

Biomarker signatures of quality for nasal chondrocyte-derived engineered cartilage

1 **M. Adelaide Asnaghi¹⁺, Laura Power²⁺, Andrea Barbero¹, Martin Haug³, Ruth Köppl⁴, David**
2 **Wendt¹, Ivan Martin^{1,2*}**

3 ⁺ *Both authors contributed equally*

4 ¹Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland

5 ²Department of Biomedical Engineering, University of Basel, Basel, Switzerland

6 ³Department of Surgery, University Hospital Basel, Basel, Switzerland

7 ⁴Otorhinolaryngology, Head and Neck Surgery, University Hospital Basel, Basel, Switzerland

8

9 *** Correspondence:**

10 Prof. Ivan Martin

11 ivan.martin@usb.ch

12

13 Word count: 5205; figure count: 7

14

15 **Keywords: Engineered cartilage, nasal chondrocytes, perichondrium, identity / purity, potency,**
16 **quality controls, Advanced Therapy Medicinal Product (ATMP), Good Manufacturing**
17 **Practice (GMP)**

18 **Abstract**

19 The definition of quality controls for cell therapy and engineered product manufacturing processes is
20 critical for safe, effective, and standardized clinical implementation. Using the example context of
21 cartilage grafts engineered from autologous nasal chondrocytes, currently used for articular cartilage
22 repair in a phase II clinical trial, we outlined how gene expression patterns and generalized linear
23 models can be introduced to define molecular signatures of identity, purity, and potency. We first
24 verified that cells from the biopsied nasal cartilage can be contaminated by cells from a neighboring
25 tissue, namely perichondrial cells, and discovered that they cannot deposit cartilaginous matrix.
26 Differential analysis of gene expression enabled the definition of identity markers for the two cell
27 populations, which were predictive of purity in mixed cultures. Specific patterns of expression of the
28 same genes were significantly correlated with cell potency, defined as the capacity to generate tissues
29 with histological and biochemical features of hyaline cartilage. The outlined approach can now be
30 considered for implementation in a Good Manufacturing Practice setting, and offers a paradigm for
31 other regenerative cellular therapies.

32 1 Introduction

33 Large cartilage defects in adults have limited capacity to regenerate, and state-of-the art regenerative
34 medicine therapies do not induce reproducible or stable results (Teo et al., 2019; Kon et al., 2009). We
35 previously demonstrated the safety and feasibility of autologous nasal chondrocyte-derived engineered
36 cartilage for the treatment of focal traumatic lesions in the knee in a phase I clinical trial (Mumme et
37 al., 2016), and a phase II clinical trial is ongoing to investigate efficacy. Briefly, autologous nasal
38 chondrocytes are expanded in vitro before seeding onto a collagen I/III scaffold and cultured in
39 chondrogenic conditions to produce a mature, hyaline-like cartilage graft that is then implanted into
40 the knee cartilage defect of the same patient.

41 The starting material for this approach is a biopsy from the native nasal septum cartilage, which, like
42 articular cartilage, is a hyaline cartilage (Al Dayeh et al., 2013) composed predominantly of water, type
43 II collagen, glycosaminoglycan (GAG) containing proteoglycans, and the one cell type, chondrocytes
44 (Buckwalter et al., 1998). Mucoperichondrium is the tissue that overlays nasal cartilage; it consists of
45 several layers, including mucosa, lamina propria, and perichondrium, the tissue directly adjacent to the
46 cartilage that is tightly attached and cannot be easily distinguished (Aksoy et al., 2012). Currently,
47 nasal septal cartilage and mucoperichondrium are separated by pulling them apart with forceps and are
48 identified based on their physical characteristics. Due to donor-related and operator-related variability,
49 the resulting biopsy may not be completely pure after cleaning, with some overlaying tissue remaining
50 attached to the cartilage.

51 When working with intrinsically variable donor-derived human materials, such as tissues and cells,
52 establishing the quality and consistency of the starting material is key to ensuring reproducibly high
53 quality engineered products, not least to avoid the consequences of cell misidentification (Hyun-woo,
54 2019; Editorial, 2009). This prompts for the development of identity and purity assays (Carmen et al.,
55 2012), which can be based on various characteristics of the cells, such as gene or protein expression.
56 Gene expression markers have been proposed for articular cartilage cell identity and purity assays
57 (CHMP 2017; Diaz-Romero et al., 2017; Bravery et al., 2013; Mollenhauer et al 2010). However, until
58 now, there are no known biomarkers that can distinguish the cell types found in nasal cartilage biopsies.
59 Moreover, the impact of possibly contaminating cells on nasal chondrocyte-based engineered cartilage
60 has not been investigated.

61 Engineered products treat diseases or damage through repairing, replacing, or regenerating tissues or
62 organs (Detela et al., 2019). A potency assay must be developed based on the mode of action of the
63 tissue engineered product (CHMP 2008)–in our case, the filling of cartilage defects with healthy,
64 hyaline-like tissue—which is ideally correlated to the efficacy, leading to consistent quality of the tissue
65 engineered product and good clinical outcome (Bravery et al., 2013).

66 In this study, we first investigate which cell types are potentially contaminating in human nasal septum
67 cartilage biopsies and their impact on the quality of engineered cartilage. We then investigated whether
68 gene expression analysis could discriminate the contaminant cells found in nasal septal biopsies for the
69 development of a characterization panel for identity and purity quality controls. To assess potency, we
70 compared the gene expression of nasal septum biopsy-derived cells to their ability to produce
71 cartilaginous tissue. Finally, we propose how these purity and potency assays could be implemented
72 in a Good Manufacturing Practice (GMP) compliant process for the translation of our regenerative
73 therapy product.

74 **2 Materials and methods**

75 **2.1 Cell isolation and expansion**

76 Human nasal septum biopsies were collected from 17 donors (9 female, 8 male, mean age 46 years,
77 range 16–84 years) after informed consent and in accordance with the local ethical commission
78 (EKBB; Ref.# 78/07). Two samples derived from patients enrolled in the Nose2Knee clinical trials
79 (ClinicalTrials.gov, number NCT01605201 and number NCT02673905).

80 For 4 donors, the biopsy was carefully dissected to give a pure cartilage sample (NC) and a pure
81 perichondrium sample (PC). Nasal chondrocytes were isolated from NC by enzymatic digestion as
82 previously described (Jakob et al., 2003) with 0.15% collagenase II (Worthington) for 22 hours at
83 37°C. After digestion, cells were plated in tissue culture flasks at a density of 1×10^4 cells/cm² and
84 cultured in medium consisting of *complete medium* (Dulbecco's Modified Eagle's Medium (DMEM))
85 containing 4.5 mg/mL D-glucose and 0.1 mM nonessential amino acids, 10% fetal bovine serum (FBS),
86 1 mM sodium pyruvate, 100 mM HEPES buffer, 100 U/mL penicillin, 100 µg/mL streptomycin, and
87 0.29 mg/mL L-glutamine (all from Invitrogen), supplemented with 1 ng/mL transforming growth
88 factor beta-1 (TGF-β1) and 5 ng/mL fibroblast growth factor-2 (FGF-2) (both from R&D Systems) at
89 37°C and 5% CO₂ in a humidified incubator (Thermo Scientific Heraeus) as previously described
90 (Jakob et al., 2003). When approaching 80% confluence, cells were detached using 0.05% trypsin-
91 EDTA (Invitrogen) and re-plated.

92 PC tissue samples were cut in small pieces and put on the bottom of plastic culture dishes to isolate
93 adherent cells that migrated out of the tissue for one week in complete medium. Cells were then
94 detached using 0.05% trypsin-EDTA and further cultured until confluence in the same conditions as
95 nasal chondrocytes.

96 Specific ratios of NC to PC cells were combined at passage two to generate mixed populations of
97 known purity of 100%, 90%, 80%, 70%, 60%, and 0% NC.

98 For all other biopsies, in case perichondrium was present, half of the sample was dissected removing
99 all perichondrium to obtain a pure nasal cartilage sample (NC), while the overlaying perichondrium
100 remained intact on the other half (NC+PC samples). Cells were isolated from each tissue sample by
101 enzymatic digestion and expanded in complete medium supplemented with TGF-β1 and FGF-2 up to
102 2 passages as described above for nasal chondrocytes.

103 **2.2 Chondrogenic redifferentiation**

104 **2.2.1 Micromass pellets**

105 Cells expanded until passage two were redifferentiated by culturing as 3D micromass pellets, as
106 previously described (Asnaghi et al., 2018). 3D micromass pellets were formed by centrifuging 5×10^5
107 cells at 300 x g in 1.5 mL conical tubes (Sarstedt) and cultured for two weeks in chondrogenic serum-
108 free medium consisting of DMEM containing 1 mM sodium pyruvate, 100 mM HEPES buffer, 100
109 U/mL penicillin, 100 µg/mL streptomycin, 0.29 g/mL L-glutamine, 1.25 mg/mL human serum albumin
110 (CSL Behring), and 100nM dexamethasone (Sigma, Switzerland), supplemented with 10 ng/mL TGF-
111 β1 (R&D), ITS+1 (10 µg/mL insulin, 5.5 µg/mL transferrin, 5 ng/mL selenium; Gibco), 100 µM
112 ascorbic acid 2-phosphate (Sigma), and 4.7 µg/mL linoleic acid (Sigma). Culture medium was changed
113 twice weekly.

