracts chemokine-induced arterial myeloid cell recruitment.* *Circ. Res.* 2015;116:827–
493 35.

494 13. McArthur S, Gobbiotti T, Kusters DHM, Reutelingsperger CP, Flower RJ, Perretti M.
495 *Definition of a Novel Pathway Centered on Lysophosphatidic Acid To Recruit Monocytes*
496 *during the Resolution Phase of Tissue Inflammation.* *J. Immunol.* 2015;195:1500733.

497 14. McArthur S, Juban G, Gobbetti T, Desgeorges T, Theret M, Gondin J, et al. Annexin A1
498 drives macrophage skewing to accelerate muscle regeneration through AMPK activation. *J.*
499 *Clin. Invest.* 2020;124635.

500 15. Scannell M, Flanagan MB, deStefani A, Wynne KJ, Cagney G, Godson C, et al.
501 Annexin-1 and peptide derivatives are released by apoptotic cells and stimulate
502 phagocytosis of apoptotic neutrophils by macrophages. *J. Immunol.* 2007;178:4595–605.

503 16. Gobbetti T, Coldewey SMSM, Chen J, McArthur S, le Faouder P, Cenac N, et al.
504 Nonredundant protective properties of FPR2/ALX in polymicrobial murine sepsis. *Proc. Natl.*
505 *Acad. Sci. U. S. A.* 2014;111:18685–90.

506 17. Kain V, Jadapalli JK, Tourki B, Halade G V. Inhibition of FPR2 impaired leukocytes
507 recruitment and elicited non-resolving inflammation in acute heart failure. *Pharmacol. Res.*
508 2019;146:104295.

509 18. Petri MH, Laguna-Fernandez A, Arnardottir H, Wheelock CE, Perretti M, Hansson GK, et
510 al. Aspirin-triggered lipoxin A4 inhibits atherosclerosis progression in apolipoprotein E $^{-/-}$
511 mice. *Br. J. Pharmacol.* 2017;

512 19. Ho CF-Y, Ismail NB, Koh JK-Z, Gunaseelan S, Low Y-H, Ng Y-K, et al. Localisation of
513 Formyl-Peptide Receptor 2 in the Rat Central Nervous System and Its Role in Axonal and
514 Dendritic Outgrowth. *Neurochem. Res.* 2018;43:1587–98.

515 20. Iribarren P, Zhou Y, Hu J, Le Y, Wang JM. Role of formyl peptide receptor-like 1
516 (FPRL1/FPR2) in mononuclear phagocyte responses in Alzheimer disease. *Immunol. Res.*
517 2005;31:165–76.

518 21. Cui YH, Le Y, Zhang X, Gong W, Abe K, Sun R, et al. Up-regulation of FPR2, a
519 chemotactic receptor for amyloid beta 1-42 (A beta 42), in murine microglial cells by TNF
520 alpha. *Neurobiol. Dis.* 2002;10:366–77.

521 22. Le Y, Gong W, Tiffany HL, Tumanov A, Nedospasov S, Shen W, et al. Amyloid (beta)42
522 activates a G-protein-coupled chemoattractant receptor, FPR-like-1. *J. Neurosci.*
523 2001;21:RC123.

524 23. Tiffany HL, Lavigne MC, Cui YH, Wang JM, Leto TL, Gao JL, et al. Amyloid-beta induces
525 chemotaxis and oxidant stress by acting at formylpeptide receptor 2, a G protein-coupled
526 receptor expressed in phagocytes and brain. *J. Biol. Chem. American Society for*
527 *Biochemistry and Molecular Biology*; 2001;276:23645–52.

528 24. Ries M, Loiola R, Shah UN, Gentleman SM, Solito E, Sastre M. The anti-inflammatory
529 Annexin A1 induces the clearance and degradation of the amyloid- β peptide. *J.*
530 *Neuroinflammation.* 2016;13:234.

531 25. Stine B, Jungbauer L, Chunjiang Y, LaDu M. Preparing Synthetic A β in Different
532 Aggregation States. *Methods Mol. Biol.* 2011;670:13–32.

533 26. Shipley MM, Mangold CA, Szpara ML. Differentiation of the SH-SY5Y Human

534 Neuroblastoma Cell Line. *J. Vis. Exp.* MyJoVE Corporation; 2016;53193.

535 27. Mookerjee SA, Gerencser AA, Nicholls DG, Brand MD. Quantifying intracellular rates of
536 glycolytic and oxidative ATP production and consumption using extracellular flux
537 measurements. *J. Biol. Chem.* American Society for Biochemistry and Molecular Biology;
538 2017;292:7189–207.

