

1
2 **The evolution of sex is tempered by costly hybridization in**
3 ***Boechera* (rock cress)**

4
5 Catherine A. Rushworth^{1,2,3,4*} and Tom Mitchell-Olds⁴

6
7 1. Department of Evolution and Ecology, Storer Hall, University of California Davis, One
8 Shields Avenue Davis, CA 95616 USA

9
10 2. Department of Plant and Microbial Biology, University of Minnesota, St. Paul, MN
11 55108 USA

12
13 3. University and Jepson Herbaria, University of California Berkeley, Berkeley, CA
14 94720 USA

15
16 4. Department of Biology and Center for Genomic and Computational Biology, Duke
17 University, Box 90338, Durham, NC 27708 USA (tmo1@duke.edu)

18
19 * author for correspondence: catherine.rushworth@gmail.com

20
21 **Running title:** Costly hybridization in sexual/sexual *Boechera*

22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43

44 **Abstract**

45
46 Even after decades of research, the evolution of sex remains an enigma in evolutionary
47 biology. Typically, research addresses the costs of sex and asexuality to characterize
48 the circumstances in which one reproductive system is more favorable. Yet surprisingly
49 few studies address the influence of common traits that are obligately correlated with
50 asexuality, including hybridization and polyploidy; even though these traits have
51 substantial impacts on selective patterns. In particular, hybridization is well-known to
52 alter trait expression; these alterations may themselves represent a cost of sex. We
53 examined the role of reproductive isolation in the formation of de novo hybrid lineages
54 between two widespread species in the ecological model system *Boechera*. Of 664
55 crosses between *Boechera stricta* and *Boechera retrofracta*, 17% of crosses produced
56 F1 fruits. This suggests that postmating prezygotic barriers, i.e. pollen-pistil interactions,
57 form the major barrier to hybrid success in this system. These interactions are
58 asymmetrical, with 110 F1 fruits produced when *B. stricta* was the maternal parent. This
59 asymmetry was confirmed using a chloroplast phylogeny of wild-collected *B. stricta*, *B.*
60 *retrofracta*, and hybrids, which showed that most hybrids have a *B. stricta* chloroplast
61 haplotype. We next compared fitness of F2 hybrids and selfed parental *B. stricta* lines,
62 finding that F2 fitness was reduced by substantial hybrid sterility. Our results suggest
63 that multiple reproductively isolating barriers likely influence the formation and fitness of
64 hybrid lineages in the wild, and that these costs of hybridization likely have profound
65 impacts on the costs of sex in the natural environment.

66
67 **Keywords**

68
69 Reproductive isolation; postmating prezygotic barriers; crossing asymmetry; asexual
70 reproduction; apomixis; Brassicaceae

71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86

87 **Introduction**

88

89 Among the greatest outstanding puzzles in evolutionary biology is understanding the
90 evolutionary processes that underlie the predominance of sex. A substantial swath of
91 research focuses on population genetic models balancing the costs of sex and
92 asexuality. Such costs are often framed as a comparison of sexual and asexual
93 reproduction in constant environments, where sexual organisms produce two
94 independent sexes. For this reason, these traditionally include the cost of producing
95 independent male organisms (the “twofold cost of sex”), the costs of finding and
96 attracting a mate, and the cost of recombination among co-adapted alleles (Maynard
97 Smith, 1978; Lehtonen *et al.*, 2012). Simultaneously, costs of asexuality generally
98 include clonal interference (Gerrish and Lenski, 1998) and Muller’s Ratchet (Müller,
99 1964), which rely on mutation accumulation without recombination.

100

101 The tension among the various costs of sexual and asexual reproduction is complicated
102 by biological and ecological circumstances. Environmental variation has profound
103 consequences for key elements of reproductive system, including fitness (Orr, 2009),
104 gene flow (Richardson *et al.*, 2014), and recombination rate (Bombliis *et al.*, 2015;
105 Modliszewski and Copenhaver, 2017). Previous studies show that ecological variation,
106 in addition to population structure, contributes significantly to the maintenance of
107 multiple reproductive modes (Agrawal, 2009; Becks and Agrawal, 2010, 2012). Yet
108 despite the clear relevance of ecology for key elements of reproduction, few studies of
109 the evolution of sex are conducted in the field (Neiman *et al.*, 2018). Additionally,
110 numerous asexual systems are hybrids (e.g., Vrijenhoek, 1978; Lutes *et al.*, 2010;
111 Coughlan *et al.*, 2017), suggesting that hybridization often causes, or at least co-occurs
112 with, asexuality. A substantial body of literature examining organisms across the tree of
113 life shows widespread effects of hybridization on fitness-related traits (Rieseberg *et al.*,
114 1999; Abbott *et al.*, 2013; Yakimowski and Rieseberg, 2014). The phenotypes altered
115 by hybridization will have profound downstream effects on sexual/asexual dynamics.
116 Yet disentangling the effects of asexuality from those of biological traits like
117 hybridization is largely intractable, as these factors are tightly associated.

118

119 An additional complication stems from the intrinsic biological characteristics of
120 sexual/asexual systems, and resulting variation in the applicability of the traditional
121 costs of sex to all study systems. In flowering plants, asexual reproduction is
122 widespread; apomixis (asexual reproduction via clonal seed) is found in nearly 20% of
123 angiosperm families (Hojsgaard *et al.*, 2014). Most angiosperms produce flowers that
124 contain both male and female organs, termed “hermaphroditic” (Barrett, 2002;
125 Charlesworth, 2006). Thus, the framework for the costs of sex, namely the assumption
126 of separate male and female organisms and a lack of reproductive assurance in
127 sexuals, may be of limited relevance.

128

129 But additional costs of sex may exist, some of which offer promising avenues for
130 research in flowering plants (Meirmans *et al.*, 2012). Chief among these is a fitness

131 reduction associated with mating system, i.e. inbreeding and/or outcrossing
132 (Charlesworth, 2006). Mating among related organisms, including self-fertilization, may
133 reduce fitness (inbreeding depression, Charlesworth and Willis, 2009), while
134 outcrossing between widely divergent individuals may likewise reduce fitness via
135 outbreeding depression (e.g., Waser and Price, 1994). Although Meirmans and
136 colleagues postulate that mating system negatively impacts sexuals, dissimilarity in the
137 genesis of sexual and asexual lineages (i.e. hybrid origins of asexuals) suggest that the
138 repercussions of mating system could also manifest in asexuals.
139

140 The influence of hybridization and mating system on the evolution of sex implicates the
141 presence and expression of reproductively isolating barriers between species. While
142 some barriers may prevent one species from encountering another (e.g.,
143 ecological/geographic prezygotic barriers), others hinder interspecific fertilization
144 following mating (postmating prezygotic barriers). Postzygotic barriers render hybrids
145 inviable or sterile via chromosomal rearrangements, cytonuclear interactions or
146 Bateson-Dobzhansky-Muller incompatibilities (Coyne and Orr, 2004). Pollen-pistil
147 interactions are a common form of postmating prezygotic barrier in flowering plants.
148 These may be symmetrical, where each direction of a given cross is equally unable to
149 achieve fertilization; or asymmetrical, where one direction of a cross succeeds, but the
150 other fails (Tiffin *et al.*, 2001). Importantly, multiple barriers often co-occur, bolstering
151 incomplete reproductive isolation caused by a single mechanism (Coyne and Orr,
152 2004).

153
154 The mustard genus *Boechera* is a widespread North American wildflower that engages
155 in both sexual and asexual reproduction (Böcher, 1951; Al-Shehbaz and Windham,
156 1993). *Boechera* is highly self-fertilizing when sexually reproducing, which enables
157 large-scale assessment of reproductive mode in interspecific hybrids via characteristic
158 levels of heterozygosity (Beck *et al.*, 2012; Li *et al.*, 2017). Apomixis is widespread in
159 *Boechera*, and co-occurs with hybridization or with outcrossing among divergent
160 intraspecific populations (Rushworth *et al.*, 2018). The causative relationship between
161 hybridization and asexuality is unknown, although apomixis may be a result of metabolic
162 dysregulation caused by hybridization (Carman, 1997; Sharbel *et al.*, 2010). In the field,
163 fitness of asexual lineages is higher than sexual lineages (Rushworth *et al.*, 2019),
164 leading to two potential scenarios: first, uniformly high fitness of hybrid lineages that
165 frequently reproduce asexually; or rampant but maladaptive hybridization events with
166 rare transitions to asexuality “rescuing” hybrid genotypes. Previous studies of ecological
167 and genetic variation in *Boechera stricta* suggest that reproductive isolation between
168 subgroups is driven by ecological differentiation (Lee and Mitchell-Olds, 2011, 2013)
169 and a single chromosomal inversion underlies phenological divergence (Lee *et al.*,
170 2017). But to date, little is known of postmating barriers in this group.

