

1

2 **Hippocampal and cortical mechanisms at retrieval explain variability in episodic**
3 **remembering in older adults**

4

5 Alexandra N. Trelle^a, Valerie A. Carr^a, Scott A. Guerin^a, Monica K. Thieu^a, Manasi
6 Jayakumar^a, Wanjia Guo^a, Ayesha Nadiadwala^a, Nicole K. Corso^a, Madison P. Hunt^a, Celia
7 P. Litovsky^a, Natalie J. Tanner^a, Gayle K. Deutsch^b, Jeffrey D. Bernstein^a, Marc B. Harrison^a,
8 Anna M. Khazenzon^a, Jiefeng Jiang^a, Sharon J. Sha^b, Carolyn A. Fredericks^b, Brian K. Rutt^c,
9 Elizabeth C. Mormino^b, Geoffrey A. Kerchner^b, and Anthony D. Wagner^a

10 **Affiliations:**

11 ^a Department of Psychology, Stanford University

12 ^b Department of Neurology & Neurological Sciences, Stanford University

13 ^c Department of Radiology & Radiological Sciences, Stanford University

14

15 **Corresponding Author:**

16 Alexandra N. Trelle

17 Dept of Psychology, Stanford University

18 450 Serra Mall

19 Stanford, CA 94305

20 (650) 724-2821

21 atrelle@stanford.edu

22

23 **Keywords:**

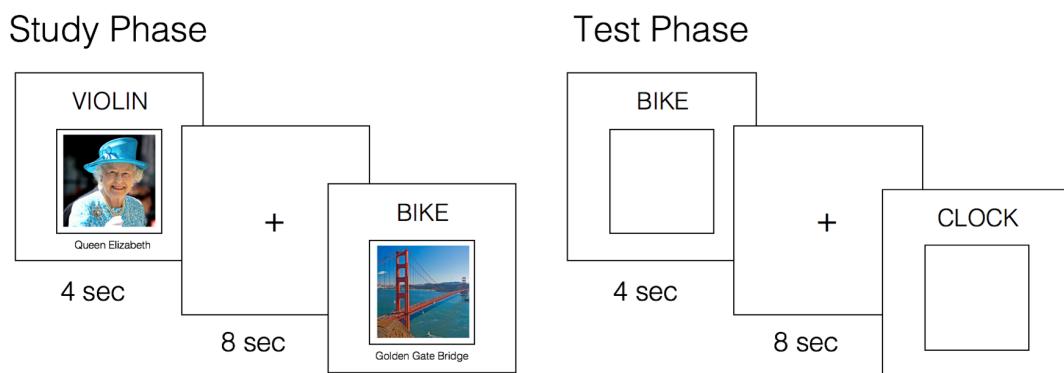
24 episodic memory, aging, hippocampus, cortical reinstatement, pattern completion

25 **Acknowledgements:** The Stanford Aging and Memory Study (SAMS) is supported by the
26 National Institute on Aging (R01AG048076, R21AG058111, and R21AG058859), Stanford's
27 Center for Precision Health and Integrated Diagnostics (PHIND), Stanford's Wu Tsai
28 Neurosciences Institute. We are grateful to colleagues Adam Kerr, Hua Wu, Michael Perry,
29 and Laima Baltusis at the Stanford's Center for Cognitive and Neurobiological Imaging (CNI)
30 for their assistance in fMRI data acquisition, Clementine Chou, Madison Kist, and Austin
31 Salcedo for their assistance with data collection, and the SAMS volunteers for their
32 participation in the study. The current institutions for the following authors are as follows: AN
33 – University of Texas at Austin; CAF – Yale University; CPL – Johns Hopkins University;
34 JDB – UC San Diego Medical School; MJ – Columbia University; MKT – Columbia
35 University; VAC – San Jose State University; WG – University of Oregon.

36 Age-related episodic memory decline is characterized by striking heterogeneity across
37 individuals. Hippocampal pattern completion is a fundamental process supporting episodic
38 memory. Yet, the degree to which this mechanism is impaired with age, and contributes to
39 variability in episodic memory, remains unclear. We combine univariate and multivariate
40 analyses of fMRI data from a large cohort of cognitively normal older adults (N=100; 60-82
41 yrs) to measure hippocampal activity and cortical reinstatement during retrieval of trial-
42 unique associations. Trial-wise analyses revealed that hippocampal activity predicted
43 cortical reinstatement strength, and these two metrics of pattern completion independently
44 predicted retrieval success. However, increased age weakened cortical reinstatement and
45 its relationship to memory behaviour. Critically, individual differences in the strength of
46 hippocampal activity and cortical reinstatement explained unique variance in performance
47 across multiple assays of episodic memory. These results indicate that fMRI indices of
48 hippocampal pattern completion explain within- and across-individual memory variability in
49 older adults.

