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Abstract

Escherichia coli is a commensal of birds and mammals, including humans. It can act as an
opportunistic pathogen and is also found in water and sediments. Since most population
studies have focused on clinical isolates, we studied the phylogeny, genetic diversification,
and habitat-association of 1,294 isolates representative of the phylogenetic diversity of more
than 5,000, mostly non-clinical, isolates originating from humans, poultry, wild animals and
water sampled from the Australian continent. These strains represent the species diversity
and show large variations in gene repertoires within sequence types. Recent gene transfer is
driven by mobile elements and determined by habitat sharing and by phylogroup
membership, suggesting that gene flow reinforces the association of certain genetic
backgrounds with specific habitats. The phylogroups with smallest genomes had the highest
rates of gene repertoire diversification and fewer but more diverse mobile genetic elements,
suggesting that smaller genomes are associated with higher, not lower, turnover of genetic
information. Many of these small genomes were in freshwater isolates suggesting that some
lineages are specifically adapted to this environment. Altogether, these data contribute to
explain why epidemiological clones tend to emerge from specific phylogenetic groups in the

presence of pervasive horizontal gene transfer across the species.
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Introduction

The integration of epidemiology and genomics has greatly contributed to our understanding
of the population genetics of epidemic clones of pathogenic bacteria. However, the forces
driving the emergence of these lineages in species where most clades are dominated by
commensal or environmental strains remain unclear. Escherichia coli is a commensal of the
gut microbiota of mammals and birds (primary habitat)'®, and has been found in host-
independent secondary habitats including soil, sediments, and water*’. Yet, some E. coli
strains produce virulence factors endowing them with the ability to cause a broad range of
intestinal or extra-intestinal diseases (pathotypes) in humans and domestic animals®'®. Many
of these are becoming resistant to multiple antibiotics at a worrisome pace' .

Studies on E. coli were seminal in the development of bacterial population genetics'®. They

3,17-19

showed moderate levels of recombination in the species , and a strong phylogenetic

structure with eight main phylogroups, among which four (A, B1, B2 and D) represent the
majority of the strains and four others (C, E, F and G) are rarer’®??, Strains differ in their

2,3,23,24

phenotypic and genotypic characteristics within and across phylogroups , and their

isolation frequency depends on factors such as host species, diet, sex, age?®*?%’, body mass?,

2930 and geographic location®'. Strains of phylogroups A and B1 appear to

but also climate
be more generalists since they can be isolated from all vertebrates? and are often isolated
from secondary habitats’*?5. E. colistrains able to survive and persist in water

73334 |n contrast, the extraintestinal

environments usually belong tothe B1 phylogroup
pathogenic strains usually belong to phylogroups B2 and D%, Genome size also differs
among phylogroups, with A and B1 strains having smaller genomes than B2 or D strains®.

The phylogenetic vicinity of geographically remote E. coli isolates, and the co-isolation of
phylogenetically distant strains, supports the hypothesis that strains circulate rapidly**“°. The
genome of the species is also remarkably plastic, since only about half of the average
genome is present across most strains of the species (core or persistent genome) and the

pan-genome vastly exceeds the size of the typical genome*'**

3

. Interestingly, the rapid
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circulation of strains and the high plasticity of their genomes have not erased the
associations of certain clades with certain isolation sources. In consequence, such

associations might reflect local adaptation'®*°

, which would suggest frequent genetic
interactions between the novel adaptive changes and the strains’ genomic background.

Understanding how the evolution of gene repertoires is shaped by population structure and
habitats requires large-scale comparative genomics of samples with diverse sources of
isolation representative of natural populations of E. coli. Most of the efforts of genome
sequencing have been devoted to study pathogenic lineages and very few genomic data are
available for commensal strains, especially in wild animals, and environmental strains. Here,
we analysed the genomes of a large collection of E. coli strains collected across many
human, domestic and wild animal and environmental sources in different geographic
locations from the Australian continent. This collection is dominated by non-clinical isolates,
corresponding to the main habitats of the species. We sought to understand the dynamics of
the evolution of gene repertoires and how it was driven by mobile genetic elements. The
analysis of the isolation sources in the light of phylogenetic structure and genome variation
suggests that adaptation varies with the habitat and the phylogenomic background. This
contributes to explain why known epidemiological clones of the species emerge from specific
phylogenetic groups, even though virulence strongly depends on the acquisition of virulence

factors by horizontal gene transfer.
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87 Results

88  Very rapid initial divergence of gene repertoires becomes linear with time

89  We sequenced and annotated the genomes of 1,294 E. coli sensu stricto strains selected
90 from more than 3,300 non-human vertebrate hosts, 1,000 humans and 800 environmental
91 samples between 1993 and 2015, chosen to represent the phylogenetic diversity of the
92  species (Materials and Methods, Fig. 1a, Supplementary Notes). All samples were collected
93 by a single team, spanning a 20 year-period, from different regions in a single isolated
94  continent (Australia). The origin of each strain was accurately characterized and the
95 genomes were uniformly annotated and analyzed using the same bioinformatics processes.
96 The strains were isolated from humans, domesticated and wild animals, representing the
97  primary habitat of E. coli, and from freshwater, representing its secondary habitat®. Less than
98 22% of the samples were recovered from clinical situations. A series of controls confirmed
99 that the sequences were of high quality and contained the known essential genes
100  (Supplementary Notes). The genomes varied widely in size from 4.2 to 6.0 Mb (average 5
101  Mb), but had similar densities of protein-coding sequences (~87%) and GC content (50.6%,
102 Supplementary Fig. 1 and Supplementary Table 1).

103

104  The pan-genome contained 75,890 gene families that were classified as persistent (3%,
105 gene families present in = 99% of the genomes), singletons (44%, present in a single
106  genome), or accessory (the remaining) (Fig. 1b, Supplementary Fig. 2). The persistent gene
107  families are a tiny fraction of the pan-genome, but account for half of the average genome.
108  They were used to build a robust phylogeny of the species, which was rooted using genomes
109  from other species in the genus (Supplementary Fig. 3). In contrast, singletons are almost
110  half of the gene families of the pan-genome, but less than 1% of the average genome. As a
111  consequence, the pan-genome is open, as measured by the fit to a Heaps’ law model*®, and

112  increases on average by ~26 protein coding genes with the inclusion of a new genome

5
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(Supplementary Fig. 2). Singletons are smaller than the other genes and tend to be located
at the edge of contigs (44%). Hence, some of these singletons may result from sequencing
and assembly artifacts (Supplementary Notes and Supplementary Fig. 4). When all the
singletons were excluded, the pan-genome still remained open (Supplementary Fig. 2). Most
singletons (80%) and accessory (74%) gene families, but also a surprisingly high number of
persistent gene families (24%), lacked a clear functional assignment as given by the
EggNOG database*’ (Fig. 1c). Hence, we are still ignorant of the function, or even the

existence, of many genes of the species.

Fig. 1: The genetic diversity of Australian E. coli.
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125  (a) Distribution of isolates per region and per source. (b) The pan-genome is composed of 75,890
126  gene families, of which 33,705 are singletons (in green, present in a single genome), 2,486 persistent
127  (in gold, present in at least 99% of genomes), the remaining being accessory (in grey). 29,657 gene
128  families (39% of the pan-genome) were related to mobile genetic elements (MGE). (c) Percentage of
129 the different EGgNOG categories (see insert) in the persistent, accessory and singleton gene families

130 and among genes associated to MGE. (d) [Top] Violin plots of the patristic distance computed
131 between pairs of genomes. [Bottom] Association between GRR (Gene Repertoire Relatedness) and

132 the patristic distance across pairs of genomes. Due to the large number of comparisons (points), we
133 divided the plot area in regular hexagons. Color intensity is proportional to the number of cases (count)
134 in each hexagon. The linear fit (black solid line, linear model (Im)) was computed for the entire dataset
135 (1,294 genomes, Y=90.2-75.7*X, R?=0.49, P<10*). The spline fit (generalized additive model (gam))

136  was computed for the whole (in black dashed line) or the intra-ST (in blue solid line) comparisons.

137  There was a significant negative correlation between GRR and the patristic distance (Spearman’s rho
138 = -0.67, P<10*). (e) Histograms of the number of intra-ST (in blue) and inter-ST (in purple)
139 comparisons at short evolutionary scales. (f) Violin plots of the intra-ST, inter-ST and inter-phylogroup
140  GRR (%). (d-e-f) All the distributions were significantly different (Wilcoxon test, P<10), the same color
141  code was used and described in (d).

142 Traditional epidemiological studies of E. coli focused on multilocus sequence types (ST)
143  and/or the O- and H-serotypes (often the O:H combination). These epidemiological units
144 regroup strains in terms of sequence similarity in a few persistent genes (ST) or in key traits
145  related to the cell envelope (the LPS structure and the flagellum). However, it is unclear if
146  these types systematically regroup strains with similar gene repertoires. We identified 442

147  distinct STs, of which 61% are represented by a single strain. A few STs are very abundant
148  in our dataset: 20 include more than 10 genomes each and encompass 40% of the dataset.

