

Codon-usage optimization in the prokaryotic tree of life: How synonymous codons are differentially selected in sequence domains with different expression levels and degrees of conservation.

José Luis López¹, Mauricio Javier Lozano¹, María Laura Fabre¹, and Antonio Lagares^{1*}

¹IBBM - Instituto de Biotecnología y Biología Molecular, CONICET, CCT-La Plata,
Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de
La Plata, calles 47 y 115, 1900-La Plata, Argentina.

J.L.L. and M.J.L. contributed equally to this work.

Key words: codon usage selection, mutational bias, genome evolution, core genes,
singletons, translation efficiency, translation accuracy

***Corresponding author**

Phone: +54-221-422-9777
Fax: +54-221-422-3409 ext. 56
E-mail: lagares@biol.unlp.edu.ar

1 ABSTRACT

2 Prokaryote genomes exhibit a wide range of GC contents and codon usages, both
3 resulting from an interaction between mutational bias and natural selection. In order to
4 investigate the basis underlying specific codon changes, we performed a comprehensive
5 analysis of 29-different prokaryote families. The analysis of core-gene sets with
6 increasing ancestries in each family lineage revealed that the codon usages became
7 progressively more adapted to the tRNA pools. While, as previously reported, highly-
8 expressed genes presented the more optimized codon usage, the singletons contained
9 the less selectively-favored codons. Results showed that usually codons with the highest
10 translational adaptation were preferentially enriched. In agreement with previous reports,
11 a C-bias in 2- to 3-fold codons, and a U-bias in 4-fold codons occurred in all families,
12 irrespective of the global genomic-GC content. Furthermore, the U-biases suggested that
13 U₃-mRNA–U₃₄-tRNA interactions were responsible for a prominent codon optimization in
14 both the more ancestral core and the highly expressed genes. A comparative analysis of
15 sequences that encode conserved-(*cr*) or variable-(*vr*) translated products, with each one
16 being under high- (HEP) and low- (LEP) expression levels, demonstrated that the
17 efficiency was more relevant (by a factor of 2) than accuracy to modelling codon usage.
18 Finally, analysis of the third position of codons (GC3) revealed that, in genomes of global-
19 GC contents higher than 35-40%, selection favored a GC3 increase; whereas in
20 genomes with very low-GC contents, a decrease in GC3 occurred. A comprehensive final
21 model is presented where all patterns of codon usage variations are condensed in five-
22 distinct behavioral groups.

23 **IMPORTANCE**

24

25 The prokaryotic genomes—the current heritage of the more ancient life forms on earth—
26 are comprised of diverse gene sets; all characterized by varied origins, ancestries, and
27 spatial-temporal-expression patterns. Such genetic diversity has for a long time raised
28 the question of how cells shape their coding strategies to optimize protein demands (*i.e.*,
29 product abundance) and accuracy (*i.e.*, translation fidelity) through the use of the same
30 genetic code in genomes with GC-contents that range from less than 20 to over 80%. In
31 this work, we present evidence on how codon usage is adjusted in the prokaryote tree of
32 life, and on how specific biases have operated to improve translation. Through the use of
33 proteome data, we characterized conserved and variable sequence domains in genes of
34 either high- or low-expression level, and quantitated the relative weight of efficiency and
35 accuracy—as well as their interaction—in shaping codon usage in prokaryotes.

36 **INTRODUCTION**

37

38 The wide range of GC contents exhibited by prokaryote genomes—*i. e.*, from less
39 than 20 to 80%—are believed to be primarily caused by interspecies differences in
40 mutational processes that operate on both the coding and the noncoding regions (1–6).
41 Since prokaryote genomes consist mainly of coding regions that tightly reflect the
42 genomic GC content, mutational bias is a main force that shapes the codon usage of the
43 majority of the genes (7, 8). Thus, understanding how selection is coupled to mutational
44 processes to model codon usage under such diverse GC contents is an essential issue
45 (9–11). Recent evidence suggests that prokaryotic genomes with intermediate-to-high
46 GC contents are affected by mutations that are universally biased in favor of AT
47 replacements (12, 13). That process is counterbalanced by selection-based constraints
48 that, in turn, increase the GC content and fine-tune codon usage—*i. e.*, the so-called
49 mutation-selection-drift model (14–16). Intragenomic codon-usage heterogeneities,
50 however, are always present among different gene sets—*i. e.*, between core genes that
51 are shared throughout a given lineage, and singletons (unique accessory genes) that are
52 taxa- and/or strain-specific (17, 18). Furthermore, in a multipartite genome, the linkage
53 between the physical patterns of heterogeneity in codon usage and the replicon location
54 of the different core genes has also been recently demonstrated (19). The analysis of
55 intragenomic codon usage heterogeneities by different authors (20, 21) has served to
56 identify at least the following three distinctive gene groups: The first comprises the
57 majority of the coding sequences that are associated with the so-called typical codon
58 usage, while the second consists of the putative highly expressed (PHE) genes involving
59 codon usages that are the best adapted to the translational machinery (20, 22–26). The
60 third contains genes that encode the accessory information including the singletons
61 (unique genes) that are present in mobile genetic elements as well as in the more stable
62 replicons (27–31). The intracellular variations in codon usage can be explained on the
63 basis of selective pressures that operate with different strengths depending on gene

64 function and the resulting impact on cellular fitness (32). A search for the biochemical
65 basis associated with the heterogeneity in codon usage among different gene sets has
66 been the focus of numerous studies. Several lines of evidence have indicated that the
67 biased codon usage in PHE genes correlates with the copy number of the specific tRNA
68 species that decode the preferred codons (23, 33, 34) and with an optimal codon-
69 anticodon interaction (35). The latter includes both the classical Watson-and-Crick
70 interactions (WCIs) and a wobble-base pairing with the corresponding cognate tRNAs. All
71 these interactions have been taken into consideration in order to define different
72 numerical indices (36, 37) as estimators of the codon adaptation to the existing tRNA
73 pool. Though not considered in currently used translation-adaptation indices, evidence
74 has also been found for other nonstandard codon-anticodon interactions which, by
75 improving the decoding capacity, are also relevant to codon-usage evolution (38–41).

76 The analysis of an extensive number of genes with different functions,
77 ubiquitousness, and degrees of phylogenetic conservation has demonstrated that codon
78 usage is related to gene-expression level (33, 42, 43), the degree of conservation (18,
79 32, 44, 45), the genomic location—*i. e.*, chromosome, chromid, plasmidome (19, 46,
80 47)—and different features such as codon ramps, and mRNA secondary structure,
81 among others (48–50). Current evidence indicates that accessory genes involve atypical
82 codon usages (21, 47, 51, 52) compared to the more conserved (ancestral) core genes in
83 a given lineage. These latter genes, for their part, exhibit adaptational variations in codon
84 usages ranging from typical to more biased as the one observed in genes that
85 correspond to highly abundant proteins which are coded by PHE (53). Moreover, that
86 core genes may also exhibit remarkable codon-usage heterogeneities has been recently
87 demonstrated (19).

88 In the work reported here after examining 29 different prokaryote families, we
89 performed a consolidated analysis aimed at characterizing the specific intragenomic
90 codon variations that lead to differences in codon usage between gene sets with diverse
91 expression levels and degrees of conservation in a given lineage. The evaluation of

92 intragenic regions with different coding characteristics—compared to strategies based on
93 the global analyses of complete genes—enabled the recognition of different patterns of
94 codon usages within a message to be translated. Thus the questions emerged of (i)
95 whether the codon-usage patterns associated with highly expressed amino-acid
96 sequences (*i. e.*, affecting efficiency) were the same as those associated with genes
97 encoding highly conserved sequences (*i. e.*, affecting accuracy), and (ii) whether the
98 requirements for translation efficiency and accuracy were fully independent or whether
99 those two types of demands interacted. The results have indicated how, even in
100 organisms with quite different GC contents, alterations in specific codons are associated
101 with a selective adaptation of the more ancestral genes compared to the adaptation of
102 those genes that are newer in the phylogeny. Through an independent analysis of
103 sequences associated with variable or conserved regions having different expression
104 levels (*i. e.*, low *versus* high), we were able to identify the specific codon usages
105 associated with translation efficiency and accuracy as well as quantitatively estimate their
106 relative relevance to codon usage.

107 **MATERIALS AND METHODS**

108

109 **Prokaryote families selected for analysis in this work and identification of core**
110 **genes and singletons**

111 We screened the EDGAR public-projects database (54, 55) available at
112 https://edgar.computational.bio.uni-giessen.de/cgi-bin/edgar_login.cgi, chose several
113 prokaryote families that included at least 20 complete genomes each, and finally selected
114 27 bacterial and 2 archaeal families (Table S1_a, tab 1). A specific core-gene set was
115 defined as a group of genes whose orthologs are present in a given set of species under
116 investigation. For each of the families selected sequential core-gene sets with increasing
117 ancestry (C1 through Cn) were calculated. To that end, first the phylogenetic tree for
118 each family was extracted from EDGAR and one species per family chosen as a
119 reference. Next, the different core-gene sets were obtained by incorporating into the
120 analysis new species having sequentially increasing phylogenetic distances from the
121 reference strain (accordingly, by following the tree from the branches to the root). Table
122 S1_a-c, lists the phylogenetic trees used for these calculations as well as the particular
123 species that were included in each core-gene set (C1 to Cn) for the different prokaryote
124 families. The phylogenetic trees were edited with the Figtree (56) and Inkscape programs
125 (TEAM-Inkscape). At least six core-gene sets differing in size from ca. 50 to 100 genes
126 each were calculated per family. In each prokaryote family, the most ancestral core-gene
127 set (Cn) consisted of 100 to 500 orthologs. Table S2, tabs 2 to 30 lists the singletons—
128 those corresponding to genes that were specific to the reference strains with no orthologs
129 within the family—as calculated with EDGAR.

130

131 **PHE genes.**

132 For each of the selected reference genomes, we obtained a set of genes
133 encoding ribosomal proteins and tRNA synthetases (24, 57). Table S2, tab 1 itemizes the
134 PHE genes whose orthologs were obtained and analyzed in each reference genome.

135

136 **Highly (HEP) and lowly (LEP) expressed proteins within the same core-gene set**

137 Integrated expression data from the Protein Abundance Database (PaxDB; (58))

138 were retrieved for the bacterial strains *Yersinia pestis* CO92, *Streptococcus pyogenes* M1

139 GAS, *Campylobacter jejuni* subsp. *jejuni* NCTC 11168, *Bacillus subtilis* subsp. *subtilis* str.

140 168, *Bacteroides thetaiotaomicron* VPI-5482, and *Mycobacterium tuberculosis* H37Rv.

141 Assuming that orthologs have comparable expression levels within the same—or closely

142 related—species and using the PaxDB data from the above indicated 6 strains, we

143 inferred putative expression data for the proteomes of the microorganisms presented in

144 Figs. 4 to 6, and listed in Table S3. Then, for selected core fractions, we obtained one

145 subset of genes encoding HEP plus another subset codifying LEP. For 23 out of the 29

146 prokaryotic genomes that we analyzed here, no proteome data were available, nor were

147 any in phylogenetically related microorganisms.

148

149 **Analysis of codon usage in gene-sequence regions that encode either conserved**

150 **(cr) or variable (vr) amino-acid positions in the HEP and LEP subsets**

151 Individual genes that belonged to the HEP and LEP groups were aligned with the

152 corresponding orthologs. Then codons corresponding to conserved and variable amino-

153 acid positions in the HEP genes were separated and each concatenated to generate the

154 HEP_cr, HEP_vr sequence groups. Through the use of a similar procedure with the LEP

155 genes, the LEP_cr, and LEP_vr sequences were also generated. Codons categorized as

156 belonging to the cr group were those associated with positions with fully conserved amino

157 acids throughout the alignment. Codons categorized as belonging to the vr group were

158 those associated with positions where none of the amino acids aligned (at that specific

159 point) reached a proportion higher than 0.5. The modal codon usage (47) of each

160 collection of cr and vr sequences were calculated and used for further analysis.

161

162 **Raw codon counts (RCC)-based Correspondence analyses (CAs).**

163 The RCC-based CAs were performed using bash and R-software homemade scripts
164 which can be found at CUBES software page (this work, available at
165 <https://github.com/maurijlozano/CUBES>). Briefly, G. Olsen codon usage software was
166 used to count codons on coding sequences (available at
167 <http://www.life.illinois.edu/gary/programs.html>), data were loaded on R, and the
168 correspondence analyses were run using FactoMiner (59) and Factoextra
169 (<https://CRAN.R-project.org/package=factoextra>) packages. Plots were made using
170 ggplot2, ggrepel, ggthemes and gtools R packages. For each core-gene set the CA
171 coordinates were calculated as the arithmetic mean of the first and second dimensions of
172 all the genes present in that set (centroids). Then, a plot was generated containing all the
173 coding sequences, together with the projections of the core-gene sets (C1 to Cn), the
174 singletons and PHE genes.

175

176 **Relative synonymous-codon usages (RSCUs)-based CAs, and calculation of modal
177 codon usages.**

178 The RSCUs (60) of all individual genes from a given genome were calculated by
179 CodonW with DNA sequences as input data (61) and then used to perform the 59-
180 variable-based correspondence analysis (CA)—*i. e.*, with all the codons except those for
181 Met (AUG), Trp (UGG), and the three stop codons (UAA, UAG, and UGA). The modal
182 codon usages (47) were calculated for the core genes, singletons, and PHE genes.
183 Artificial sequences representing modal codon usages (*i. e.*, modal sequences) and the
184 amino-acid composition present in each core fraction (Cn) were generated through the
185 use of a homemade Perl script (calculate_modals2.pl) from the CUBES package. In order
186 to accurately represent the modal codon usage, particularly for synonymous codons from
187 low-abundance amino acids, modal sequences were designed with a length of at least
188 ten thousand codons. These modal sequences were used as an additional input in their
189 respective CAs. CA plots were generated through the use of Ggplot2 program (62) and
190 edited with Inkscape (TEAM-Inkscape).