114 **2.2.2 Engineered cartilage on Chondro-Gide**

115 Passage two cells were seeded on collagen type I/III membranes (Chondro-Gide; Geistlich Pharma
116 AG) at a density of 4.17 million cells per cm². The resulting constructs were cultured for two weeks in
117 chondrogenic medium consisting of complete medium supplemented with 10 µg/mL insulin (Novo
118 Nordisk), and 0.1 mM ascorbic acid 2-phosphate (Sigma) at 37°C and 5% CO₂ with media changes
119 twice/week.

120 The described protocols match the ones used in the context of the clinical trial, where GMP-grade
121 reagents and autologous serum instead of FBS are used. Grafts for clinical use are produced at the
122 GMP facility at the University Hospital Basel according to standard operating procedures under a
123 quality management system, as described in Mumme *et al* (Mumme et al., 2016).

124 **2.3 Histology and immunohistochemistry**

125 Samples were fixed overnight in 4% formalin and embedded in paraffin. Sections 5 µm in thickness
126 were stained with safranin-O for glycosaminoglycans (GAG) and hematoxylin as a nuclear
127 counterstaining as described elsewhere (Grogan et al., 2016). Immunohistochemistry against collagen
128 type I (No. 0863170, MPBiomedicals, 1:5000) and collagen type II (No. 0863171, MPBiomedicals,
129 1:1000) was performed using the Vectastain ABC kit (Vector Labs) with hematoxylin counterstaining
130 as in standard protocols (Scotti et al., 2010). Immunofluorescence staining against HAPLN1 was
131 performed using the HAPLN1 primary antibody (ABIN653748, Abgent) after epitope heat retrieval at
132 95°C for 60 min and permeabilization for 5 min with 0.5% Triton-X, and a goat anti-rabbit Alexa
133 Fluor 488 secondary antibody (Invitrogen, 1:200) with DAPI (Thermo Fisher Scientific D1306,
134 300mM) as a nuclear counterstain. Fluorescence images were acquired with a confocal microscope
135 (Zeiss LSM 710).

136 Histological scoring via the Modified Bern Score (MBS) was performed on safranin O-stained
137 histological images as previously described (Lehoczky et al., 2019; Grogan et al., 2006). Briefly, the
138 MBS has two rating parameters that each receive a score between 0 and 3. First, the intensity of
139 safranin-O staining (0 = no stain; 1 = weak staining; 2 = moderately even staining; 3 = even dark stain),
140 and second, the morphology of the cells (0 = condensed/necrotic/pycnotic bodies; 1 = spindle/fibrous;
141 2 = mixed spindle/fibrous with rounded chondrogenic morphology; 3 = majority
142 rounded/chondrogenic). The two values are summed together resulting in a maximum possible MBS
143 of 6.

144 **2.4 Quantitative qPCR**

145 We chose the gene expression markers to investigate based on a literature search. The gene expression
146 ratios of collagen II to I and aggrecan to versican are well-known chondrogenic markers (Martin et al.,
147 2001). HAPLN1 has been found in most types of cartilage (Spicer et al., 2003), including in bovine
148 nasal cartilage (Baker et al., 1978). Versican protein expression has been found in perichondrium from
149 other cartilage tissue sources (Shibata et al., 2014) and nestin has been shown to be expressed in
150 embryonic perichondrium (Ono et al., 2014). MFAP5 is found in elastic as well as non-elastic
151 extracellular matrixes (Halper et al., 2014) and has been used as a negative marker for chondrogenic
152 cells from articular cartilage (Rapko et al., 2010).

153 Total RNA was extracted from expanded cells at both P1 and P2, 3D micromass pellets, and engineered
154 cartilage grafts with the Quick RNA Miniprep Plus kit (Zymo Research) and quantitative gene
155 expression analysis was performed as previously described (Martin et al., 2001). Reverse transcription

156 into cDNA was done from 3 μ g of RNA by using 500 μ g/mL random hexamers (Promega, Switzerland)
157 and 0.5 μ L of 200 UI/mL SuperScript III reverse transcriptase (Invitrogen). Assay on demand was used
158 with TaqMan Gene Expression Master Mix to amplify type I collagen (Col I, Hs00164004), type II
159 collagen (Col II, Hs00264051), aggrecan (Agg, Hs00153936_m1), Versican (Ver, Hs00171642_m1),
160 link protein 1 (HAPLN1, Hs00157103_m1), MFAP5 (MFAP5, Hs00185803_m1), and nestin (Nes,
161 Hs00707120_s1) (all from Applied Biosystems). The threshold cycle (C_T) value of the reference gene,
162 GAPDH (GAPDH, Hs00233992_m1), was subtracted from the C_T value of the gene of interest to
163 derive ΔC_T values. All displayed gene expression levels are, and statistical analyses were performed
164 on, the ΔC_T values. GAPDH was found to be a stable reference gene for perichondrial cells.

165 2.5 Biochemical quantification of GAG and DNA

166 Samples of engineered cartilage and micromass pellets were digested with proteinase K (1 mg/mL
167 proteinase K in 50 mM Tris with 1 mM EDTA, 1 mM iodoacetamide, and 10 mg/mL pepstatin A). The
168 GAG content was determined by spectrophotometry using Dimethylmethylene Blue (Sigma-Aldrich
169 341088) as previously described (Barbosa et al., 2003). DNA content was measured using the CyQuant
170 cell proliferation assay kit (Invitrogen).

171 2.6 Modeling

172 The generalized linear modeling (glm) function in R was used to build all the models. A logistic
173 regression model was used to predict purity, where the response is a continuous probability between 0
174 (pure perichondrium) and 1 (pure cartilage) with samples from four donors and 48 independent
175 experiments of known purities. For the logistic regression models, the McFadden pseudo R^2 values
176 were calculated with the pscl R package (Jackman et al., 2017) and the Hosmer-Lemeshow analysis
177 was performed with the ResourceSelection R package (Lele et al., 2019). For the potency assay
178 predicting GAG production, a gamma GLM with a log link was used to model quantified amounts of
179 GAG (measured in μ g). The MBS of chondrogenic pellets was modeled by first dividing the value by
180 six, the maximum possible score, then training a multiple logistic regression model; the predicted
181 responses were then multiplied by six. Samples from nine donors in 28 independent experiments were
182 used to train the MBS potency assay and 25 independent experiments were used to train the GAG
183 potency model and for gene selection. For all three assays, stepwise selection (Agostini et al., 2015)
184 was performed in both directions; collagen II and I, aggrecan, versican, HAPLN1, and MFAP5 were
185 tested and the model with the lowest Akaike information criterion (AIC) was chosen. Samples from
186 five donors in 12 independent experiments were used to test the potency models. Residual plots were
187 used to verify all the models. The correlation between the predicted and actual purity, GAG, and MBS
188 values were calculated with the square of the Pearson correlation coefficient. The final equations of
189 the potency models were rebuilt with both the training and test data together.

190 2.7 Statistical analysis

191 All calculations were performed using standard functions, unless otherwise stated, in R (R Core Team
192 2019). Statistical significance is defined as $p < 0.05$. Statistical significance for comparing two means
193 was calculated using paired or unpaired t-tests and normality was checked with the Shapiro-Wilks test.
194 To test multiple comparisons, a linear model was fitted, then the glht function of the multcomp R
195 package (Hothorn et al., 2008) was used to test all the contrasts; p-values were corrected for multiple
196 testing using the single-step Bonferroni method. Correlation plots using Spearman correlation
197 coefficients (ρ) were created with the corplot R package (Wei et al., 2017). Data are presented as mean
198 and standard deviation of independent experiments with cells from at least 4 different donors. For each

199 analysis at least 2 replicate micromass pellets were used per condition. Symbols used are: *** p<0.001,
200 ** p<0.01, * p<0.05, and . p<0.1.

201 **3 Results**

202 **3.1 Native nasal septum biopsy characterization**

203 In the context of ongoing clinical trials, the nasal septum biopsy is harvested along the subperichondrial
204 axis, so that most of the perichondrium remains in place in the patient's nose, not only an efficient risk-
205 control measure, but also important for the stability and healing of the donor site. More heterogeneous
206 samples are obtained from plastic surgeries unrelated to clinical trials, which include mixed cartilage
207 and perichondrium. Safranin O staining of nasal septum specimens indicated the presence of tissues
208 with distinct characteristics, i.e., GAG-rich cartilage with round chondrocytes residing in lacunae and
209 adjacent GAG-negative perichondrium containing cells with fibroblast-like morphology, comparable
210 to previous findings (Bairati et al., 1996). Immunohistochemical analysis showed more collagen II in
211 the cartilage and more collagen I in the perichondrium, confirming previously reported results (Popko
212 et al., 2007). The border between the two tissues is not clearly defined in our samples, as in previous
213 reports (Bleys et al., 2007; Bairati et al., 1996; Fig 1A).