149 The intra-ST genetic distances are 10-times smaller than distances between other pairs of
150  genomes (0.003 vs. 0.03, Fig. 1d). Yet, 6% of intra-ST comparisons have more than 0.01

151  substitutions per position showing extensive genetic diversity at the genome level (Fig. 1e).

152 Some O-groups are abundant, e.g., 08, O2 and O1 (each present in >50 genomes) but
153 almost half of the groups occur in a single genome and 43% of the strains could not be
154  assigned an O-group (even when the wzm/wzt and wzx/wzy genes were present). In contrast,
155 most H-types were previously known (87%). We found 311 combinations of O:H serotypes
156  among the 726 typeable genomes. Of these, 64% are present in only one genome,17% are
157  in multiple STs and 7% in multiple phylogroups (e.g. O8:H10). Conversely, half of the 95 STs

158  with more than one genome have multiple O:H combinations, e.g. ST10 has 24. These

159 results confirm that surface antigens and their combinations change quickly and are

7
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160  homoplasic. They also show extensive variation of gene repertoires within STs. The gene
161  repertoire relatedness (GRR) between genomes (see Methods) decreases very rapidly with
162  phylogenetic distance for closely related strains, as revealed by spline fits (Fig. 1d). Similar
163  results were observed when removing singletons, which only account for on average 0.5% of
164  the genes in genomes, suggesting that this result is not due to annotation or sequencing
165  errors (Supplementary Fig. 6). As a consequence, 85% of the intra-ST comparisons have a
166  GRR lower than 95% (corresponding to ~235 gene differences per genome pair), and some
167  as little as 77% (Fig. 1f). Hence, even genomes of the same ST can differ substantially in the
168  sequence of other persistent genes and in the overall gene repertoires.

169

170  To check if the dataset is representative of the species and can be used to assess its
171  diversity, we compared it with the ECOR collection*® and the complete genomes available in
172  RefSeq (Materials). All datasets had similar nucleotide diversity (Supplementary Fig. 5a and
173  Supplementary Table 1). Using rarefied datasets, to compare sets of same size, ours had the
174  largest pan-genome, partly because of a larger number of singletons (Supplementary Fig.
175  5b-d). Our dataset also had the highest a-diversity for the three typing schemes (STs, O-, H-
176  serotypes, Supplementary Table 1). Since the gene repertoire diversity of E. coli in Australia
177 is at least as high as that of ECOR and RefSeq, we studied the variation in gene repertoires
178  beyond the intra-ST level. After the rapid initial drop in GRR described above, the values of
179  this variable decrease linearly with phylogenetic distances (Fig. 1d). The average values of
180  GRR given by the regression vary between 90% for very close genomes and 80% for the
181  most distant ones. The variance around the regression line is constant and a spline fit shows
182  few deviations around the regression line. This is consistent with a model where initial
183  divergence in gene repertoires is driven by rapid turnover of novel genes. After this initial

184  process, divergence in gene repertoires increases linearly with patristic distance.
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185 Phylogroups vary in the rates of gene repertoire diversification

186  We used the species phylogeny to study the associations between phylogroups and genetic
187  diversity (Fig. 2a). The tree showed seven main phylogenetic groups very clearly separated
188 by nodes with 100% bootstrap support. The 17 phylogroup C strains were all included within
189 the B1 phylogroup and were thus grouped with the latter in this study. For the rest, the
190 analysis showed a good correspondence between the assignment into the known
191  phylogroups - A, B1, B2, D, E, F, and G — and the different clades of this tree. In line with the
192 literature®, four major phylogroups were very abundant - A (24% of the dataset), B1 (24%),
193 B2 (25%) and D (14%) — whereas the others were rarer. The nucleotide diversity of the
194  phylogroups is very dependent on their phylogenetic structure, since some clades have more
195 closely related clusters of strains than others (Supplementary Fig. 7). Nevertheless,
196  nucleotide diversity, patristic distances, and Mash distances revealed similar trends: the
197  phylogroup D exhibited the highest genetic diversity, followed by F, E, and then by the most
198  abundant groups — A, B1 and B2 — which all have similar levels of diversity (Supplementary
199  Fig. 7). The phylogroup G was the least diverse, but it is also poorly represented in our
200 dataset (33 genomes from three STs). Overall, genetic diversity is proportional to the depth
201  of the phylogroup, i.e. the average tip-to-MRCA distance, except for phylogroup F which is
202  more diverse than expected (Fig. 2b). These results suggest that genetic diversity varies
203  between phylogroups and that within phylogroups it is strongly affected by the time of
204  divergence since the most recent common ancestor.

205
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Fig. 2: The genetic and ecological structure of Australian E. coli population.
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(a) Phylogenetic tree of E. coli rooted using the genomes of other Escherichia (not shown for clarity).
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genome (seven rows), and the size of the genomes (outer row, see insert legend). (b) Association
between the nucleotide diversity per site (Pi, average and s.e) within phylogroup and their distance to
their most recent common ancestor (MRCA). In each pylogroup, we averaged the nucleotide diversity

() obtained for 112 core-genes, and the length branches (from tip-to-MRCA) of the species tree. (c)
Association between the rarefied pan- and persistent-genomes in each phylogroup. We used 1,000
permutations (genomes orderings) of 50 randomly selected genomes (rarefied datasets) to compute
the pan- and the persistent-genomes in each phylogroup (ignoring the G group), and then averaged
the results. (d) Principal component analysis of the pan-genome (matrix of presence/absence of each
gene family across genomes). Each dot corresponds to a genome in the two first principal
components (PC). The ellipse (90%) and barycenter of each phylogroup are reported. The
percentages in the axis labels correspond to the fraction of variation explained by the PC. Panels (b),
(c), and (d) have the same color code as (a).

20

The sets of genomes of each phylogroup have large and open pan-genomes
(Supplementary Fig. 8 and Supplementary Table 2). The sizes of these pan-genomes differ
widely across phylogroups and are partly correlated to the number of genomes in the
phylogroup, explaining why the phylogroup G has the smallest pan-genome (Supplementary
Fig. 8). To control for the effect of sample size, we computed pan-genomes from 1,000
random samples of 50 genomes for each phylogroup (ignoring the few strains of the G

phylogroup, Fig. 2c and Supplementary Table 2). This revealed larger pan-genomes for

phylogroups A, D, and B1 followed by E, B2 and F. Intriguingly, the larger the pan-genome of
10
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232 a phylogroup, the smaller the fraction of its genes that are part of the persistent genome (Fig.
233 2c). This suggests that differences of pan-genome sizes across phylogroups are caused by
234  different rates of gene turnover in certain phylogroups. They affect all types of genes, even
235  those at high frequency in the species.

236

237  To quantify the similarities in gene repertoires, we analyzed the GRR values between
238  phylogroups. The smallest values were observed when comparing B2 strains with the rest
239  (Supplementary Fig. 10). Accordingly, a principal component analysis of the
240  presence/absence matrix of the pan-genome shows a first axis (accounting for 23.6% of the
241  variance) clearly separating the B2 from the other phylogroups (Fig. 2d). This shows that
242 gene repertoires of B2 strains are the most distinct from the other groups, even if B2 is not a
243  basal clade in the species tree. Hence, phylogroups differ in terms of their gene repertoires

244 and in their rates of genetic diversification.

245 Mobile genetic elements drive rapid initial turnover of gene repertoires

246  Different mechanisms can drive the rapid initial diversification of gene repertoires. Mobile
247  genetic elements encoding the mechanisms for transmission between genomes (using
248  virions or conjugation) or within genomes (insertion sequences, integron cassettes) are

249  known to transfer at high rates and be rapidly lost**®'

. We detected prophages using
250  VirSorter®?, plasmids using PlaScope®, and conjugative systems using ConjScan®
251  (Supplementary Figs. 11-13). These analyses have the caveat that some mobile elements
252  may be split in different contigs, resulting in missed and/or artificially split elements. This is
253  probably more frequent in the case of plasmids, since they tend to have many repeated
254  elements®. Only two genomes lacked identifiable prophages and only 9% lacked plasmid
255  contigs. We identified 929 conjugative systems, with some genomes containing up to seven,
256  most often of type MPFg, the type present in the F plasmid. On average, prophages

257  accounted for 5% and plasmids for 3% of the genomes (Fig. 3a). Together they account for

258 more than a third of the pan-genomes of each phylogroup. We also searched for elements
11
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259  capable of mobilizing genes within genomes: Insertion Sequences, with ISfinder®, and
260 Integrons, with IntegronFinder®’. Even if ISs are often lost during sequence assembly, some
261 genomes had up to 152 identifiable ISs representing ~1% of the genome (Fig. 3a and
262  Supplementary Fig. 13). A fourth of the ISs were in plasmids and very few were within
263  prophages. We found integron integrases in 14% of the genomes, usually in a single copy. It
264 s interesting to note that even if the frequency of each type of MGE varies across strains,
265  each of them is strongly correlated with the frequency of the other elements (Fig. 3b). Hence,
266  the typical E. coli genome has at least one transposable element, a prophage and a plasmid,
267  the key tools to move genes between and within genomes. When genomes are enriched in

268  one type of MGE, they tend to get simultaneously enriched in the remaining MGEs.