191

192 **tRNA-gene–copy number and modal species-specific tRNA-adaptation index (m-tAI)**

194 The gene-copy number of each tRNA in the different prokaryote species studied
195 here were downloaded from the GtRNAdb server (<http://gtrnadb.ucsc.edu>), which website
196 uses predictions made by the program tRNAscan-SE (63). For each reference genome,
197 the copy number for the tRNAs and the sequences of all the open reading frames were
198 used to train the S_{ij} weights as previously reported, with that parameter estimating the
199 efficiency of the interaction between the i th codon and the j th anticodon in a given
200 organism (36, 37). The procedure stated in brief: With a given n , and randomly generated
201 S_{ij} starting points—*i. e.*, having values that range between 0 and 1—the tAI was
202 calculated for each coding sequence by means of the tAI package ((36),
203 <https://github.com/mariodosreis/tai>). Next, the directional codon-bias score (DCBS; (37))
204 was calculated through the use of the script seq2DCBS.pl (CUBES package). Finally, the
205 Nelder-Mead optimization algorithm from R project was used (instead of the hill-climbing
206 algorithm) to search for the S_{ij} value that maximized the Spearman rank correlation
207 between the DCBS and the tAI. A script for bulk S_{ij} estimation is available in the CUBES
208 package (<https://github.com/maurijlozano/CUBES>, calculate_sopt_DCBS_GNM_f.sh).
209 The estimated sets of S_{ij} weights were used to calculate the modal tRNA-adaptation index
210 (m-tAI) for different species and gene sets (*i. e.*, core and PHE genes plus singletons) as
211 a measure of their efficiency in being recognized by the intracellular tRNA pool. The m-
212 tAIs were calculated from the previously generated modal sequences by means of the
213 tAI_Modal_g.sh script from the CUBES package.

214 **RESULTS**

215

216 **Ancestry-dependent codon-usage bias as revealed by the analysis of core genes**
217 **from diverse prokaryotic families**

218 López et al. (19) have recently demonstrated that, in a model proteobacterium,
219 the more ancestral the core genes were the better adapted their codon usages were to
220 the translational machinery. In order to investigate if such correlation was associated with
221 a general phenomenon in different prokaryote taxa, we assembled different core-gene
222 sets that progressed deeper into the phylogenies of 27 Gram-negative and -positive
223 eubacterial families spanning the phyla Proteobacteria, Actinobacteria, Firmicutes, and
224 Bacteroidetes along with 2 archaeal families from the phylum Euryarchaeota. Table S1_a
225 (tab 1) itemizes for each taxon the number of genes in each gene set from the most
226 recent core 1 (C1), to the most ancestral core n (Cn). The codon-usage variation with
227 gene ancestry within a given prokaryote family was evaluated through a correspondence
228 analysis (CA) that used as variables the raw codon counts (RCC) of the individual genes
229 in each genome analyzed (see Materials and Methods). The average values of the first
230 two components for the core-gene sets C1 to Cn were projected on the CA plots. Fig. 1
231 (left panels) depicts the CAs for four different genomes specifically selected to represent
232 groups of organisms with different types of CA plots and GC contents, namely Groups A
233 to D. CAs were also calculated using RSCUs as input variables instead of RCC as
234 presented in Fig S1A. In agreement with a recent study in *Sinorhizobium meliloti* (19), in
235 all instances a directional shift in the codon usage positions was evident from the most
236 recent (C1) towards the most ancestral (Cn) core-gene set. That this ancestry-dependent
237 pattern of codon-usage variation had been observed in even quite distant prokaryote
238 families among those analyzed here was remarkable (cf. the CA plots for all other
239 species in Fig. S1B, left panels). In the evolution of core codon usages, however, the
240 extent of the observed shifts and the type of synonymous codons enriched in each taxon

241 (i. e., the direction of change) varied markedly among different families (Fig. 1, Fig S1A
242 and Fig S1B, right panels).

243 The general features that characterized the bias in codon usages can be
244 summarized as follows. First, a general pattern indicated that in bacteria from Groups B,
245 C and D the PHE genes are enriched in codons with higher GC3 when compared with
246 singletons (Fig. 1 and Fig. S1, right panels). Conversely, an AU enrichment in the third
247 position of codons was observed in the ancestral core fractions of organisms from Group
248 A which have extremely low GC contents. Second, from C1 to Cn in the CA plot, the
249 codon usages gradually shifted away from the position of the singletons (the unique
250 genes) to approach the region where the PHE genes were located (Fig. 1 and Fig S1, left
251 panels). Similar results were obtained when PHE genes were subtracted from the
252 different Cn cores (see Fig. S2). Thus, the overall evidence suggested that gene ancestry
253 correlated with a codon-usage optimization that resembled the one observed in the PHE
254 genes. Nonetheless, the more ancestral core genes (i. e., the Cn gene sets) never
255 overlapped with the position of the PHE genes in the CA plots. In most prokaryote
256 species, the order of positions in the CA plot followed the sequence singletons-C1-Cn,
257 which series was associated with an enrichment in some of the C-ending 2/3-fold
258 degenerate codon families (i. e., the 2/3-fold C-bias; cf. the distribution of red circles in
259 Fig. 1 and Fig. S1, right panels); whereas the position of the PHE genes compared to that
260 of Cn was characterized by an additional enrichment in U-ending 4-fold degenerate
261 codon families (i. e. the 4-fold U bias; cf. the distribution of light-blue circles). Each of the
262 previous effects varied in relative intensity among the different prokaryote families, where
263 other specific codon changes (brown circles in Fig. 1 and Fig. S1) also occurred from C1
264 to Cn to PHE and accompanied the above-mentioned 2/3-fold C, and 4-fold U biases.
265 Wald et al. (41) have previously reported that the C and the U biases are associated with
266 an improved codon-usage correspondence to the anticodons of the tRNA pool. The
267 combined effects of the C and U biases are the basis for the “rabbit head” distribution of
268 genes that we observe in most of the CA plots (gray dots), an effect that was originally

269 described in *E. coli* (21). Contrasting with the codon usage of core and PHE genes, the
270 singleton genes tend to be enriched in A/U-ending codons.

271

272 **Indication from m-tAI values that the codon usages of more ancestral genes are**
273 **better adapted to the cellular translational machinery**

274 In order to explore how extensive the correlations between codon usage, gene
275 ancestry, and translation efficiency were, we calculated the m-tAI values for the C1 to the
276 Cn core genes for a given strain and used those indices to estimate the adaptation of
277 each gene set to the tRNA pool. Each m-tAI takes into consideration both the copy
278 number of each tRNA structural gene as an estimation of that tRNA's cellular
279 concentration and the codon-anticodon interactions including the classical Watson-and-
280 Crick interactions (WCIs) along with the wobble rules (see Materials and Methods).

281 Unfortunately, nonstandard forms of base pairing, such as U:U interactions and others,
282 are not included in the m-tAI calculations. In Fig. 2, the left panels illustrate how with
283 progressive gene ancestry the m-tAI generally increases to often approach that of the
284 PHE genes, thus evidencing that the more ancestral cores are enriched in genes that
285 displayed adaptive—*i. e.*, selection-dependent—changes in their codon usage. That such
286 m-tAI increases with progressive ancestry had been observed in strains from 18
287 prokaryote families (17 eubacteria, 1 archaea) was indeed remarkable (*cf.* Fig. 2 and Fig.
288 S3, left panels a1, a3, a5, a6, a8, a10, and a12 to a19). In the reference strains from
289 these prokaryote families, the PHE genes (red dashed lines) were always associated with
290 higher m-tAI values than those of the core-gene sets from the same genome.

291 Conversely, singletons (blue-dashed lines) were always the gene sets with the lower m-
292 tAIs, thus suggesting that accessory genes (*i. e.*, those present in plasmids, phages, and
293 the unique genes in chromosomes) involve codon usages that—most likely due to their
294 non-essential character—is far from being optimized with respect to the host-translation
295 machinery. Strains with the characteristics described above have genomes with quite
296 diverse GC contents, ranging from *ca.* 30% to over 70%. Exceptions to the general

297 increase in the m-tAI values with ancestry are likely due to m-tAI deficiencies to
298 quantitate non-standard codon-anticodon interactions (i.e. those different from WCIs, and
299 wobble base pairing) (36).

300

301 **Effect of codon optimization on the GC content**

302 An analysis of the prokaryote genomes with different GC contents enabled us to
303 explore how the GC composition at the third base of codons (*i. e.*, the GC3) changed in
304 the core-gene sets over ancestry, and to compare the results with the GC3 in PHE genes
305 and singletons. Since the first two positions in codons are constrained by the protein-
306 coding information, most of the GC changes result in variations in synonymous codons
307 (2). As we have seen in the two previous sections, core genes adjust their codon usages
308 in the direction of the PHE genes (Fig. 1 and Fig. S1, left panels) in order to improve
309 translation (Fig. 2 and Fig. S3, left panels). The question thus became raised as to how
310 bacteria with different GC contents changed their GC3 composition in the process of
311 adapting their codon usage. The results presented in Fig. 2 and Fig. S3 (right panels)
312 show that changes in GC3 in genomes from Groups A to D each follows a distinctive
313 pattern from singletons-to-Ci-to-PHE. Whereas in genomes that belong to Group A
314 (overall GC content lower than ca. 35%) the GC3 decreases from singletons to Ci to PHE
315 (*cf.* Fig. 2, panel b1), in the genomes included in Group C the GC3 either increases from
316 singletons to Ci-to PHE (*cf.* Fig. 2, panel b3) or plateaus in Ci to PHE at a high level (*cf.*
317 Fig. S3, panel b17). In contrast, genomes pertaining to Group B; exhibited a biphasic
318 pattern with an initial GC3 increase from the level of the singletons up to the contents of
319 the Ci series (with *i* varying from 1 to *n*) followed by a later decrease from the Cn values
320 down to those of the PHE genes (*cf.* Fig. 2, panel b2). Those changes in the Group-B
321 genomes were reflected in pronounced forward and backward movements in the position
322 of the core genes in the CA plots, first from singletons to Ci and then from Cn to the PHE
323 genes (*cf.* Fig. S1, organisms in Group B). A similar biphasic pattern in the CA plots could
324 also be recognized, though softened, in certain species that were included in Group C or

325 even Group D where the PHE genes did not evidence a decrease in GC3 levels when
326 compared to those of the core genes. The genomes in Group D had extremely high
327 global GC contents and had GC3 values in all their core-gene sets (C1 to Cn) that were
328 comparable—though slightly higher—than the corresponding values in their PHE genes.
329 In the next section we will describe how individual codons for a given amino acid are
330 selected in the more ancestral core-gene sets.

331

332 **Characterization of codons that improve adaptation to the tRNA pool**

333 The variations in the use of individual codons when progressing from the C1 to
334 the Cn gene sets were analyzed in the different prokaryote genomes, together with the
335 tRNA-gene–copy numbers and the codon-adaptation indices ($Wi(s)$; *cf.* Materials and
336 Methods). Figs. 3 and S4 illustrate the CUFs (codon-usage frequencies, *cf.* Materials and
337 Methods) for singletons, PHE genes, and core genes with increasing ancestry together
338 with the tRNA-gene copies and the $Wi(s)$ (Fig. S5 summarizes the $Wi(s)$, $\Delta Cn-C1$, and
339 $\Delta PHE-Cn$ in the different genomes studied). In agreement with previous reports (10), our
340 results demonstrated that the CUF values among synonymous codons were strongly
341 influenced by the global GC content in each genome—*i. e.*, codons with G and C in the 3'
342 position (N_3) were the more abundant synonymous codons in the GC-rich genomes,
343 whereas A and U become predominant in that position in the genomes with low GC
344 content (Figs. 3 and S4). An inspection of the proportion of codon usage for each amino
345 acid in ancestral cores compared to the more recent ones (curves in Figs. 3, S4, and S5)
346 revealed that in most genomes a C-bias enrichment occurred with increased ancestry at
347 the 3' position of the 2-fold pyrimidine-ending codons—for Asp (GAU, GAC), Phe (UUU,
348 UUC), His (CAU, CAC), Asn (AAU, AAC), and Tyr (UAU, UAC)—as well as in the unique
349 3-fold codons for Ile (AUU, AUC, AUA), which three included the pyrimidine-ending pair
350 AUY (Figs. 3, S4, and S5). Corresponding to the observed C bias, in all these examples
351 high Wi values (shown in parenthesis in the figure) were observed for the C-ending
352 codons, which triplets were decoded through exact WCIs with the cognate tRNA species

353 (i. e., with the anticodon $G_{34}N_{35}N_{36}$). Because of the absence of tRNA species bearing
354 anticodons $A_{34}N_{35}N_{36}$ for these six amino acids, lower Wi values were obtained for the U-
355 ending codons as the consequence of a weaker wobble codon-anticodon non-WCI
356 recognition. Especially noteworthy was the observation that, though to a lesser extent,
357 the bacteria with extremely low GC contents likewise exhibited a C bias in the 2- to 3-
358 fold-codon family, irrespective of a global decrease in the GC3 value, as in the example
359 of *Clostridium beijerinckii* (cf. Figs. 2 and 3).

360 In the instance of the 2-fold purine-ending codons—that is GAA and GAG for Glu,
361 AAA and AAG for Lys, and CAA and CAG for Gln—we observed that the codons with G
362 or A in the 3' position were enriched from C1 to Cn and from Cn to PHE (i. e., $\Delta Cn-C1$
363 and/or $\Delta PHE-Cn$ in Fig. S5, respectively) depending upon which tRNA species
364 (anticodons) were present. In those examples where only the tRNAs bearing the
365 $U_{34}N_{35}N_{36}$ anticodons were present, the cognate A-ending codons recognized by WCIs
366 were the ones that became enriched in the more ancestral core and/or PHE genes (cf. in
367 Fig. S5, the GAA triplet for Glu in *C. violaceum*, *P. graminis*, *Bacillus subtilis*, *Bordetella*
368 *holmesii*, and *Leisingera methylohalidivorans*; the AAA for Lys in *M. smithii* and *Bacillus*
369 *subtilis*; and the CAA for Gln in *M. smithii*, *Streptococcus equii*, and *B. subtilis*).