539 28. McArthur S, Cristante E, Paterno M, Christian H, Roncaroli F, Gillies GEE, et al. Annexin
540 A1: a central player in the anti-inflammatory and neuroprotective role of microglia. *J*
541 *Immunol.* 2010/10/22. 2010;185:6317–28.

542 29. Loiola RA, Wickstead ES, Solito E, McArthur S. Estrogen promotes pro-resolving
543 microglial behaviour and phagocytic cell clearance through the actions of annexin A1. *Front.*
544 *Endocrinol. (Lausanne)*. Cold Spring Harbor Laboratory; 2019;10:420.

545 30. Helmond Z Van, Miners JS, Kehoe PG, Love S. Higher Soluble Amyloid b Concentration
546 in Frontal Cortex of Young Adults than in Normal Elderly or Alzheimer 's Disease.
547 2010;20:787–93.

548 31. Spooner R, Yilmaz O. The role of reactive-oxygen-species in microbial persistence and
549 inflammation. *Int. J. Mol. Sci.* Multidisciplinary Digital Publishing Institute (MDPI);
550 2011;12:334–52.

551 32. Ma MW, Wang J, Zhang Q, Wang R, Dhandapani KM, Vadlamudi RK, et al. NADPH
552 oxidase in brain injury and neurodegenerative disorders. *Mol. Neurodegener.* 2017;12:7.

553 33. Zorov DB, Juhaszova M, Sollott SJ. Mitochondrial reactive oxygen species (ROS) and
554 ROS-induced ROS release. *Physiol. Rev.* American Physiological Society; 2014;94:909–50.

555 34. O'Neill LAJ, Kishton RJ, Rathmell J. A guide to immunometabolism for immunologists.
556 *Nat. Rev. Immunol.* 2016;16:553–65.

557 35. Grant CM. Metabolic reconfiguration is a regulated response to oxidative stress. *J. Biol.*
558 BioMed Central; 2008. p. 1.

559 36. Makin S. The amyloid hypothesis on trial. *Nature.* 2018;559:S4–7.

560 37. Merlini M, Rafalski VA, Rios Coronado PE, Gill TM, Ellisman M, Muthukumar G, et al.
561 Fibrinogen Induces Microglia-Mediated Spine Elimination and Cognitive Impairment in an
562 Alzheimer's Disease Model. *Neuron.* 2019;101:1099-1108.e6.

563 38. Spangenberg EE, Lee RJ, Najafi ARR, Rice RAA, Elmore MRPRP, Blurton-Jones M, et
564 al. Eliminating microglia in Alzheimer's mice prevents neuronal loss without modulating
565 amyloid- β pathology. *Brain.* Oxford University Press; 2016;139:1265–81.

566 39. Shi Y, Manis M, Long J, Wang K, Sullivan PM, Remolina Serrano J, et al. Microglia drive
567 APOE-dependent neurodegeneration in a tauopathy mouse model. *J. Exp. Med.* Rockefeller
568 University Press; 2019;jem.20190980.

569 40. Corminboeuf O, Leroy X. FPR2/ALXR Agonists and the Resolution of Inflammation. *J.*
570 *Med. Chem.* 2015;58:537–59.

571 41. Abubaker AA, Vara D, Visconte C, Eggleston I, Torti M, Canobbio I, et al. Amyloid
572 Peptide β 1-42 Induces Integrin α IIb β 3 Activation, Platelet Adhesion, and Thrombus
573 Formation in a NADPH Oxidase-Dependent Manner. *Oxid. Med. Cell. Longev.*
574 2019;2019:1050476.

575 42. Alawieyah Syed Mortadza S, Sim JA, Neubrand VE, Jiang L-H. A critical role of TRPM2
576 channel in A β 42 -induced microglial activation and generation of tumor necrosis factor- α .
577 *Glia.* 2018;66:562–75.

578 43. Kumar A, Barrett JP, Alvarez-Croda D-M, Stoica BA, Faden AI, Loane DJ. NOX2 drives
579 M1-like microglial/macrophage activation and neurodegeneration following experimental
580 traumatic brain injury. *Brain. Behav. Immun.* 2016;58:291–309.

581 44. Mostafavi S, Gaiteri C, Sullivan SE, White CC, Tasaki S, Xu J, et al. A molecular network
582 of the aging human brain provides insights into the pathology and cognitive decline of
583 Alzheimer's disease. *Nat. Neurosci.* 2018;21:811–9.

584 45. Nagy C, Haschemi A. Time and Demand are Two Critical Dimensions of
585 Immunometabolism: The Process of Macrophage Activation and the Pentose Phosphate
586 Pathway. *Front. Immunol. Frontiers*; 2015;6:164.

587 46. Kantarci A, Aytan N, Palaska I, Stephens D, Crabtree L, Benincasa C, et al. Combined
588 administration of resolvin E1 and lipoxin A4 resolves inflammation in a murine model of
589 Alzheimer's disease. *Exp. Neurol.* 2018;300:111–20.