270  Fig. 3: Genetic diversification across phylogroups.
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273 (a) Percentage of genes associated with MGEs per genome (sum in first graph). (b) Spearman’s rank
274 correlation matrix between the number of genes related to MGE (altogether or individually) and the
275 genome size (in Mb and number of genes). Color intensity and the size of the circle are proportional
276  to the correlation coefficients. All values are significantly positive (P<10*). (c) Differences in genome
277  size when including or removing gene families associated to MGE (Wilcoxon test, P<10#). (d)
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278 Number of accessory gene families associated to MGE present in one (i.e., phylogroup-specific) to
279 seven phylogroups. The color code used corresponds to the Z-score obtained for the observed
280  number (O) with respect to the random distribution (E) (see Methods) for each case with a color code
281 ranging from blue (under-representation) to red (over-representation). The level of significance was
282  reported: |Z-score| : * ([1.96-2.58[), ** ([2.58-3.29[, ***([3.29). (e) Heatmap where a cell represents the
283 deviation (the difference) of the phylogroup to the rest. All values were standardized by column. The
284  color code ranging from blue (lower) to red (higher), with white (overall mean). The level of
285  significance of each ANOM test was reported: * (P<0.05), ** (P<0.01), *** (P<0.001). (f) Network of
286 recent co-occurence of gains (co-gains) of accessory genes within and between phylogroups. Nodes
287 are phylogroups and edges the O/E ratio of the number of pairs of accessory genes (from the same
288  gene family) acquired in the terminal branches of the tree. Only significant O/E values (and edges) are
289  plotted (|Z-score|>1.96). Under-represented values are in dash blue and over-represented in red (see
290  Methods).

291  What is the effect of these MGEs in the dynamics of E. coli genomes? First, the acquisition of
292  MGEs affects the size of the genome. Those identified in this study account for ~8% of the
293  genome size (Fig. 3c and Supplementary Fig. 14). Accordingly, the number of genes
294  associated with MGEs was strongly correlated with genome size for every type of element
295  (Fig. 3b). Second, MGEs increase the variability of genome sizes, since removing them
296  decreases the coefficient of variation of the size of gene repertoires by 34% (expected
297  increase of 4% under a Poisson model, Fig. 3c). Third, the increase in variance in genome
298  size caused by MGEs is amplified by their short persistence times in the genome. No MGE-
299  associated gene family is sufficiently frequent to be part of the persistent genome, and most
300 (85%) are present in less than 1% of the genomes. For example, 41% of the IS gene families
301 are singletons (Supplementary Fig. 14). Adaptive genes acquired through the action of
302 MGEs may become fixed in populations, but the lack of fixation of recognizable MGEs
303  suggests that the long-term cost of MGEs themselves is significant and/or their contribution
304 tofitness is low (or temporary).

305

306 Is the distribution of MGEs associated with phylogroups leading to preferential paths of gene
307 transfer? It has been suggested that homologous recombination is much rarer between than
308  within phylogroups™. To test if this applies to the transfer of MGEs, we analyzed the

309 distribution of the pan-genome gene families that are part of MGEs (excluding singletons, for

310 the separate analysis of prophages and plasmids, see Supplementary Fig. 15). Even if these
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311 genes are at low frequency in the pan-genome and are observed in a single phylogroup
312  more often than expected by chance (Z-score>20, see Methods), 75% of the phage and
313  plasmid gene families were found in more than one phylogroup and 8% were found in all
314  phylogroups (usually at low frequency, Fig. 3d). Accordingly, the number of gene families
315 present in two to six phylogroups is barely lower, even if significantly so, than expected by
316 chance. These results suggest that there is frequent transfer of MGEs across the different
317  phylogroups. To test this hypothesis more precisely, we used Count to infer gene gain and
318 loss events in the phylogenetic tree of the species (see Methods). We found that half of the
319 recent gene acquisitions, i.e., those that took place at the level of the terminal branches of
320 the species tree, are in families of genes of MGEs. Conversely, the acquisitions at the
321  terminal branches correspond to 40% of the MGE genes of the species. Hence, MGEs are
322  key players in genome diversification at the micro-evolutionary scale. They are transferred
323  across phylogroups and many of them, even if present in several strains, were acquired
324  independently and have just arrived in their host genome.

325

326 One might expect more genetic diversity in phylogroups with more MGEs and larger
327 genomes. In apparent agreement with this hypothesis, genomes from phylogroups A and B1
328  are significantly smaller than the others (Fig. 3e, col 1, ANOM tests, P<107) and have fewer
329  MGE-associated genes (Fig. 3e, col 2, ANOM tests, P<0.05). However, these phylogroups
330 also have the largest diversity of gene families associated to MGEs (Fig. 3e, col 3, in both
331 the full and rarefied datasets, both ANOM tests, P<107®), j.e. they encode fewer but more
332  diverse MGEs. Furthermore, the phylogroups A and B1, in spite of having among the most
333  recent common ancestors of the phylogroups (Fig. 2b), have the largest pan-genomes, the
334  smallest persistent genomes, and the largest diversity of STs, and serotypes (Fig. 3e, in both
335 the full and rarefied datasets, cols 4,5,9,10, ANOM tests, P<10?). This intriguing pattern
336  suggests that the smallest genomes have the highest turnover of genes, not the lower rates

337  of transfer. To test this hypothesis, we took the quantification of gene gains and losses at the
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338 terminal branches of the species tree and computed the number of these events per
339  phylogroup. We found that phylogroups A and B1 have the highest number of gene gains
340 and losses per terminal branch (Fig. 3e, cols 6-7). In parallel, we quantified the number of
341  recently acquired (terminal branches) gene pairs (co-gains) from the same gene family within
342 a phylogroup (Fig. 3e, col 8) and between phylogroups (see Methods, Fig. 3f). The results
343  were represented as a graph where the edges represent significantly fewer (dashed lines) or
344  higher (solid lines) number of co-gains than expected by chance. We found that phylogroup
345  B1 has significantly more co-gains of genes with other phylogroups than expected, while the
346  inverse was observed for phylogroup B2. We reached similar results when considering only
347  the co-gains associated with MGEs (Supplementary Fig. 15). These results are consistent
348  with the separation of the B2 phylogroup from the others in the PCA analysis (Fig. 2d). They
349  show that such separation is due to lower rates of transfer in B2, which leads to fewer co-
350 gains within the phylogroup and between this and the other phylogroups. In summary,
351  phylogroups differ in terms of their genome size and in their rates of genetic diversification,

352  the two traits being inversely correlated within the species.

353 Not everything is abundant everywhere: the interplay between phylogroups

354 and sources

355  Frequent horizontal transfer across phylogroups could result in adaptation being independent
356  of the strain genetic background, if there is a lack of epistatic interactions. While we observed
357 that all isolation sources have strains from all phylogroups (Fig. 4a), different phylogroups
358 are typically over-represented depending on the source (Fig. 4b). These observations match
359 previous studies®, and suggest strong associations between the phylogenetic structure of
360 populations and the natural habitats of strains.

361 How much of the variability in gene repertoires is explained by the source of isolation of the
362 strains? Genome sizes vary significantly across isolation sources. Strains isolated from
363 poultry meat had the largest average genomes, followed by EXPEC strains. In contrast,

364  strains from wild birds’ feces and freshwater had the smallest genomes (Fig. 2a and Fig. 4c,
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365 col 1, ANOM tests, P<10®). We showed above that genome size also varies across
366 phylogroups. To understand the relative role of the two variables, isolation source and
367 phylogroup, we made two complementary analyses. First, we compared the genome size of
368 strains from different sources within each phylogroup. Even if the statistical power was
369 sometimes low, this revealed trends similar to the ones observed across phylogroups
370  (Supplementary Fig. 17). Second, we used stepwise multiple regressions to assess the
371  effects of phylogroup and the strains’ source on its genome size. Both variables contributed
372  significantly, and in almost equal parts, to the statistical model and together explained 36% of
373  the variance (R?*=0.36; P<10*, Supplementary Table 3). We found similar results after
374  removing MGE-associated genes (Fig. 4d and Supplementary Table 4). We conclude that

375  both isolation source and phylogroup are equally associated with genome size.