171
172 Here we explore three vignettes investigating the costs of hybridization in the evolution
173 of sex in *Boechera*. We found that the formation of hybrids between the two best-
174 characterized species, *Boechera stricta* and *Boechera retrofracta*, is hindered by the

175 expression of multiple reproductive isolating barriers. The main barrier to hybrid success
176 occurred before hybrids were formed, with most F1 crosses failing to set seed. This
177 barrier was asymmetrical, with substantially higher success for F1s with *B. stricta* as the
178 maternal parent than the reverse cross. Phylogenetic analysis of a chloroplast marker
179 confirmed that *B. stricta* most often acts as the maternal parent in wild-collected hybrids.
180 We next compared fitness of hybrid F2s with their selfed parental *B. stricta* lines, finding
181 that hybrid sterility substantially reduces F2 fitness, although fertile F2s produce more
182 fruits than selfed lines. These results have important implications for the speciation
183 process and for the evolution of sex in this ecological model system.
184

185 **Materials and Methods**

186 **Crosses and plant growth**

187 In the wild, *B. stricta* and *B. retrofracta* commonly co-occur, hybridize, and form asexual
188 lineages (Rushworth *et al.*, 2018). In 2012, one line was selected from 11 populations of
189 each species for use as crossing parents (Figure 1, Table S1 in Supplementary
190 Material). In five populations, both species co-occurred in close proximity to one
191 another; these populations are thus considered sympatric. All lines were of known
192 genotype from previous studies (Song *et al.*, 2006; Lee and Mitchell-Olds, 2011;
193 Rushworth *et al.*, 2018). Each line had been previously grown in the greenhouse for 1-2
194 generations. Seeds were germinated on wet filter paper in petri dishes and grown in
195 greenhouses at Duke University, then vernalized for 6 weeks at 4°C with 12 hour
196 daylength. We used three staggered planting cohorts to allow for genotypic variation in
197 phenology.
198

199 Plants were subsequently moved to growth chambers in Duke University's Phytotron.
200 Growth conditions were 22°C constant temperature with ambient relative humidity and
201 carbon dioxide, and 12 hour days at 350 micromoles of light. Reciprocal crosses were
202 performed on two to five flowers for each possible parental combination following
203 Schranz *et al.* (2005). Upon observation of cross failure, replicate crosses using
204 individuals from different cohorts were made. Concurrently, other flowers on the same
205 plants were permitted to self-fertilize. Additional flowers were self-fertilized by hand.
206

207 Fruiting success was calculated as the number of fruits divided by the number of flowers
208 for a given cross type (maternal *B. stricta*; paternal *B. stricta*; hand-selfed *B. stricta*;
209 hand-selfed *B. retrofracta*). To correct for differences in fruit set inherent to each
210 species, we also calculated crossing indices for each cross type (McDade and
211 Lundberg, 1982). Crossing indices were calculated by dividing fruiting success of an
212 interspecific cross by fruiting success of the hand-selfed maternal parent (i.e., maternal
213 *B. stricta* crosses divided by hand-selfed *B. stricta*; paternal *B. stricta* crosses divided by
214 hand-selfed *B. retrofracta*).
215

218 When F1s produced <15 seeds, we germinated all available F1 seeds; if a given
219 parental combination resulted in >15 seeds, we germinated 15 seeds. All F1 seeds
220 were germinated on filter paper in petri dishes and grown in greenhouses at Duke
221 University. All seeds available, regardless of germination status, were planted onto a
222 mix of MetroMix 200 and Fafard 4P Mix (Sun Gro Horticulture, Agawam, MA, USA) in
223 Ray Leach Cone-tainers (Steuwe and Sons, Tangent, OR, USA).

224
225 To verify that F1s were the product of successful crosses, viable F1s were genotyped at
226 three variable microsatellite loci (*ICE3*, *c8*, *BF20*; Clauss *et al.*, 2002; Dobeš *et al.*,
227 2004a; Song and Mitchell-Olds, 2007) following protocols from Beck *et al.* (2012). This
228 resulted in 50 viable unique F1 seed lines. Selfed parental lines were also genotyped to
229 verify self-fertilization. To verify reproductive mode of F1s, 3–12 (mean 9.1) F2
230 individuals were genotyped in the same manner as F1s. A given plant was determined
231 to be sterile if it failed to reproduce in three months, one month longer than the typical
232 growing season in the central Rocky Mountains.

233
234 Poor F2 seed set resulted in a final experimental total of seven unique F2 families,
235 derived from the same *B. retrofracta* parent and four *B. stricta* individuals (Table S1).
236 Parental lines were also permitted to self for a second generation. Segregation of alleles
237 in all lines was observed, indicating that F1s reproduced sexually.

239 **Greenhouse experiment**

240
241 Fitness of F2s and their selfed parental lines was assessed in the greenhouse in 2014.
242 Seeds were germinated on wet filter paper in petri dishes and transplanted as
243 seedlings. Low germination for some F2 families resulted in an unbalanced design. In
244 total, 573 individuals (300 parents, 273 F2s) were used, with 60 replicates from each F1
245 parental line and 19–59 progeny for each F2 family (mean 39 replicates). 52 individuals
246 (51 hybrid F2s and one selfed parental individual) died during the course of the
247 experiment.

248
249 Plants were grown in randomized blocks and racks were rotated to minimize
250 microhabitat variation. Traits measured included those related to fitness (probability of
251 survival and reproduction, flower number, fruit number, aborted fruit number) and
252 biomass (rosette width, plant height, leaf number). Aborted fruits were those that
253 contained only partially developed (i.e. inviable) seeds. Average seed set was
254 calculated from four replicates of each genotype; for genotypes EJ1 and EJ2, less than
255 four individuals reproduced, resulting in seed set estimation from one and two
256 individuals, respectively. Total fitness was calculated as the number of fruits per
257 individual multiplied by average seed set per genotype, with all zeros included.
258 Fecundity was calculated as the number of fruits per individual multiplied by average
259 seed set per genotype, conditional on reproduction.

260 261 **Statistical analyses**

263 To understand how cross type influenced multiple fitness components, we used
264 generalized linear mixed models (GLMMs). We estimated each fitness component
265 (probability of reproduction, fruit number, aborted fruit number, seed set, and total
266 fitness) as a function of cross type (hybrid or selfed), with a scaled covariate of rosette
267 width in each model to account for the impact of plant size on reproductive output.
268 Because all F2s had the same paternal *B. retrofracta* genotype, this genotype was
269 constant; we thus compared four *B. stricta* lines with their hybrids. All models included
270 random effects for experimental block and parent nested in cross type. In four of five
271 models, a random effect of *B. stricta* parent line was also included; the model for
272 probability of reproduction estimated the variance among parents to be zero, and thus
273 this term was eliminated from the model. An additional random effect of genotype (F2
274 family or parental genotype) was incorporated in the total fitness model, as it had a
275 substantial effect on model fit.
276

277 Models for fruit number, aborted fruit number, and fecundity used a negative binomial
278 error distribution, while a binomial error distribution was used for the probability of
279 reproduction. A single outlier that produced 308 fruits was removed from the fruit
280 number, aborted fruit number, and total fitness models. Lifetime fitness was estimated
281 with a zero-inflated negative binomial distribution using the canonical link functions. In
282 most fitness models, structural zeros account for plants that failed to survive. Because
283 survival is not a factor in controlled conditions, structural zeros in the model indicate
284 plants that failed to reproduce, while the conditional portion of the model represents the
285 fecundity of the plants that did reproduce. Zero-inflation was modeled across both main
286 effects.
287