370 Accordingly, these 3'-A-ending codons were associated with higher Wi values than the
371 corresponding codons ending in G, as the latter were recognized only by wobble-base
372 pairing (i. e., G_3-U_{34} interaction). In a second circumstance, where both tRNA species for
373 the same amino acid (i. e., those bearing anticodons $U_{34}N_{35}N_{36}$ or $C_{34}N_{35}N_{36}$) were
374 present, a more frequent enrichment in G-ending codons was observed (with few
375 exceptions) since such codons can be decoded by either Watson-Crick or wobble
376 interactions with the tRNA anticodons $C_{34}N_{35}N_{36}$ or $U_{34}N_{35}N_{36}$, respectively. In those few
377 examples where the A-ending were more enriched than the G-ending codons, a higher
378 copy number of the tRNA genes was always observed with anticodons $U_{34}N_{35}N_{36}$ than
379 that obtained with the anticodons $C_{34}N_{35}N_{36}$ (cf. in Figs. 3 and S4, the GAA triplets for Glu

380 in *Bacteroides vulgatus* and *C. beijerinckii*; the AAA triplets for Lys in *S. multivorans*; and
381 the CAA triplets for Gln in *C. beijerinckii* and *S. multivorans*).

382 A different codon usage bias—in a pattern not found in the 2/3-fold-degenerate
383 amino acids—was observed in codons encoded by 4-fold-degenerate amino acids (Val,
384 Thr, Pro, Gly, Ala) or by the 4-fold boxes of the 6-fold degenerate amino acids (Ser, Leu,
385 Arg). In these 4-fold groups a U-bias enrichment (*i. e.*, a NNU-codon enrichment) was
386 observed in the PHE genes from most of the genomes irrespective of their GC content
387 (Figs. 3, S4, and Fig. S5). This enrichment in U-ending codons, previously reported as a
388 U bias (41), could not be explained by WCIs with $A_{34}N_{35}N_{36}$ tRNAs because these latter
389 species were not present in prokaryotes, except in the example of Arg. The observed U
390 bias likely occurred through the previously proposed nonconventional codon-
391 U_3 :anticodon- U_{34} interaction that was known to exist in bacteria (64). The presence of
392 $U_{34}N_{35}N_{36}$ tRNA species might then lead to an increase in both NNA and NNU codons as
393 a consequence of positive WCIs and U_3 - U_{34} interactions, respectively.

394 All the codon adaptations that we have described in this section referring to core
395 genes proved to be more prominent in the PHE genes, whose triplets were even better
396 adapted to the translational machinery. Contrasting with such a strong pattern of
397 selection-associated codon bias, the singletons displayed codon usages that were in
398 general the most distant from those observed in the PHE genes (as exemplified in the
399 CUFs in Figs. 3, S4, and in the CA plots from Figs. 1 and S1). These observations are
400 also in agreement with variations in the m-tAIs for the different gene sets presented in the
401 previous section.

402

403 **Search for coding signatures for translation efficiency and accuracy: Codon-usage
404 profiles associated with sequences encoding highly-expressed-variable (HEP_vr)
405 and -conserved (HEP_cr) translated domains**

406 Expression level and amino-acid-sequence conservation are both parameters
407 that positively correlate with codon-usage optimization (65). Nevertheless, the relative

408 relevance of efficiency and accuracy to translation plus the way in which either one of
409 those parameters affects the other have not yet been investigated in detail. A central
410 limitation that made such studies difficult was associated with the natural genomic
411 heterogeneity in gene ancestry along with the expression level and the sequence
412 conservation (structural constraints) in the translated products. In order to reduce the
413 degrees of freedom in the analysis; for each of six different bacterial species, we created
414 two distinct gene sets based on the experimental proteome data. One of those gene sets
415 consisted of genes encoding proteins with the highest expression levels in the cell (*i. e.*,
416 the HEP), while the other was associated with proteins with low cellular abundance (*i. e.*,
417 the LEP). Then, the conserved (*cr*) and variable (*vr*) sequences among the orthologs
418 were collected from each individual gene (*cf.* Materials and Methods), the corresponding
419 HEP_*cr*, HEP_*vr*, LEP_*cr*, and LEP_*vr* modal codon usages were used to calculate the
420 relative distances illustrated in the neighbor-joining tree presented in Fig. 4. In five out of
421 the six species present in the trees (Fig. 4A to 4E), the HEP_*cr* and HEP_*vr* sequences
422 separated from those of the singletons, the core genes, and all the LEPs as the result of
423 a strong codon-usage adaptation (also reflected in the low effective number of codons
424 (Ncs) associated with the HEPs, indicated in parentheses following labels in the tree).
425 Furthermore, the large distance in the tree between HEP_*cr* and LEP_*cr* (where both
426 sequences encode regions with conserved amino acids, but with different expression
427 levels) compared to the much shorter distance between HEP_*cr* and HEP_*vr* (where both
428 encode highly expressed products with different degrees of conservation) pointed to the
429 quantitatively stronger effect of efficiency over accuracy in shaping codon-usage bias.
430 However, codons that were optimized as a result of accuracy under high and under low
431 expression—*i. e.*, [HEP_*cr*–HEP_*vr*] and [LEP_*cr*–LEP_*vr*], respectively, labelled **A** for
432 accuracy at the bottom of Fig. 5—were highly coincident with the codons that were
433 optimized through efficiency—*i. e.*, [HEP_*cr*–LEP_*cr*] and [HEP_*vr*–LEP_*vr*], labelled **E**
434 for efficiency. In some organisms, the greater distance between HEP_*cr* and HEP_*vr*
435 than between LEP_*cr* and LEP_*vr* (Fig. 4) indicates a stronger influence of accuracy in

436 codon-usage optimization when operating under high-expression conditions, thus
437 pointing to an interaction between the simultaneous requirements of high fidelity and
438 efficiency. The more relevant contributions to the global difference in codon usage
439 between HEP and LEP resulted to be efficiency (both in conserved and in variable
440 regions) (**E** columns in Fig. 5) followed by accuracy under high expression (first **A** column
441 in Fig 5)(the stronger the contribution of each factor, either **E** or **A**, the shorter the
442 distance in brackets to HEP-LEP in the figure). The heat maps display the complete
443 profiles of preferred codons for sequences requiring high translational accuracy and/or
444 efficiency (protein demands). As expected, the preferred codon for each amino was in
445 agreement with the C and U bias and the tRNA-copy number described in the previous
446 sections. In light of these results, the highly-expressed variable and conserved domains
447 (HEP- vr/cr) constitute the basis for explaining the observed codon-usage optimization in
448 the more ancestral core-gene sets (Cn), which concentrate HEPs (Table S3). Fig. 6
449 illustrates that HEP sequences (red dots) are those under the highest selective pressure
450 to optimize codon usage because of both their expression level and their degree of
451 conservation.

452 **DISCUSSION**

453 Since gene adaptation to a host cell is expected to be associated with an
454 improved codon selection for translation efficiency and accuracy (43, 66), we investigated
455 correlations between core-gene ancestry and their modal codon usage within a given
456 prokaryote family. In order to ascertain if the adaptation of the more ancestral core genes
457 was an extensive phenomenon among prokaryotes, we analyzed core modal codon
458 usages in 27 different species of Bacteria and 2 of Archaea. That in the CA plots the
459 more ancestral core genes had been the ones with the closest location to the PHE genes
460 in all families was remarkable and strongly indicated a core codon-usage adaptation that
461 likely operated to improve translation. In agreement with the position of the different gene
462 sets in the CA plots, the m-tAI values served to confirm that the PHE genes were the best
463 adapted gene set, followed by the Cn to C1 core genes, in that order, and finally by the
464 singletons, with those being the least adapted genes with the lowest m-tAIs in the
465 genome. Studies made by others have previously demonstrated that the level of gene
466 expression together with the need to preserve accuracy during the translation of
467 conserved amino-acid regions are both among the main parameters that govern codon-
468 usage selection (65). The bioinformatics isolation of conserved (*cr*) and variable (*vr*)
469 coding-sequence domains from genes under high- (HEP) and low-expression (LEP)
470 regimes served in this work to ascertain quantitatively the relative contribution of
471 efficiency (expression level) *versus* accuracy during the selection-based codon-usage
472 optimization. According to the observed neighbor-joining distances (Table S3 worksheet
473 “distances”, and tree in Fig. 4), changes in codon usage derived from differences in gene-
474 expression levels—*i. e.*, the efficiency in terms of the distance from the LEP to the HEP—
475 were between 1.25 to 2.35 times greater than the changes in codon usage resulting in
476 increased accuracy—*i. e.*, the distance from *vr* to *cr*—. The increasing proportion of
477 highly expressed-variable and specially -conserved sequences (*i. e.*, HEP_*vr* and
478 HEP_*cr*) in the more ancestral gene sets constituted the basis for explaining the

479 corresponding high degree of codon-usage optimization that gradually increased from C1
480 to Cn.

481 The central question therefore was how adaptive changes in codon usage—which
482 alterations become reflected in m-tAI values—occurred in prokaryotes with quite diverse
483 GC contents (10). Because of the small amount of intergenic DNA in prokaryotes,
484 genomic differences in base composition must mainly derive from changes in the coding
485 regions. Within the alterations in the open reading frames, changes in GC are
486 preferentially associated with modifications in the GC3, and only to a lower extent with
487 alterations in the GC content of the first two codon positions (2, 4). How mutational bias
488 (12) competes with selection (15) to drive all these changes is not yet fully understood.

489 The codon-usage biases described here were associated with the four different patterns
490 of GC3 changes summarized in the schemes presented in Fig. 7 (*i. e.* the genome
491 Groups A, B, C, and D depicted in the figure). The Group-A genomes, those having an
492 extremely low GC content and with their GC3 frequency decreasing from C1 to Cn,
493 proved to have only the tRNA-U₃₄ to recognize 4-fold synonymous codons in one or more
494 amino acids. In such instances, the observed core-gene AT enrichment over ancestry
495 appeared to be directly affected by selection (as with the PHE genes), where codons
496 NNA (via WCIs with the tRNA-U₃₄) and NNU (via nonconventional U-U interactions) were
497 preferentially enriched over NNC and NNG codons. Though both of those changes were
498 probably related to improvements in translation efficiency, such increases are not always
499 reflected in the m-tAIs since, as stated earlier, U-U interactions are not considered in the
500 calculation of that index. Unfortunately, when we (not shown) and others (37) have
501 attempted to improve the tRNA-adaptation index by including additional nonstandard
502 base pairings, we obtained no better results. Nonetheless, under the assumption that the
503 PHE genes are the best adapted to the translational machinery, in genomes with
504 extremely low GC content—such as those belonging to Group-A—the observed AT3
505 enrichment from C1 to Cn to PHE (Fig. 7, right panel) should mainly result from selection.
506 According to Hildebrand et al. (15), the mutational processes in very low-GC organisms

507 favor a GC3 enrichment. That the core and PHE genes in bacteria that belonged to
508 Group A had been selected to bear lower GC3 values than singletons in order to improve
509 translation in view of the previous pattern of increasing GC content was remarkable, with
510 this circumstance being a result of the above-mentioned enrichment in NNA and NNU
511 triplets compared to their proportion in the synonymous codons (Fig. 7, right panel). In
512 Group-B genomes, the biphasic pattern observed from singletons to PHE genes could be
513 explained by an initial increase in GC3-rich codons from singletons to core genes,
514 followed by a later U bias from core genes to PHE genes. That initial GC3 enrichment
515 followed by a U3 increase was sufficient to explain the basis of the previously reported
516 “rabbit head” distribution of codon usages that characterizes most prokaryote genomes
517 (21, 67). What should be also especially noted is that the PHE genes separated from the
518 Cn (in both the CA, and the GC3 plots) because of a much more intense U bias likely
519 associated with the difference in expression levels between the two gene sets. In the
520 type-C genomes, in which the GC3 always increased, the absence of a strong U bias
521 from the Cn to the PHE genes led to a less pronounced—*i. e.*, more linear—“rabbit-head”
522 distribution of genes in the CA plot. In addition to that general trend, *Yersinia*
523 *enterocolitica*, *Methanolacinia petrolearia*, and *Sphingomonas parapaucimobilis* could be
524 considered as having an intermediate behavior between the bacteria in Group C and
525 those in Group B. Finally, the Group-D genomes, which had extremely-high GC contents,
526 were the most restricted with respect to GC3 variations. The quite small compositional
527 variations in that group of genomes became apparent in the compacted location of the
528 different core and PHE genes in the CA plots. What was remarkable is that in Group-D
529 genomes a U bias (though much less intense than in the genomes of Groups A, B, and
530 C) was still a visible variable that differentiated codon usages between the core and the
531 PHE genes. As stated above, the noninclusion of U:U interactions in the m-tAI calculation
532 limited the use of this parameter to express the translational adaptation of those gene
533 sets in which a U bias was dominant. Pouyet et al (11) present a model to predict and
534 separate the relative contribution of mutational bias (N-layer), codon selection (C-layer),

535 and amino acid composition (A-layer) on the global GC and the GC3 content. Our
536 analysis is fully consistent with the results reported by Pouyet et al (11) where the C-layer
537 (codon selection / translational selection) has a stronger influence on the GC3 of genes
538 with low effective number of codons (Nc)(such as Cn and PHE) compared to the
539 influence on genes with the highest Nc (such as the C1).