214 The separation of the cartilage and overlaying tissue is done by pulling them apart with forceps;
215 however, the efficiency of this technique is unknown. Histological analysis after physical separation
216 of cartilage and perichondrium revealed that the resulting biopsy may have small amounts of safranin
217 O-negative tissue on the cartilage after separation (Fig 1B). This safranin O-negative region includes
218 cambium, which is hypothesized to be the source of cells with tissue forming capacity (Van Osch et
219 al., 2000; Upton et al., 1981), and sometimes perichondrium that is difficult to remove (Hellingman et
220 al., 2011). Deeper cleaning of the starting biopsy (e.g., via scraping or cutting with a scalpel) is not a
221 suitable option, since we observed reduced cell yield and slightly lower chondrogenic capacity in
222 preliminary experiments, supporting the theory that this superficial region contains more potent cells.

223 **3.2 Characterization of perichondrial cells**

224 The samples we classify as pure nasal cartilage (NC) and perichondrium (PC) are the tissues after
225 separation using the aforementioned technique. Visually, under macroscopic observation during
226 expansion in cell culture dishes, NC and PC cells are not distinguishable, both having the same
227 characteristic fibroblastic-like cell morphology. The proliferation rates of the two cell types were
228 measured and found to be about equal (Fig 2A). To compare the chondrogenic capacity of NC and PC
229 cells, we engineered pellets and found that NCs could reproducibly produce GAG and collagen II while
230 PCs could not and predominantly produced type I collagen, as seen by histological analyses and
231 biochemical quantification (Fig 2B,C).

232 **3.3 Identity assay**

233 We sought to distinguish the cells from these two tissues based on their gene expression profiles. NC
234 cells expressed significantly higher levels of type II collagen and relative ratios of collagen II:I,
235 aggrecan:versican and, at passage two, HAPLN1:MFAP5; whereas PC cells expressed significantly
236 higher levels of versican, MFAP5, and nestin (Fig 3). Expanded cells were then cultured as 3D
237 micromass pellets in chondrogenic conditions for two more weeks. NC cells from engineered pellets
238 expressed significantly more collagen II and higher ratios of collagen II:I, aggrecan:versican, and
239 HAPLN1:MFAP5, and PC cells expressed significantly higher levels of versican and MFAP5 (Fig S1).
240 In summary, these results demonstrate that nasal chondrocytes and perichondrial cells have statistically

241 significant differential expression of cartilage-related genes both during expansion and after pellet
242 culture.

243 **3.4 Purity assay**

244 The only method currently available to assess the purity of the starting native cartilage biopsy is by
245 manually counting the number of cells in each type of tissue in a histological image (Fig S2). This
246 method suffers from limitations due to histological artifacts, unclear distinction between tissue types,
247 its semi-quantitative and destructive nature, and the fact that a histological section may not be
248 representative of the whole tissue. Here we assessed if the purity of a *mixed* cell population could also
249 be estimated based on gene expression analysis.

250 Spearman correlation coefficients (ρ) of the gene expression of cells at passage two that we combined
251 at specific ratios of NC and PC cells revealed statistically significant trends across donors. Due to high
252 donor-to-donor variability, the correlations between cell population purity and gene expression were
253 higher per donor per gene than across donors. The highest correlation was found for the relative
254 expression of aggrecan:versican ($\rho = 0.69$), where the ratio was higher in purer populations containing
255 more NCs; per donor the correlations were even stronger ($\rho = 0.61$ - 0.98) (Fig S3A).

256 In general, more significant differences in gene expression in individual genes and cell purity were
257 seen at passage two compared to the pelleted cells' gene expression (Fig S3B). Therefore, we focused
258 on passage two for the subsequent purity model.

259 We performed multiple logistic regression to compare gene expression of collagen type I and II,
260 aggrecan, versican, MFAP5, HAPL1, and nestin to the cell population purity. To gain insight into which
261 genes were most important, stepwise selection (Agostini et al., 2015) was implemented and the model
262 with the lowest Akaike information criterion (AIC) was chosen. Versican and collagen type II were
263 found to be the factors most predictive of purity and significantly contributed to the model (p -value =
264 $2.7e-3$, $p = 2.8e-3$, respectively, and overall, the model was significant (Hosmer-Lemeshow $p = 0.95$
265 and McFadden pseudo $R^2 = 0.53$). The coefficient estimates from the model and the ΔCt values for
266 versican and collagen II can be used to estimate the purity of a population of nasal cartilage-derived
267 cells using Equation 1, where inverse logit is $\exp(x)/(1+\exp(x))$.

268 Purity (NC%) = inverse logit[1.93 + (Col2)×0.64 – (Ver)×1.08] (Eqn. 1)

269 The purity predicted by the model was plotted against the known purity and the resulting R^2 value of
270 the observed and predicted values was 0.79 (Fig 4B).

271 **3.5 Potency assay**

272 We investigated whether predictive gene expression markers can be used to estimate the capacity of
273 the cells to form engineered cartilage. The final cartilage quality is currently assessed using the
274 Modified Bern Score (MBS), a semi-quantitative score of safranin O-stained histological images
275 (Lehoczky et al., 2019; Grogan et al., 2006), and via GAG quantification (Thej et al., 2018).

276 GAG content as well as the histological MBS score of the chondrogenic pellets were positively
277 correlated to the cartilage identity gene expression markers and negatively correlated to the
278 perichondrial identity markers (Fig S4). The interrelationship of potency and purity is visualized in the
279 top left corner of the correlation plot, which shows that purity (NC%), GAG, GAG/DNA, and MBS
280 are highly correlated (Fig 5).

281 More significant gene expression trends were seen when analyzing the cells at passage two compared
282 to after engineered pellet culture, so we developed a potency assay for this time point.

283 In order to develop a potency assay that could predict the amount of GAG in the final engineered
284 cartilage based on the gene expression of the starting cell population, we trained a generalized linear
285 model with a log-link and gamma distribution. The gamma distribution was selected because it only
286 predicts positive values and because its distribution is flexible enough to fit many response shapes
287 (Hardin & Hilbe 2007). To select which gene expressions could best predict GAG produced by cells
288 culture as pellets, stepwise selection was performed. Collagen II and MFAP5 were found to be the
289 most significant and the model showed good results (training $R^2 = 0.34$ and testing $R^2 = 0.78$ of
290 observed vs. predicted values; Figure 6A). The equation of the potency assay to predict the amount of
291 GAG produced via the gene expression of passage two cells (Equation 2), where the ΔCt values of the
292 genes should be entered, was generated using both the test and training data together, to report the most
293 accurate coefficient estimates possible.

294 $\text{Potency (GAG (\mu g))} = \exp[2.55 + (\text{Col2}) \times 0.06 - (\text{MFAP5}) \times 0.14]$ (Eqn. 2)

295 For a potency assay that can predict the histological score of the final engineered cartilage from passage
296 two gene expression, a logistic regression model was trained. Stepwise selection found that the best
297 model included only the MFAP5 gene, and showed good predictive ability in this dataset (training R^2
298 = 0.54 and testing $R^2 = 0.64$ of observed vs. predicted values; Figure 6B). The equation of the potency
299 assay to predict the histological MBS score (Equation 3), where the ΔCt value of the gene should be
300 used, was generated with both the training and test data together. Again, the inverse logit is
301 $\exp(x)/(1+\exp(x))$, imposing upper and lower bounds on the model.

302 $\text{Potency (histological score, MBS)} = 6 \times \text{inverse logit}[-0.84 - (\text{MFAP5}) \times 0.21]$ (Eqn. 3)

303 3.6 Implementation of in-process controls

304 Since isolated nasal septum-derived cell populations may include some perichondrial cells, we tested
305 the impact of various amounts of contaminating cells on final engineered cartilage quality. The
306 chondrogenic capacity of contaminated cell populations was consistently lower than of pure cell
307 populations, as observed across 15 donors, demonstrated by safranin O staining, GAG quantification,
308 and immunohistochemical analysis of collagen types II and I (S5). We confirmed the negative effect
309 of perichondrial cells on the engineered cartilage not only in pellet culture, but also when produced
310 according to the clinical trial protocol where cells are seeded onto a collagen I/III scaffold (Fig S6).

311 A threshold of acceptable purity needs to be set to guarantee the quality of the final product. Known
312 quantities of NC and PC cells were mixed together and chondrogenic pellets were produced.
313 Histological scoring was then used to set acceptable limits of PC cell contamination so that the quality
314 of the final product would still meet the clinical trial release criteria ($\text{MBS} \geq 3$). Due to donor-to-donor
315 variability, potential cross-contamination from the mechanical tissue separation method, and
316 considering the limitations of histological analysis, we show that some donors could still produce
317 cartilage matrix of sufficient quality with up to 40% PC contamination, while the less potent donors
318 could produce cartilage matrix with a PC contamination of up to 30% PC cells (Fig 7A).