377  Fig. 4: Genetic diversification across sources
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380 (a) Distributions of the sources in each phylogroup. (b) Association between phylogroups and sources. The ratio
381 of the number of observed (O) genomes divided by the expected (E) number was reported for all comparisons
382 with a color code ranging from blue (under-representation) to red (over-representation) (Fisher’'s exact tests
383 performed on each 2*2 contingency table). (c) Heatmap showing the associations between isolation sources and
384 a number of traits. Each cell indicates the deviation (the difference) to the overall mean (in white). All values were
385 standardized by column. By default, tests used standard ANOM (1). In presence of deviations from Gaussian
386 distributions, we used non-parametric ANOM tests (2). We used ANOM for proportions (3). We represented the
387 (O/E) ratio of the co-occurrence of gene pairs recently acquired (Co-gains) in each phylogroup with the same
388 color code as in panel (b) (4). (d) Contribution of each variable (phylogoup and source) to the variance explained
389 by the stepwise multiple regressions of genome size (for the component of MGEs or the remaining genome) on
390 phylogroup and the isolation source. (e) Differences in diversity of gene families recently acquired across
391 phylogroups (in black) and sources (in grey) for gene families associated to MGE or the remaining gene families
392 (Wilcoxon tests, red dots (means)). In all panels : the level of significance of each test was reported: *
393 (P<0.05), ** (P<0.01), *** (P<0.001).

394

395  Adaptation to a habitat depends on HGT, which is driven by MGEs. Hence, we studied the
396  distribution of MGEs in relation to isolation sources. There are fewer MGE-associated genes
397 in strains isolated from freshwater and wild birds’ feces, which have smaller genome sizes,
398 and more in strains from EXxPEC and poultry meat (Fig. 4c, col 2, ANOM tests, P<107, and
399  Supplementary Table 5). We observed similar trends within each phylogroup even if the
400  statistical power was low (Supplementary Fig. 17). The analysis of the relative contribution of
401  phylogroups and isolation sources to the number of MGE-associated genes showed that the
402  source of the strain accounted for the vast majority of the explained variance (90%, full
403  model: R?=0.19; P<10™, Fig. 4d and Supplementary Table 6). Accordingly, the number of
404 MGE-associated gene families specific to a given source was higher than expected (Z-
405 score >17, Supplementary Fig. 15), and nearly one third of these source-specific families
406  were observed in multiple phylogroups. When we focused on the number of co-occurring
407  recently acquired gene pairs (encoding for MGE or not), we found that they are more
408  frequent within most of the isolation sources than expected by chance (Fig. 4c, col 15, see
409 Methods). These results suggest that the contribution of MGEs to genome size is primarily
410  driven by isolate source rather than phylogroup membership.

411

412  The previous result could arise from preferential co-gains of MGEs in an isolation source
413  relative to a phylogroup. To test this hypothesis, we used the results from Count and built a

414  matrix where for each gene family we indicate the acquisition or not of a gene in a terminal
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415 branch of the phylogenetic tree. We then compared the clustering of these recent
416  acquisitions by phylogroup and by isolation source using Shannon indexes (see Methods). If
417  the hypothesis is correct, we expected higher clustering (lower diversity) across sources than
418 across phylogroups. We observed slightly higher clustering across phylogroups than across
419  sources, both for MGE-associated and for the other genes (Fig. 4e). We conclude that the
420  contribution of MGEs to genome size depends largely on the isolation source but that this
421  does not reflect systematic co-gains of MGEs in the same source.

422

423 It is tempting to speculate that the association between the number of MGE-associated
424  genes and isolation sources reflects selection for the acquisition of locally adaptive functions
425 transferred by these MGEs. To test this, we searched for the presence of antibiotic
426  resistance genes (ARGSs) in our dataset using the reference databases. Many of these ARGs
427  were in integrons (~3 per integron), which is well documented®, and genomes carrying
428 integrons had more ARGs than the others (Wilcoxon test, P<10*, Supplementary Fig. 18).
429  Expectedly, integrons and ARGs were more prevalent in EXPEC and in poultry meat isolates
430  (Fig. 4c, cols 7-8) and Supplementary Table 5). Similar results were observed in the
431 analyses at the level of each phylogroup (Supplementary Fig. 18). The clear association of
432  integrons and ARGs with human (or domesticated animals) isolates of E. coli independently
433  of the phylogroups’ genetic background reinforces the idea that source-specific MGEs
434  provide locally adaptive traits.

435

436  To complement the previous results, we searched for the presence of other factors known to
437  be adapative under specific conditions: virulence factors involved in antagonistic interactions
438  with humans and colicins involved in intra-specific competition. Virulence factors (VFs) from
439  VFDB are more prevalent in human strains with an excess in EXPEC isolates (ANOM test,
440  P<10?) and less frequent in strains isolated from freshwater and wild birds’ feces (ANOM

441  test, P<107, Fig. 4c, col 9). While VFs are more concentrated in phylogroups B2, D, E and F

18


https://doi.org/10.1101/2020.02.12.945709
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.02.12.945709; this version posted February 13, 2020. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

442  (ANOM test, P<10?) as previously shown®, the trends regarding isolation sources are
443  conserved within each phylogroup (Supplementary Fig. 19). In particular, within phylogroup
444 B2, only human strains have a significantly higher average number of VFs (Supplementary
445  Fig. 19) reinforcing previous results?®®. We also analyzed colicin gene clusters, which are
446  agents of bacterial antagonistic competition and are often encoded in plasmids®®. The
447  average number of colicins identified using BAGEL3%® (some of which are also included in
448  VFDB) depends on the phylogroup of the strain, from an average of 2.8 genes in B2 strains
449 to 0.4 in B1 strains. Interestingly, the water isolates have the fewest colicin genes,
450  presumably because free diffusion of these proteins in water makes them inefficient tools of
451  bacterial competition (Fig. 4c, col 10 and Supplementary Fig. 19). Thus, local adaptations
452  resulting from the acquisition of novel genes by HGT, involving antagonistic interactions with
453  other bacteria or with the host, are associated preferably with certain phylogroups. This may
454  result from specific genetic interactions in the different genetic backgrounds.

455
456  E. coli has usually been regarded as a contaminant from animal, mostly human, sources and

457  used to test water quality. Yet, recent data suggests that some strains could inhabit aquatic
458  environments®’. Given the contrast between the primary and secondary habitats of E. col,
459  respectively guts of endotherms and aquatic environments, this would imply marked
460  differences between the 285 freshwater strains and the others. Indeed, our results show that
461 these strains are systematically different. They are over-represented in phylogroup B1 (43%),
462  a phylogroup under-represented in all other sources of isolation (Figs. 2a,4b). On the other
463 hand, they are under-represented in B2 (13%), a phylogroup over-represented in strains
464  isolated from humans (this study) and other mammals?. The genome size of freshwater
465  strains’ is the smallest among all groups of isolates and across phylogroups (Fig. 4c, col 1,
466  Supplementary Fig. 17). Importantly, these strains show average pan-genome sizes in the
467 rarefied dataset, suggesting that adaptation is not exclusively due to genome reduction (Fig.
468  4c, col 11). This is also supported by the high number of gains and losses observed (Fig. 4c,

469  cols 13,14), although these genomes have the fewest MGEs and often lack plasmids (Fig. 4c,
19
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cols 2-6). Consistent with adaptation to this habitat, they have the smallest number of
antibiotic resistance genes, virulence factors, and bacteriocins (Fig. 4d, cols 7-10) and
Supplementary Fig. 18,19). In contrast, these strains show the highest diversity of STs and
O:H serotypes (Fig. 4c, cols 16,17, and Supplementary Table 5). The extreme genomic traits
of isolates from water strongly suggest they are not the result of recent fecal contamination
from other sources. Instead, they strongly suggest that these strains have changed to adapt
to water environments. If so, this seems to have involved extensive horizontal gene transfer
concomitant with streamlining, i.e. a high turnover of gene repertoires that resulted in

genomes smaller than the average.
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480 Discussion

481 Many of the recent advances in the understanding of E. coli evolution focused on clinical
482 isolates and placed a lot of emphasis on virulence and antibiotic resistance in a few clinically
483  important lineages®®’. Yet, most strains of the species are commensal. Hence, most of the
484  evolution of the species takes place in biotic contexts not associated with pathogenesis.
485  Furthermore, while a lot of attention has been placed on the rates of homologous

486 recombination in the chromosome of the species, it is now clear that HGT drives the

12,42,68,69 70-72

487  evolution of virulence and antibiotic resistance in pathogenic strains as well as
488  that of many other traits in commensal strains'?. For example, MGEs were recently shown to
489  be more important than point mutations for the colonization of the mouse gut by E. coli
490 commensals™. Here, we aimed at providing a global picture of the evolution of the E. coli
491 genomes with an emphasis on the variation of gene repertoires in strains from a variety of
492  sources (environmental and geographic) across a single continent. This allowed us to study
493  the joint effect of population structure and habitat on the variation of gene repertoires. Our
494  study focused on E. coli isolates from Australia, but its genetic diversity was higher or
495  comparable to other worldwide genome datasets, and its population structure was consistent
496  with previous works'®*™  This indicates that what we have observed is likely to be
497  representative of the species as a whole. It also confirms previous reports of the large
498  genetic diversity of the species and of the planetary circulation of all major lineages®*>".
499  Finally, the functional annotation of the pan-genome shows that in spite of over 375,000
500 papers citing E. coli in PubMed in 2019, we are still far from having discovered the full
501  genetic diversity of E. coli and from knowing the function of many of its most frequent gene
502  families.