50
51
52
53
54
55
56
57

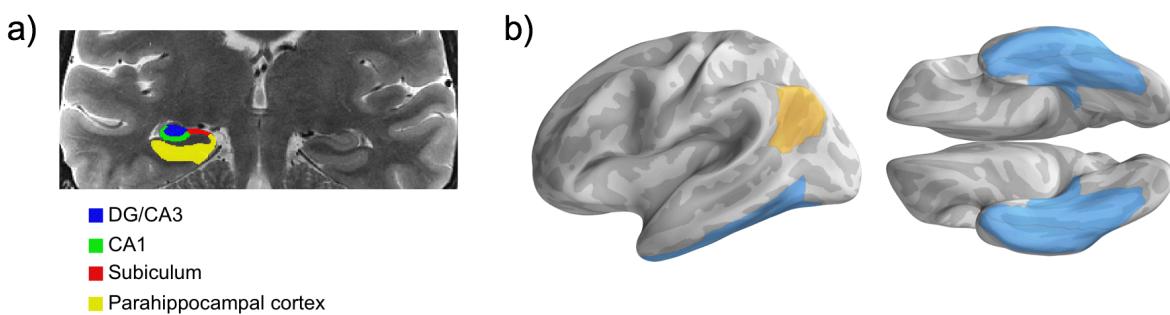
58 Episodic memory – in particular the ability to form and retrieve associations between multiple
59 event elements that comprise past experiences – declines with age (1-3). Retrieval of an
60 episodic memory relies critically on hippocampal-dependent pattern completion, which
61 entails reactivation of a stored memory trace by the hippocampus in response to a partial
62 cue, leading to replay of cortical activity patterns that were present at the time of memory
63 encoding (4-7). Given observed links between in vivo measures of pattern completion and
64 episodic remembering (8-10), and evidence of altered hippocampal function with age (11-
65 12), changes in hippocampal pattern completion may play an important role in explaining
66 age-related impairments in episodic memory. While a leading hypothesis, the degree to
67 which the integrity of pattern completion can explain (a) trial-to-trial differences in episodic
68 remembering within older adults and (b) differences in memory performance between older
69 individuals remain underspecified.


70 Functional MRI (fMRI) studies in younger adults suggest that hippocampal pattern
71 completion is associated with at least two key neural markers: (a) an increase in
72 hippocampal univariate activity (13-15) and (b) cortical reinstatement of content-specific
73 activity patterns present during encoding (16-18). Multivariate pattern analyses — machine
74 learning classification (19) and pattern similarity (20) — reveal evidence for cortical
75 reinstatement of categorical event features (10, 21-22) and event-specific details (23-25)
76 during successful recollection. Moreover, hippocampal and cortical metrics of pattern
77 completion covary, such that trial-wise fluctuations in hippocampal univariate retrieval
78 activity predict the strength of cortical reinstatement (10, 23-24), and both hippocampal
79 activity and reinstatement strength predict associative retrieval performance (10, 26). These
80 findings support models (4-6) positing that cortical reinstatement depends, in part, on
81 hippocampal processes, and contributes to remembering.

82 Initial data bearing on age-related changes in hippocampal pattern completion are
83 mixed. Studies comparing hippocampal activity during episodic retrieval in older and
84 younger adults have revealed age-related reductions in activity (27, 28) and age-invariant
85 effects (29, 30). Similarly, while some have identified reduced category-level (31, 32) and

86 event-level (33, 34) cortical reinstatement in older relative to younger adults, others
87 observed age-invariant category-level reinstatement (29) or that age-related differences in
88 reinstatement strength are eliminated after accounting for the strength of category
89 representations during encoding (35). Although extant studies have yielded important initial
90 insights, the absence of trial-wise analyses relating hippocampal activity to cortical
91 reinstatement, or relating each of these neural measures to memory behaviour, prevents
92 clear conclusions regarding the degree to which hippocampal pattern completion processes
93 are impacted with age. Aging may affect one or both of these neural processes, and/or may
94 disrupt the predicted relationships between these neural variables and behaviour (e.g., 10).
95 The first aim of the present study is to quantify trial-wise fluctuations in hippocampal activity
96 and cortical reinstatement in older adults, and examine how these measures relate to one
97 another, as well as how these measures relate to episodic remembering of trial-unique
98 associative content.