319 Using the purity and potency assays we developed, the quality was estimated based on the passage two
320 gene expression of cell populations for clinical trial samples and for heterogeneous biopsies collected
321 from patients that underwent plastic surgeries with variable amounts of overlaying perichondrium. The
322 predicted histological score results closely matched the actual values, and the quantified amounts of

323 GAG could be estimated well, predicting if cells would produce high or low amounts of GAG (Fig
324 7B). The clinical trial starting materials were assessed to be pure and the potency assays predicted good
325 chondrogenic capacity which was confirmed by the high quality of the engineered cartilage. The more
326 heterogeneous cartilage samples from plastic surgery procedures had more variable results. The purity
327 assay predicted the worst sample to have a purity of 20%, many samples to be 99% pure, and the mean
328 purity of mixed samples to be 75% (Fig 7C). Consistent with the established purity threshold, cells that
329 were predicted to be >70% pure were all able to produce cartilaginous tissues that passed the
330 histological score release criteria. The sample with a predicted purity of 20%, on the other hand,
331 produced a pellet that failed the release criteria (histological score = 2.3).

332 **4 Discussion**

333 In this study, we established novel, in-process controls to ensure the quality and standardization of
334 nasal chondrocyte-based engineered cartilage grafts. Histological analysis revealed that nasal septal
335 cartilage may be harvested with some adjacent tissue, and that there may still be fragments of
336 perichondrial tissue overlaying the cartilage even after a trained operator further separates the tissues.
337 Although some researchers claim that perichondrial cells from other cartilage sources have
338 chondrogenic potential (Hellingman et al., 2011), we discovered that unlike chondrocytes, nasal septal
339 perichondrial cells do not have the capacity to form GAG- and collagen type II-rich engineered tissues.
340 We found that increasing amounts of perichondrium in the starting material profoundly decreases the
341 quality of engineered cartilage, as seen by less GAG and collagen II production during chondrogenic
342 culture. Therefore, minimal contamination of perichondrial cells must be ensured. The NC identity
343 marker we found is collagen II, and the PC identity markers were, versican, MFAP5, and nestin. To
344 quantitatively determine the percentage of contaminating cells in a population, we developed a model
345 that correlates the expression of multiple gene expression markers to the purity of a cell population.
346 Similarly, to predict the chondrogenic capacity of a cell population, we built models to estimate GAG
347 production and the final histological MBS score in engineered cartilage. Finally, we discuss how such
348 quality controls could be implemented during the production of cell or tissue therapies.

349 In practice, polymerase chain reaction (PCR) instrumentation is ubiquitous, so a gene expression-based
350 quality control could be easily implemented. The cost of the quality control assay could be reduced by
351 selecting a handful of genes for a standard qPCR analysis compared to transcriptomic analysis or
352 single-cell RNA sequencing, and for a routine test could be enough information to confirm cell identity
353 (Maertzdorf et al., 2016).

354 To implement such gene expression-based quality controls, a suitable time point during the
355 manufacturing process must be chosen. Biomarkers vary not only spatially within the tissue, but also
356 temporally during monolayer expansion and after tissues are engineered (Detela et al., 2019; Späth et
357 al., 2018; Tay et al., 2004), and it also may be that the cells have more distinct gene expression profiles
358 at certain time points than others (Tekari et al., 2014). From a practical perspective, an earlier quality
359 control would save costs, because the quality of the cells could be established before an expensive
360 production is undertaken. However, after one or two weeks of cell expansion, there are many more
361 cells and an aliquot can be taken without depleting the whole cell population and the gene expression
362 analysis of an aliquot of a cell suspension provides a broad readout of the total cellular material.
363 Obtaining cells before they are embedded in the scaffold would allow to perform the analysis
364 nondestructively. Importantly, the biomarkers we investigated had the most distinct expression levels
365 after the expansion phase. Consequently, we propose that our gene expression-based assays should be
366 implemented on expanded passage two cells.

367 Generalized linear models for the development of gene expression-based quality controls for
368 regenerative medicine is a natural extension of their use in biomarker-based disease diagnosis (Hosmer
369 et al., 2013; Faraway et al., 2006). Here we show how multiple logistic regression can be used to model
370 purity percentages with the advantage of being able to provide biologically relevant estimates, i.e.,
371 between 0 and 100% (Zhao et al., 2001). When further screening the most significant genes that
372 contributed to the purity model with stepwise selection (Liu et al., 2019; Ying et al., 2018), we found
373 the combination of collagen II and versican expression to be predictive, a relatively uncommon gene
374 pair compared to the often studied gene expression ratios of collagen II:I and aggrecan:versican. The
375 selection appears reasonable, with one chondrocyte marker, collagen II, and one perichondrium
376 marker, versican, used in the model and being inversely related to each other.

377 We showed how logistic regression can be used to estimate the histological score, a value bounded
378 between 0 (worst) and 6 (best). Estimating GAG required modeling positive values only, therefore, we
379 demonstrated how a generalized linear model with a gamma distribution and log-link could be
380 implemented, similarly to other biomarker applications (Schufreider et al., 2015; García-Broncano et
381 al., 2014). Stepwise selection was used again for the potency models, returning the combination of
382 collagen II and MFAP5 for prediction of GAG, and MFAP5 alone for modeling histological MBS
383 score. Increased MFAP5 expression has been correlated with decreased chondrogenic potential in
384 mesenchymal stem cells (Solchaga et al., 2010). MFAP-5 protein binds active TGF β 1, TGF β 2, and
385 BMP2, sequestering these pro-chondrogenic factors in the matrix (Combs et al., 2013). Intracellular
386 MFAP5 has been shown to bind and activate notch signaling (Miyamoto et al., 2006), which inhibits
387 the regulator of cartilage formation, Sox9 (Hardingham et al., 2006). Notch has been found primarily
388 in the perichondrium rather than the cartilage layer in mandibular condylar cartilage (Serrano et al.,
389 2014), which, like nasal cartilage, is derived from cranial neural-crest cells (Chai et al., 2000). The
390 predictive ability of these models are significant especially when considering that only ~30-40% of
391 the variance in protein abundance is explained by mRNA levels (Vogel et al., 2012). The selection of
392 different genes for each potency assay may be due to the fact that they assess quality in slightly different
393 ways; the histological score includes information not only of the GAG content, but also about the
394 morphology of the cells.

395 We observed that all pellets that contained at least 70% NC cells pass the clinical trial release criteria,
396 i.e., histological score ≥ 3 , but more contamination could also lead to good results in some cases. To
397 implement the purity assay, we propose a conservative three-category rating scale for the predicted
398 purity (NC%), i.e., if cells are estimated to be more than 70% pure, they are labeled as *pure*, less than
399 50% pure, they are labeled as *fail*, otherwise the estimation is labeled as *uncertain*. We propose to
400 introduce this uncertain region for the time being until further data can be collected and the estimates
401 can be made more precise. In practice, we would recommend that starting cell populations labeled as
402 pure or uncertain should continue in the production process, however, if the cells fail the purity test,
403 the costly production should be halted. Cartilage engineered from cells of uncertain purity would
404 nevertheless need to pass the release criteria (such as the histological score-based release criterial),
405 ensuring the quality of the product.

406 The selected genes and coefficient estimates for the models will have to be updated as more data are
407 obtained, and the in-process controls will have to be validated to meet GMP standards. Moreover, the
408 definition of a high quality graft may need to be revised as more long-term clinical outcome data are
409 collected.

410 In conclusion, we have put forward gene expression-based assays for identity, purity, and potency to
411 help ensure the safe and effective clinical use of nasal chondrocyte-derived engineered cartilage. More

412 generally, we provide an example of the development and implementation of purity and potency assays
413 based on relatively simple qPCR assays, stepwise selection of the most significant genes, and predictive
414 in silico models. This approach could be relevant for the development of quality controls for other
415 products in the emerging field of regenerative medicine, one of the biggest challenges for advanced
416 therapy medicinal products to overcome for clinical translation.

417 **5 Conflict of Interest**

418 The authors declare that the research was conducted in the absence of any commercial or financial
419 relationships that could be construed as a potential conflict of interest.

420 **6 Author Contributions**

421 AA conceived and designed the study. AA and LP performed the experiments, analyzed the data and
422 wrote the manuscript. LP created the models. AB contributed to the study design and revised the
423 manuscript. MH and RK contributed to the sample preparation. IM contributed to compiling the data
424 and critically revised the manuscript.

425 **7 Funding**

426 This project has received funding from the European Union's Seventh Program for research,
427 technological development and demonstration under Grant Agreement No. 278807 (BIO-COMET)
428 and the European Union's Horizon 2020 research and innovation program under Grant Agreement No.
429 681103 (BIO-CHIP).

430 **8 Acknowledgments**

431 We would like to thank Sandra Feliciano for her help with sample analysis. Thank you to Dr. Florian
432 Geier and Dr. Julien Roux for the statistical analysis discussions. Thank you Dr. Sylvie Miot and Anke
433 Wixmerten for critically reading the manuscript.