590 47. Chen K, Iribarren P, Huang J, Zhang L, Gong W, Cho EH, et al. Induction of the Formyl
591 Peptide Receptor 2 in Microglia by IFN- and Synergy with CD40 Ligand. *J. Immunol.*
592 2007;178:1759–66.

593 48. He H-Q, Ye R. The Formyl Peptide Receptors: Diversity of Ligands and Mechanism for
594 Recognition. *Molecules. Multidisciplinary Digital Publishing Institute*; 2017;22:455.

595 49. Liu H, Wang JJ, Wang JJ, Wang P, Xue Y. Paeoniflorin attenuates A β 1-42-induced
596 inflammation and chemotaxis of microglia in vitro and inhibits NF- κ B- and VEGF/Flt-1
597 signaling pathways. *Brain Res.* 2015;1618:149–58.

598 50. D'Cunha NM, Georgousopoulou EN, Dadigamuwage L, Kellett J, Panagiotakos DB,
599 Thomas J, et al. Effect of long-term nutraceutical and dietary supplement use on cognition in
600 the elderly: a 10-year systematic review of randomised controlled trials. *Br. J. Nutr.*
601 2018;119:280–98.

602 51. McCleery J, Abraham RP, Denton DA, Rutjes AW, Chong L-Y, Al-Assaf AS, et al.
603 Vitamin and mineral supplementation for preventing dementia or delaying cognitive decline
604 in people with mild cognitive impairment. *Cochrane Database Syst. Rev.*
605 2018;11:CD011905.

606

607

608 **Figure Legends**

609

610 **Figure 1: oA β stimulates microglial ROS production without inducing an inflammatory**
611 **response. A)** Treatment with oA β dose-dependently induces microglial ROS production rate
612 over a 2 hr period. **B)** Treatment of BV2 cells with 50 ng/ml LPS but not 100 nM oA β increased
613 microglial TNF α production after 24 and 48 hrs exposure. **C)** Treatment for 24 hrs with 50
614 ng/ml LPS but not 100nM oA β increased BV2 cell surface CD40 expression. **D)** Neither
615 treatment for 24 nor 48 hrs with 100nM oA β affected phagocytosis by BV2 cells of heat-killed
616 E. coli bacterial particles. 50 ng/ml LPS increased phagocytosis at 48 hrs only. In all cases,
617 data are mean \pm SEM of 3-6 independent cultures, assayed in triplicate. *p<0.05 vs. untreated
618 cells.

619

620 **Figure 2: oA β induced ROS production follows activation of NADPH oxidase and is**
621 **reversed by subsequent Fpr2/3 stimulation. A, B)** oA β induced ROS production was
622 prevented by 10 min pre-treatment with the NADPH oxidase inhibitors DPI (1 μ M, A) and
623 apocynin (1 μ g/ml, B). **C)** Representative time-course of ROS production in untreated BV2
624 cells, and cells exposed to 100nM oA β with or without subsequent stimulation with 100nM
625 QC1 (10 min post-oA β). **D)** Average ROS production rates for BV2 cells treated with oA β (100
626 nM, 1 hr) with or without subsequent stimulation with 100 nM QC1 (10 min post-oA β). **E)**
627 Inclusion of the selective Fpr2/3 antagonist WRW₄ (10 μ M, 10 min prior to oA β treatment) did
628 not affect 100 nM oA β -induced ROS production, but prevented the effects of subsequent
629 treatment with QC1 (100 nM, 10 min post-oA β). **F)** Treatment of BV2 cells for 30 min with 100
630 nM oA β stimulated co-localisation of the NADPH oxidase subunits p67phox (green) and
631 gp91phox (red), an effect prevented by treatment with 100 nM QC1 administered 10 min post-
632 oA β . Nuclei are counter-stained with DAPI (blue); p67phox and gp91phox co-localisation
633 intensity is represented by the false-colour plots. Graphical data are mean \pm SEM of 3-6
634 independent cultures, assayed in triplicate, *p<0.05. Images represent cells from 3
635 independent cultures; scale bar = 10 μ m.