99 Critically, in addition to varying within individuals, the degree to which pattern
100 completion processes are disrupted among older adults may vary across individuals. Indeed,
101 age-related memory decline is characterized by striking heterogeneity, with some individuals
102 performing as well as younger adults and others demonstrating marked impairment (36-37,
103 see 38 for review). Identifying the neural factors driving this variability is a clear emerging
104 aim of cognitive aging research (38,40). However, due to modest sample sizes, extant
105 studies typically lack sufficient power to examine individual differences in retrieval
106 mechanisms among older adults (28-35). Moreover, while recent work examining variability
107 in hippocampal function has demonstrated relationships between hippocampal retrieval
108 activity and associative memory performance in older adults (36, 39), the direction of this
109 relationship differed across studies; to date, the relationship between individual differences
110 in cortical reinstatement and memory performance remains unexplored. As such, the second
111 aim of the present study is to examine whether hippocampal and cortical indices of pattern
112 completion vary with age, and to assess the degree to which these measures explain


113 individual differences in episodic memory performance — both as a function of age and
114 independent of age.

115
116 *Figure 1. Experimental Paradigm. Concurrent with fMRI, participants intentionally encoded*
117 *word-picture pairs and completed an associative cued recall test. At test, they were*
118 *presented with studied words intermixed with novel words, and instructed to recall the*
119 *associate paired with each word, if old. Participants responded 'Face' or 'Place' if they could*
120 *recollect the associated image; 'Old' if they recognized the word but could not recollect the*
121 *associate; 'New' if they believed the word was novel. A post-scan cued recall test (not*
122 *shown, visually identical to the 'Test Phase') further probed memory for the specific*
123 *associate paired with each studied word (see Methods).*

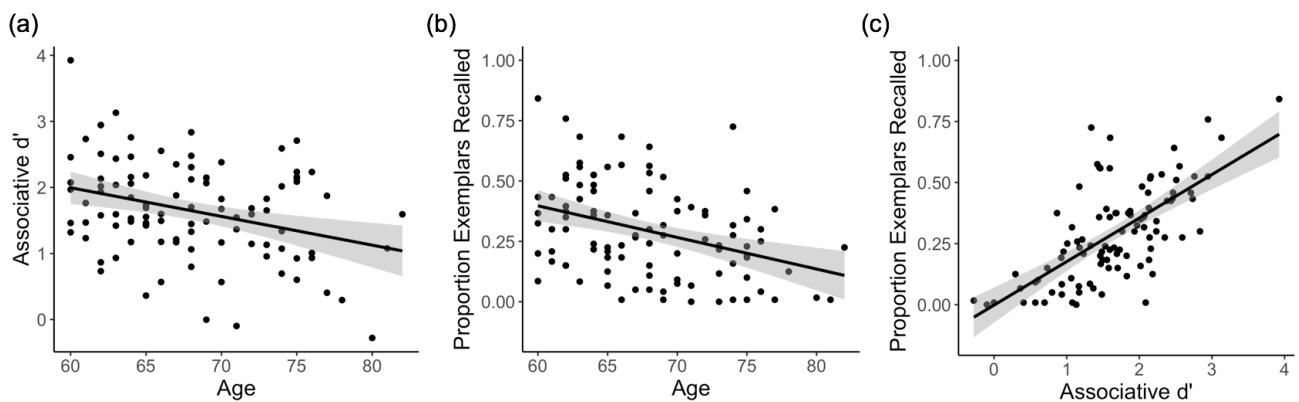
124
125 To address these two aims, a large sample (N=100) of cognitively normal older
126 participants (60-82 yrs) from the Stanford Aging and Memory Study (SAMS; **Table 1**;
127 **Methods**) performed an associative memory task (**Figure 1**) concurrent with high-resolution
128 fMRI. Participants intentionally studied trial-unique word-picture pairs (concrete nouns paired
129 with famous faces and famous places), and then had their memory for the word-picture
130 associations probed. During retrieval scans, participants viewed a studied or novel word on
131 each trial and indicated whether they (a) recollected the associate paired with the word,
132 responding 'face' or 'place' accordingly (providing an index of associative memory), (b)
133 recognized the word as 'old' but were unable to recall the associate (providing an index of
134 item memory — putatively reflecting familiarity, non-criterial recollection, or a mix of the two),
135 or (c) thought the word was 'new'. Following scanning, participants were shown the studied
136 words again and asked to recall the specific associate paired with each word, this time
137 explicitly providing details of the specific image (providing an index of exemplar-specific
138 recall).