503

504  We started our study by quantifying gene repertoire diversification, which we found to follow

505 a two-step dynamics. The very rapid initial diversification, where GRR quickly decreases to

506 ~90%, implicates substantial heterogeneity in terms of gene repertoires for strains that are
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507  from the same sequence type and are almost identical in the sequence of persistent genes.
508 Some of this divergence may be due to genome sequencing or assembling artifacts
509  producing singletons and thus inflating pan-genomes. Yet, we have annotated all genomes in
510 the same way. We also confirmed key results by excluding singletons, and showed that
511  singletons represent only ~0.5% of a typical genome and that many of them have homologs
512  in the databases. The frequency of singletons is only weakly correlated with the number of
513  contigs in draft assemblies, a further sign that they are not just caused by sequencing or
514  assembly issues (Supplementary Notes). Furthermore, our analysis of ancestral genomes
515 showed that a large fraction of well-known MGEs, including phages, ISs and plasmids, were
516  acquired very recently (inferred acquisition at the terminal branches of the phylogenetic tree).
517  Some of these are singletons, whereas others are present across many phylogroups. They
518  contribute directly to the rapid divergence of gene repertoires between separating lineages.
519  Previous population genetics models applied to other clades observed the existence of
520 genes that have rapid turnovers in genes’®’’. Our results show that frequent acquisition of
521  MGEs drives rapid diversification of gene repertoires even between strains that are almost
522 indistinguishable by classical typing schemes.

523

524  Following the abrupt initial loss of GRR between diverging lineages, we observed that the
525  similarity of gene repertoires decreases linearly with time. Hence, it does not follow the
526  negative exponential distribution that we proposed a decade ago*?, which was based on a
527  very small set of genomes that precluded the identification of the change of dynamics at
528  small patristic distance. This change of dynamics resembles the accumulation of non-
529  synonymous mutations in genes under weak purifying selection. Comparisons between
530 closely related strains reflect almost neutral accumulation of recent events whereas
531 differences between distant strains are driven by purifying selection with occasional fixation
532  of adaptive events’®’. In the present context, this suggests that either many integrations of

533  genetic material are slightly deleterious or that there is rapid deletion of neutral genes. The
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534  first hypothesis is consistent with the fitness costs associated with the acquisition of many
535 MGEs®"®2, and with our observation that most MGEs present in a genome were very recently
536  acquired. The second hypothesis is consistent with the previous works suggesting the
537  existence of mechanistic biases towards gene deletion in bacteria 884 Once most the recent
538 transfer has been purged, by natural selection or gene deletion biases, GRR decreases
539 linearly with divergence time and shows large variance around the regression line. The large
540 variance indicates that some distantly related bacteria may have more similar gene
541 repertoires than bacteria within the same sequence type. Importantly, the analysis does not
542 suggest the existence of a point beyond which relatedness and gene flow change abruptly.
543  Hence, these results do not suggest incipient sexual isolation within the species from the
544  point of view of horizontal gene transfer. The analysis of gene flow associated with B2 strains
545  should be placed in this context, it shows that this particular phylogroup has many MGEs and
546  large genomes, but is recently exchanging less genetic material with strains from its own and
547  from other phylogroups. This has placed it apart from the other phylogroups in terms of gene
548  repertoires and in terms of preferential habitats.

549

550 The rapid evolution of gene repertoires by HGT is consistent with the observation that
551 plasmids, prophages and ISs are almost ubiquitous among E. coli. These elements
552 contribute to the genome size and especially to its variability across strains, which supports
553  our previous results®®. While most MGEs are quickly lost from lineages, or drive the lineage
554  extinct, the large influx of such elements can bring adaptive accessory traits such as
555  antibiotic resistance genes’' and virulence factors®®®’. They also pave the way for cooption
556  processes®. The contribution of the MGE genes to genome size across the species is more
557  strongly associated with the isolation source of the strains than with the phylogroup. However,
558  the recent co-acquisition of MGEs by different strains is also associated with the phylogroup.
559  This is consistent with a scenario where the abundance of MGEs in a genome is strongly

560 dependent on the habitat, but their diversity also depends on the phylogroup. Since most
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561 MGE genes arrived in the genome very recently, this suggests that habitat exerts a strong
562  constrain on the flow of gene exchanges across E. coli strains, in line with the view that
563  bacteria exchange more genes with those they coinhabit®*.

564

565 The need of favorable genetic backgrounds for certain local adaptation processes could
566  explain the observed over-representation of some phylogroups in certain isolation sources.
567  Virulence factors and antibiotic resistance genes provide relevant examples. In our dataset,
568  the plasmids encoding virulence factors are often conjugative and should be able to circulate
569  widely, but the virulent clones often concentrate in only a few phylogroups. Selection for
570  antibiotic resistance is expected to be higher in the virulent clones, because these are the
571  most targeted in the clinic. Hence, they endure stronger selection to keep the ARGs arriving
572 in MGEs. These causal links result in preferential associations of genetic backgrounds with
573  virulence factors and ARGs, and therefore with the frequency of pathogens in a given
574  phylogroup. How much of these trends are due to epistatic interactions between novel genes
575 and the genetic background and how much is due to availability of specific genes by
576  horizontal transfer in certain sources remains to be quantified. In conclusion, these results
577  contribute to explain why epidemiological clones tend to emerge from specific phylogenetic
578  groups even in the presence of massive horizontal gene transfer.

579

580  Genetic diversity, created by HGT, recombination, or mutation, affects a species' ability to
581 adapt to novel ecological opportunities. The higher the diversity of gene repertoires in a
582  population, the more likely that one of those genes will prove helpful in the face of
583  environmental challenges such as antibiotics. We observed that the generalist phylogroups,
584  such as A and B1, have broader pan-genomes than specialist phylogroups like B2. This was
585  not expected based on their smaller genome sizes or the lower frequency of MGEs in their
586  genomes. We propose that this reflects the high variability of the environments where they

587  circulate and the consequent diversity of local adaptation processes. Phylogroup B2 strains,
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588 by comparison, have developed very specific traits that may let them take advantage of
589  some particular resources, e.g. they are better adapted to mammal gut environment?. This
590 has resulted in large genomes that have diverged more from the other E. coli, as revealed by
591 the PCA analysis, but that are overall more conserved (largest persistent-genome, smaller
592  pan-genomes, fewer recent gene acquisitions). Altogether, these results suggest that the
593  habitat and the phylogenetic structure jointly determine the size of genomes. The results also
594  suggest the hypothesis that the large genomes of some phylogroups, like B2, are caused by
595 arelative decrease in the rate of gene loss, not by an increase in the rate of gene gain.

596

597  The integration of information on gene repertoires and population structure in strains
598  sampled from diverse sources can shed light on the origin of environmental strains. This is
599 illustrated by the identification of genomic traits in freshwater E. coli isolates that are very
600 different from the average traits of the species and that suggest adaptation of certain
601 lineages to this environment. For bacteria, freshwater environments are much more nutrient
602  poor than the guts of endotherms, and it's interesting to note that strains associated with this
603  environment have more streamlined genomes. This may represent at the micro-evolutionary
604  scale, an adaptation similar to that observed in other bacteria adapted to poor nutrient
605  environments that have small genomes and few MGEs®"2, These results are also consistent
606  with recent studies showing that E. coli B1 strains can persist longer in water than strains of
607 the other phylogroups, and that B1 persistent strains in water often encode very few
608  virulence factors and antibiotic resistance genes’**3. Interestingly these strains have been
609 shown to be able to grow at low temperatures’. The prevalence of B1 isolates has been
610 observed in other environmental samples, such as drinking water or plants®. The
611  characteristics observed in freshwater isolates might be general to this environment, since
612  they were observed in strains from the B1 and from other phylogroups (Supplementary Figs.
613  16-18). If some E. coli lineages are indeed adapted to freshwater this radically changes the

614  range of environments from where they can acquire novel genes and the selection pressures
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that shape their subsequent fate. This finding also implies that environmental isolates are not
necessarily the result of source-sink dynamics where E. coli strains evolve in relation to
selection pressures linked to the host and environmental strains are just sinks where such
strains find evolutionary dead-ends. Instead, the environment outside the host could have a

significant impact on the evolution of E. coli subsequently colonizing human hosts.
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621 Materials and Methods

622  Strains: We used different collections of E. coli strains recovered in Australia between 1993
623 and 2015 (for a more detailed description, see Supplementary Note and Supplementary
624  Dataset1). The subset of strains selected for whole genome sequencing includes : (1) faecal
625  strains isolated from various birds (N=195 strains), non-human mammals (N=135), and
626  humans living in Australia (N=93); (2) clinical strains isolated during intestinal biopsies of
627  patients with infammatory bowel disease (N=172), or corresponding to human ExPEC
628  strains collected from urine or blood (N=112); (3) poultry meat strains isolated from chicken
629 meat products from diverse supermarket chains and independent butcheries (N=283); (4)
630 and freshwater strains isolated from diverse locations across Australia (N=285).