636

637 **Figure 3: Neither treatment with oA β nor QC1 affected major cellular antioxidant**
638 **systems. A)** The ratio of reduced (GSH) to oxidised (GSSG) glutathione within BV2 cell
639 cytoplasm was not affected by either oA β (100 nM, 2 hrs) or QC1 (100 nM, 10 min post-oA β)
640 administration. **B)** Expression of the antioxidant enzyme haem oxygenase-1 (HO-1) was not
641 affected by treatment with oA β (100 nM, 6 hrs) or QC1 (100 nM, 10 min post-oA β). Sample
642 loading was normalised to Ponceau S-defined total protein content; densitometric analysis
643 data are mean \pm SEM of 3 independent cultures. **C)** Expression of the antioxidant enzyme

644 superoxide dismutase-2 (SOD-2) was not affected by treatment with oA β (100 nM, 24 hrs) or
645 QC1 (100nM, 10 min post-oA β). All western blot analyses are representative of 3 independent
646 cultures, with sample loading normalised to Ponceau S-defined total protein content;
647 densitometric analysis data are mean \pm SEM of 3 independent cultures, quantified in triplicate.
648

649 **Figure 4: Treatment with oA β suppresses mitochondrial respiration and promotes**
650 **activity of the pentose phosphate pathway, effects reversed by subsequent activation**
651 **of Fpr2/3. A)** Typical oxygen consumption rates of untreated BV2 cells and cells treated for
652 24 hrs with 100 nM oA β with or without subsequent stimulation with QC1 (100 nM, 1 hr post-
653 oA β), administration times for oligomycin (4 μ M), FCCP (0.6 μ M) and rotenone with antimycin
654 A (both 1 μ M) are indicated. **B)** Typical extracellular acidification rates for untreated BV2 cells
655 and cells treated for 24 hrs with 100 nM oA β with or without subsequent stimulation with QC1
656 (100 nM, 1 hr post-oA β), administration times for oligomycin (4 μ M), FCCP (0.6 μ M) and
657 rotenone with antimycin A (both 1 μ M) are indicated. **C-E)** Treatment with 100 nM oA β for 24
658 hrs significantly suppressed basal metabolic rate (C), an effect that no longer reached
659 statistical significance after QC1 treatment (100 nM, 1 hr post-oA β). In contrast, neither oA β
660 nor QC1 treatment affected maximal respiration (D) or spare respiratory capacity (E). **F)**
661 Treatment with oA β (100 nM, 24 hrs) significantly suppressed basal, but not maximal, ATP
662 production due to mitochondrial oxidative phosphorylation, an effect reversed by subsequent
663 treatment with QC1 (100 nM, 1 hr post-oA β). **G)** ATP generation from glycolysis was
664 unaffected by either oA β or QC1 treatment. **H)** Activity of the rate-determining enzyme of the
665 pentose phosphate pathway, glucose-6-phosphate dehydrogenase (G6PD) was significantly
666 increased by treatment with 100nM oA β (24 hrs), an effect reversed by subsequent stimulation
667 with 100 nM QC1 (1 hr post-oA β). All data are mean \pm SEM for 3-5 independent cultures,
668 assayed in triplicate, *p<0.05.

669
670 **Figure 5: Treatment with oA β induces differentiated SH-SY5Y neuronal apoptosis only**
671 **in the presence of microglia, acting through Fpr2/3 sensitive ROS release. A)** Treatment
672 with oA β (100 nM, 48 hrs) had no effect on *trans*-retinoic acid (tRA)-differentiated SH-SY5Y
673 cell viability; data are mean \pm SEM of 5 independent cultures, assayed in triplicate. **B)**
674 Separation of tRA-differentiated SH-SY5Y neurons from BV2 cells grown in co-culture on the
675 basis of differential CD200 and CD11b expression, plot is representative of 3 independent
676 cultures. **C)** Treatment of co-cultures of BV2 and tRA-differentiated SH-SY5Y neurons with
677 oA β (100 nM, 48 hrs) induces significant SH-SY5Y apoptosis, an effect prevented by
678 subsequent treatment with QC1 (100 nM, 10 min post-oA β). **D)** Conditioned medium from BV2
679 cells treated or not with 100nM oA β (24 hrs) had no effect on tRA-differentiated SH-SY5Y
680 neuronal apoptosis following exposure for 48 hrs. **E)** Inclusion of the antioxidant α -tocopherol

681 (10 μ M) in co-cultures of BV2 cells and tRA-differentiated SH-SY5Y neurons prevented oA β -
682 induced (100 nM, 48 hrs) neuronal apoptosis; data are mean \pm SEM for 3-6 independent
683 cultures, assayed in triplicate, *p<0.05.

684

685 **Supplemental Figure 1: Approximate molecular weight of A β 1-42 oligomers following**
686 **polyacrylamide gel electrophoresis under non-denaturing conditions.** As monomeric
687 A β ₁₋₄₂ has a molecular weight of 4.51 kDa, the apparent molecular weight of approximately
688 35kDa suggest that oA β species were hexamers/heptamers.