540 The results presented here together with previous evidence from other authors
541 have enabled a comprehensive analysis of the principal basis underlying the changes
542 associated with the optimization of codon usage in prokaryotes in different gene sets and
543 in organisms with different GC contents. As stated previously, the overall codon usage is
544 known to be constrained by genome-wide mutational processes (7, 8, 10) that are
545 considered as a main force in shaping the global GC content. The intragenomic codon
546 usage will concurrently become accommodated through selection-driven processes, as
547 has also been extensively reported (35, 42, 48, 68). In order to further our knowledge of
548 the relevance of those factors/forces generating intragenomic variations, we investigated
549 the different nucleotide-base changes underlying the selection of preferred codons in the
550 core and PHE genes of representative prokaryote species. The analysis of gene sets with
551 different expression levels and degrees of conservation in organisms with diverse global
552 GC contents enabled a description of how core codon usage approaches that existing in
553 the PHE genes and how nucleotide changes correlate with an improved compatibility
554 between the genes and the coexisting tRNA pool. That C- and U-ending codons in 2-/3-
555 fold- and in 4-fold-degenerate amino acids, respectively, were specifically enriched as a
556 result of selection to improve translation has been previously reported for different
557 prokaryotic genomes (41). Using separate analyses focused on different gene sets, we
558 demonstrated here that similar selection-driven adaptations in codon usage has taken
559 place from singletons to core genes to PHE genes. The intensity and relevance of the C
560 and U bias was dependent on the particular genome—and especially on the genomic GC
561 content—as well as on the gene fractions under consideration. In contrast to the codon-
562 usage variations occasioned by selection in the core and PHE genes, the singletons

563 constituted the gene set characterized by both the lowest GC3 content as a result of the
564 AT mutation that is universally biased in prokaryotes (12) and a much more relaxed
565 selection than that of the more ancestral genes, with the sole exception of the extremely
566 low-GC-containing genomes of Group A. In addition to a description of the basic
567 changes that together conform the intracellular-codon–usage variations, further
568 investigation should be focused on the analysis of the time course required by the newly
569 acquired information to be properly incorporated into the genetic language of the host cell
570 (codon usage tuning).

571

572 **ACKNOWLEDGEMENTS**

573

574 We are grateful to Paula Giménez, Silvana Tongiani (both members of CPA
575 CONICET at IBBM), and to Ruben Bustos from UNLP for their technical assistance;
576 and to Donald F. Haggerty for editing the final version of the manuscript. This research
577 was supported by the National Science and Technology Research Council (Consejo
578 Nacional de Investigaciones Científicas y Técnicas – CONICET, Argentina) PIP 2014-
579 0420; the Ministry of Science Technology and Productive Innovation (Ministerio de
580 Ciencia Tecnología e Innovación Productiva – MinCyT, Argentina) PICT-2012-1719,
581 PICT-2015-2452, and PICT-2017-2022; and CYTED (Ciencia y Tecnología para el
582 Desarrollo) acción 115RT0492. JLL, MJL, and MLF were supported by CONICET, and
583 AL was supported by CONICET and by the UNLP (Universidad Nacional de La Plata).

584

LEGENDS TO FIGURES

585

586 **Fig. 1. Raw codon counts-based Correspondence Analysis (CA) plots of core-gene**
587 **sets with different degrees of conservation throughout the phylogeny of selected**
588 **prokaryote families (Groups A to D). Panels a1 to a4:** In 4 reference strains with
589 different GC contents, individual genes (in gray) are represented in the space of the first-
590 two CA components, with the percent variation of components 1 and 2 being indicated on
591 the axes. CAs were computed using raw codon counts (RCC) as the input variables.
592 Average coordinates (centroids) for different gene sets (i.e. singletons in blue, C1 to Cn
593 in a gradient from blue to red, and PHE in red) were projected on the CA space. In C1 to
594 Cn the higher number denote a more ancestral core-gene set within the phylogeny. Table
595 S1_a (tab 1) lists the prokaryote species that were used to construct each Ci gene set by
596 means of the EDGAR software (54, 55). **Panel b1 to b4:** Plots describing codon relative
597 weight in the first two principal-component positions of the CA. Codons with the highest
598 CUF enrichment for each amino acid from C1 to PHE (i.e. those codons that better
599 represent translational adaptation) were colored in brown, except when those same
600 codons corresponded also to a C- or to a U-bias in which cases they were colored in red
601 and light blue, respectively.

602

603 **Fig. 2. Codon-usage adaptations to the cellular tRNA-pool, and changes in the GC3**
604 **content of different prokaryote core genes.** The reference strains represented here
605 are the same five as in Fig. 1. **Panels a1 to a4:** In each panel, the modal tRNA-
606 adaptation index (m-tAI) calculated for each of the Ci gene-sets as described in Materials
607 and Methods is plotted on the *ordinate* as a function of the evolutionary distance
608 indicated on the *abscissa* (Table S1_a, tab 2) as inferred from the corresponding
609 phylogenetic trees included in Table S1_a-c. Higher values of m-tAI indicate an
610 enrichment in the codon usage frequencies of those synonymous codons better adapted
611 to the host-cell tRNA pool. The C1 to Cn gene sets plotted here are the same as those

612 presented in Fig. 1. The red and blue horizontal dashed lines correspond to the
613 respective m-tAI values calculated for the PHE genes and the singletons. **Panels b1 to**
614 **b4:** In each panel, the average GC3 content in each core-gene set of increasing ancestry
615 is plotted on the *ordinate* as a function of the evolutionary distance indicated on the
616 *abscissa* as in panels a1 to a4. The PHE genes and the singletons are represented as
617 red and blue horizontal dashed lines, respectively.

618

619 **Fig. 3. Codon usage frequencies and adaptation indices (Wi) of the gene sets**
620 **analyzed in this work, together with the tRNA-gene–copy numbers for strains of**
621 **the four reference Groups A to D.** For the amino acid denoted by the corresponding
622 single-letter identification code located above each panel, the change in the modal
623 codon-usage frequencies (CUFs; see Materials and Methods) of the core-gene sets with
624 increasing ancestries (left to right, the C1 to Cn), the PHE genes, and the singletons are
625 plotted in the upper panels as solid horizontal curves for each of the indicated codon
626 triplets between the two vertical broken lines, for the singletons to the left of the first of
627 those lines, and for the PHE genes to the right of the second (with singletons and PHE
628 genes being located at the beginning and the end of the curves, respectively). The CUFs
629 are represented by different colors with the associated absolute codon-adaptation index
630 (Wi , (36)) being denoted within parentheses beside each triplet. Finally, the presence and
631 gene-copy number (N tRNA) of the cognate tRNA species of a given synonymous codon
632 bearing the exact complementary anticodon is depicted with a number and a bar of
633 proportional height in the lower panel in the same color as the corresponding triplet and
634 curve in the upper panel.

635

636 **Fig. 4. Neighbor-joining–distance trees of different gene sets encoding HEP, LEP,**
637 **and their associated conserved (cr) and variable (vr) regions based on the**
638 **corresponding modal codon usage.** Modal codon usage-based neighbor-joining trees
639 were constructed for the indicated gene sets and intragenic regions (cr and vr) following

640 the method described by Karberg et al. (17) along with the neighbor-joining program of
641 the Phylip package (69). Phylogenetic trees were drawn through the use of the Figtree
642 application (70). The figure abbreviations are as follows: C1 to Ci, core-gene sets with
643 increasing ancestry; single, singletons; HEP, genes encoding proteins with the highest
644 expression level; LEP, genes encoding proteins with the lowest expression level;
645 HEP_cr, conserved HEP sequences (dark red); HEP_vr, variable HEP sequences (light
646 red); LEP_cr, conserved LEP sequences (dark blue); and LEP_vr, variable LEP
647 sequences (light blue). HEP and LEP cr and vr subfractions were recovered as indicated
648 in Materials and Methods through the use of the polypeptide sequences included in C13
649 for *Yersinia enterocolitica* subsp. *palearctica* Y11, C10 for *Streptococcus equi* ATCC
650 33398, C8 for *Sulfurospirillum multivorans* DSM 12446, C9 for *Bacillus subtilis* subsp.
651 *spizizenii* TU B 10, C6 for *Bacteroides vulgatus* ATCC 8482, and C12 for *Mycobacterium*
652 *fortuitum* subsp. *fortuitum* DSM 46621 (ATCC 6841). The effective number of codons
653 (N_{c_s}) as previously defined by Wright (71) are indicated in brackets for the cr and vr
654 subset of sequences.

655

656 **Fig. 5. Heat-map representation expressing differences in modal-codon-usage**
657 **profiles between the indicated gene sets.** The color scale from red to blue indicates
658 the relative level of use of each particular codon in a gene set compared to that of
659 another (*i. e.*, gene set 1 *versus* gene set 2). The blue color corresponds to the dominant
660 use of a particular codon in Gene set 1 over the use of the same codon in Gene set 2
661 (and *vice versa* for the red color). Amino acids are indicated in the standard three-letter
662 code. The heat map was constructed through the use of the phytools R package (72).
663 The abbreviations are as follows: HEP, genes encoding proteins with the highest
664 expression level; LEP, genes encoding proteins with the lowest expression level;
665 HEP_cr, conserved HEP sequences; HEP_vr, variable HEP sequences; LEP_cr,
666 conserved LEP sequences; and LEP_vr, variable LEP sequences. The [HEP (gene set 1)
667 – LEP (gene set 2)] column represents the profile of the optimized codons when

668 comparing the coding strategies in high- *versus* low-expression genes (*i. e.*, reflecting
669 differences in their modal codon usages). The columns indicated by **A** correspond to the
670 profiles of codons optimized as a result of accuracy (*i. e.*, differences between [HEP_cr –
671 HEP_vr] and [LEP_cr – LEP_vr]). The columns indicated by **E** correspond to the profiles
672 of optimized codons through high expression (*i. e.*, reflecting differences in efficiency
673 between [HEP_cr – LEP_cr] and [HEP_vr – LEP_vr]). The numbers in brackets indicate
674 the extent to which changes induced by either efficiency or accuracy approach the
675 differences in codon usage between HEP and LEP (*i. e.*, distances from each column to
676 the column HEP – LEP). The shorter the distance in brackets the stronger the
677 contribution of the indicated factor (*i. e.*, A = accuracy or E = expression level) to codon
678 optimization in the HEP.

679

680 **Fig. 6. Amino-acid–sequence conservation in proteins with different cellular**
681 **abundances.** The amino-acid–sequence conservation calculated for proteins of the
682 indicated bacterial species and core fractions (Materials and Methods) are plotted on the
683 *ordinate* as a function of the logarithm of the corresponding protein abundance (logPA)
684 on the *abscissa*. The red and blue dots correspond to HEP and LEP, respectively, with all
685 the other proteins of the same core represented in gray. The linear regressions and
686 graphs were all performed with the ggplot2 library from the R package.

687

688 **Fig. 7. Schematic representation of general codon-usage patterns observed in**
689 **different prokaryote families.** For the prokaryote strains whose genomes were
690 classified as belonging to Groups A, B, C, and D and listed to the right of each panel,
691 cartoons with the associated correspondence-analysis (CA) and GC3-variation pattern
692 among the core-gene sets of increasing ancestry (light gray) are presented, along with
693 the corresponding singletons (blue) and PHE genes (red). The light-blue arrow indicates
694 the direction of the U bias and the red arrow that of the C bias. The right panel is a plot of
695 the GC3 content on the *ordinate* as a function of increasing evolutionary distance on the

696 *abscissa* with the red horizontal dashed line denoting the PHE genes and the blue the
697 singletons.

698 **REFERENCES**

- 699 1. Sueoka N. 1962. On the genetic basis of variation and heterogeneity of DNA base
700 composition. *Proc Natl Acad Sci.*
- 701 2. Sueoka N. 1988. Directional mutation pressure and neutral molecular evolution.
702 *Proc Natl Acad Sci.*
- 703 3. Osawa S, Ohama T, Yamao F, Muto A, Jukes TH, Ozeki H, Umesono K. 1988.
704 Directional mutation pressure and transfer RNA in choice of the third nucleotide of
705 synonymous two-codon sets. *Proc Natl Acad Sci.*
- 706 4. Sueoka N. 1992. Directional mutation pressure, selective constraints, and genetic
707 equilibria. *J Mol Evol.*
- 708 5. Sueoka N. 1995. Intrastrand parity rules of DNA base composition and usage
709 biases of synonymous codons. *J Mol Evol.*
- 710 6. Sueoka N. 1999. Two aspects of DNA base composition: G+C content and
711 translation- coupled deviation from intra-strand rule of A = T and G = C. *J Mol Evol.*
- 712 7. Knight RD, Stephen J, Landweber L. 2001. A simple model based on mutation and
713 selection explains trends in codon and amino-acid usage and GC composition
714 within and across genomes 1–13.
- 715 8. Chen SL, Lee W, Hottes AK, Shapiro L, Mcadams HH. 2004. Codon usage
716 between genomes is constrained by genome-wide mutational processes.
- 717 9. Karimpour I, Cutler M, Shih D, Smith J, Kleene K, Hill KE, Lloyd RS, Yang JG,
718 Read R, Hurk RF, Burk RF, Lawrence RA, Lane JM, Rurk RF, Rellew T, Morrison-
719 Plummer J, Bellew T, Palmer IS, Berry MJ, Banu L, Chen Y, Mandel SJ, Kieffer
720 JD, Harney JW, Larsen PR. 1993. Codon usage: mutational bias, translational
721 selection, or both? *Proc. Natl. Acad. Sci. U.S.A.*
- 722 10. Hershberg R, Petrov DA. 2009. General rules for optimal codon choice. *PLoS*
723 *Genet* 5.
- 724 11. Pouyet F, Bailly-Bechet M, Mouchiroud D, Guéguen L. 2016. SENCA: A
725 multilayered codon model to study the origins and dynamics of codon usage.