288 All analyses were run in R version 3.5.2. Directionality of cross success via F1 fruit
289 production was analyzed using Fisher's exact tests in the base R stats package. Due to
290 very small sample sizes, statistical comparison of success was not possible for later
291 stages of hybrid development. GLMMs were run using the packages lme4 (probability of
292 reproduction model; Bates *et al.*, 2015) and glmmTMB (all other models; Brooks *et al.*,
293 2017). Significance was calculated via likelihood ratio tests. *P*-values were adjusted
294 using the Bonferroni-Holm method. Estimated marginal means were calculated with the
295 package ggeffects (Lüdecke, 2018).
296

297 **Molecular phylogenetics**

298

299 We used 112 samples of *B. stricta*, *B. retrofracta*, and *B. retrofracta* × *B. stricta* in a
300 molecular phylogenetic analysis. Samples from *B. retrofracta* (N=32) and *B. retrofracta*
301 × *B. stricta* (N=31) were selected from across central Idaho and western Montana, while
302 *B. stricta* samples (N=49) represent the full species range (Table S2). DNA was
303 extracted from each sample using either Qiagen DNeasy Plant Mini Kits (Qiagen,
304 Hilden, Germany), a modified CTAB protocol (Beck *et al.*, 2012), or following Lee *et al.*
305 (2011).
306

307 To identify wild-collected hybrid parentage, we amplified the intron and second exon of
308 the chloroplast gene *trnL*, using primers c and d and thermal cycling protocols from
309 Dobes et al. (2004b). PCR was performed with 20 mL reactions consisting of 10uM of
310 each primer, 0.2 uL of 10 mg/mL BSA (Millipore/Sigma), and 2mM dNTPs, 10X buffer
311 and Choice-Taq DNA polymerase (all Denville Scientific, Metuchen, NJ, USA). PCR
312 was run on MJ Research PTC-200 thermal cyclers and Sanger sequencing was
313 performed at the UC Berkeley DNA Sequencing Facility on an ABI 3730xl analyzer
314 (Applied Biosystems). *B. stricta* sequences were provided by Baosheng Wang via
315 sequencing data in Wang et al. (2019).

316
317 A maximum parsimony phylogeny was inferred using Paup version 4.0a166 (Swofford,
318 2003). We performed a search from ten different random addition sequence starting
319 trees, using TBR branch swapping and a reconnection limit of 8.

320
321

Results

322
323

Hybrid crosses rarely succeed

324
325 The success of hybrid crosses was limited at multiple developmental stages. We
326 conducted 203 reciprocal crosses using unique parental combinations, with an average
327 of 3.07 flowers (± 0.04 standard error, se) for each cross, resulting in 664 total crossed
328 flowers. Crosses had a 17.3% chance of successfully producing fruits. This resulted in
329 115 total F1 fruits from all maternal plants, an average of 0.53 fruits per flower (± 0.06
330 se). Although *Boechera* fruits from autonomous self-fertilization may produce upwards
331 of 100 seeds (Rushworth et al., 2011), these F1 fruits produced an average of 12.98
332 seeds per fruit (± 2.32 se), totaling 2804 F1 seeds from all crosses. Despite low average
333 seed set, 59 of 115 F1 fruits produced >15 F2 seeds.

334
335 To assess seed viability, we planted 1190 F1 seeds, resulting in 829 germinants from
336 98 F1 fruits (an average of 1.25 seeds ± 0.14 se per cross). Seventeen fruits produced
337 no viable seed. This represented a 70% rate of viability. 705 seedlings from these 98 F1
338 lines were planted onto soil, but in 77 lines, all germinants perished. 88 plants from 21
339 F2 lines survived. Of these 88 plants, 59 plants from 13 lines reproduced. The
340 remaining plants were sterile. Genotyping of F2 seeds showed that six of these 13 lines
341 were not successful crosses (i.e., they were identical to the maternal genotype), leaving
342 seven total F2 crossing families for the greenhouse experiment.

343
344

Directionality of cross affects success

345
346 *B. stricta* was the maternal parent for all seven successful F2 lines used in our
347 experiment. The influence of cross directionality on success became apparent early on.
348 Despite conducting a roughly equivalent number of crosses in each direction (317
349 flowers with *B. stricta* as maternal parent, 347 paternal *B. stricta* crosses), only five of
350 115 F1 fruits, representing replicates of 62 unique parental combinations, were

351 produced by crosses with *B. stricta* as the paternal parent. We next compared the
352 proportion of unique parental combinations that resulted in fruits with a Fisher's exact
353 test. 57 of 102 maternal *B. stricta* parental combinations resulted in fruits, compared to
354 5 of 101 paternal *B. stricta* combinations. These proportions are significantly different,
355 with maternal *B. stricta* crosses 23.9 times as likely to result in fruits as paternal *B.*
356 *stricta* crosses (Fisher's exact test, 95% CI 8.84—81.53, $P=2.199e-16$; Figure 2).

357

358 We note that fruiting success was very low for hand-selfed *B. stricta* (8 fruits out of 37
359 crossed flowers, or 0.216 fruits/cross) and *B. retrofracta* (3 fruits out of 44 crossed
360 flowers or 0.068 fruits/cross), suggesting mechanistic issues with crossing. By
361 comparison, paternal *B. stricta* crosses produced 5 fruits out of 347 crossed flowers
362 (0.014 fruits/cross) and maternal *B. stricta* crosses produced 110 fruits from 317
363 crossed flowers (0.347 fruits/cross). The crossing index for maternal *B. stricta* was thus
364 1.605 (0.347/0.216), while the crossing index for paternal *B. stricta* was 0.211
365 (0.014/0.068), consistent with higher fruiting success in maternal *B. stricta* crosses
366 despite poor responses to hand-fertilization in both species.

367

368 Of five potential paternal *B. stricta* F1 lines, all reproduced. Four produced only one F2
369 seed, although one of these failed to germinate, while one produced 13 F2 seeds.
370 Genotyping confirmed that two of these crosses, including the high seed set genotype,
371 were not successful (i.e. the putative F1 was identical to the maternal parent). Of the
372 two remaining crosses, one germinant died early, and the last resulted in a sterile plant.
373 Thus, no paternal *B. stricta* crosses were ultimately successful in reproducing,
374 suggesting *B. stricta* is only suitable as a maternal parent.

375

376 Because hybridization dynamics may strongly differ in the field, we used a phylogenetic
377 analysis of the maternally-inherited chloroplast to assess cross directionality of wild-
378 collected *B. stricta* \times *B. retrofracta* hybrids. Our plastid *trnL* alignment of 112 accessions
379 (49 *B. stricta*, 32 *B. retrofracta*, 31 hybrids) had 10 variable characters, five of which
380 were parsimony-informative. The most parsimonious trees had 11 changes, and
381 resolves two major groups, one containing 48 of 49 *B. stricta* accessions, and the other
382 containing 28 of 32 *B. retrofracta* (Figure 3). 30 of the 31 hybrid accessions fell in the *B.*
383 *stricta* group, with 28 of them sharing a haplotype with a sampled *B. stricta* accession.
384 Although previous studies show chloroplast haplotypes are shared between the two
385 species (Sharbel and Mitchell-Olds, 2001; Dobeš *et al.*, 2004b), our results indicate that
386 *B. stricta* is usually the maternal parent in the wild.

387

388 **Hybrid fitness is lower than selfed lineages**

389

390 Total fitness (total maximum seed set, a product of the probability of reproducing and
391 fecundity) was lower in F2 hybrids than in selfed lineages (overall significance, Table 1).
392 On average, hybrids produced 510 (± 43.3 se) seeds per plant, while selfed genotypes
393 produced 784 (± 30.6 se) seeds per plant. 67.8% of hybrids (± 0.03 se) reproduced vs.
394 96.2% of selfed lines (± 0.01 se). Hybrids were far less likely to reproduce than selfed

395 lines, which drove this difference in fitness (zero-inflated model, Table 1, Figure 4A),
396 although this difference was not significant following correction for multiple comparisons
397 in the reproduction-only model (Table S3).