689

690 **Supplementary Figure 2: Mitochondrial ROS production is not stimulated in microglia**
691 **by oA β treatment. A)** Representative time-course of mitochondrial superoxide production in
692 untreated BV2 cells and cells exposed to 100 nM oA β , 100nM QC1 or 1 μ M rotenone for 1 hr.
693 **B)** Average mitochondrial superoxide production rates for untreated BV2 cells and cells
694 treated with oA β (100 nM, 1 hr), QC1 (100 nM, 1 hr) or rotenone (ROT; 1 μ M, 1 hr); data are
695 mean \pm SEM of 4 independent cultures, assayed in triplicate, *p<0.05.

696

697 **Supplementary Figure 3: FPR2 is not expressed by SH-SY5Y cells. A)** representative
698 forward scatter-side scatter histogram plot and gating strategy. **B)** representative histogram
699 plot to exclude cell doublets. **C)** histogram of relative FPR2 staining. Neither naïve or trans-
700 retinoic acid induced differentiated SH-SY5Y cells expressed FPR2.

701

Figure 1: oA β stimulates microglial ROS production, but does not induce an inflammatory response

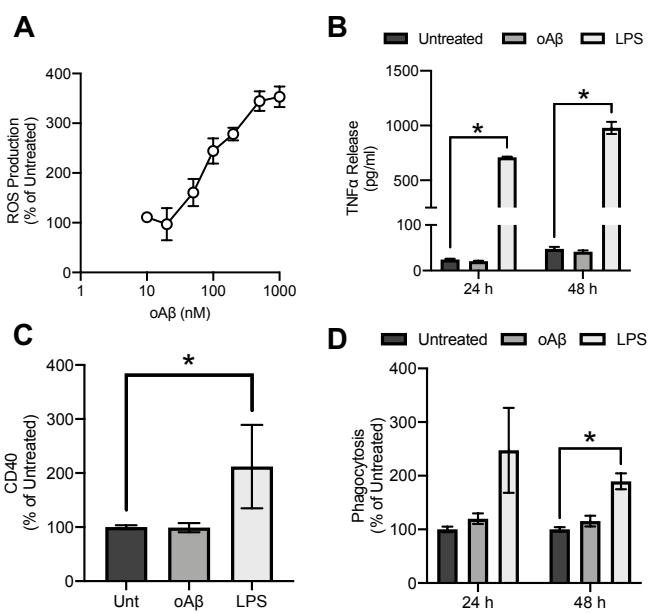


Figure 2: oA β induced ROS production follows activation of NADPH oxidase, and can be reversed by subsequent stimulation with the Fpr2 agonist QC1