631

632  Sequencing: Of the 1,304 isolates, 70 were sequenced at Broad institute using the Roche
633 454 GS FLX system, 70 were sequenced by GenoScreen (Lille, France) using the
634  HiSeq2000 platform and the rest were sequenced at the Australian Cancer Research
635 Foundation (ACRF) Biomolecular Resource Facility (BRF) of the Australian National
636  University using the lllumina MiSeq platform.

637

638 Assembling: Paired-end read files were processed and assembled with CLC Genomics
639  Workbench v.9.5.3 (lllumina) using their de novo assembly algorithm with default parameters.
640  All genomes sequenced by the Broad institute were available into the NCBI Assembly
641  (www.ncbi.nlm.nih.gov/assembly/) or SRA (www.ncbi.nlm.nih.gov/sra/) databases. While, the
642  rest of the assemblies was deposited into the European Nucleotide Archive (PRJEB34791).
643  The accession number of each genome is reported in Supplementary Dataset1.

644
645  Datasets: We used 4 datasets in this study. (1) The Australian dataset described above is

646  the main dataset. (2) RefSeq dataset. We retrieved 370 E. coli complete genomes from

647  GenBank Refseq (available in February 2018). (3) ECOR dataset. We retrieved 72 draft
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648  genomes of the E. coli reference (ECOR) collection from DDBJ/ENA/GenBank*. Strains in
649  this collection were isolated from diverse hosts and geographic locations and have been
650 used for more than 30 years to represent the phylogenetic diversity of E. coli as they have
651 been selected from over 2,600 natural isolates based on MLEE data'. (4) Outgroup
652  dataset. We retrieved 65 other closely related Escherichia genomes from ENA/GenBank and
653  sequenced 21 others on the lllumina MiSeq platorm (assembled as described above). They
654  belong to Clade | (N=14), Clade Il (N=2), Clade Ill (N=8), Clade IV (N=2), Clade V (N=14), E.
655  fergusonii (N=8) and E. albertii (N=38) species. Only five of them were complete, others were
656  draft genomes. In this study, these genomes (called hereafter outgroup genomes) were only
657 used to root the Australian E. coli species tree. The general genomic features and the
658  sequencing status of these 1,832 genomes are reported in Supplementary Dataset1.

659
660 Data formatting: In an attempt to overcome the bias from different annotations all genomes

661  of the four datasets were annotated using Prokka v.1.11% which provided consistency across
662  the entire datasets (with hmmer v.3.1b1, aragorn v.1.2.36, barrnap v.0.4.2, minced v.0.1.6,
663  blast+ v.2.2.28, prodigal v.2.60, infernal v.1.1, ncbi_toolbox v.20151127, and signalp v.4.0).
664  We performed three quality controls on genomic sequences of Australian and outgroup
665 datasets (see Supplementary Note). A total of 10 E. coli draft genomes and one genome
666 from clade V failed at least one of these tests and were removed from further analysis,
667 leading to a final dataset of 1,294 Australian E. coli genomes and 87 outgroup genomes. The
668  main characteristics of each draft genome are reported in Supplementary Dataset1.

669
670  E. coli typing. Phylogroup. The phylogroup of each E. coli genome (from ECOR, RefSeq,

671 and Australian datasets) was determined using the in silico ClermonTyping method®.
672  Multilocus sequence typing (MLST). Sequence type (ST) was identified by the MLST

673  scheme of Achtman'® using mist v.2.16.1 (https:/github.com/tseemann/mist). We assigned

674  STs for a large majority of genomes, i.e., for 99%, 96% and 97% of the ECOR, RefSeq and

675  Australian genomes resp. Serotype. Serotype (O- and H-genotypes) was inferred with the
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676  EcOH database® using ABRIicate v.0.8.10 (https:/github.com/tseemann/abricate). Currently

677 there are 220 E. coli O-groups and 53 H-types described in this database. While 99% of
678  Australian genomes had H-group assigned, only 57% had O-group assigned even if wzm/wzt
679  and wzx/wzy genes are present. All these results are reported in Supplementary Dataset1.
680

681  Nucleotide diversity. The nucleotide diversity of the three datasets, i.e., ECOR, RefSeq
682 and Australian, was computed from the multiple alignments of 112 core gene families
683  present in all E. coli genomes of these three datasets, (see below), using the diversity.stats
684  function from the PopGenome v.2.6.1 R package®. We also used these 112 core gene
685 families to assess the nucleotide diversity for each phylogroup of the Australian dataset.

686

687 ST and O:H diversity. The Shannon index was computed to assess the diversity of ST and
688  O:H serotypes within each phylogroup and source. For this, we calculated their relative
689  frequency in each group and then applied the function skbio.diversity.alpha_diversity from
690 the skbio.diversity v.0.4.1 python package (http://scikit-bio.org/docs/0.4.1/diversity.html).

691

692 Mash distances (M). Genome similarity. Due to the high cost of computing ANI¥ via
693  whole-genome alignment, we estimated genome similarity calculating the pairwise Mash
694  distance (M) between all Australian genomes using Mash v.2.0%. Importantly, the correlation
695  between the Mash distances (M) and ANI in the range of 90-100% has been shown to be
696  very strong, with M = 1-(ANI/100)®. All the resulting Mash distances between E. coli
697 genomes are well below 0.05, in agreement with the assumption that they all belong to the
698  same species. The median is 0.027 and the maximal value is 0.04 (Supplementary Fig. 3).
699  Australian E. coli reference genomes. The Mash distance was strongly correlated to the
700  patristic distance in our dataset (spearman’s rho=0.92, P<10*). We used it to select 100
701  Australian E. coli strains representative of the species’ diversity (called hereafter reference
702  genomes). Such reference genomes were used to root the Australian E. coli tree (to

703  drastically reduce the computational time required to build the rooted tree). To select
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704  representative genomes, we performed a hierarchical WPGMA clustering from the Mash
705  distance matrix computed with all Australian E. coli genomes, and then we cut it off to have
706  only 100 clusters. In each of these clusters, the genome with the smallest L90 was selected.
707  This reference dataset contained all the phylogroups and was composed of: 15-A, 10-B1, 13-
708 E, 39-D, 11-F, 10-B2 and 2-G genomes.

709

710  Identification of pan-genomes: Pan-genomes are the full complement of genes in the
711  species (or dataset, or phylogroup) and were built by clustering homologous proteins into
712 families. We determined the lists of putative homologs between pairs of genomes with
713 MMsegs2 v.3.0% by keeping only hits with at least 80% identity and an alignment covering at
714  least 80% of both proteins. Homologs proteins were then clustered by single-linkage'®. We
715  computed independently the pan-genome of each dataset, i.e., ECOR, RefSeq, Australian
716  and of the 87 outgroups with the 100 Australian E. coli reference genomes. Each pan-
717  genome was then used to compute a matrix of presence-absence of gene families. Hence,
718  gene copy number variations were not taken into account in this part of the study. The alpha
719  exponent of Heap’s Law was used to infer whether a pan-genome is open or closed*. Thus,
720  if a (alpha) < = 1, the pan-genome is open. In contrast, a (alpha) > 1 represents a closed
721  pan-genome. This coefficient was computed using the heaps function of the micropan v.1.2
722 R package'" with n.perm = 1000. Principal component decomposition of the Australian pan-
723  genome, i.e, the matrix of presence-absence of protein families was computed using the
724 prcomp function from the stats v.3.5.0 R package.

725  The pan-genome of each phylogroup and source was taken from the pan-genome of the
726  species. The pan-genome of the MGE (called Pan-MGE) was also taken from the species
727  pan-genome and contained only genes encoding for MGEs.

728

729  Rarefaction of pan-genomes: The number of singletons was strongly correlated to the

730  number of genomes analyzed in each phylogroup (Pearson’s correlation = 0.97, P<10%),
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731 indicating that the pan-genomes size depend on the number of genomes analyzed. Thus, to
732  compare genetic diversity across datasets (e.g. phylogroups), we rarefied the genome
733  datasets, i.e., each pan-genome was constructed with the same number of genomes in each
734  comparison. To do this, 1,000 subsets of X genomes (X depending on the analysis, specified
735 in the results section) were randomly selected for comparison in each group, resulting to
736  datasets called hereafter rarefied datasets (Supplementary Fig. 8).

737

738 Identification of persistent-genomes: Gene families that are persistent were taken from
739  the analysis of pan-genomes. A gene family was considered as persistent when it was
740  present in a single copy in at least 99% of the genomes. We found 2,486 persistent gene
741  families when considering the 1,294 Australian genomes, representing 52% of the average
742 genome.

743

744  Identification of core-genome: The core genome was taken from the analysis of the pan-
745  genome. A gene family was considered as core if it is present in one single copy in all the
746  genomes. To assess the nucleotide diversity, we built a core-genome with all the genomes of
747  the ECOR, RefSeq, and Australian datasets. It was composed of 112 core gene families.
748  Each gene family was aligned with mafft v.7.222 (using FFT-NS-2 method)'®, and used to
749  compute the average nucleotide diversity () in each dataset and within each phylogroup

750  (see above).