398
399 However, F2 hybrids produced more fruits than selfed lines, averaging 22.5 ± 1.62 se
400 compared to 10.6 ± 0.4 se for selfed lines (Figure 4B, Table 2). Hybrids had notably
401 higher variance in fruit number, with a standard deviation of 24.1 fruits compared to 6.17
402 for selfed lines. Indeed, one hybrid individual produced 308 fruits, while the maximum
403 number of fruits produced by a selfed line was 48. F2 hybrids also produced more
404 aborted fruits than selfed lineages; this difference was significant prior to correction for
405 multiple comparisons ($P=0.02$), but not after (Table S4). Fecundity, or seed set
406 conditional upon reproduction, did not differ between hybrids and selfed lines, with
407 hybrids producing an average of 709 seeds ± 52.3 se compared to 814 ± 30.0 se for
408 selfed lines (conditional model, Table 1, Figure S1, Table S5). Estimated marginal
409 means for all individual models are reported in Table S6.

410
411 Selfed lines were not significantly larger than hybrid lines (hybrid mean $90.2\text{mm} \pm 1.95\text{se}$
412 vs. selfed mean $127\text{mm} \pm 1.02\text{ se}$), although hybrid size was more variable (hybrid
413 standard deviation, $sd=29$ vs. selfed $sd=15.8$; Figure S2). Size had a significant effect
414 on total fitness (overall model, Table 1), probability of reproduction (zero-inflated
415 portion, Table 1) and fruit number (Table 2). Notably, a random effect of genotype
416 accounted for 14% of the variance in the total fitness model, far more than any other
417 random term in this model or in any other (Table S7). This suggests that genotype plays
418 a large role in the ultimate trajectory of hybrid lineages.

419

420 **Discussion**

421

422 Hybridization is known to co-occur with transitions to asexuality in numerous plant
423 systems (summarized in Asker and Jerling, 1992). Although a substantial body of
424 research explores the evolution of sex via a balance between its costs and those of
425 asexuality, few studies account for the effects of correlated traits. The strong link
426 between asexuality and hybridization across the tree of life is likely to influence the
427 evolution of sex in several unique ways. First, hybridization that occurs among sexual
428 lineages and results in outbreeding depression may represent a cost of sexual
429 reproduction. Alternatively, if hybridization is frequently associated with transitions to
430 asexuality, but most asexual hybrids exhibit lower fitness, hybridization may be
431 considered a cost of asexuality. Second, asexuality may act as a “rescue” of low fitness
432 hybrids, enabling reproductive assurance for lineages that might otherwise go extinct.
433 Third, hybridization alters phenotype expression in myriad ways, resulting in traits that
434 are transgressive, intermediate, or novel. These alterations, in turn, will have strong
435 ecological impacts on the evolutionary trajectories of hybrid lineages.

436

437 Here we explored the fitness consequences of de novo hybrids in controlled conditions.
438 We found that the costs of hybrid formation may far outweigh any benefits that

439 successful hybrid asexuals experience in the natural environment. F2 hybrids are less
440 likely to reproduce, which results in reduced fitness (Table 1, Figure 4), despite
441 producing more fruits than their selfed counterparts (Table 2). Hybrids are also difficult
442 to form; hybridization events led to F1 fruit formation in less than 20% of crosses.
443 Additionally, cross directionality is of profound importance. In our experiment, only
444 hybrids with *B. stricta* as the maternal parent were ultimately successful (Figure 2). A
445 chloroplast phylogeny corroborates this result, implicating asymmetrical reproductively
446 isolating barriers in the formation of hybrids (Figure 3). Collectively, multiple
447 reproductively isolating barriers reduce hybrid fitness, which has important
448 consequences for hybrid lineages in the wild.
449

450 Numerous traditional costs of sex, such as the twofold cost of males and the metabolic
451 costs of attracting a mate, have been discussed in the literature (Lehtonen *et al.*, 2012).
452 Recently, Meirmans *et al.* (2012) proposed hybridization, inbreeding, and outcrossing,
453 which we collectively will refer to as mating system, as an additional cost of sex. As
454 conceived by the authors, outcrossing and hybridization will negatively impact the
455 fitness of sexual lineages, via reproductive isolation or outbreeding depression.
456 Similarly, inbreeding within small populations may reduce sexual fitness through
457 inbreeding depression. Through this lens, the fitness consequences of mating system
458 fall on sexual populations, and asexuals, once formed, are able to avoid fitness
459 reductions by avoiding mating altogether.
460

461 However, mating system may instead pose a cost to asexuals. Additionally, whether
462 mating system costs impact sexuals or asexuals may depend on other factors. For
463 example, the nature of hybridization costs will depend on the frequency of transition to
464 asexual reproduction following hybridization. If all hybrids transition to asexuality, the
465 developmental issues caused by reproductively isolating barriers may hinder asexual
466 formation and success. If the majority of hybrids are sexual, with rare transitions to
467 asexuality, the fitness detriments of hybridization will pose a cost to sexual populations.
468

469 Knowledge of a system's mating system is critical to attributing this cost. For example,
470 frequent self-fertilization among sexual lineages will largely enable avoidance of the
471 fitness costs of hybridization. While asexual *Boechera* result from outcrossing events
472 between either populations or species, sexual lineages are highly self-fertilizing (Beck *et*
473 *al.*, 2012; Li *et al.*, 2017; Rushworth *et al.*, 2018). Nevertheless, hybridization is clearly
474 common. Large-scale collections-based efforts have identified 400 unique asexual
475 hybrid combinations of *Boechera* in North American herbaria; the vast majority of these
476 are asexual (Li *et al.*, 2017). This observation suggests two possible scenarios: either
477 rare hybridization events always co-occur with asexuality; or rampant hybridization
478 produces numerous short-lived sexual lineages, some of which transition to asexuality.
479 With more knowledge of both the mechanisms of asexual formation, and the
480 outcrossing and hybridization rate in natural populations, distinguishing between these
481 possibilities offers a promising area for future research.
482

483 Hybridization may represent a cost of both sex and asexuality, through its substantial
484 and varying influence on the expression of numerous phenotypic traits. Importantly, the
485 mode of expression will depend on the genetic basis of the trait under consideration.
486 Hybrids may produce traits that are intermediate to their parents, or the phenotype of
487 one parent, or even transgressive or novel (Rieseberg *et al.*, 1999; Abbott *et al.*, 2013;
488 Yakimowski and Rieseberg, 2014). Similarly, hybridization is likely to influence different
489 components of fitness. Fitness is an inherently complex trait, putatively underlain by
490 thousands of loci across the genome. Indeed, heterosis in maize is well-known to
491 increase fitness, likely through the masking of many deleterious recessive alleles
492 (Springer and Stupar, 2007). Simultaneously, certain fitness components may be
493 simple. For example, overdominance at a single locus *SFT* in tomato causes production
494 of indeterminate infructescences, vastly increasing the number of fruits (Krieger *et al.*,
495 2010). Importantly, the genotype of each parent will have a substantial impact on the
496 nature of hybrid trait expression, as seen in our total fitness model. Further
497 disentangling of the unique fitness impacts of hybridity and its ramifications for the
498 evolution of sex is an open prospect in theory and experimental research, and *Boechera*
499 is well-situated for this work.

500
501 Impediments to *Boechera* hybrid formation at multiple stages of development suggest
502 the action of multiple reproductive barriers. Hybrid inviability (indicated by relatively low
503 germination of hybrids) and sterility (indicated by both a failure to reproduce and by the
504 production of more aborted, or sterile, fruits) are both factors in F2s, suggesting the
505 presence of Bateson-Dobzhansky-Muller incompatibilities. However, the main barrier to
506 hybrid formation in our crosses occurred prior to fertilization. The failure of most F1
507 crosses to set seed is consistent with postmating prezygotic barriers. Pollen-pistil
508 barriers, when incompatible interactions between pollen and pistil results in failed
509 hybridization, are known from a range of plant taxa including maize (Mangelsdorf and
510 Jones, 1926; Kermicle, 2006), gingers (Kay, 2006; Kay and Schemske, 2008; Yost and
511 Kay, 2009), monkeyflowers (Searcy and Macnair, 1990), and tomatoes (Baek *et al.*,
512 2015). These interactions often act asymmetrically (Tiffin *et al.*, 2001), as we see in this
513 study. Overall, these results indicate that the inability of hybrid formation may be
514 impacted by multiple mechanisms acting in tandem each with variability in symmetry
515 and their overall impact on the likelihood of hybrid formation in nature