434 **9 References**

435 Agostini, M., Zangrando, A., Pastrello, C., D'Angelo, E., Romano, G., Giovannoni R, et al. (2015). A
436 functional biological network centered on XRCC3: A new possible marker of chemoradiotherapy
437 resistance in rectal cancer patients. *Cancer. Biol. Ther.* 16: 1160-1171.

438 Aksoy, F., Yildirim, Y., Demirhan, H., Özturan, O., Solakoglu, S. (2012). Structural characteristics of
439 septal cartilage and mucoperichondrium. *J. Laryngol. Otol.* 126: 38-42.

440 Al Dayeh, A., and Herring, S. (2014). Compressive and tensile mechanical properties of the porcine
441 nasal septum. *J. Biomech.* 47: 154-161.

442 Asnaghi, M.A., Duhr, R., Quasnickha, H., Hollander, A., Kafienah, W., Martin, I., et al. (2018).
443 Chondrogenic differentiation of human chondrocytes cultured in the absence of ascorbic acid. *J. Tissue
444 Eng. Regen. Med.* 12: 1402-1411.

445 Asnaghi, M.A., Smith, T., Martin, I., Wendt, D. (2014). Bioreactors: enabling technologies for research
446 and manufacturing. In *Tissue Engineering*, eds. van Blitterswijk, C., and de Boer, J. (Academic
447 Press/Elsevier, Amsterdam, the Netherlands), 393-426.

448 Bairati, A., Comazzi, M., Gioria, M. (1996). A comparative study of perichondrial tissue in mammalian
449 cartilages. *Tissue Cell.* 28: 455-468.

450 Baker, J., Caterson, B. (1978). The isolation of "link proteins" from bovine nasal cartilage. *Biochim.*
451 *Biophys. Acta* 532: 249-258.

452 Barbosa, I., Garcia, S., Barbier-Chassefière, V., Caruelle, J.P., Martelly, I., et al. (2003). Improved
453 and simple micro assay for sulfated glycosaminoglycans quantification in biological extracts and its
454 use in skin and muscle tissue studies. *Glycobiology* 13: 647-653.

455 Bravery, C., Carmen, J., Fong, T., Oprea, W., Hoogendoorn, K., Woda, J., et al. (2013) Potency assay
456 development for cellular therapy products: An ISCT review of the requirements and experiences in the
457 industry. *Cytotherapy* 15: 9-19.

458 Buckwalter, J., and Mankin, H. (1998). Articular cartilage repair and transplantation. *Arthritis. Rheum.*
459 41: 1331-1342.

460 Chai, Y., Jiang, X., Ito, Y., Bringas, P., Han, J., Rowitch, D., et al. (2000). Fate of the mammalian
461 cranial neural crest during tooth and mandibular morphogenesis. *Development* 127: 1671-9.

462 CHMP, committee for medicinal product for human use. (2008). EMEA/CHMP/410869/2006:
463 Guideline on human cell-based medicinal products. European Medicines Agency.

464 CHMP, committee for medicinal products for human use. (2017). CHMP assessment report, Speherox,
465 Procedure No. EMEA/H/C/002736/0000. European Medicines Agency.

466 Combs, M., Knutsen, R., Broekelmann, T., Toennies, H., Brett, T., Miller, C., et al. (2013). Microfibril-
467 associated glycoprotein 2 (MAGP2) loss of function has pleiotropic effects in vivo. *J. Biol. Chem.* 288:
468 28869-28880.

469 Coppens, D., de Wilde S, Guchelaar H, De Bruin M, Leufkens H, Meij P, et al. (2018). A decade of
470 marketing approval of gene and cell-based therapies in the United States, European Union and Japan:
471 An evaluation of regulatory decision-making. *Cytotherapy* 20: 769-778.

472 Detela, G., and Lodge, A. (2019). EU regulatory pathways for ATMPs: standard, accelerated and
473 adaptive pathways to Marketing Authorisation. *Mol. Ther. Methods Clin. Dev.* 13: 205-232.

474 Diaz-Romero, J., Kürsener, S., Kohl, S., Nesic, D. (2017). S100B + A1 CELISA: a novel potency assay
475 and screening tool for redifferentiation stimuli of human articular chondrocytes. *J. Cell. Physiol.* 232:
476 1559-1570.

477 Dunn, P., and Smyth, G. (1996). Randomized quantile residuals. *J. Comput. Graph. Stat.* 5: 236-244.

478 Editorial. (2009). Identity crisis. *Nature* 457: 935-936.

479 Faraway, J. (2006). Extending the linear model with R: generalized linear, mixed effects and
480 nonparametric regression models. Chapman & Hall/CRC, Boca Raton, Florida, USA.

481 García-Broncano, P., Berenguer, J., Fernández-Rodríguez, A., Pineda-Tenor, D., Jiménez-Sousa, M.,
482 García-Alvarez, M., et al. (2014). PPAR γ 2 Pro12Ala polymorphism was associated with favorable

483 cardiometabolic risk profile in HIV/HCV coinfected patients: A cross-sectional study. *J. Transl. Med.*
484 12: 235.

485 Grogan, S., Barbero, A., Winkelmann, V., Rieser, F., Fitzsimmons, J., O'Driscoll, S., et al. (2006).
486 Visual histological grading system for the evaluation of in vitro-generated neocartilage. *Tissue Eng.*
487 12: 2141-2149.

488 Halper, J., and Kjaer, M. (2014). Basic components of connective tissues and extracellular matrix:
489 Elastin, fibrillin, fibulins, fibrinogen, fibronectin, laminin, tenascins and thrombospondins. *Adv. Exp.*
490 *Med. Biol.* 802: 31-47.

491 Hardin, J., and Hilbe, J. (2007). Generalized linear models and extensions. Stata Press, College Station,
492 Texas, USA.

493 Hardingham, T., Oldershaw, R., Tew, S. (2006). Cartilage, SOX9 and Notch signals in chondrogenesis.
494 *J. Anat.* 209: 469-480.

495 Hellingman, C., Verwielen, E., Slagt, I., Koevoet, W., Poublon, R., Nolst-Trenité, G., et al. (2011).
496 Differences in cartilage-forming capacity of expanded human chondrocytes from ear and nose and their
497 gene expression profiles. *Cell Transplant.* 20: 925-940.

498 Hosmer, D., Lemeshow, S., Sturdivant, R. (2013). Applied Logistic Regression 3rd ed, Wiley,
499 Hoboken, New Jersey, USA.

500 Hothorn, T., Bretz, F., Westfall, P. (2008). Simultaneous inference in general parametric models. *Biom.*
501 *J.* 50: 346-363.

502 Hyun-woo, N. (2019). Kolon's stance on Invossa draws backlash. *The Korea Times*.

503 Jackman, S. (2017). pscl: Classes and Methods for R Developed in the Political Science Computational
504 Laboratory. United States Studies Centre, University of Sydney. Sydney. New South Wales, Australia
505 R package version 1.5.2, <https://github.com/atahk/pscl/>.

506 Kon, E., Gobbi, A., Filardo, G., Delcogliano, M., Zaffagnini, S., Marcacci, M. (2009). Arthroscopic
507 second-generation autologous chondrocyte implantation compared with microfracture for chondral
508 lesions of the knee: Prospective nonrandomized study at 5 years. *Am. J. Sports Med.* 37: 33-41.

509 Lehoczky, G., Wolf, F., Mumme, M., Gehmert, S., Miot, S., Haug, M., et al. (2019). Intra-individual
510 comparison of human nasal chondrocytes and debrided knee chondrocytes: relevance for engineering
511 autologous cartilage grafts. *Clin. Hemorheol. Microcirc.* doi: 10.3233/CH-199236 [IN PRESS]

512 Lele, S., Keim, J., Solymos, P. (2019). ResourceSelection: Resource selection (probability) functions
513 for use-availability data. R package version 0.2-4, <http://CRAN.R-project.org/package=ResourceSelection>.

515 Liu, S., Lu, M., Li, H., Zuo, Y. (2019). Prediction of Gene Expression Patterns With Generalized Linear
516 Regression Model. *Front. in Genet.* 10: 120.

517 Maertzdorf, J., McEwen, G., Weiner, J., Tian, S., Lader, E., Schriek, U., et al. (2016) Concise gene
518 signature for point-of-care classification of tuberculosis. *EMBO Mol. Med.* 8: 86-95

519 Martin, I., Jakob, M., Schäfer, D., Dick, W., Spagnoli, G., Heberer, M. (2001). Quantitative analysis
520 of gene expression in human articular cartilage from normal and osteoarthritic joints. *Osteoarthritis*
521 *Cartilage* 9: 112-118.

522 Matricali, G., Dereymaeker, G., Luvten, F. (2010). Donor site morbidity after articular cartilage repair
523 procedures: A review. *Acta Orthop. Belg.* 76: 669-674.

524 Miller, A. (2019). *Subset Selection in Regression*. Chapman and Hall/CRC. Boca Raton, Florida, USA.

525 Miyamoto, A., Lau, R., Hein, P., Shipley, J., Weinmaster, G. (2006). Microfibrillar proteins MAGP-1
526 and MAGP-2 induce Notch1 extracellular domain dissociation and receptor activation. *J. Biol. Chem.*
527 281: 10089-10097.