751
752 Functional assignment of the pan-genome: Gene functional assignment was performed

2103104 50 the

753 by searching for protein similarity with hmmsearch from HMMer suite v.3.1b
754  bactNOG subset of the EggNOG v.4.5.1 database*’. We have kept hits with an e-value lower
755  than 10, a minimum alignment coverage of 50% of the protein profile, and when the majority
756  (>50%) of non-supervised orthologous groups (NOGs) attributed to a given gene family

757  pertained to the same functional group (category). The gene families that cannot be

758  classified into any existing EggNOG clusters were grouped into the “unknown” category. Hits
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759  corresponding to poorly characterized or unknown functional EQgNOG clusters were grouped

760  into the “poorly characterized” category.
761
762  Phylogenetic analyses: We built a rooted phylogeny of the species in two steps. The

763  phylogenetic species tree of Australian E. coli was reconstructed from the concatenated
764  alignments of the 2,486 persistent proteins of the 1,294 Australian E. coli strains. Each of
765  these protein families was aligned with mafft v.7.222 (using FFT-NS-2 method)'%. At this
766  evolutionary distance the DNA sequences provide more phylogenetic signal than protein
767  sequences. Hence, we back-translated the alignments to DNA, as is standard usage. We
768  built phylogenies from persistent genomes to avoid the loss of signal associated with the
769  small core genomes. When a genome lacked a member of a persistent gene family, or when
770 it had more than one member, we added a stretch of gaps (-‘) of same length as the other
771  genes for it in the multiple back-translated alignments. Adding a few "-" has little impact on

772 phylogeny reconstruction'®

. We have not removed recombination tracts from the multiple
773  alignment because this has been shown to amplify errors in determining phylogenetic
774  distances and it usually does not affect the topology of the tree'®'%. If determination of the
775  recombination was accurate in our >1,300 genomes dataset, this would have led to the
776  exclusion of almost all the genes. The length of the resulting alignment for the species was
777 2,298,168 bp. Each tree was computed with IQ-TREE multicore v.1.6.7'® under the
778  GTR+F+I+G4 model. This model gave the lowest Bayesian Information Criterion (BIC)
779 among all models available (option —m TEST in IQ-TREE). We made 1,000 ultra-fast
780  bootstraps to evaluate node support (options —bb 1000 —wbtl in IQ-TREE) and to assess the
781  robustness of the topology of each tree'®.

782  The phylogenetic tree of Escherichia genus was inferred from the persistent-genome
783  obtained with the 87 outgroup genomes and the 100 E. coli reference genomes (see above)
784  using the same procedure as the species tree. In this case, the persistent-genome is

785  composed of 1,589 proteins families, and the resulting alignment of 1,469,523 bp. The genus

786  phylogenetic tree was extremely well supported: all nodes had bootstrap support higher than
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787  95%. Its topology was consistent with a previous study'? (

Supplementary Fig. 3c). Then, we
788  used it to precisely root the species tree (Supplementary Fig. 3d).

789 The most recent common ancestor of each phylogroup: We identified the node
790  corresponding to the most recent common ancestor (MRCA) for each phylogroup from the
791  rooted species tree using the findMRCA function from the phytools v.0.6.44 R package. Then,
792  the subtree of each phylogroup was extracted using the extract.clade from the ape v.5.2 R
793  package'. The distance to the MRCA was computed from the length of branches in each
794  subtree. It corresponds to the average depth (distance from the MRCA) of all genomes (tips)
795  within a phylogroup, and was inferred using the depthTips from the phylobase v.0.8.6 R
796  package (https://github.com/fmichonneau/phylobase).

797
798  Evolutionary Distances: For each pair of genomes, we computed a number of measures of

799  similarity : 1) The Patristic distance was computed from the length of branches in the
800  Australian E. coli species phylogenetic tree. The patristic distance is simply the sum of the
801 lengths of the branches that link two genomes (tips) in the tree, and was inferred using the
802  cophenetic function from the ape v.5.2 R package'"". They were computed between all pairs
803  of genomes, of the same ST (intra-ST), of different ST (inter-ST) within identical phylogroup,
804 or of different phylogroups (Inter-phylogroup). As expected, we found that the intra-
805  phylogroup (both intra-ST and inter-ST) patristic distances were significantly shorter than the
806 inter-phylogroup (Wilcoxon test, P<10*). 2) The Gene Repertoire Relatedness index (GRR)
807  between two genomes was defined as the number of common gene families (the intersection)
808  divided by the number of genes in the smallest genome''?. It is close to 100% if the gene
809  repertoires are very similar (or one is a subset of the other) and lower otherwise. 3) The
810  Manhattan index between two genomes is the number of different gene families. If two
811 genomes have identical gene content, the corresponding Manhattan index is 0. 4) The
812  Jaccard index between two genomes was defined as the number of common gene families
813  (the intersection) divided by the number of gene families in both (the union). The Jaccard

814  index between two genomes describes their degree of overlap with respect to gene family
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815  content. If the Jaccard distance is 1, the two genomes contain identical protein families. If it is
816 0 the two genomes are non-overlapping.

817  To characterize the genetic diversification of each phylogroup of the Australian dataset, we
818 computed the three different standard indexes: the GRR, the Jaccard, and the Manhattan
819 indexes. All these indexes were highly correlated (Supplementary Fig. 9). Thus, only
820  analyses with GRR were reported and illustrated in the main text. Note that we always used
821  the matrix of presence/absence of gene families to compute all these indexes, meaning that
822  multiple occurrences were not considered. This downplays the impact of IS on pan-genome
823  size and makes more conservative estimates of GRR divergence.

824

825 Reconstruction of the evolution of gene repertoires: We assessed the evolutionary
826  dynamics of gene repertoires of the Australian genomes using Count (downloaded in
827  January 2018)'® with the Wagner parsimony method. Due to the size of our dataset it was
828  not possible to do the analysis using birth-death models, but our previous analyses revealed

829  very few differences between the two methods in smaller datasets'"

. Wagner parsimony
830  penalizes the loss and gain of individual family members (with relative penalty of gain with
831 respect to loss of 1, option g = 1), and infers the history with the minimum penalty. Thus,
832  from the pan-genome, i.e., the matrix of presence-absence of gene families, and the rooted
833  species tree, Count inferred the most parsimonious gain/loss scenario of each gene family
834 along the tree. At each tree node, Count detailed information about individual families:
835  presence/absence, and family events on the edge leading to the node. Hence, we have
836  reconstructed the gene content of ancestral genome at each node. At each terminal branch,
837  the expected total number of recent acquisitions (HGT) was computed by summing all family-
838  specific gene gains obtained from the edge leading to the tip. Among them, we identified
839 MGE associated genes that were recently acquired in each genome. We applied a similar

840  strategy to identify recent losses.

841
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842  Distribution of accessory families across phylogroups (or sources): We counted the
843  number of MGE-associated gene families across phylogroups (Fig. 3d) or sources
844  (Supplementary Fig. 15). We excluded the singletons from this analysis to avoid over-
845  estimation of the number of families specific to one category. To test if some categories over-
846  represented or under-represented these genes, we made 1,000 simulations. In each
847  simulation, we shuffled the phylogroup (or source) assignment of the genomes while keeping
848  the same number of taxa in each category (phylogroups or sources). Thus, the presence of a
849  gene family in a genome and its frequency in the pan-genome remains the same, only the
850  phylogroup (or the source) of genomes changes. The Z-score obtained for the observed
851  number in the real data with respect to the random distribution (from 1,000 simulations) was
852  reported for each case with a color code ranging from blue (under-representation, Z-score<-
853  1.96) to red (over-representation, Z-score>1.96).

854

855 Recent co-occurrence of gains (co-gains) of gene families within phylogroups.

856  We counted the number of recently acquired gene pairs (co-gains) from the same pan-
857  genome gene family (see above) within and between phylogroups. Recently acquired genes
858  were defined as those inferred as acquired in terminal branches using Count. To test if some
859  phylogroups over-represented or under-represented these co-gains, we compared the
860 observed number (O) within each phylogroup to the expectation (E) given by 1,000
861  simulations. In each simulation, we shuffle the phylogroup assignment of the taxa (same
862  approach as for the accessory gene families) and count the number of co-gains within and
863  between phylogroups. For each phylogroup, we then divided the number observed in the real
864 data (O) by the average number observed in the simulations (E), and computed the Z-score
865  of the observed number (O) with respect to the random distribution (E). We considered an
866  over(under)-representation significant when Z-score>1.96 (Z-score<-1.96). Note that the O
867 and E numbers had to be previously normalized (divided by the total number of gene pairs,

868 i.e. the sum of pairs within and between phylogroups, in the real data, and in each
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869  simulation, resp.). We applied the same approach (i) considering only gene pairs encoding
870  for MGEs (similar result as in Fig. 3), (ii) for sources (instead of phylogroups, Fig. 4).