516
517 A variety of mechanisms, including style length disparity (e.g., Kay, 2006; Baek *et al.*,
518 2015) and the arrest of pollen tube growth (e.g., Kermicle, 2006), are implicated in these
519 pollen-pistil barriers. Mating system may also play a role; when one hybridizing species
520 is self-incompatible (SI) and the other is self-compatible (SC), SI pollen may pollinate
521 SC ovules, but the reverse cross fails through the production of improperly developed
522 seeds (Brandvain and Haig, 2005; Bedinger *et al.*, 2017). Although both *B. stricta* and
523 *B. retrofracta* are SC, two lines of evidence suggest that this mechanism may play a
524 role. First, average microsatellite-based F_{IS} in *B. stricta* is 0.89 (Song *et al.*, 2006), while
525 average microsatellite-based G_{IS} in *B. retrofracta* is 0.71 (Rushworth *et al.*, 2018).
526 These population statistics are dependent on the level of heterozygosity estimated in
527 each given study, and care should be taken when comparing them. Nonetheless, the

528 large disparity may suggest larger effective population size in *B. retrofracta*, and
529 perhaps higher levels of outcrossing. If this is the case, the SI × SC mechanism predicts
530 that *B. stricta* will succeed only as a maternal parent when paired with *B. retrofracta*,
531 consistent with our results (Figures 2 and 3). Additional support for an SI × SC
532 mechanism would be found in the characterization of aberrant seeds formed by the
533 incompatible cross direction, which is a potential area for further research. Substantial
534 future work is needed to understand the genetic mechanisms underlying hybrid
535 incompatibility in *Boechera*.

536

537 Critical to the evolution of hybrid incompatibilities is the environments in which they
538 evolve. Geographic isolation, for example, may strongly impact the evolution of
539 reproductive barriers, leading to expression of barriers in sympatric but not allopatric
540 populations (Coyne and Orr, 2004). This pattern is often seen in the process of
541 reinforcement, where secondary contact leads to increased reproductive isolation
542 between populations (Hopkins, 2013). Although this study is underpowered to detect
543 differences between allopatric and sympatric populations, it is worth noting that all four
544 *B. stricta* lineages that successfully produced hybrids are from populations allopatric
545 with *B. retrofracta*. Additionally, ecological variation will determine patterns of natural
546 selection on hybrids. The suitability of *B. stricta* as a maternal, but not paternal, parent
547 suggests that hybrids are more likely to arise in *B. stricta* habitat. Research focusing on
548 natural selection on *B. stricta* × *B. retrofracta* hybrids should be undertaken in the
549 habitats in which these lineages naturally arise and thrive.

550

551 Studies of sexual/sexual dynamics are rarely undertaken in the field, which
552 substantially influences our understanding of the evolution of sex (Neiman *et al.*, 2018).
553 Comparison with studies conducted in the natural environment are thus of vital
554 importance to understanding the real-life costs of sex. Additionally, pairing controlled
555 experiments with those in the field can offer new insight into evolutionary processes
556 (e.g., Anderson *et al.*, 2011). In the field, asexual lineages have higher fitness than
557 sexuals, driven by substantially higher over-winter survival of asexuals, with no
558 evidence for differences in probability of reproduction, fruit number, or fecundity
559 (Rushworth *et al.*, 2019). In contrast, the work presented here showed that de novo
560 hybrids were less likely to reproduce than selfed lineages, resulting in lower overall
561 fitness (Table 1). However, hybrids produced more fruits than sexuals, and had higher
562 variance in fruit number (Figure 4), suggesting that some hybrid lineages may enjoy
563 extremely high fitness. The underlying reasons for this disparity in results are unclear,
564 but if hybrids that form in the wild reproduce sexually and asexually, it is likely that
565 selective patterns between them will differ. For example, if the perceived rarity of wild
566 sexual hybrids is due to their rapid extinction, this may be due to the reproductive
567 incompatibilities reported here. Alternatively, the asexuals in Rushworth *et al.* (2019)
568 may have been recently formed, and thus lacked the accumulated mutations reported in
569 other asexual *Boechera* lineages (Lovell *et al.*, 2017). Further work ascertaining the
570 range of ages for asexual lineages, and the stage at which asexuality occurs, would

571 inform our understanding of selective mechanisms interacting with hybridization and
572 asexuality.

573

574 The evolution of sex is strongly influenced by correlated traits that interact uniquely with
575 selective agents in the natural environment. Given the hybrid origins of many asexual
576 lineages, mating system—particularly outcrossing between species—may be
577 particularly important to sexual/sexual dynamics in flowering plants. We found that the
578 expression of multiple reproductively isolating barriers manifest at several life history
579 stages following hybridization, likely impacting the frequency of sexual hybrids in natural
580 populations. Our results contribute to a growing body of literature showing that the origin
581 and fitness of hybrids is interwoven with the costs of sex in the wild.

582

583 **Funding**

584

585 This work was supported by funding from Duke University Biology Department, the
586 National Institutes of Health (R01 GM086496 to T.M.-O), and the National Sciences
587 Foundation in the form of a Graduate Research Fellowship to C.A.R. and a Doctoral
588 Dissertation Improvement Grant to C.A.R. and T.M.-O.(DEB-1311269).

589

590 **Acknowledgements**

591

592 The authors wish to thank the Mitchell-Olds lab group, especially Baosheng Wang, for
593 access to *B. stricta* chloroplast sequences and germplasm. We also wish to
594 acknowledge Duke University Greenhouses and Phytotron, especially Greg Piotrowski,
595 for their assistance and advice. Dan Runcie and Yaniv Brandvain offered guidance with
596 statistical analyses.

597

598 **Data availability**

599

600 Upon acceptance, primary data on cross success and greenhouse study will be
601 deposited in Dryad. Original sequencing data will be deposited in Genbank and updated
602 in Supplementary Material. Sequencing data from *B. stricta* genotypes is found in Wang
603 *et al.* (2019).

604

605

606

607

608

609

610

611

612

613

614

615 **References**

- 616
- 617 Abbott R, Albach D, Ansell S, Arntzen JW, Baird SJE, Bierne N, et al. (2013).
618 Hybridization and speciation. *Journal Of Evolutionary Biology* **26**: 229–246.
- 619 Agrawal AF (2009). Spatial heterogeneity and the evolution of sex in diploids. *American
620 Naturalist* **174 Suppl 1**: S54-70.
- 621 Al-Shehbaz IA, Windham MD (1993). *Boechera*. In: Flora of North America Editorial
622 Committee (ed) *Flora of North America North of Mexico*, New York and Oxford
623 Vol 7, pp 348–412.
- 624 Anderson JT, Lee C-R, Mitchell-Olds T (2011). Life-history QTLs and natural selection
625 on flowering time in *Boechera stricta*, a perennial relative of *Arabidopsis*.
626 *Evolution* **65**: 771–787.
- 627 Asker SE, Jerling L (1992). *Apomixis in Plants*. CRC Press, Inc.: Boca Raton, Florida,
628 USA.
- 629 Baek YS, Covey PA, Petersen JJ, Chetelat RT, McClure B, Bedinger PA (2015).
630 Testing the SI × SC rule: Pollen-pistil interactions in interspecific crosses
631 between members of the tomato clade (*Solanum* section *Lycopersicon*,
632 Solanaceae). *American Journal of Botany* **102**: 302–311.
- 633 Barrett SCH (2002). The evolution of plant sexual diversity. *Nat Rev Genet* **3**: 274–284.
- 634 Bates D, Maechler M, Bolker B, Walker S (2015). lme4: Linear mixed-effects models
635 using Eigen and S4. *Journal of Statistical Software* **67**.
- 636 Beck JB, Alexander PJ, Alphin L, Al-Shehbaz IA, Rushworth C, Bailey CD, et al.
637 (2012). Does hybridization drive the transition to asexuality in diploid *Boechera*?
638 *Evolution* **66**: 985–995.
- 639 Becks L, Agrawal AF (2010). Higher rates of sex evolve in spatially heterogeneous
640 environments. *Nature* **468**: 89–92.
- 641 Becks L, Agrawal AF (2012). The evolution of sex is favoured during adaptation to new
642 environments. *PLOS Biology* **10**: e1001317.
- 643 Bedinger PA, Broz AK, Tovar-Mendez A, McClure B (2017). Pollen-Pistil Interactions
644 and Their Role in Mate Selection. *Plant Physiol* **173**: 79–90.
- 645 Böcher TW (1951). Cytological and embryological studies in the amphi-apomictic *Arabis*
646 *holboellii* complex. *Kongel Danske Vidensk-Selskab Biol Skr* **6**: 1–59.
- 647 Bomblies K, Higgins JD, Yant L (2015). Meiosis evolves: adaptation to external and
648 internal environments. *New Phytol* **208**: 306–323.