139 To measure pattern completion during retrieval, we used univariate and multivariate
140 analyses focused on a priori regions of interest (ROIs; **Figure 2**). To measure hippocampal
141 function, our primary analyses examined univariate activity in the whole hippocampus
142 bilaterally. In addition, we measured activity in three subfields within the body of the
143 hippocampus — dentate gyrus/CA3 (DG/CA3), CA1, and subiculum (SUB) — given prior
144 work suggesting that aging may differentially affect individual hippocampal subfields (39,
145 41,42) and models predicting differential subfield involvement in pattern completion,
146 including a key role for subfield CA3 (8, 43). To measure cortical reinstatement, we focused
147 on two cortical regions — ventral temporal cortex (VTC) and angular gyrus (ANG) —
148 motivated by mounting evidence in healthy younger adults that these two areas support
149 content-rich representations during memory retrieval (10, 25, 44-46), and that their
150 representations may be differentially related to memory-guided behaviour (44-46). Category-
151 level reinstatement (i.e., face/place) was quantified via pattern classification and event-
152 specific reinstatement (e.g., Queen Elizabeth, Golden Gate Bridge) was quantified using
153 encoding-retrieval pattern similarity.

154
155 *Figure 2. Regions of Interest. (a) Sample MTL subfield demarcations. The whole*
156 *hippocampus ROI reflects the summation of all subfields (delineated only in the hippocampal*
157 *body, shown), as well as the hippocampal head and tail (not pictured). (b) Parahippocampal*
158 *cortex combined with fusiform gyrus and inferior temporal cortex forms the ventral temporal*
159 *cortex ROI. Ventral temporal cortex (blue) and angular gyrus (gold) masks projected on the*
160 *fsaverage surface.*

161

162


163 **Results**

164 *Behavioural Results*

165 We assessed performance on the associative cued recall task using three measures: 1)
166 old/new d' — discrimination between studied and novel words during the in-scan memory
167 test, irrespective of memory for the associate; 2) associative d' — correctly remembering the
168 category of associated images encoded with studied words, relative to falsely indicating an
169 associative category to novel words; and 3) post-scan exemplar-specific associative recall –
170 – proportion correct recall of the specific exemplars associated with studied words.

171 Performance on all three measures declined with age (old/new d' : $\beta = -0.35$, $p < .001$;
172 associative d' : $\beta = -0.30$, $p < .005$, **Figure 3a**; post-scan exemplar-specific recall: $\beta = -0.34$,
173 $p < .001$, **Figure 3b**), but did not vary by sex (β s = -0.10, -0.33, -0.23; $ps \geq .10$) or years of
174 education (β = -0.03, -0.02, -0.07; $ps > .47$). Critically, despite this decline in performance
175 with age, we also observed considerable variability in performance across individuals in
176 each measure (**Figure 3** and **Table 1**).

177 Individual-differences and trial-wise analyses revealed that post-scan associative
178 recall tracked in-scanner associative memory. First, individuals who demonstrated higher
179 associative memory during scanning showed superior recall of the specific exemplars on the
180 post-scan test (controlling for age; $\beta = .62$, $p < 10^{-12}$; **Figure 3c**). Second, trial-wise analysis
181 revealed that making an in-scan associative hit predicted successful post-scan exemplar
182 recall ($\chi^2(1) = 159.68$, $p < 10^{-36}$). These findings suggest that post-scan exemplar-specific
183 retrieval — while quantitatively lower due to the longer retention interval, change of context,
184 and interference effects — is a good approximation of recall of the specific exemplar during
185 scanning (relative to simply recalling more general category information).

186

187 *Figure 3. Associative Memory Behavioural Results. (a) In-scanner associative d' and (b)*
 188 *post-scan exemplar-specific associative recall decline with age. (c) Associative d' strongly*
 189 *predicts post-scan exemplar-specific associative recall, controlling for the effect of age. Each*
 190 *data point represents a participant; plots show linear model predictions (black line) and 95%*
 191 *confidence intervals (shaded area).*

192

193 *Table 1: Demographics and Neuropsychological Test Performance*

Measure	Mean (SD)	Range
Gender	61 F; 39 M	--
Age (yrs)	67.96 (5.47)	60 – 82
Education (yrs)	16.84 (1.94)	12 – 20
MMSE	29.10 (.90)	26 – 30
CDR	0	--
Logical Memory Delayed Recall (/50)	32.04 (6.16)	18 – 44
HVLT-R Delayed Recall (/12)	10.49 (1.68)	5 – 12
BVMT-R Delayed Recall (/12)	9.80 (2.16)	5 – 12
Old/New d'	2.26 (0.68)	0.86 – 4.78
Associative d'	1.64 (0.73)	-0.27 – 3.92
Exemplar-Specific Recall (proportion correct, post-scan)	0.29 (0.19)	0.00 – 0.84