528 Mollenhauer, J., and Gaissmaier, C. (2010). Methods of determining chondrocytes. US patent number
529 9080213.

530 Mumme, M., Barbero, A., Miot, S., Wixmerten, A., Feliciano, S., Wolf, F., et al. (2016) Nasal
531 chondrocyte-based engineered autologous cartilage tissue for repair of articular cartilage defects: an
532 observational first-in-human trial. *Lancet* 388: 1985-1994.

533 Ono, N., Ono, W., Mizoguchi, T., Nagasawa, T., Frenette, P., Kronenberg, H. (2014). Vasculature-
534 associated cells expressing nestin in developing bones encompass early cells in the osteoblast and
535 endothelial lineage. *Dev. Cell* 29: 330-339.

536 Popko, M., Bleys, R., De Groot, J., Huizing, E. (2007). Histological structure of the nasal cartilages
537 and their perichondrial envelope. I. The septal and lobular cartilage. *Rhinology* 45: 148-152.

538 Rapko, S., Zhang, M., Richards, B., Hutto, E., Dethlefsen, S., Duguay, S. (2010). Identification of the
539 chondrocyte lineage using microfibril-associated glycoprotein-2, a novel marker that distinguishes
540 chondrocytes from synovial cells. *Tissue Eng. Part C* 16: 1367-1375.

541 Schufreider, A., McQueen, D., Lee, S., Allon, R., Uhler, M., Davie, J., et al. (2015). Diminished
542 ovarian reserve is not observed in infertility patients with high normal CGG repeats on the fragile X
543 mental retardation 1 (FMR1) gene. *Human Reprod.* 30: 2686-2692.

544 Serrano, M., So, S., Hinton, R. (2014). Roles of notch signalling in mandibular condylar cartilage.
545 *Arch. Oral Biol.* 59: 735-740.

546 Shibata, S., Fukada, K., Suzuki, S., Ogawa, T., Yamashita, Y. (2001). Histochemical localisation of
547 versican, aggrecan and hyaluronan in the developing condylar cartilage of the fetal rat mandible. *J.*
548 *Anat.* 198: 129-135.

549 Solchaga, L., Penick, K., Goldberg, V., Caplan, A., Welter, J. (2010). Fibroblast growth factor-2
550 enhances proliferation and delays loss of chondrogenic potential in human adult bone-marrow-derived
551 mesenchymal stem cells. *Tissue Eng. Part A* 16: 1009-1019.

552 Späth, S., Andrade, A., Chau, M., Baroncelli, M., Nilsson, O. (2018). Evidence that rat chondrocytes
553 can differentiate into perichondrial cells. *JBMR Plus* 2: 351-361.

554 Spicer, A.P., Joo, A., Bowling, R.A. (2003). A hyaluronan binding link protein gene family whose
555 members are physically linked adjacent to chondroitin sulfate proteoglycan core protein genes: the
556 missing links. *J. Biol. Chem.* 278: 21083-21091.

557 Tay, A., Farhadi, J., Suetterlin, R., Pierer, G., Heberer, M., Martin, I. (2004). Cell yield, proliferation,
558 and postexpansion differentiation capacity of human ear, nasal, and rib chondrocytes. *Tissue Eng.* 10:
559 762-770.

560 Tekari, A., Luginbuehl, R., Hofstetter, W., Egli, R. (2014). Chondrocytes expressing intracellular
561 collagen type II enter the cell cycle and co-express collagen type I in monolayer culture. *J. Orthop.*
562 *Res.* 32: 1503-1511.

563 Teo, A.Q.A., Wong, K.L., Shen, L., Lim, J.Y., Toh, W.S., Lee, E.H., et al. (2019) Equivalent 10-Year
564 Outcomes After Implantation of Autologous Bone Marrow–Derived Mesenchymal Stem Cells Versus
565 Autologous Chondrocyte Implantation for Chondral Defects of the Knee. *Am. J. Sports Med.* 47: 2881–
566 2887.

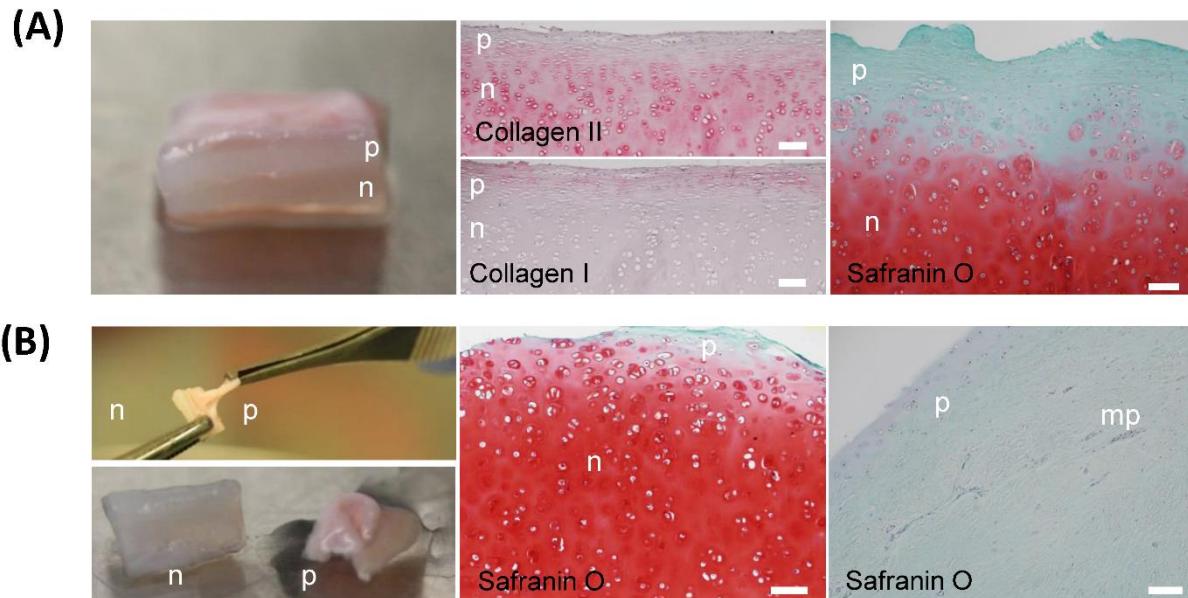
567 Thej, C., and Kumar Gupta, P. (2019). The role of mesenchymal stromal cells in the management of
568 osteoarthritis of the knee. doi: 10.5772/intechopen.86016 [PREPRINT]

569 Upton, J., and Glowacki, J. (1981). Neocartilage derived from transplanted perichondrium: What is it?
570 *Plast. Reconstr. Surg.* 68: 166-172.

571 Valderrabano, V., Leumann, A., Rasch, H., Egelhof, T., Hintermann, B., Pagenstert, G. (2009). Knee-
572 to-ankle mosaicplasty for the treatment of osteochondral lesions of the ankle joint. *Am. J. Sports Med.*
573 37 Suppl 1: 105S-111S.

574 Van Osch, G., Van Der Veen, S., Burger, E., Verwoerd-Verhoef, H. (2000). Chondrogenic potential
575 of in vitro multiplied rabbit perichondrium cells cultured in alginate beads in defined medium. *Tissue*
576 *Eng.* 6: 321-330.

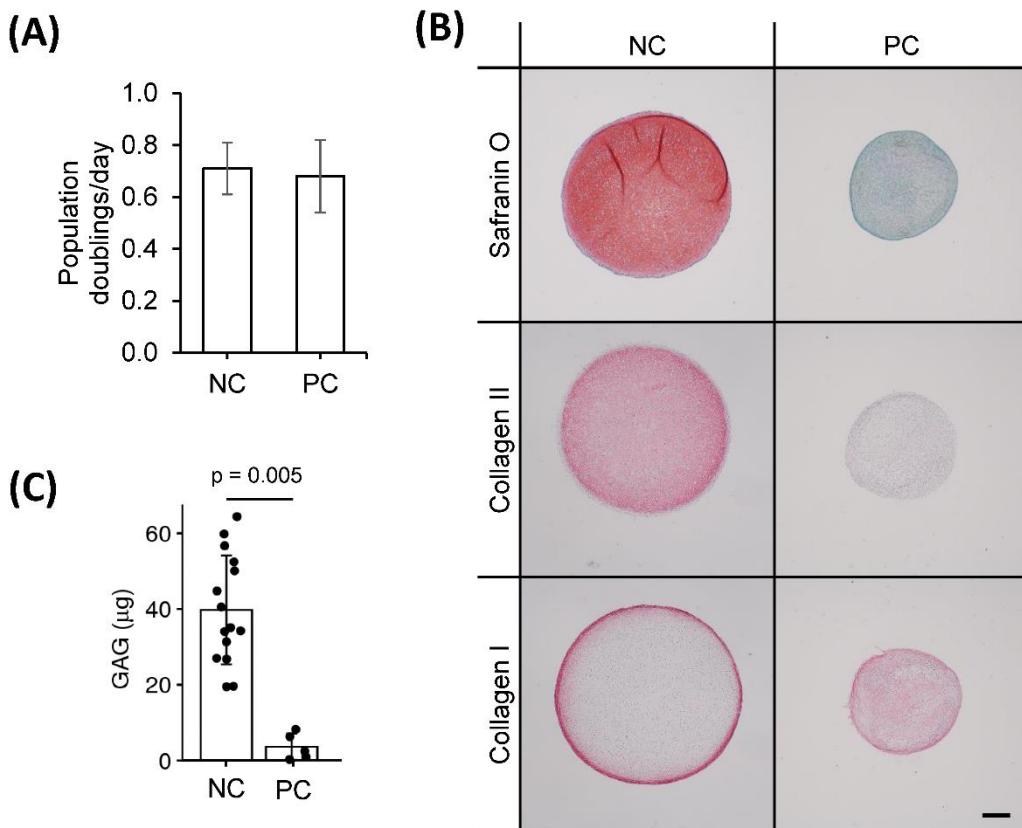
577 Vogel, C., and Marcotte, E. (2012). Insights into the regulation of protein abundance from proteomic
578 and transcriptomic analyses. *Nat. Rev. Genet.* 13: 227-232.