754 22. Grosjean H, Fiers W. 1982. Preferential codon usage in prokaryotic genes: the
755 optimal codon-anticodon interaction energy and the selective codon usage in
756 efficiently expressed genes. *Gene*.

757 23. Kanaya S, Yamada Y, Kudo Y, Ikemura T. 1999. Studies of codon usage and
758 tRNA genes of 18 unicellular organisms and quantification of *Bacillus subtilis*
759 tRNAs: Gene expression level and species-specific diversity of codon usage based
760 on multivariate analysis. *Gene* 238:143–155.

761 24. Karlin S, Mrazek J. 2000. Predicted highly expressed genes of diverse prokaryotic
762 genomes. *J Bacteriol*.

763 25. dos Reis M, Wernisch L, Savva R. 2003. Unexpected correlations between gene
764 expression and codon usage bias from microarray data for the whole *Escherichia*
765 *coli* K-12 genome. *Nucleic Acids Res*.

766 26. Supek F, Škunca N, Repar J, Vlahoviček K, Šmuc T. 2010. Translational selection
767 is ubiquitous in prokaryotes. *PLoS Genet* 6:1–13.

768 27. Médigue C, Rouxel T, Vigier P, Hénaut A, Danchin A. 1991. Evidence for
769 horizontal gene transfer in *Escherichia coli* speciation. *J Mol Biol*.

770 28. Mrázek J, Karlin S. 1999. Detecting alien genes in bacterial genomes *Annals of the*
771 *New York Academy of Sciences*.

772 29. Daubin V, Lerat E, Perrière G. 2003. The source of laterally transferred genes in
773 bacterial genomes. *Genome Biol*.

774 30. Daubin V, Ochman H, Daubin V, Ochman H. 2004. Bacterial Genomes as New
775 Gene Homes : The Genealogy of ORFans in Bacterial Genomes as New Gene
776 Homes : The Genealogy of ORFans in *E. coli* 1036–1042.

777 31. Ochman H, Lerat E, Daubin V. 2005. Examining bacterial species under the
778 specter of gene transfer and exchange. *Proc Natl Acad Sci* 102:6595–6599.

779 32. Yannai A, Katz S, Hershberg R. 2018. The codon usage of lowly expressed genes
780 is subject to natural selection. *Genome Biol Evol* 10:1237–1246.

781 33. Ikemura T. 1981. Correlation between the abundance of *Escherichia coli* transfer

782 RNAs and the occurrence of the respective codons in its protein genes: A proposal
783 for a synonymous codon choice that is optimal for the *E. coli* translational system.
784 J Mol Biol.
785 34. Ikemura T. 1982. Correlation between the abundance of yeast transfer RNAs and
786 the occurrence of the respective codons in protein genes. J Mol Biol.
787 35. Bulmer M. 1987. Coevolution of codon usage and transfer RNA abundance.
788 Nature.
789 36. dos Reis M, Savva R, Wernisch L. 2004. Solving the riddle of codon usage
790 preferences: A test for translational selection. Nucleic Acids Res 32:5036–5044.
791 37. Sabi R, Tuller T. 2014. Modelling the Efficiency of Codon-tRNA Interactions Based
792 on Codon Usage Bias. DNA Res 21:1–15.
793 38. Gerber AP, Keller W. 2001. RNA editing by base deamination: More enzymes,
794 more targets, new mysteries. Trends Biochem Sci.
795 39. Agris PF, Vendeix FAP, Graham WD. 2007. tRNA's Wobble Decoding of the
796 Genome: 40 Years of Modification. J Mol Biol.
797 40. Novoa EM, Pavon-Eternod M, Pan T, Ribas de Pouplana L. 2012. A Role for tRNA
798 Modifications in Genome Structure and Codon Usage. Cell 149:202–213.
799 41. Wald N, Alroy M, Botzman M, Margali H. 2012. Codon usage bias in prokaryotic
800 pyrimidine-ending codons is associated with the degeneracy of the encoded amino
801 acids. Nucleic Acids Res 40:7074–7083.
802 42. Sharp PM, Bailes E, Grocock RJ, Peden JF, Sockett RE. 2005. Variation in the
803 strength of selected codon usage bias among bacteria. Nucleic Acids Res
804 33:1141–1153.
805 43. Stoletzki N, Eyre-Walker A. 2007. Synonymous codon usage in *Escherichia coli*:
806 Selection for translational accuracy. Mol Biol Evol 24:374–381.
807 44. Ran W, Kristensen DM, Koonin E V. 2014. Coupling between protein level
808 selection and codon usage. MBio 5:1–11.
809 45. Jara E, Morel MA, Lamolle G, Castro-Sowinski S, Simón D, Iriarte A, Musto H.

810 2018. The complex pattern of codon usage evolution in the family
811 Comamonadaceae. *Ecol Genet Genomics* 6:1–8.

812 46. McInerney JO. 1998. Replicational and transcriptional selection on codon usage in
813 *Borrelia burgdorferi*. *Proc Natl Acad Sci USA* 95:10698–10703.

814 47. Davis JJ, Olsen GJ. 2010. Modal codon usage: Assessing the typical codon usage
815 of a genome. *Mol Biol Evol* 27:800–810.

816 48. Sharp PM, Emery LR, Zeng K. 2010. Forces that influence the evolution of codon
817 bias. *Philos Trans R Soc B Biol Sci* 365:1203–1212.

818 49. Shabalina SA, Spiridonov NA, Kashina A. 2013. Sounds of silence: Synonymous
819 nucleotides as a key to biological regulation and complexity. *Nucleic Acids Res*
820 41:2073–2094.

821 50. Quax TEF, Claassens NJ, Söll D, van der Oost J. 2015. Codon Bias as a Means to
822 Fine-Tune Gene Expression. *Mol Cell* 59:149–161.

823 51. Daubin V, Lerat E, Perrière G. 2003. The source of laterally transferred genes in
824 bacterial genomes. *Genome Biol* 4:R57.

825 52. Lerat E, Daubin V, Ochman H, Moran NA. 2005. Evolutionary origins of genomic
826 repertoires in bacteria. *PLoS Biol* 3:0807–0814.

827 53. Davis JJ, Olsen GJ. 2011. Characterizing the native codon usages of a genome:
828 An axis projection approach. *Mol Biol Evol* 28:211–221.

829 54. Blom J, Albaum SP, Doppmeier D, Pühler A, Vorhölter FJ, Zakrzewski M,
830 Goesmann A. 2009. EDGAR: A software framework for the comparative analysis
831 of prokaryotic genomes. *BMC Bioinformatics*.

832 55. Yu J, Blom J, Glaeser SP, Jaenicke S, Juhre T, Rupp O, Schwengers O, Späniig S,
833 Goesmann A. 2017. A review of bioinformatics platforms for comparative
834 genomics. Recent developments of the EDGAR 2.0 platform and its utility for
835 taxonomic and phylogenetic studies. *J Biotechnol*.

836 56. Rambaut A, Drummond A. 2009. FigTree v1. 3.1. Website <http://tree.bio.ed.ac.uk/software/figtree>.

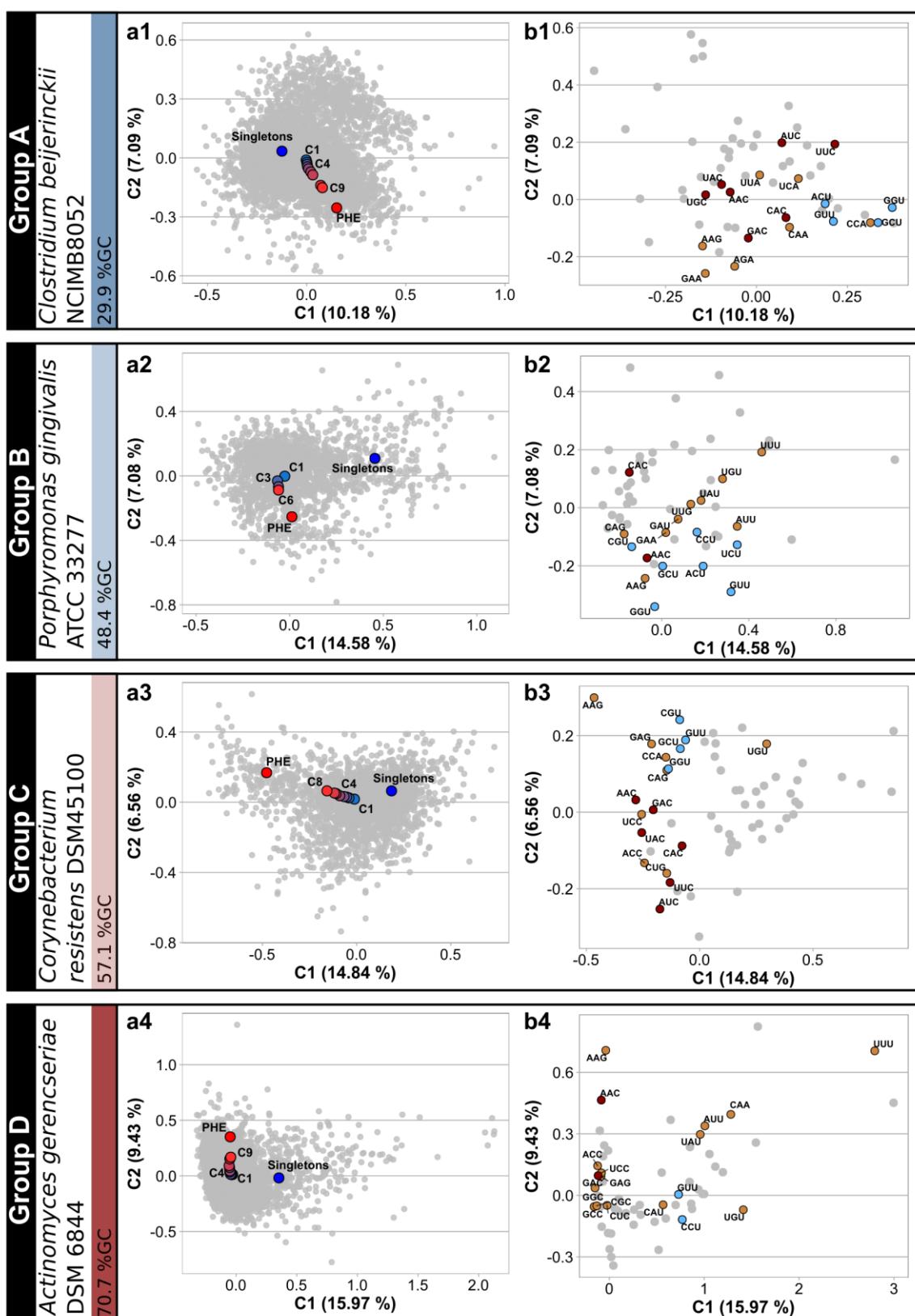
838 57. Karlin S, Barnett MJ, Campbell AM, Fisher RF, Mrazek J, Mrázek J. 2003.
839 Predicting gene expression levels from codon biases in alpha-proteobacterial
840 genomes. *Proc Natl Acad Sci U S A*.
841 58. Wang M, Herrmann CJ, Simonovic M, Szklarczyk D, von Mering C. 2015. Version
842 4.0 of PaxDb: Protein abundance data, integrated across model organisms,
843 tissues, and cell-lines. *Proteomics*.
844 59. Lê S, Josse J, Husson F. 2008. FactoMineR: An R Package for Multivariate
845 Analysis. *J Stat Software*, Artic 25:1–18.
846 60. Sharp PM, Tuohy TMF, Mosurski KR. 1986. Codon usage in yeast: Cluster
847 analysis clearly differentiates highly and lowly expressed genes. *Nucleic Acids*
848 *Res*.
849 61. Peden J. 1999. Analysis of codon usage [PhD dissertation]. University of
850 Nottingham.
851 62. Wickham H. 2009. *ggplot2: Elegant Graphics for Data Analysis*. Springer-Verlag
852 New York.
853 63. Lowe TM, Chan PP. 2016. tRNAscan-SE On-line: integrating search and context
854 for analysis of transfer RNA genes. *Nucleic Acids Res* 44:W54–W57.
855 64. Ran W, Higgs PG. 2010. The influence of anticodon-codon interactions and
856 modified bases on codon usage bias in bacteria. *Mol Biol Evol*.
857 65. Gingold H, Pilpel Y. 2011. Determinants of translation efficiency and accuracy. *Mol*
858 *Syst Biol*.
859 66. Lawrence JG, Ochman H. 1997. Amelioration of bacterial genomes: Rates of
860 change and exchange. *J Mol Evol* 44:383–397.
861 67. McInerney JO. 1997. Prokaryotic Genome Evolution as Assessed by Multivariate
862 Analysis of Codon Usage Patterns. *Microb Comp Genomics* 2:89–97.
863 68. Ikemura T. 1981. Correlation between the abundance of *Escherichia coli* transfer
864 RNAs and the occurrence of the respective codons in its protein genes: A proposal

865 for a synonymous codon choice that is optimal for the *E. coli* translational system.