- 649 Brandvain Y, Haig D (2005). Divergent mating systems and parental conflict as a barrier
650 to hybridization in flowering plants. *American Naturalist* **166**: 330–338.
- 651 Brooks ME, Kristensen K, van Benthem KJ, Magnusson A, Berg CW, Nielsen A, et al.
652 (2017). glmmTMB Balances Speed and Flexibility Among Packages for Zero-
653 Inflated Generalized Linear Mixed Modeling. *The R Journal* **9**: 378–400.
- 654 Carman JG (1997). Asynchronous expression of duplicate genes in angiosperms may
655 cause apomixis, bisporomy, tetrasporomy, and polyembryony. *Biological Journal Of
656 The Linnean Society* **61**: 51–94.
- 657 Charlesworth D (2006). Evolution of Plant Breeding Systems. *Current Biology* **16**:
658 R726–R735.
- 659 Charlesworth D, Willis JH (2009). The genetics of inbreeding depression. *Nature
660 Reviews Genetics* **10**: 783–796.
- 661 Clauss MJ, Cobban H, Mitchell-Olds T (2002). Cross-species microsatellite markers for
662 elucidating population genetic structure in *Arabidopsis* and *Arabis* (Brassicaceae).
663 *Molecular Ecology* **11**: 591–601.
- 664 Coughlan JM, Han S, Stefanović S, Dickinson TA (2017). Widespread generalist clones
665 are associated with range and niche expansion in allopolyploids of Pacific
666 Northwest Hawthorns (*Crataegus* L.). *Mol Ecol* **26**: 5484–5499.
- 667 Coyne JA, Orr H (2004). *Speciation*. Sinauer Associates: Sunderland, MA, USA.
- 668 Dobeš CH, Mitchell-Olds T, Koch MA (2004a). Intraspecific diversification in North
669 American *Boechera stricta* (= *Arabis drummondii*), *Boechera* × *divaricarpa*, and
670 *Boechera holboellii* (Brassicaceae) inferred from nuclear and chloroplast
671 molecular markers—an integrative approach. *American Journal Of Botany* **91**:
672 2087–2101.
- 673 Dobeš CH, Mitchell-Olds T, Koch MA (2004b). Extensive chloroplast haplotype variation
674 indicates Pleistocene hybridization and radiation of North American *Arabis*
675 *drummondii*, *A. x divaricarpa*, and *A. holboellii* (Brassicaceae). *Molecular Ecology*
676 **13**: 349–370.
- 677 Gerrish PJ, Lenski RE (1998). The fate of competing beneficial mutations in an asexual
678 population. *Genetica* **102**: 127–144.
- 679 Hojsgaard D, Klatt S, Baier R, Carman J, Hörandl E (2014). Taxonomy and
680 biogeography of apomixis in Angiosperms and associated biodiversity
681 characteristics. *Critical Reviews In Plant Sciences* **33**: 414–427.
- 682 Hopkins R (2013). Reinforcement in plants. *New Phytologist* **197**: 1095–1103.

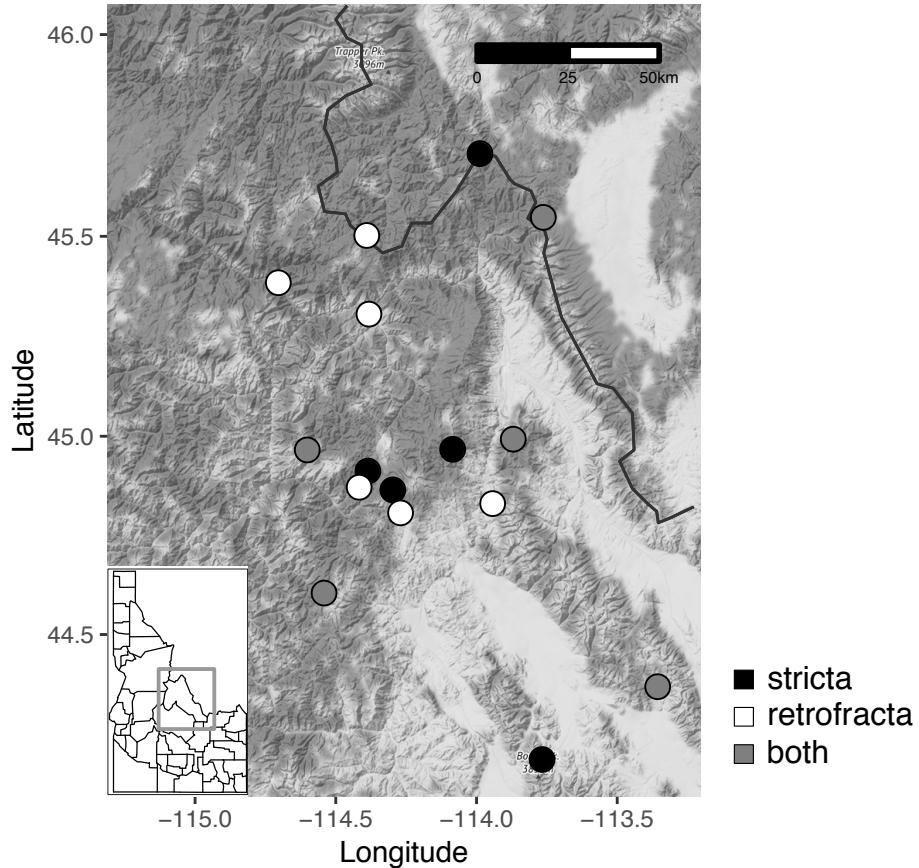
- 683 684 Kay KM (2006). Reproductive isolation between two closely related hummingbird-
pollinated neotropical gingers. *Evolution* **60**: 538–552.
- 685 686 Kay KM, Schemske DW (2008). Natural selection reinforces speciation in a radiation of
neotropical rainforest plants. *Evolution* **62**: 2628–2642.
- 687 688 Kermicle JL (2006). A Selfish Gene Governing Pollen-Pistil Compatibility Confers
Reproductive Isolation Between Maize Relatives. *Genetics* **172**: 499–506.
- 689 690 Krieger U, Lippman ZB, Zamir D (2010). The flowering gene SINGLE FLOWER TRUSS
drives heterosis for yield in tomato. *Nature Genetics* **42**: 459–463.
- 691 692 Lee C-R, Mitchell-Olds T (2011). Quantifying effects of environmental and geographical
factors on patterns of genetic differentiation. *Molecular Ecology* **20**: 4631–4642.
- 693 694 695 Lee C-R, Mitchell-Olds T (2013). Complex trait divergence contributes to environmental
niche differentiation in ecological speciation of *Boechera stricta*. *Molecular
Ecology* **22**: 2204–2217.
- 696 697 698 Lee C-R, Wang B, Mojica JP, Mandáková T, Prasad KVSK, Goicoechea JL, et al.
(2017). Young inversion with multiple linked QTLs under selection in a hybrid
zone. *Nature Ecology & Evolution* **1**: 0119–11.
- 699 700 Lehtonen J, Jennions MD, Kokko H (2012). The many costs of sex. *Trends In Ecology &
Evolution* **27**: 172–178.
- 701 702 703 Li F-W, Rushworth CA, Beck JB, Windham MD (2017). *Boechera* microsatellite website:
an online portal for species identification and determination of hybrid parentage.
Database **2016**: 1–11.
- 704 705 706 Lovell JT, Williamson RJ, Wright SI, McKay JK, Sharbel TF (2017). Mutation
accumulation in an asexual relative of *Arabidopsis*. *PLOS Genetics* **13**:
e1006550.
- 707 708 Lüdecke D (2018). ggeffects: Tidy Data Frames of Marginal Effects from Regression
Models. *Journal of Open Source Software* **3**: 772.
- 709 710 711 Lutes AA, Neaves WB, Baumann DP, Wiegraebe W, Baumann P (2010). Sister
chromosome pairing maintains heterozygosity in parthenogenetic lizards. *Nature*
464: 283–286.
- 712 713 Mangelsdorf PC, Jones DF (1926). The Expression of Mendelian Factors in the
Gametophyte of Maize. *Genetics* **11**: 423–455.
- 714 715 Maynard Smith J (1978). *The Evolution of Sex*. Cambridge University Press:
Cambridge, UK.