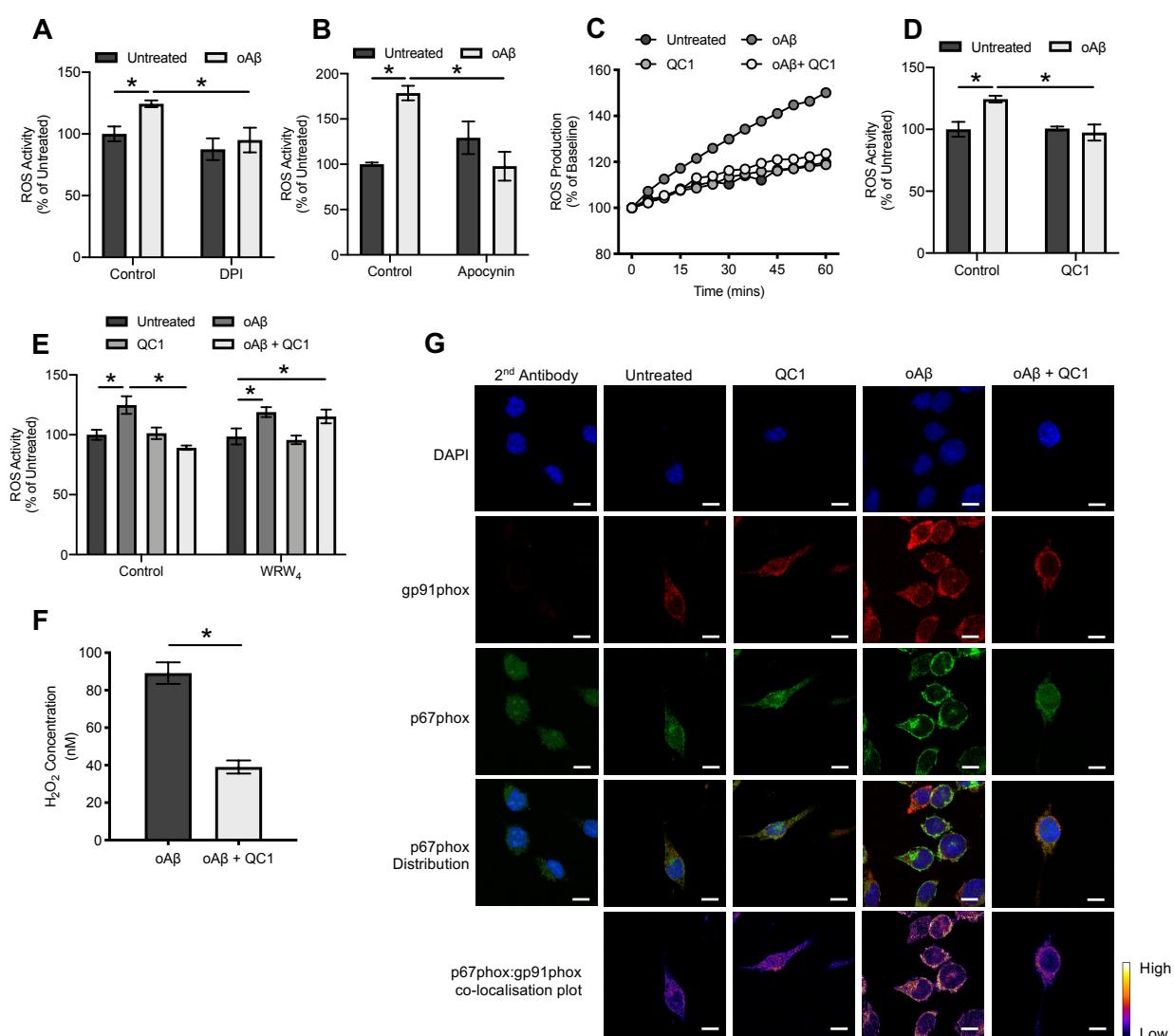


Figure 3: Neither treatment with oA β nor QC1 affected the major cellular antioxidant systems, glutathione, haem oxygenase-1 or superoxide dismutase-2