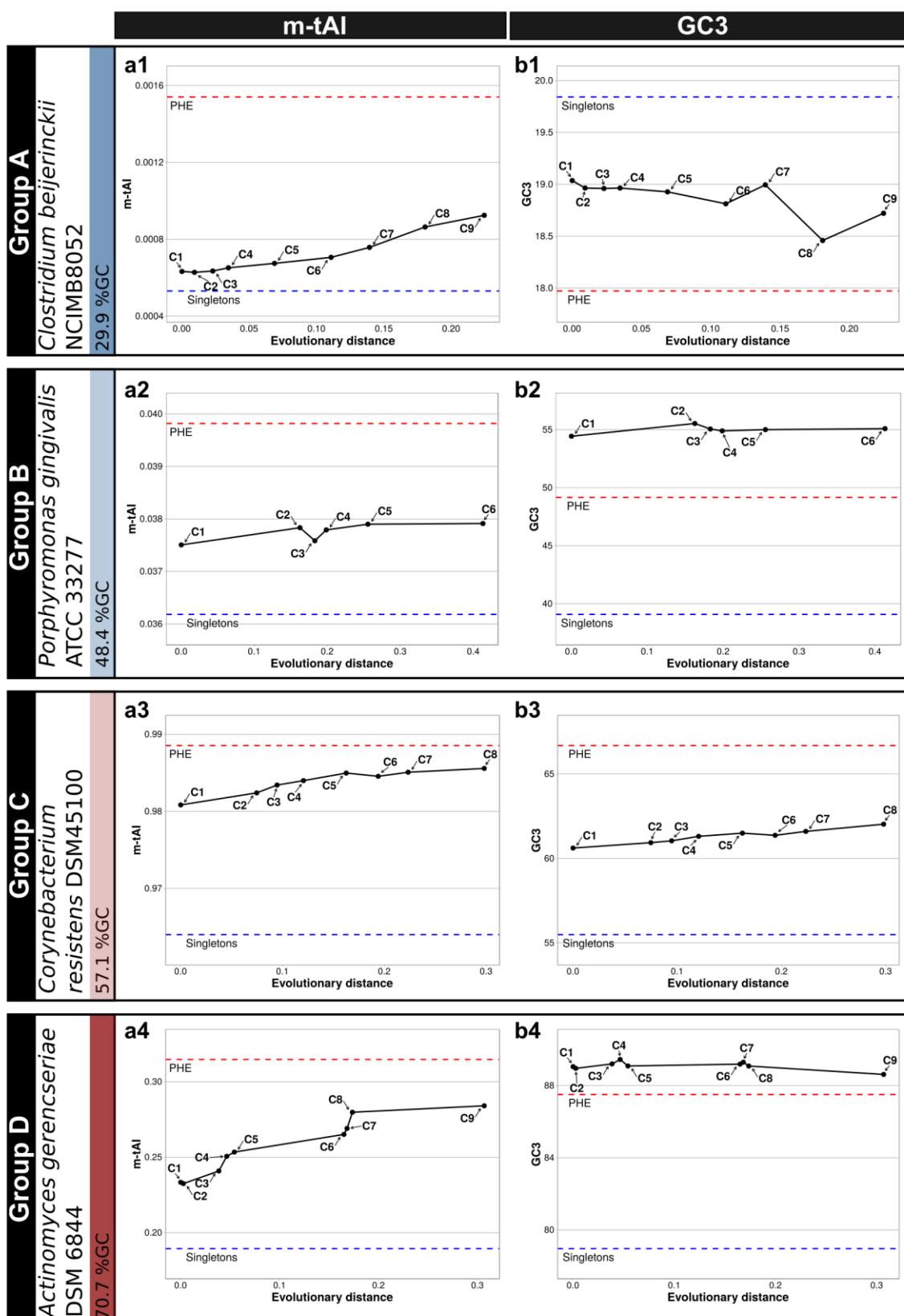
866 J Mol Biol 151:389–409.

867 69. Felsenstein J. 2005. PHYLIP (Phylogeny Inference Package) version 3.6. Seattle.

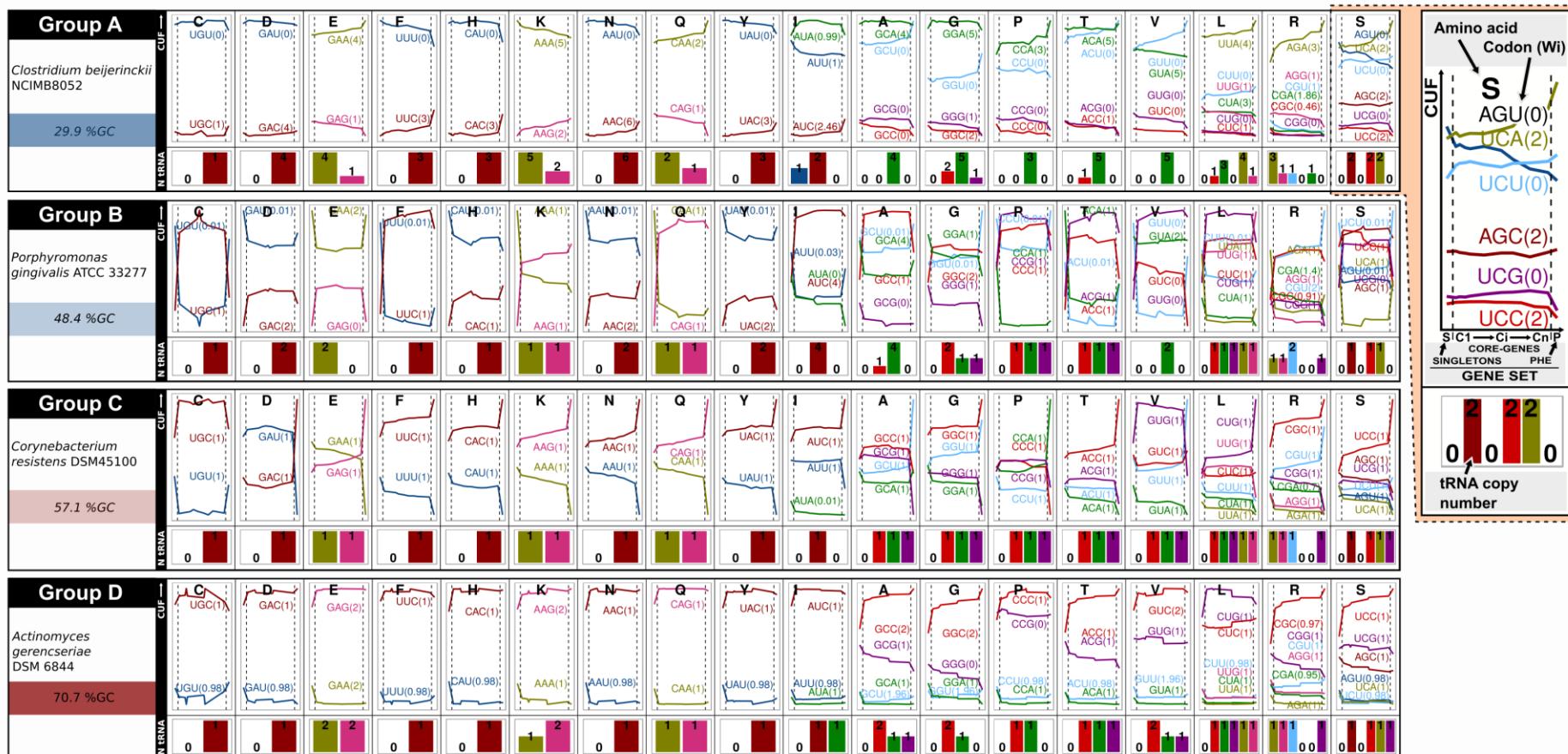
868 70. Rambaut A. 2009. FigTree, a graphical viewer of phylogenetic trees. Inst Evol Biol

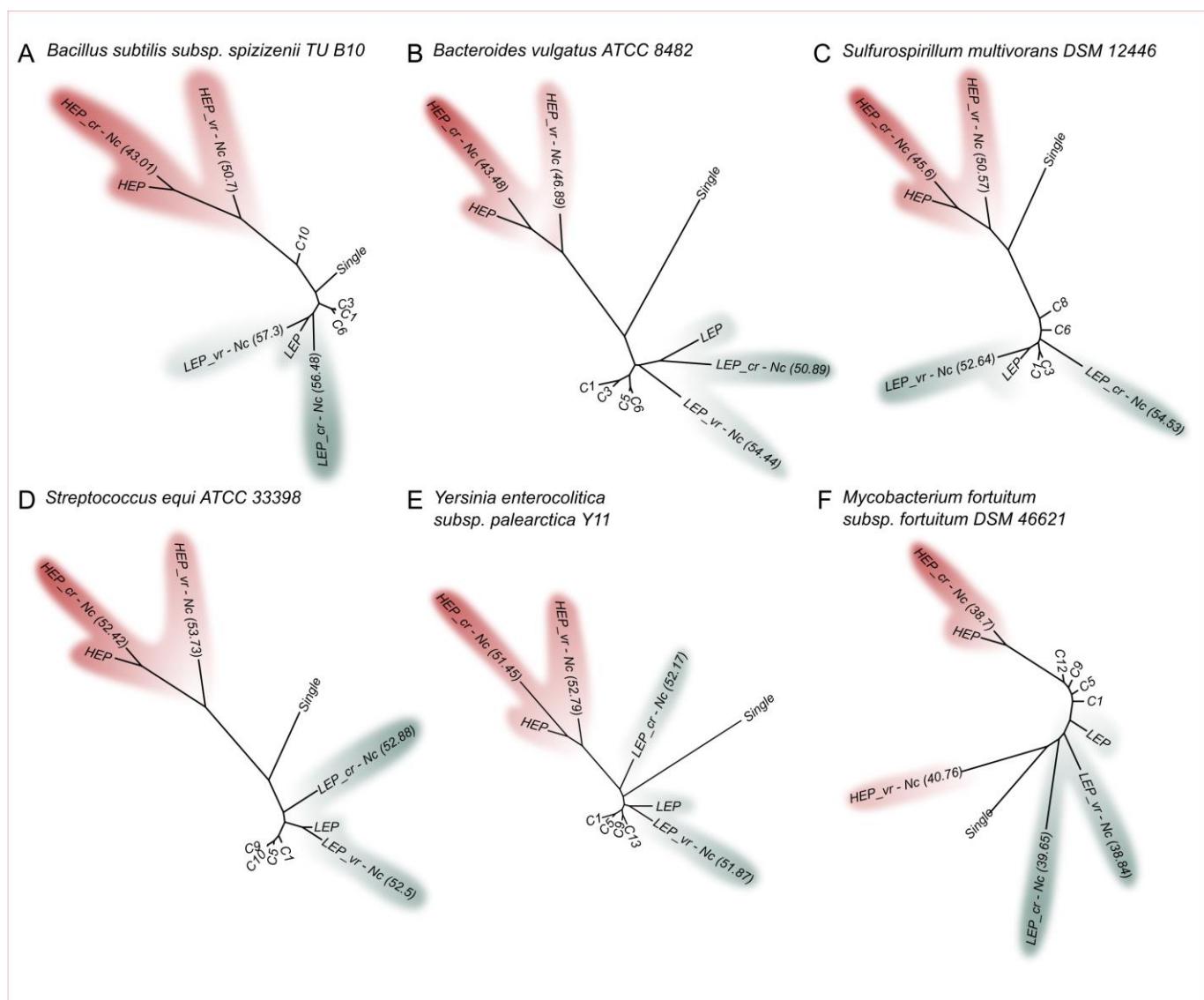

869 Univ Edinburgh Ashworth Lab Edinburgh EH9 3JT.

870 71. Wright F. 1990. The “effective number of codons” used in a gene. Gene.


871 72. Revell LJ. 2012. phytools: An R package for phylogenetic comparative biology

872 (and other things). Methods Ecol Evol.