194 BVMT-R = Brief Visuospatial Memory Test-Revised; CDR = Clinical Dementia Rating;

195 HVLT-R = Hopkins Verbal Learning Test-Revised; MMSE = Mini Mental State Examination.

196

197

198 *fMRI Encoding Classifier Accuracy*

199 Following prior work (e.g., 25, 44-46), cortical reinstatement analyses focused on two a priori
200 ROIs: VTC and ANG. To confirm that activity patterns during word-face and word-place
201 encoding trials were discriminable for each participant in each ROI, we trained and tested a
202 classifier on the encoding data using leave-one-run-out-n-fold cross validation. On average,
203 encoding classifier accuracy was well above chance (50%) using patterns in VTC ($M =$
204 98.4%, $p < .001$) and ANG (90.0%, $p < .001$), with classifier accuracy significantly greater in
205 VTC than ANG ($t(99) = 12.86$, $p < 10^{-16}$). Classification was above chance in all 100
206 participants (minimum accuracy of 82.5% ($p < .001$) in VTC and 68.0% ($p < .005$) in ANG).
207 To account for variance in encoding classifier strength (quantified using log odds of the
208 classifier's probability estimate) on estimates of reinstatement strength during memory
209 retrieval (see **Supplementary Results, Figure S1**), we controlled for encoding classifier
210 strength in all subsequent models in which reinstatement strength predicted behavioural
211 variables (memory accuracy, RT), as well as models in which reinstatement strength was
212 the dependent variable (see **Methods** for details).

213

214 *Trial-wise Category-level Reinstatement Predicts Memory*

215 We quantified reinstatement of relevant face or scene features (i.e., category-level
216 reinstatement) in VTC and ANG using subject-specific classifiers trained on all encoding
217 phase data for an individual, and tested for cortical reinstatement in the independent
218 retrieval phase data; significance was assessed using permutation testing. Classifier
219 accuracy (**Figure 4a**) was above chance (50%) during associative hits in VTC ($M = 68.3\%$, p
220 $< .005$) and ANG ($M = 72.3\%$, $p < .001$), but did not exceed chance when associative
221 retrieval failed, including on associative miss trials (VTC: 49.8%, $p = .57$; ANG: 50.4%, $p =$
222 .49), item hit (VTC: 53.5%, $p = .29$; ANG: 53.3%, $p = .31$), and item miss trials (VTC: 47.1%,
223 $p = .68$; ANG: 51.6%, $p = .41$; see **Methods** for trial type definitions). Classifier accuracy
224 during associative hits was greater in ANG relative to VTC ($t(99) = 4.05$, $p < .001$). Analyses
225 of the time course of cortical reinstatement during associative hits revealed significant

226 reinstatement effects emerging ~4-6s post-stimulus onset (**Figure S2**). Analogous category-
227 level reinstatement effects were observed using a pattern similarity approach (i.e., encoding-
228 retrieval similarity (ERS); see **Supplementary Results**).

229 Evidence for reinstatement during successful, but not unsuccessful, associative
230 retrieval is consistent with theories that posit that reinstatement of event features (here, face
231 or scene features) supports accurate memory-based decisions (here, associate category
232 judgments). More directly supporting this hypothesis, generalized logistic and linear mixed
233 effects models revealed that greater trial-wise cortical reinstatement in VTC and ANG —
234 quantified using log odds of the classifier's probability estimate — predicted (a) an increased
235 probability of an associative hit (VTC: $\chi^2(1) = 102.42, p < 10^{-24}$; ANG: $\chi^2(1) = 102.42, p < 10^{-$
236 31 ; **Figure 4b**), (b) an increased probability of post-scan exemplar-specific recall (VTC: $\chi^2(1)$
237 $= 63.89, p < 10^{-15}$; ANG: $\chi^2(1) = 87.44, p < 10^{-21}$; **Figure S3a**), and (c) faster retrieval
238 decision RTs on associative hit trials (VTC: $\chi^2(1) = 29.78, p < 10^{-8}$; ANG: $\chi^2(1) = 23.39, p <$
239 10^{-6} ; **Figure 4c**). These data provide novel evidence that the strength of category-level
240 reinstatement in VTC and ANG is linked to memory behaviour in cognitively normal older
241 adults (see **Supplementary Results** for analogous ERS findings).