871

872  Network of co-occurrence of gains (co-gains) of gene families across phylogroups.

873  All co-gains (see above) were split into all possible combinations of phylogroup pairs (21
874 combinations). To test if these co-gains are over- or under-represented between
875  phylogroups, we compared the observed number (O) between each phylogroup to the
876  expectation (E) given by 1,000 simulations with the same strategy as above. As before, we
877  normalized the observed and expected numbers by the total number of co-gains in each
878  simulation, calculated the (O/E) ratio, and the Z-score of each observed value in the real data
879  with respect to the random distribution (E). The network was drawn using the igraph v.1.2.2

880 R package (https://igraph.org/r/) with the circle layout option, where nodes are phylogroups,

881  edges are (O/E) values for which the Z-score is significantly different from zero. The width of
882  the edges is proportional to the (O/E) value and the color is blue for under- and red for over-
883  representation (Fig. 3f). We applied the same approach considering only gene pairs
884  encoding for MGEs (Supplementary Fig. 16).

885

886  Gene family diversity: We computed Shannon indexes to assess the diversity of each gene
887  family recently acquired (terminal branches) across phylogroups and across sources (Fig.
888  4e). If diversity is low, this means that acquisitions are clustered by phylogroup or source
889  (depending on the analysis). For this, we calculated the relative frequency of each gene
890  family recently acquired within each phylogroup (vs. each source). It is simply the number of
891 genomes (within a phylogroup) with at least one acquisition divided by the total number of
892 genomes in the phylogroup. We therefore obtained 2 vectors per gene family (one for
893  phylogroups and one for sources) each containing 7 frequencies (for each phylogroup or
894  each source) and then applied for each vector the function diversity from the vegan v.2.4.6 R

895  package (https://github.com/vegandevs/vegan). If the index is 0, recent acquisitions of genes
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896  of the family are limited to a single group (phylogroup or source). The higher the index, the
897  more scattered the acquisitions of the family's genes are (across phylogroups or sources).

898
899  Statistics: All basic statistics were performed using R v 3.5.0, or JMP-13. (i) Analysis of

900 means: We used ANOM to compare group means to the overall mean, when the data were
901 approximately normally distributed. In cases where the data were clearly non-Gaussian and
902  could not be transformed, we used the nonparametric version of the ANOM analysis, i.e.,
903 ANOM with Transformed Ranks. It compares each group’s mean transformed rank to the
904 overall mean transformed rank. In both, we used the methods implemented in JMP-13. (ii)
905 Pairwise Wilcoxon Rank Sum Tests were computed using the pairwise.wilcox.test function
906 from the stats v.3.5.0 R package. We used the Bonferroni correction during multiple
907 comparison testing. (iii) Fisher's exact tests were computed using the fisher.test function
908 from stats v.3.5.0 R package. They were performed for testing the null of independence of
909 rows (phylogroups) and columns (sources) in a 2x2 contingency table. (iv) Correlation
910 coefficients. Pearson’s and Spearman’s rank correlation rho were computed using the cor
911 function from stats v.3.5.0 R package. The correlation matrices were represented using the
912  corrplot v.0.84 R package (https://cran.r-project.org/web/packages/corrplot/index.html). (v)
913  Smooth regression: We used the generalized additive model (gam) smoothing method from
914 the mgcv v.1.8.23 R package (https://cran.r-project.org/web/packages/mgcv/index.html). (vi)
915 Stepwise multiple regressions were computed with JMP-13. This standard statistical
916 method consists in a stepwise integration of the different variables in the regression by
917  decreasing order of contribution to the explanation of the variance of the data'”®. We used
918 the forward algorithm and the BIC criterion for model choice in the multiple stepwise
919 regressions. The P-values associated with each variable were assessed using an F-test.

920
921 Identification of Mobile Genetic Elements (MGEs): Prophages: Prophages were

922  predicted using VirSorter v.1.0.3% with the RefSeqABVir database in all genomes from

923  Australian and RefSeq datasets, as a control. The least confident predictions, i.e., categories
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924 3 and 6, were excluded from the analyses in both datasets. The prophage-associated
925  regions in drafts are more numerous and shorter than in complete genomes (Supplementary
926  Fig. 11). These results reveal that such regions are sometimes split in assemblies. In
927  complete genomes, the cumulative size of the prophage-associated regions (X) is highly
928  correlated with the number of prophages (Y) present in the genomes (Y=1.2923362 +
929  1.6767.10°X, R?>=0.91, P<10™, Supplementary Fig. 11). Hence, we used this linear equation
930 to estimate the number of prophages in drafts using the cumulated size of prophage regions
931 in the draft genomes. Plasmids: In the RefSeq dataset, all the extrachromosomal replicons
932  were considered as plasmids. In the Australian dataset, plasmid sequences were identified
933  using PlaScope v.1.3% with the database dedicated to E. coli. PlaScope provides a method
934  for plasmid and chromosome classification of E. coli contigs. It has the specificity to select a
935  unique assignment to each contig of a draft genome to plasmid, chromosome or unclassified.
936  The number (~16, max: 124) and size (~9 kb, max: 166 kb) of contigs predicted as plasmid
937  were highly variable (Supplementary Fig. 12) in the Australian dataset. Their size is much
938  smaller than that of the average plasmid in complete genomes (~80 kb), reflecting the split of
939 plasmids across different contigs because of the presence of repeated sequences, e.g. IS
940 elements. Hence, we have not attempted to estimate the exact number of plasmids per
941 genome and focus our analysis on the number of genes predicted to be in plasmid contigs.
942 MGEs (Plasmids + Prophages): We found 11,864 gene families specifically related to
943  plasmid elements, 14,188 to prophage elements, and 2,599 shared by both (9% of the MGEs
944  gene families). In complete genomes, prophage and plasmids elements account for half of
945  the pan-genome, of which 1 third were singletons. The large fraction of singletons from
946  MGEs confirms that these elements are extremely diverse and evolved very rapidly, which
947  underlines the difficulty of accurately detecting them and probably leads to their under-
948  estimation in draft genomes. Loci encoding conjugative or mobilizable elements were
949  detected with the CONJscan module of MacSyFinder''®, using protein profiles and definitions

950  following a previous work®'"7. 87% of conjugative systems and 75% of putative mobilizable
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951 elements were located on contigs predicted as plasmids by Plascope. Integrons were
952 identified using IntegronFinder v.1.5 with the —local_max option®’. 186 integron-integrase (int/)
953  were detected with one quarter located at the edges of contigs. We only found one copy per
954  genome. They were often located on very short contigs (20 proteins on average), and five
955  make all the contigs. Most (86%) were located on contigs predicted as plasmid by Plascope,
956 the remaining were on unclassified contigs. Except for the latter, int/ genes were always
957 located next to ARGs. IS elements were identified using ISfinder®®. Only hits with an e-value
958  lower than 107'°, a minimum alignment coverage of 50% and with at least 70% identity were
959  selected, we extracted the IS name of the best hit. Therefore, we identified 47,592 genes
960 encoded for IS elements, among them 43% were located at the edges of contigs
961 (20,329/47,592). They represented 1,006 gene families (~1% of the pan-genome), of which
962  41% were singletons. Only 13% were multigenic protein families (i.e., with more than one
963 member in at least one genome). Among them, 9 protein families were found in more than 10
964 copies in at least one genome, i.e., ISEc1 (10 copies), IS1397 (11), ISSoENn2 (11), 1IS621 (11),
965 1S2 (15), IS629 (17), 1IS200C (17) 1IS1203 (18), and the most extreme case IS1F (107). Very
966 large numbers of ISs, usually a sign of recent proliferation, was restricted to a small number
967 of genomes (Supplementary Dataset1), but this may be an under-estimate caused by the
968 loss of ISs in the assembling process. ISs were often fragmented, characterized by
969 numerous singletons, and six times more frequently present at the edges of contigs than
970  expected by chance. All the results are reported in Supplementary Dataset1.

971

972  Antibiotic resistance genes (ARG) were detected using 2 curated databases of antibiotic
973  resistance protein: Resfinder v.3.1""® and ARG-ANNOT v.3""°. Therefore, we used BlastP
974  and selected the hits with an e-value lower than 107°, with at least 90% of identity and a
975  minimum alignment coverage of 50%. We found a strong positive correlation between the
976  number of ARGs per genome using each database (pearson’s r=0.97, P<10™). The main

977 difference is the additional detection of three ARGs by ARG-ANNOT, i.e., AmpC2, AmpH,
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Mfd, which are persistent in Australian dataset and normally do not confer antibiotic

resistance in E. coli. All the results are reported in Supplementary Dataset1.

Virulence factors (VF) were identified using VFDB (downloaded in February 2018, '%°). The
two databases, i.e., VFDB_setA and VFDB_setB were used independently. We used BlastP
and selected the hits with an e-value lower than 10, at least 70% of identity and minimum
alignment coverage of 50%. We found 1,332 (vs. 3481) gene families encoding virulence
factors with the setA (vs. setB). In spite of these differences, we found qualitatively similar
conclusion with the 2 sets because they are very correlated (pearson’s r=0.97, P<10™*). All

the results are reported in Supplementary Dataset1.
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