FIGURE 1


FIGURE 2

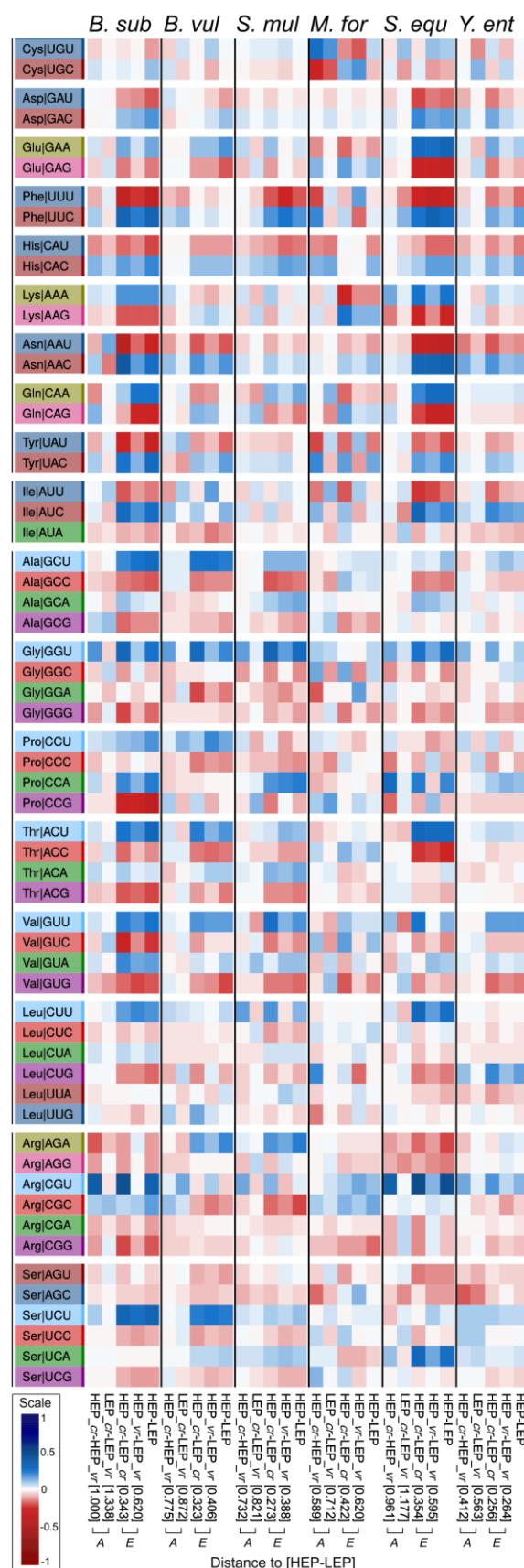

FIGURE 3

FIGURE 4

FIGURE 5

FIGURE 6

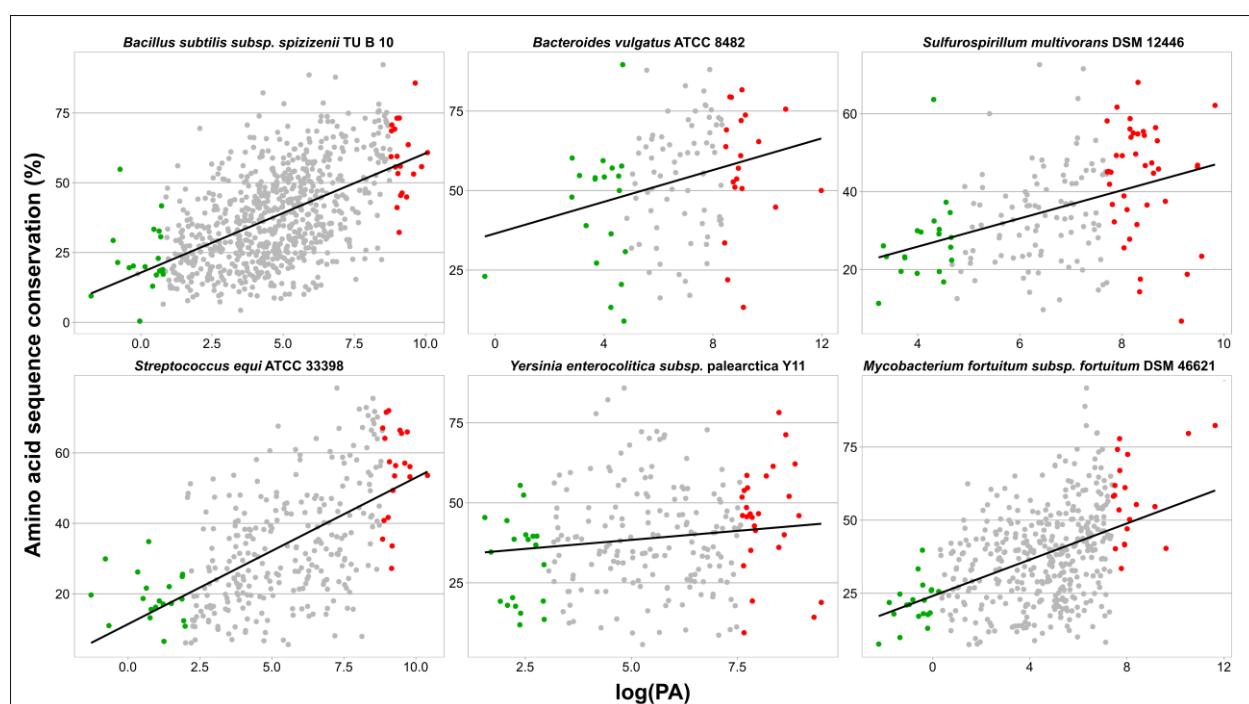
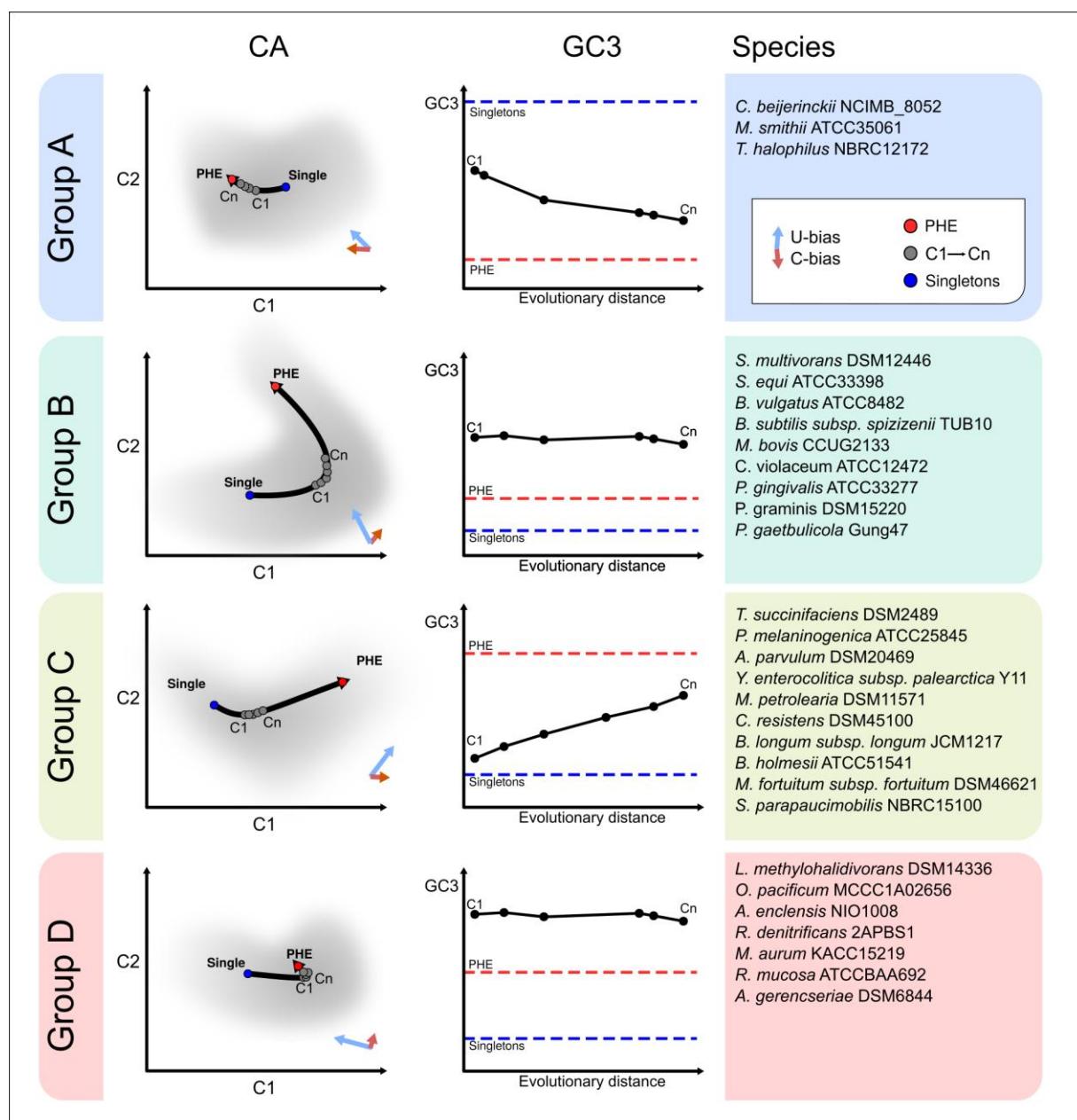
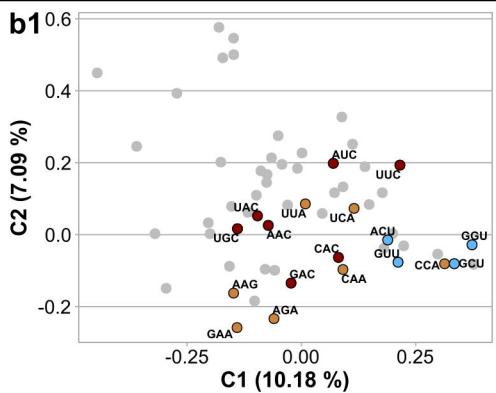
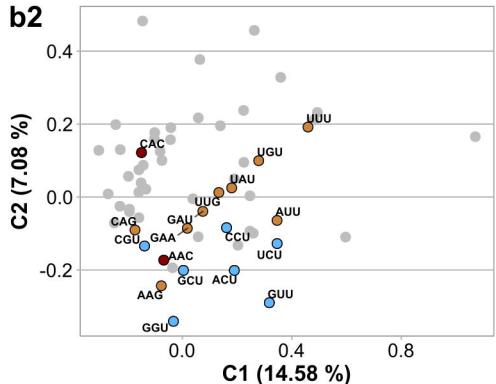
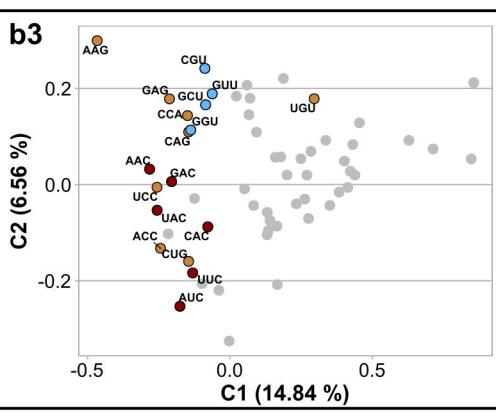




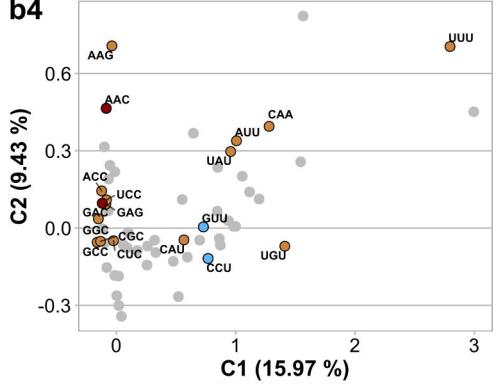
FIGURE 7



Group A*Clostridium beijerinckii*


NCIMB8052

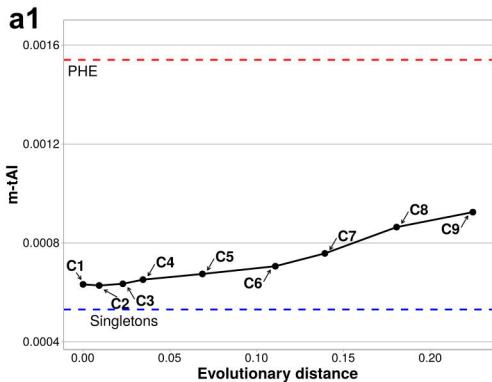
Group B*Porphyromonas gingivalis*


ATCC 33277

Group C*Corynebacterium resistent DSM45100*

57.1 %GC

Group D*Actinomyces gerencseriae*


DSM 6844

m-tAI**GC3****Group A***Clostridium beijerinckii*

NCIMB8052

29.9 %GC

b1

GC3

Evolutionary distance

PHE

Singletons

C1 C2 C3 C4 C5 C6 C7 C8 C9

Group B

Porphyromonas gingivalis

ATCC 33277

48.4 %GC

a2

m-tAI

Evolutionary distance

PHE

Singletons

C1 C2 C3 C4 C5 C6

b2

GC3

Evolutionary distance

PHE

Singletons

C1 C2 C3' C4' C5' C6'

Group C

Corynebacterium resistens DSM45100

57.1 %GC

a3

m-tAI

Evolutionary distance

PHE

Singletons

C1 C2' C3' C4' C5' C6' C7' C8

b3

GC3

Evolutionary distance

PHE

Singletons

C1 C2' C3' C4' C5' C6' C7' C8

Group D

Actinomyces gerencseriae

DSM 6844

70.7 %GC

a4

m-tAI

Evolutionary distance

PHE

Singletons

C1 C2' C3' C4' C5' C6' C7' C8' C9

b4

GC3

Evolutionary distance


PHE

Singletons

C1 C2' C3' C4' C5' C6' C7' C8' C9

Group A*Clostridium beijerinckii*
NCIMB8052

29.9 %GC

Amino acid
Codon (Wi)

CFU

S
AGU(0)
UCA(2)
UCU(0)**Group B***Porphyromonas gingivalis* ATCC 33277

48.4 %GC

AGC(2)
UCG(0)
UCC(2)

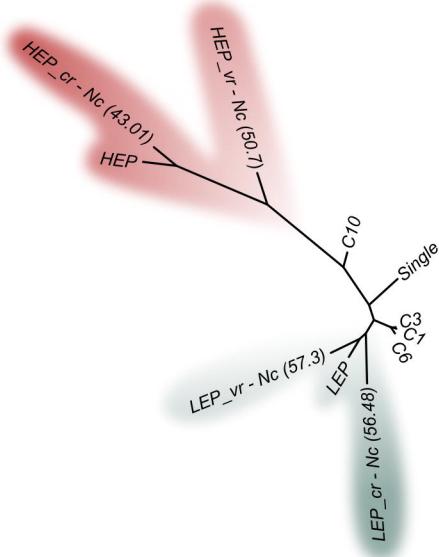
SIC1 → CI → CnIP

SINGLETONS PHE

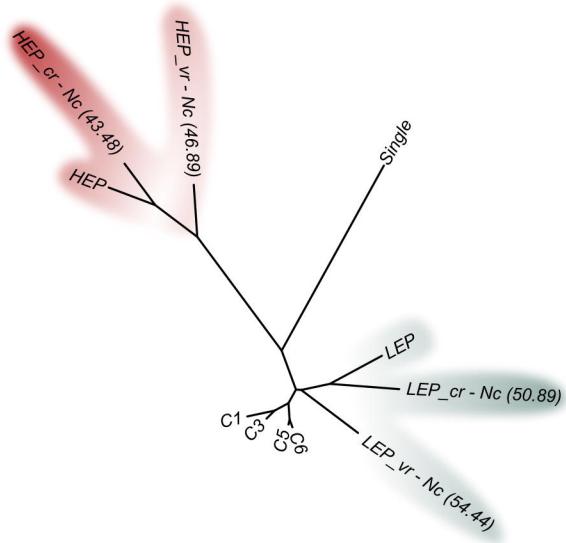
GENE SET

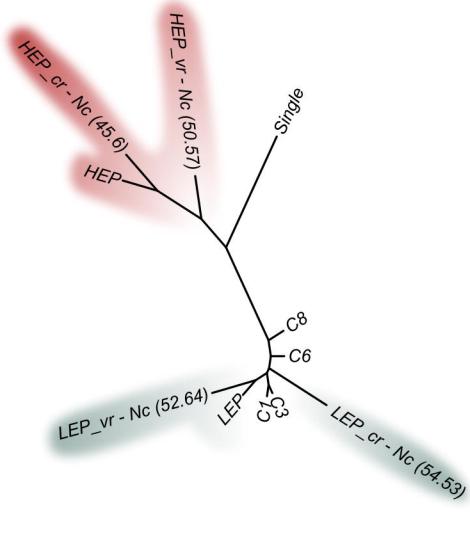
Group C*Corynebacterium resistsens* DSM45100