242

243 *Trial-wise Event-level Reinstatement Predicts Memory*

244 We next used encoding-retrieval similarity (ERS) to quantify trial-unique, event-specific
245 reinstatement of encoding patterns, comparing the similarity of an event's encoding and
246 retrieval patterns (within-event ERS) to similarity of encoding patterns from other events
247 from the same category (within-category ERS). Evidence for event-level reinstatement was
248 present in both VTC ($t(99) = 2.26, p < .05$) and ANG ($t(99) = 3.54, p < .001$) during
249 associative hits (**Figure 4d**). Moreover, the strength of trial-wise event-level reinstatement —
250 — controlling for category-level reinstatement effects (i.e., including within-category ERS as a
251 regressor of noninterest) and univariate activity in each region — predicted (a) an increased
252 probability of an associative hit (VTC: $\chi^2(1) = 1.77, p = 0.184$; ANG: $\chi^2(1) = 7.81, p < .005$;
253 **Figure 4e**) and (b) an increased probability of post-scan exemplar-specific recall (VTC: $\chi^2(1)$

254 = 5.33, $p < .05$; ANG: $\chi^2(1) = 7.89, p < .005$; **Figure 4f**), but did not predict decision RT on
255 associative hit trials (VTC: $p = .837$; ANG: $p = .249$). These results demonstrate a
256 relationship between trial-unique, event-specific cortical reinstatement and associative
257 retrieval in older adults.

258

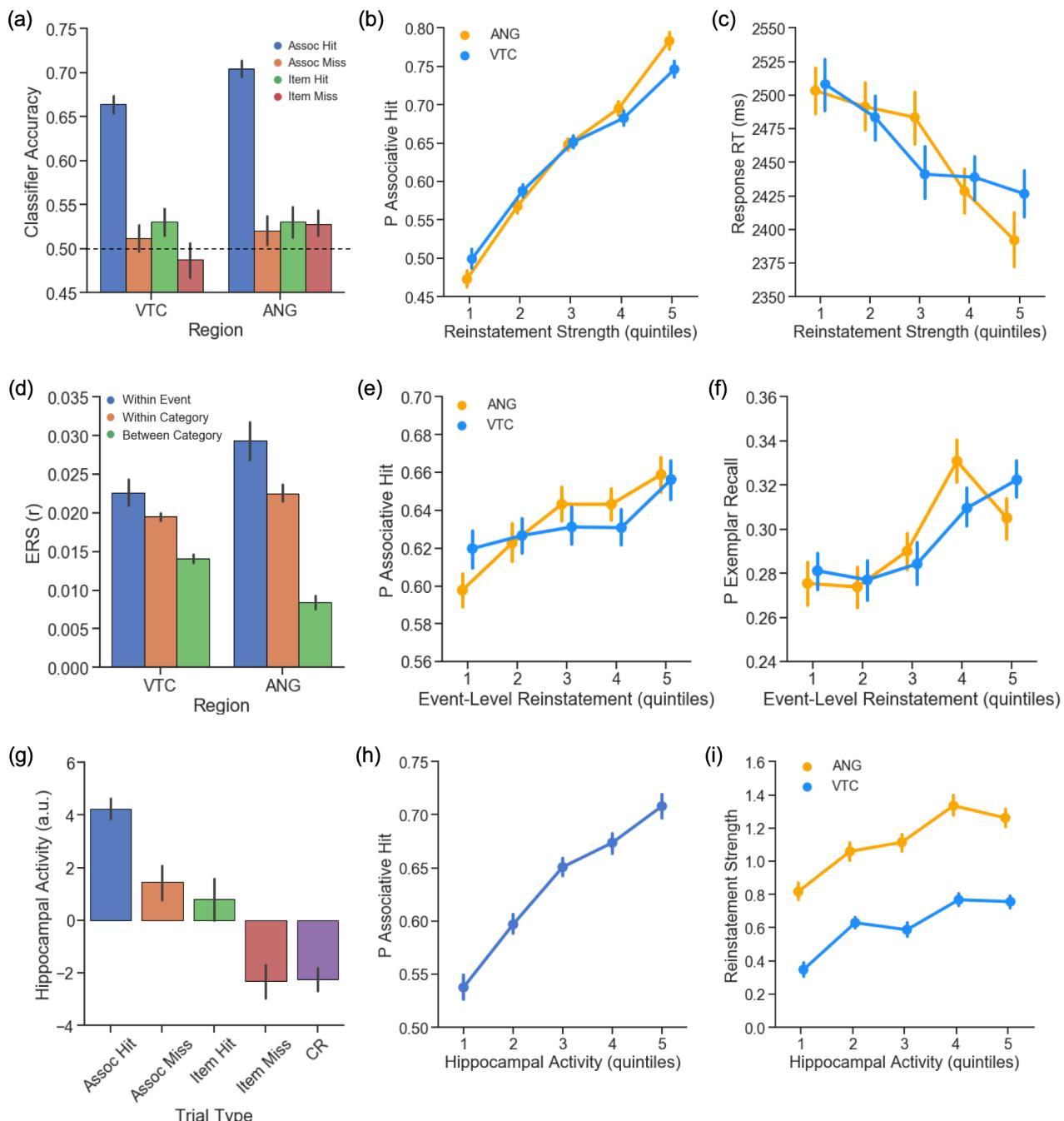
259 *Trial-wise Hippocampal Retrieval Activity Predicts Behaviour and Reinstatement*
260 Successful associative retrieval, ostensibly driven by pattern completion, was accompanied
261 by greater hippocampal activity (**Figure 4g**) relative to associative misses ($t(75) = 4.90, p <$
262 10^{-6}), item only hits ($t(59) = 3.87, p < .001$), item misses ($t(83) = 8.86, p < 10^{-13}$), and correct
263 rejections ($t(99) = 11.28, p < 10^{-16}$). Relative to item misses, hippocampal activity was
264 greater during associative misses ($t(68) = 4.0, p < .001$) and item only hits ($t(51) = 5.37, p <$
265 10^{-6}); activity did not differ between associative misses and item hits ($t < 1$) or between item
266 misses and correct rejections ($t < 1$). Moreover, generalized logistic and linear mixed effects
267 models revealed that greater trial-wise hippocampal activity was linked to (a) an increased
268 probability of an associative hit ($\chi^2(1) = 63.23, p < 10^{-15}$; **Figure 4h**), (b) an increased
269 probability of post-scan exemplar-specific recall ($\chi^2(1) = 58.98, p < 10^{-14}$; **Figure S3b**), but
270 (c) not faster associative hit RTs ($\chi^2(1) = 2.19, p = .139$). Thus, the probability of successful
271 pattern-completion-dependent associative retrieval increased with hippocampal activity. This
272 relationship was significant across hippocampal subfields, but greatest in DG/CA3 (see
273 **Supplementary Results** for subfield findings; **Figure S4a**).