- 716 McDade LA, Lundberg JG (1982). A New Tabular and Diagrammatic Method for
717 Displaying Artificial Hybridization Data, with an Example from *Aphelandra*
718 (Acanthaceae). *Systematic Botany* **7**: 13.
- 719 Meirmans S, Meirmans PG, Kirkendall LR (2012). The Costs of Sex: Facing Real-world
720 Complexities. *The Quarterly Review of Biology* **87**: 19–40.
- 721 Modliszewski JL, Copenhaver GP (2017). Meiotic recombination gets stressed out: CO
722 frequency is plastic under pressure. *Current Opinion in Plant Biology* **36**: 95–102.
- 723 Müller HJ (1964). The relation of recombination to mutational advance. *Mutation
724 Research* **1**: 2–9.
- 725 Neiman M, Meirmans PG, Schwander T, Meirmans S (2018). Sex in the wild: How and
726 why field-based studies contribute to solving the problem of sex. *Evolution* **72**:
727 1194–1203.
- 728 Orr HA (2009). Fitness and its role in evolutionary genetics. *Nat Rev Genet* **10**: 531–
729 539.
- 730 Richardson JL, Urban MC, Bolnick DI, Skelly DK (2014). Microgeographic adaptation
731 and the spatial scale of evolution. *Trends in Ecology & Evolution* **29**: 165–176.
- 732 Rieseberg LH, Archer MA, Wayne RK (1999). Transgressive segregation, adaptation
733 and speciation. *Heredity* **83**: 363–372.
- 734 Rushworth CA, Brandvain Y, Mitchell-Olds T (2019). Identifying the fitness
735 consequences of sex in complex natural environments. *bioRxiv*. doi:
736 10.1101/719252.
- 737 Rushworth CA, Song B-H, Lee C-R, Mitchell-Olds T (2011). *Boechera*, a model system
738 for ecological genomics. *Molecular Ecology* **20**: 4843–4857.
- 739 Rushworth CA, Windham MD, Keith RA, Mitchell-Olds T (2018). Ecological
740 differentiation facilitates fine-scale coexistence of sexual and asexual *Boechera*.
741 *American Journal Of Botany* **105**: 1–14.
- 742 Schranz ME, Dobes C, Koch MA, Mitchell-Olds T (2005). Sexual reproduction,
743 hybridization, apomixis, and polyploidization in the genus *Boechera*
744 (Brassicaceae). *American Journal Of Botany* **92**: 1797–1810.
- 745 Searcy KB, Macnair MR (1990). Differential seed production in *Mimulus guttatus* in
746 response to increasing concentrations of copper in the pistil by pollen from
747 copper tolerant and sensitive sources. *Evolution* **44**: 1424–1435.
- 748 Sharbel TF, Mitchell-Olds T (2001). Recurrent polyploid origins and chloroplast
749 phylogeography in the *Arabis holboellii* complex (Brassicaceae). *Heredity* **87**: 59–
750 68.

- 751 Sharbel TF, Voigt M-L, Corral JM, Galla G, Kumlehn J, Klukas C, *et al.* (2010).
752 Apomictic and Sexual Ovules of *Boechera* Display Heterochronic Global Gene
753 Expression Patterns. *The Plant Cell* **22**: 655–671.
- 754 Song BH, Clauss MJ, Pepper A, Mitchell-Olds T (2006). Geographic patterns of
755 microsatellite variation in *Boechera stricta*, a close relative of *Arabidopsis*.
756 *Molecular Ecology* **15**: 357–369.
- 757 Song B-H, Mitchell-Olds T (2007). High genetic diversity and population differentiation in
758 *Boechera fecunda*, a rare relative of *Arabidopsis*. *Molecular Ecology* **16**: 4079–
759 4088.
- 760 Springer NM, Stupar RM (2007). Allelic variation and heterosis in maize: How do two
761 halves make more than a whole? *Genome Research* **17**: 264–275.
- 762 Swofford DL (2003). *PAUP**. *Phylogenetic Analysis Using Parsimony (*and Other*
763 *Methods*), Version 4. Sinauer Associates: Sunderland, MA USA.
- 764 Tiffin P, Olson S, Moyle LC (2001). Asymmetrical crossing barriers in angiosperms.
765 *Proc R Soc Lond B* **268**: 861–867.
- 766 Vrijenhoek RC (1978). Coexistence of clones in a heterogeneous environment. *Science*
767 **199**: 549–552.
- 768 Wang B, Mojica JP, Perera N, Lee C-R, Lovell JT, Sharma A, *et al.* (2019). Ancient
769 polymorphisms contribute to genome-wide variation by long-term balancing
770 selection and divergent sorting in *Boechera stricta*. *Genome Biol* **20**: 126.
- 771 Waser NM, Price MV (1994). Crossing-distance effects in *Delphinium nelsonii*:
772 Outbreeding and inbreeding depression in progeny fitness. *Evolution* **48**: 842–
773 852.
- 774 Yakimowski SB, Rieseberg LH (2014). The role of homoploid hybridization in evolution:
775 a century of studies synthesizing genetics and ecology. *American Journal Of*
776 *Botany* **101**: 1247–1258.
- 777 Yost JM, Kay KM (2009). The evolution of postpollination reproductive isolation in
778 *Costus*. *Sex Plant Reprod* **22**: 247–255.
- 779

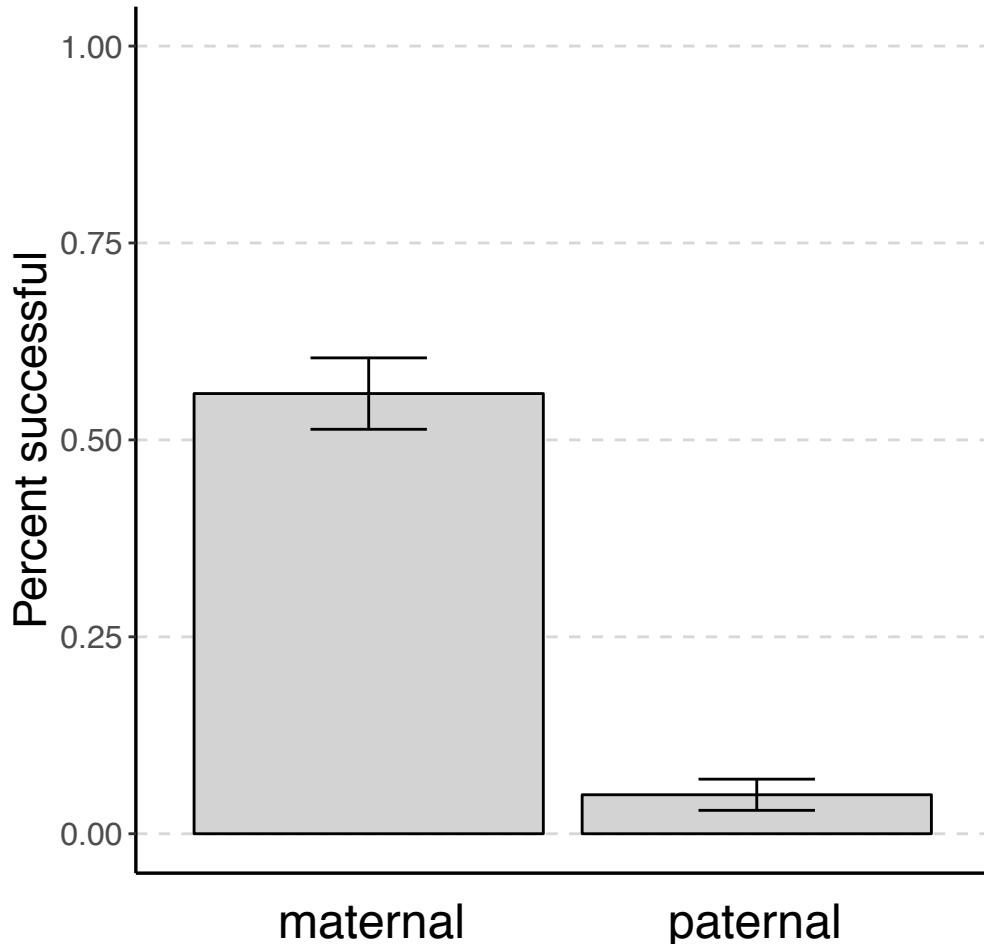
780 **Table 1. Hybrids have lower total fitness due to reduced probability of**
781 **reproduction.** Results for the fixed effects of cross type (selfed vs. hybrid) and plant
782 size from a zero-inflated negative binomial GLMM. Left, the zero-inflation portion
783 models structural zeros, or plants that did not reproduce. Fewer hybrids reproduced
784 than selfed parents. Center, the conditional portion of the model shows that cross type
785 has no effect on seed set. Right, significance estimates for the overall model,
786 incorporating both portions. Estimates (coef) and standard errors (se) come from
787 conditional models, while test statistics (χ^2 deviance, degrees of freedom, and P values)
788 come from likelihood ratio tests for each overall effect. Results from independent
789 models of reproduction probability, fecundity, and aborted fruit number are in
790 Supplementary Information. Significant P -values are shown in bold.
791