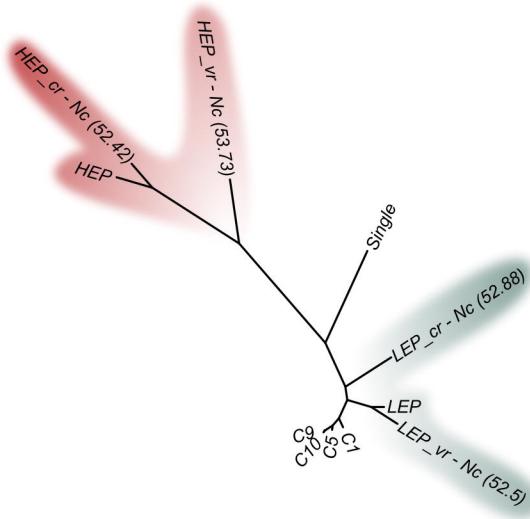
57.1 %GC

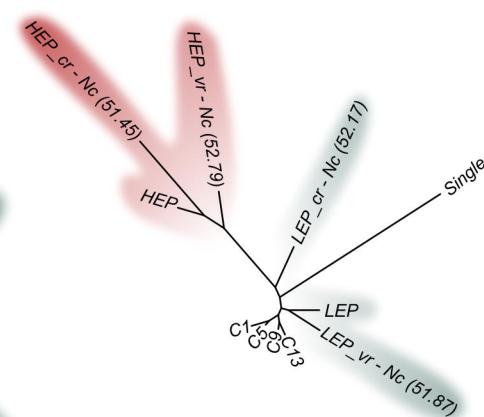

2 2 2 0

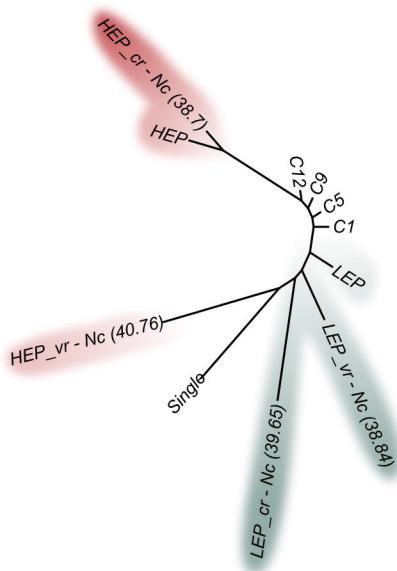
tRNA copy
number**Group D***Actinomycetes gerencseriae*
DSM 6844

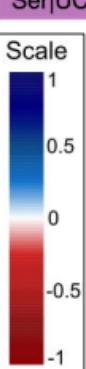
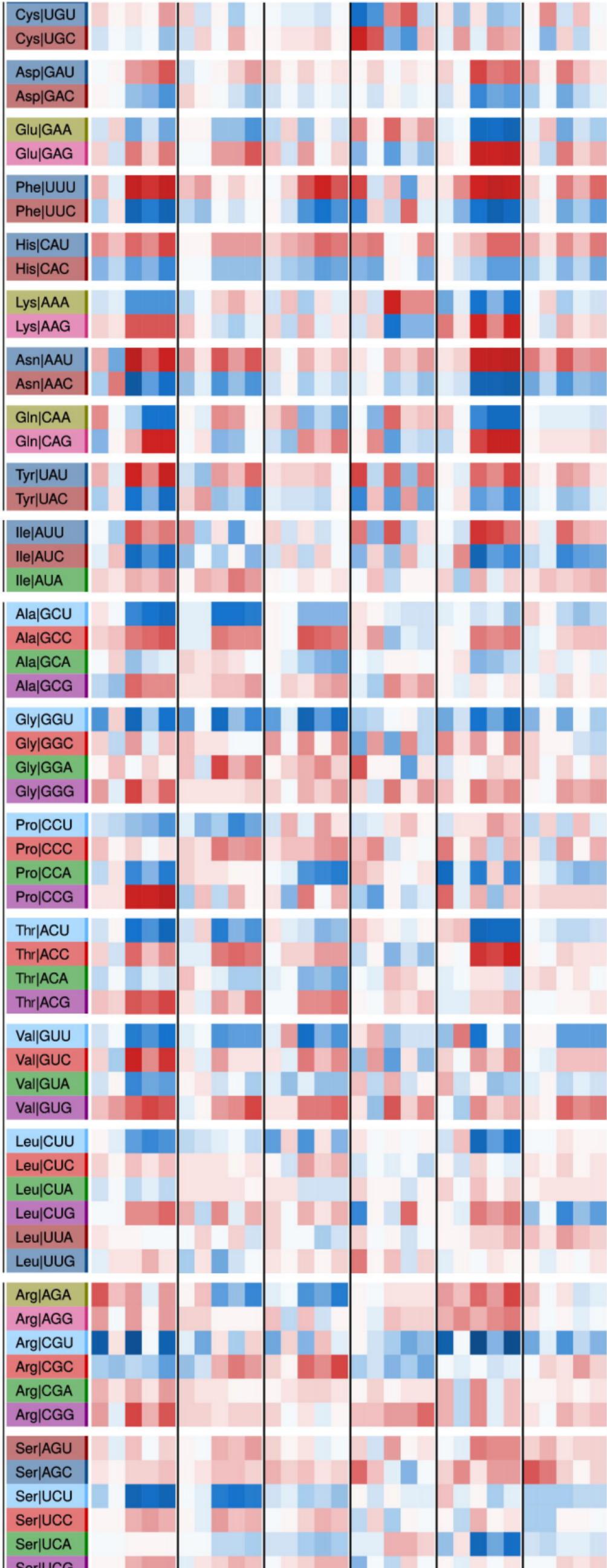

70.7 %GC

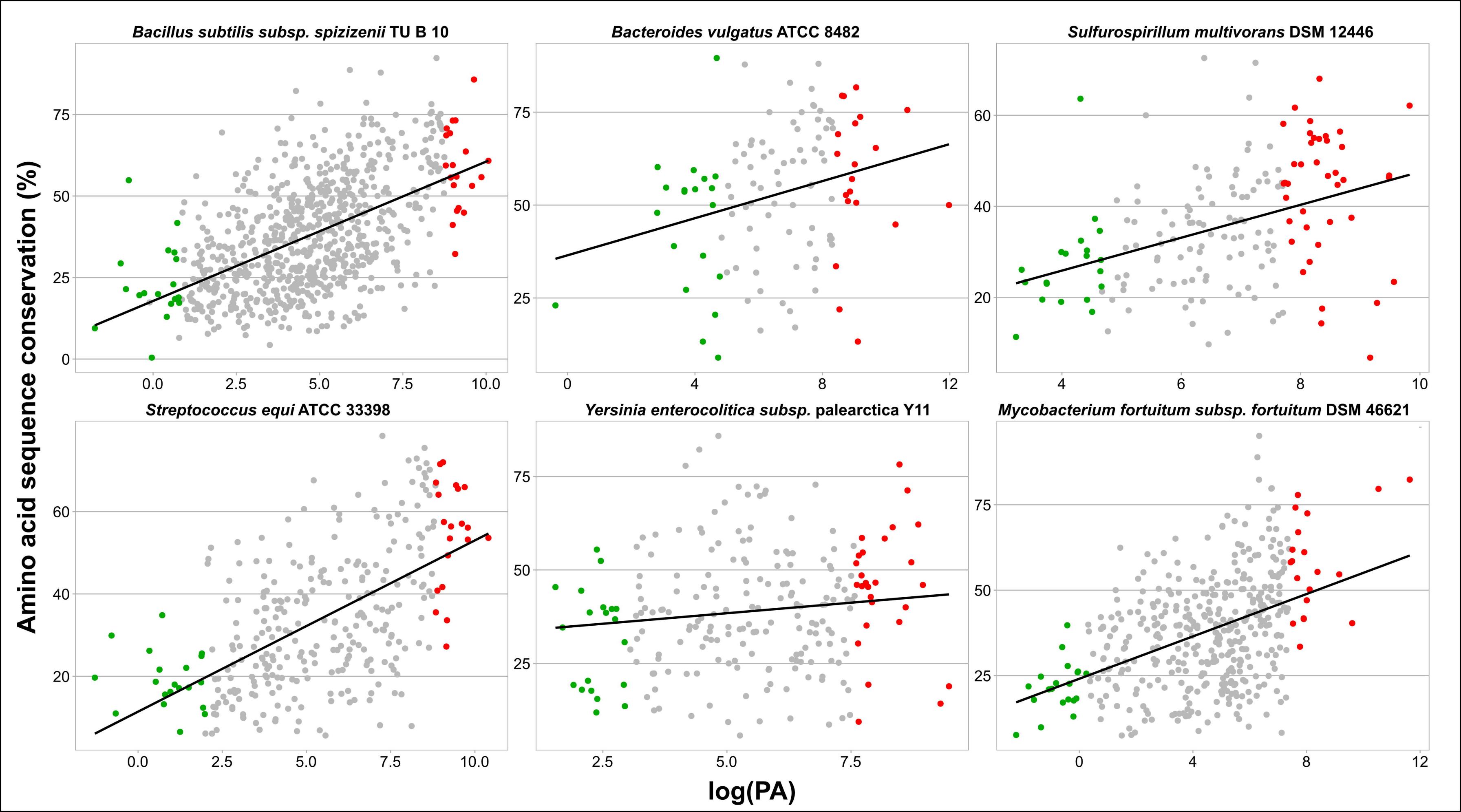

A *Bacillus subtilis* subsp. *spizizenii* TU B10


B *Bacteroides vulgatus* ATCC 8482

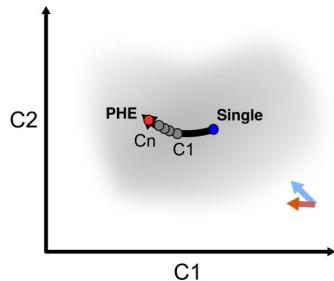

C *Sulfurospirillum multivorans* DSM 12446


D *Streptococcus equi* ATCC 33398

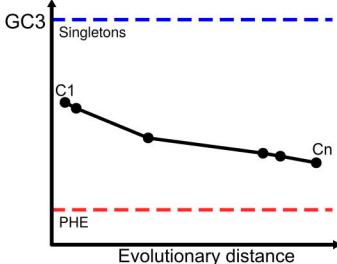


E *Yersinia enterocolitica* subsp. *palearctica* Y11


F *Mycobacterium fortuitum* subsp. *fortuitum* DSM 46621

B. sub *B. vul* *S. mul* *M. for* *S. equ* *Y. ent*



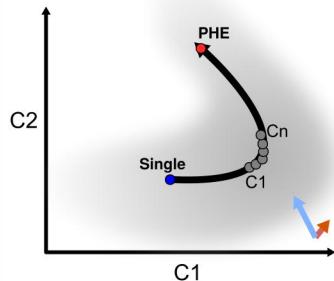
Distance to [HEP-LEP]



CA

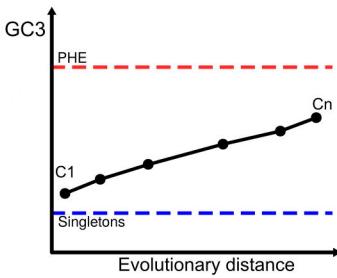
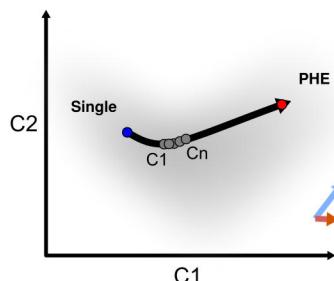
Group A

GC3

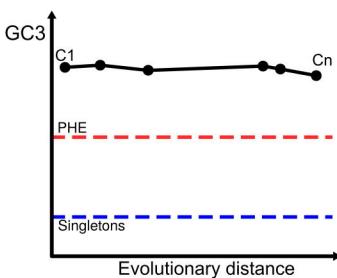
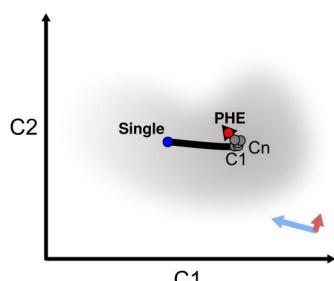


Species

C. beijerinckii NCIMB_8052
M. smithii ATCC35061
T. halophilus NBRC12172



U-bias
C-bias
Singletons

Group B



S. multivorans DSM12446
S. equi ATCC33398
B. vulgatus ATCC8482
B. subtilis subsp. *spizizenii* TUB10
M. bovis CCUG2133
C. violaceum ATCC12472
P. gingivalis ATCC33277
P. graminis DSM15220
P. gaetbulicola Gung47

Group C

T. succinifaciens DSM2489
P. melaninogenica ATCC25845
A. parvulum DSM20469
Y. enterocolitica subsp. *palearctica* Y11
M. petrolearia DSM11571
C. resistens DSM45100
B. longum subsp. *longum* JCM1217
B. holmesii ATCC51541
M. fortuitum subsp. *fortuitum* DSM46621
S. parapaucimobilis NBRC15100

Group D

L. methylohalidivorans DSM14336
O. pacificum MCCC1A02656
A. enclensis NIO1008
R. denitrificans 2APBS1
M. aurum KACC15219
R. mucosa ATCCBAA692
A. gerencseriae DSM6844