274 Cortical reinstatement is thought to depend on hippocampal pattern completion
275 triggered by retrieval cues (4-7). Consistent with this possibility, the magnitude of trial-wise
276 hippocampal retrieval activity predicted the strength of cortical reinstatement across all
277 retrieval attempts (VTC: $\chi^2(1) = 42.38, p < 10^{-11}$; ANG: $\chi^2(1) = 34.92, p < 10^{-19}$; **Figure 4i**)
278 and when restricting analyses only to associative hit trials (VTC: $\chi^2(1) = 7.01, p = .008$; ANG:
279 $\chi^2(1) = 12.24, p < .001$). Similarly, hippocampal activity predicted within-event ERS
280 (controlling for within-category ERS) in VTC (all trials: $\chi^2(1) = 4.57, p < .05$; associative hit
281 only: $\chi^2(1) = 3.87, p < .05$; see **Figure S5**); this relationship did not reach significance in ANG

282 (all trials: $p = .388$; associative hit only: $p = .275$). Collectively, these results constitute novel
283 evidence for a relationship between trial-wise hippocampal activity and cortical reinstatement
284 in older adults (see **Supplementary Results** for hippocampal subfield findings; **Figure**
285 **S4b,c**).

286

287 *Unique Hippocampal and Cortical Contributions to Associative Retrieval*


288 We next explored whether trial-wise hippocampal activity and trial-wise cortical
289 reinstatement make complementary contributions to associative retrieval success, using
290 nested comparison of logistic mixed effects models. Compared to a model with hippocampal
291 activity, addition of VTC reinstatement strength significantly improved model fit ($\chi^2(1) =$
292 $103.68, p < 10^{-24}$). Addition of ANG reinstatement to this model further improved model fit
293 ($\chi^2(1) = 115.78, p < 10^{-24}$), and all three variables remained significant predictors in the full
294 model (hippocampus: $b = 0.31, z = 8.24, p < 10^{-16}$; VTC: $b = 0.32, z = 9.36, p < 10^{-16}$; ANG:
295 $b = 0.52, z = 14.42, p < 10^{-16}$). The same approach for exemplar-specific recall similarly
296 revealed that the stepwise addition of reinstatement metrics significantly improved model fit
297 (VTC: $\chi^2(1) = 61.17, p < 10^{-15}$; ANG: $\chi^2(1) = 65.04, p < 10^{-16}$), with all three variables
298 significant predictors in the full model (hippocampus: $b = 0.29, z = 8.01, p < 10^{-15}$; VTC: $b =$
299 $0.21, z = 6.44, p < 10^{-10}$; ANG: $b = 0.27, z = 9.68, p < 10^{-16}$). Thus, while hippocampal
300 activity predicts cortical reinstatement in VTC and ANG, these three neural responses during
301 retrieval are not redundant predictors of trial-level memory performance. Rather, each
302 makes independent contributions to the probability of a successful associative retrieval
303 decision.