579 Wei, T., and Simko, V. (2017). R package "corrplot": Visualization of a correlation matrix. R package
580 version 0.84, <https://github.com/taiyun/corrplot>.

581 Ying, J., Wang, Q., Xu, T., Lyu, J. (2018). Establishment of a nine-gene prognostic model for
582 predicting overall survival of patients with endometrial carcinoma. *Cancer Med.* 7: 2601-2611.

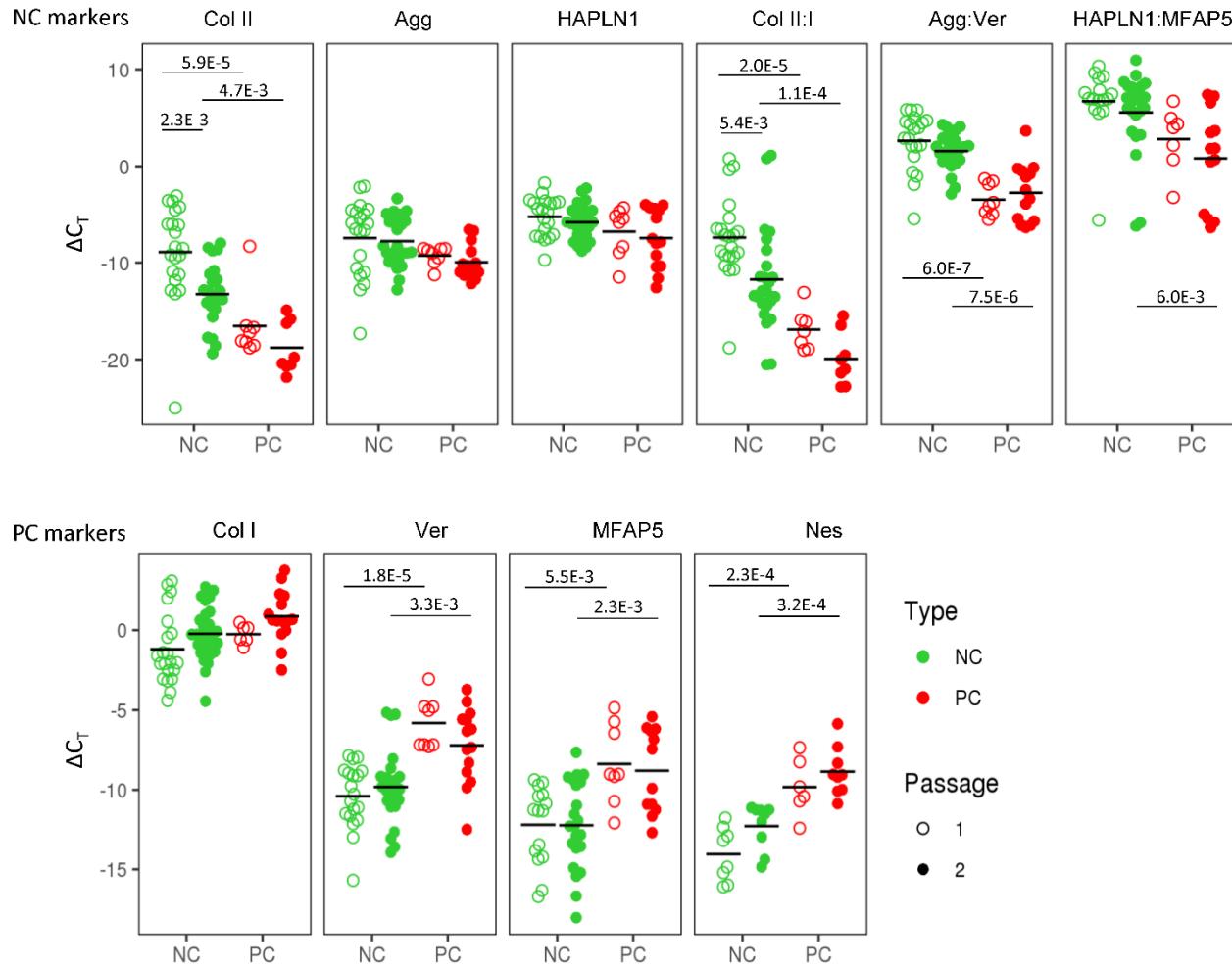
583 Zhao, L., Chen, Y., Schaffner, D. (2001). Comparison of logistic regression and linear regression in
584 modeling percentage data. *Appl. Environ. Microb.* 67: 2129-2135.

585


586 10 Figure legends

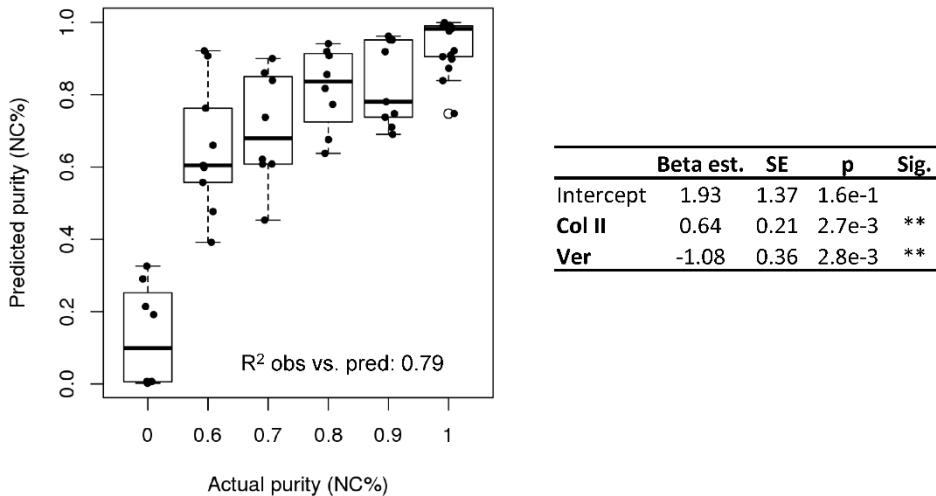
587

588 Figure 1


589 Native nasal septal cartilage and overlaying tissue. (A) Photograph of native nasal cartilage with
590 overlaying tissues. Safranin O-stained histological image, HAPLN1 immunofluorescence, and
591 collagen I, collagen II, and versican immunohistochemical images. (B) Photograph of the forceps
592 separation technique and resulting separate nasal cartilage (n) and perichondrial tissue (p). Safranin O-
593 stained histological images of separated nasal cartilage and perichondrial tissues. Scale bars are 100
594 μm

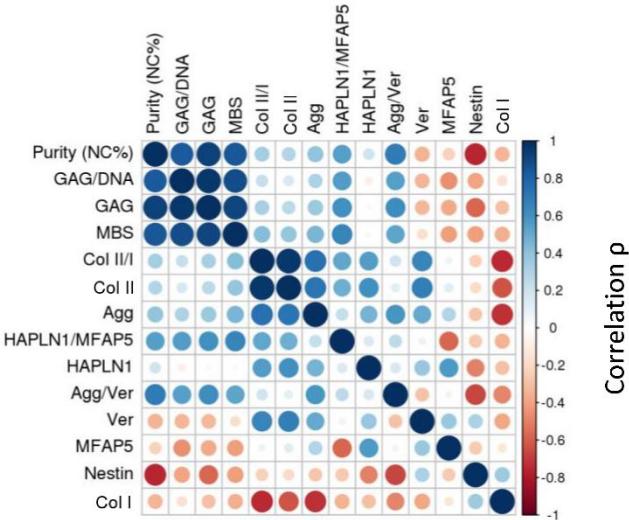
595

596 Figure 2


597 Chondrogenic capacity of perichondrial cells. **(A)** Proliferation rates of nasal chondrocyte (NC) and
598 perichondrial cells (PC). **(B)** Biochemical quantification of NC and PC chondrogenic pellets. T-test p-
599 value displayed. **(C)** Safranin O staining and immunohistochemical staining of pellets engineered from
600 nasal chondrocytes (NC) and perichondrial cells (PC). Scale bar is 200 μ m