			Zero-inflation				Conditional				Overall		
term	condition	df	coef	se	χ^2	P	coef	se	χ^2	P	df	χ^2	P
Cross type	selfed	1	-2.74	0.419	9.02	0.019	6.63	0.252	0.32	0.65	2	9.34	0.047
	hybrid		-1.55	0.205			6.48	0.177					
Size	-	1	-2.65	0.182	46.91	4.47e-11	6.57	0.053	2.45	0.24	2	49.35	9.60e-11

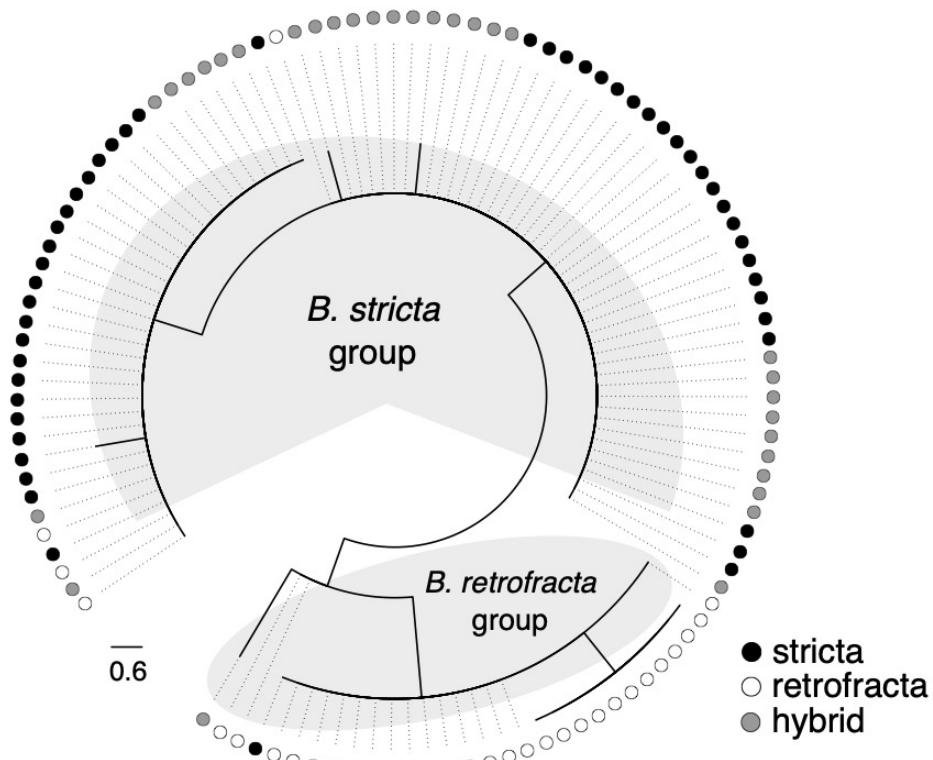

792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812

813 **Table 2. Hybrids produce more fruits than sexuals.** Results for the fixed effects of
814 cross type (selfed vs. hybrid) and plant size from a negative binomial GLMM. Estimates
815 (coef) and standard errors (se) come from conditional models, while test statistics (χ^2
816 deviance, degrees of freedom df, and *P* values) come from likelihood ratio tests for each
817 overall effect. Significant *P*-values are shown in bold.
818

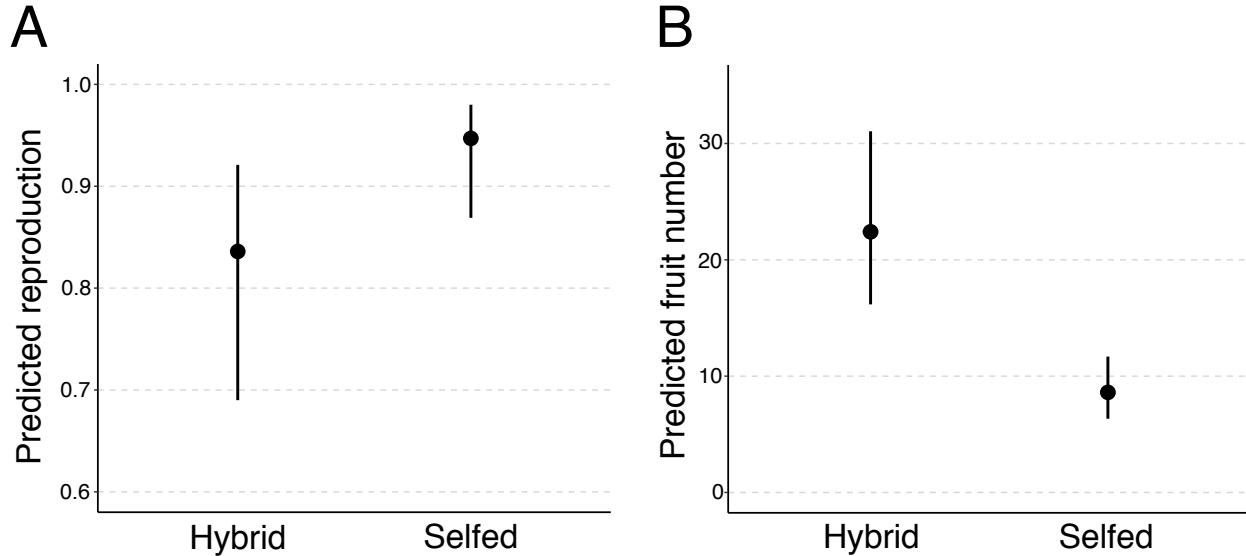
term	condition	df	coef	se	χ^2	<i>P</i>
Cross type	selfed	1	2.09	0.221	8.98	0.019
	hybrid		3.05	0.164		
Size	-	1	3.48	0.077	28.86	3.12e-07


819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852

853 **Figure 1. Map of study populations used as cross parents.** Each circle represents a
854 population. *B. stricta* populations are represented by filled circles, and *B. retrofracta*
855 populations are represented by unfilled circles. Populations where *B. stricta* and *B.*
856 *retrofracta* co-occur are indicated by gray fill. Plants were collected in central Idaho and
857 western Montana (inset). One population, HES, was collected in Colorado and is not
858 shown.
859


860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875

876 **Figure 2. Pollen-pistil barriers are asymmetrical.** Interspecific crosses with *B. stricta*
877 as the maternal parent were more likely to set seed than those with *B. stricta* as the
878 paternal parent. Proportion of unique parental combinations that resulted in F1 fruit are
879 shown. Error bars indicate 95% CIs.
880


881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896

897 **Figure 3. Phylogeny of chloroplast marker *trnL*.** Sequenced taxa show a clear split
898 between two groups, one of which is predominantly *B. stricta* (filled circle), and the other
899 predominantly *B. retrofracta* (empty circle). 30 of 31 wild-collected *B. stricta* × *B.*
900 *retrofracta* hybrids group with *B. stricta*, consistent with *B. stricta* acting as maternal
901 parent in the majority of naturally-formed hybrids.
902

903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

918 **Figure 4. Hybrids are less likely to reproduce, but produce more fruits than sexual**
919 **lineages.** Estimated marginal means from GLMMs show the main effect of cross type
920 on A) the probability of reproducing; B) fruit number. Bars show 95% confidence
921 intervals.
922

923
924