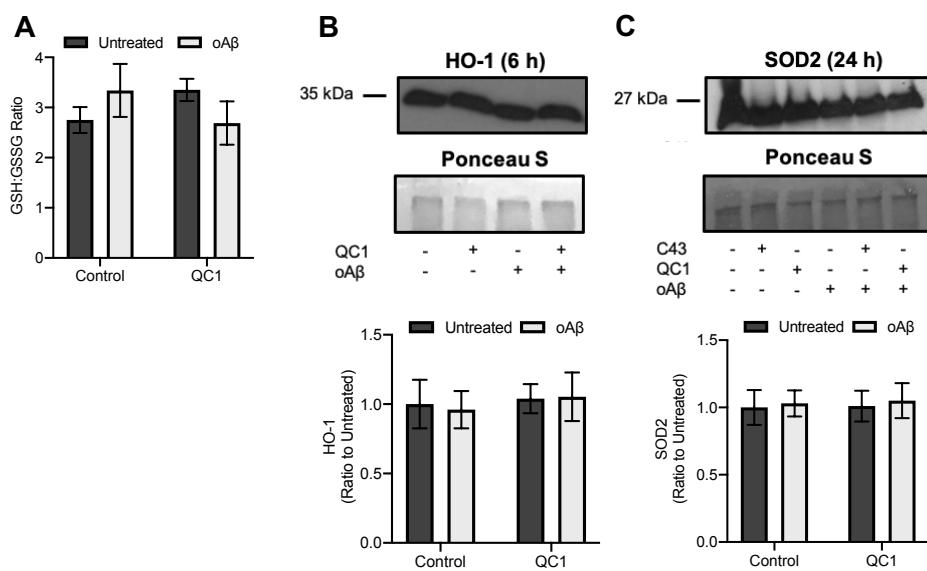
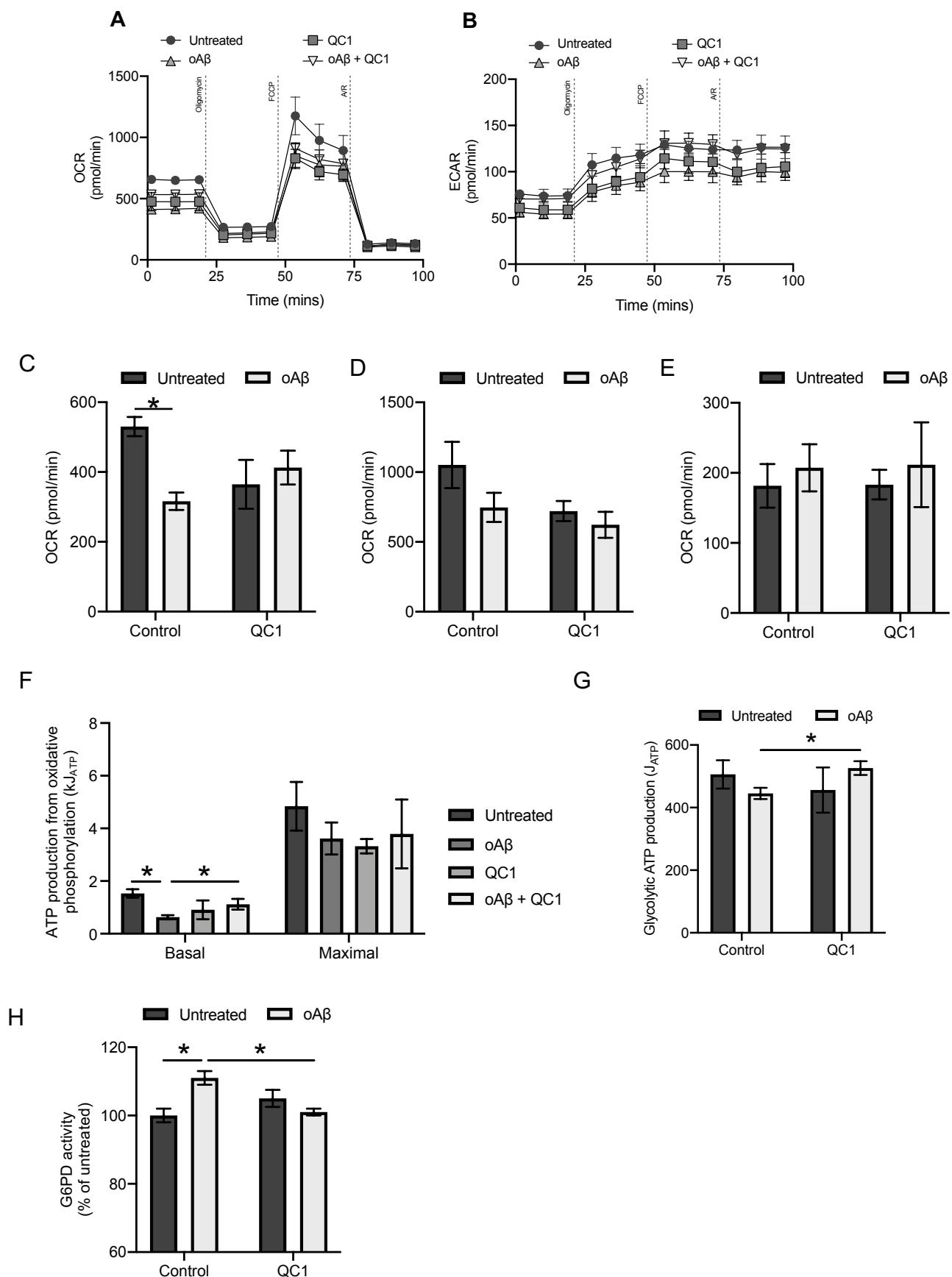
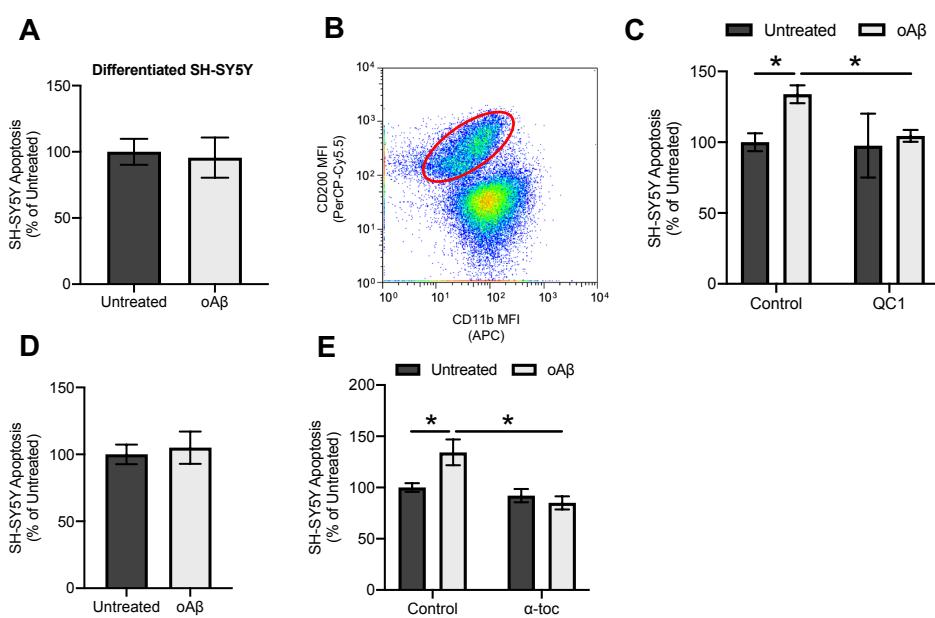
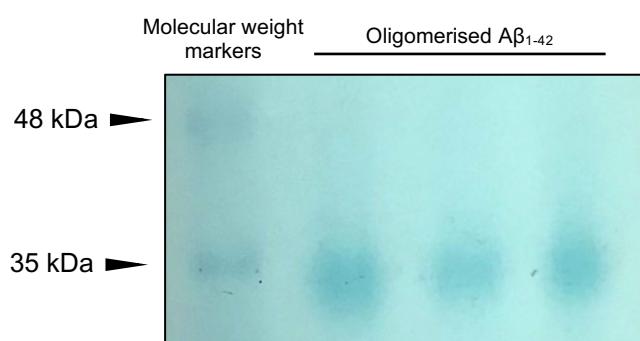
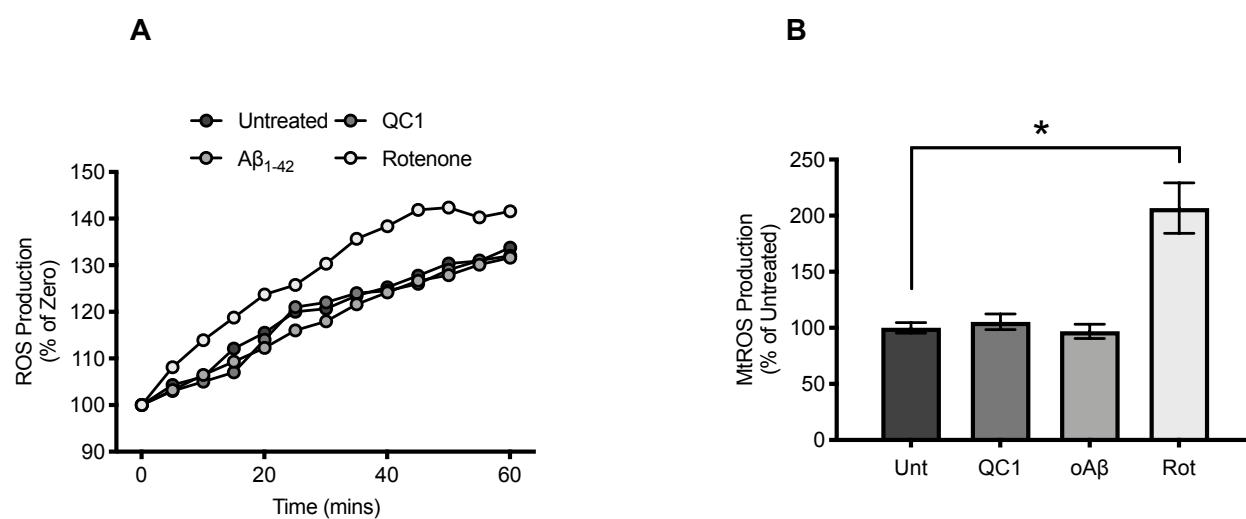
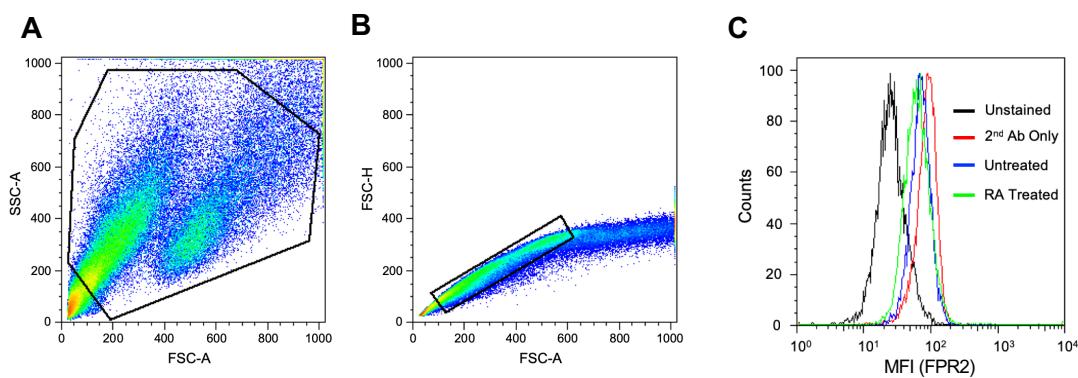


Figure 4: Treatment with oA β suppresses mitochondrial respiration and promotes activity of the pentose phosphate pathway, effects reversed by subsequent activation of Fpr2/3


Figure 5: Treatment with oA β increases SH-SY5Y apoptosis in BV-2 co-culture through microglial induced ROS production.


Supplementary Figure 1: Oligomerisation of A β ₁₋₄₂ produces hexamers/heptamers

Supplementary Figure 2: Mitochondrial ROS production does not appear to be stimulated by oA β treatment

Supplementary Figure 3: FPR2 is not expressed in SH-SY5Y cells