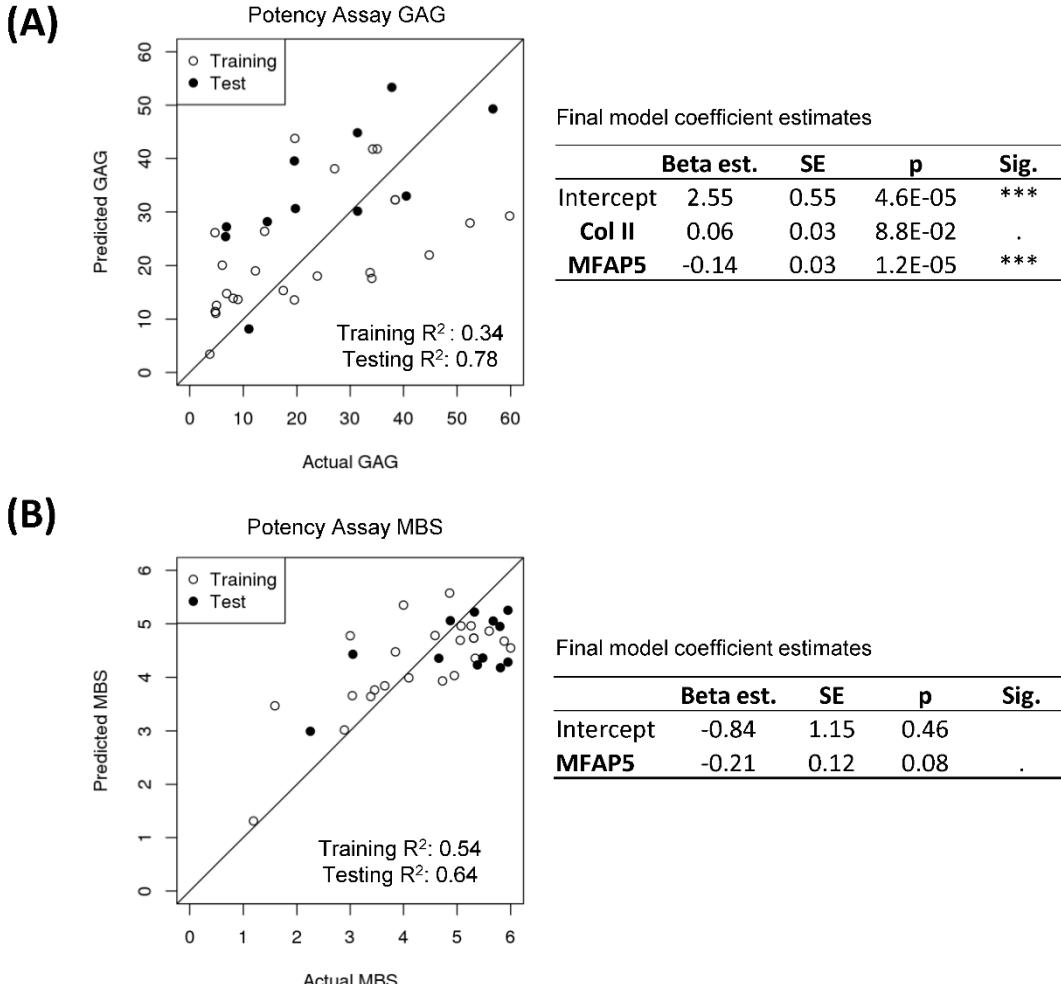
601

602 Figure 3


603 Nasal chondrocyte and perichondrial cell identity. Gene expression comparisons between pure nasal
 604 chondrocyte (NC) and pure perichondrial cell (PC) populations at passage one and two. The fold
 605 change expression relative to GAPDH is displayed. Bonferroni multiple comparison corrected p-values
 606 are displayed

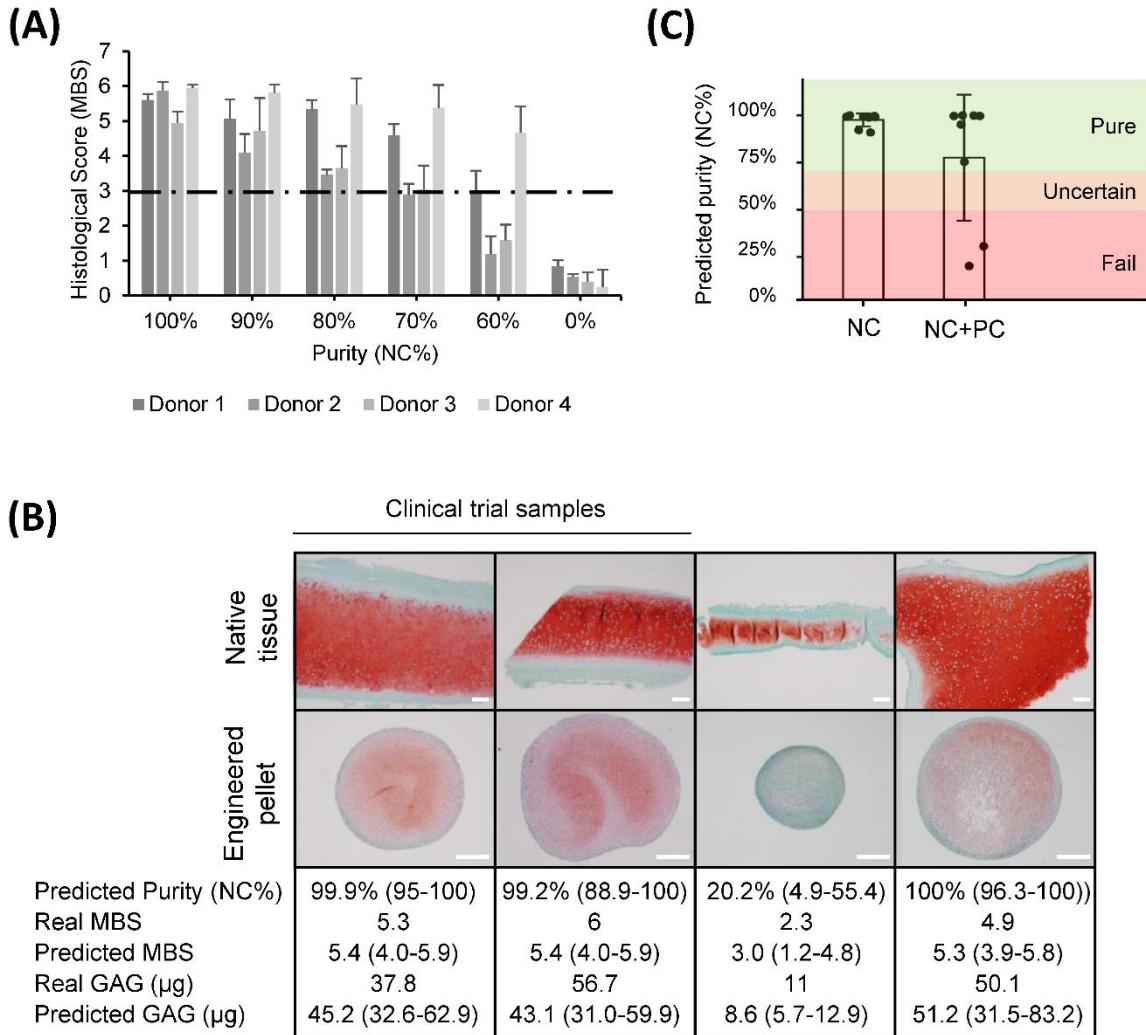
607

608 Figure 4


609 Purity assay. Purity assay results. Multiple logistic regression model based on the expression of
610 collagen II and versican to estimate cell purity (NC%)

611

612 Figure 5


613 Correlation plot with passage two gene expression. Spearman correlations (ρ) depicted for passage two
614 gene expression

615

616 Figure 6

617 Potency assay. **(A)** Generalized linear model with a gamma distribution and log-link to predict GAG.
 618 The estimated model coefficients, standard errors (SE), and significances are calculated with the
 619 training and test data combined. **(B)** Multiple logistic regression model to predict MBS. The estimated
 620 model coefficients, standard errors (SE), and significances are calculated with the training and test data
 621 combined

622

623 Figure 7

624 Quality estimation and in-process control implementation. **(A)** Histological scores (Modified Bern
 625 Score) of engineered pellets derived from specific starting population purities. **(B)** Safranin O stained
 626 native and engineered cartilage harvested for a clinical trial study or for other purposes. The predicted
 627 purity and 95% CI, real MBS, predicted MBS and 95% CI, real amount of GAG, and predicted GAG
 628 with 95% CI. Two of the samples were produced from samples deriving from clinical trials. Scale bars
 629 are 200 µm. **(C)** Predicted purities of pure (NC) and mixed (NC+PC) biopsies