304

305

306

307

325 *Effects of Age on Hippocampal and Cortical Indices of Pattern Completion*

326 Our second key aim was to understand how hippocampal pattern completion processes vary
327 across individuals, turning first to the effects of age. To determine whether the trial-wise
328 relationships between our neural metrics and memory behaviour identified in Aim 1 varied as
329 a function of age, we added an interaction term (age*regressor of interest) to each mixed
330 effects model. We observed that age moderated the relationship between reinstatement
331 strength and associative retrieval success in VTC ($\chi^2(1) = 6.96, p < .01$) and marginally in
332 ANG ($\chi^2(1) = 3.57, p = .059$), such that older individuals exhibited a weaker relationship
333 between reinstatement strength and the likelihood of associative retrieval success. In
334 contrast, age did not moderate the relationship between a) hippocampal activity and
335 associative retrieval success ($p = .643$), or b) hippocampal activity and reinstatement
336 strength (VTC: $p = .777$; ANG: $p = .773$). These results suggest that age differentially affects
337 cortical and hippocampal indices of pattern completion, having a particular effect on the
338 translation of cortical evidence to memory behaviour.

339 To further understand the effects of age, we next asked whether the strength of
340 cortical reinstatement and hippocampal activity during successful associative retrieval
341 (adjusted for relevant nuisance regressors) was reduced with age. Regression analyses
342 revealed that (a) while hippocampal activity during associative hits (associative hit – CR) did
343 not significantly vary with age ($\beta = -0.10, p = .35$; **Figure 5a**), there was (b) an age-related
344 decline in category-level reinstatement strength (i.e., mean logits) during associative hits
345 (VTC: $\beta = -0.34, p < .0001$; ANG: $\beta = -0.16, p < .05$; **Figure 5b-c**), and c) an age-related
346 decline in event-level reinstatement in VTC ($\beta = -0.26, p < .01$; **Figure S6a**), but not ANG (β
347 = $-0.06, p > .55$; **Figure S6b**). None of these measures varied with sex or years of education
348 (all $p > .24$).

349 These cross-sectional age-related declines in category-level and event-level
350 reinstatement during associative hits parallel the age-related decline in associative d' and
351 exemplar-specific recall (**Figure 3a-b**). Indeed, age-related change in category-level

352 reinstatement in VTC and (marginally) ANG partially mediated the relationships between age
353 and exemplar-specific recall (VTC: total = -0.37, $z = -3.93$, $p < 0.001$; direct = -0.19, $z = -$
354 2.20, $p < .05$; indirect = -0.17, $z = -3.15$, $p < .005$, 95% CI = -0.325, -0.093; ANG: total = -
355 0.37, $z = -3.93$, $p < 0.001$; direct = -0.30, $z = -3.40$, $p < .005$; indirect = -0.06, $z = -1.73$, $p =$
356 .08, 95% CI = -0.138, 0.009; see **Supplementary Results** for parallel findings with
357 associative d'). Thus, while hippocampal activity during associative hits did not differ by age,
358 cortical reinstatement declined with age and partially mediated the relationship between age
359 and associative memory performance.

360

361 *Neural Indices of Pattern Completion Explain Individual Differences in Episodic Memory*
362 We next asked if the strength of neural measures of pattern completion during associative
363 retrieval explain variance in memory performance, independent of age. Separate regression
364 models (adjusted for age and relevant nuisance variables) revealed that individual
365 differences in exemplar-specific recall were predicted by hippocampal activity ($\beta = .47$, $p <$
366 10^{-7} ; **Figure 5d**) and category-level reinstatement strength during associative hits (VTC: $\beta =$
367 $.45$, $p < 10^{-6}$; ANG: $\beta = .52$, $p < 10^{-5}$, **Figure 5e-f**; see **Figure S7d-f** for partial plots adjusting
368 for nuisance regressors and **Supplementary Results** and **Table S1** for parallel findings with
369 associative d'). In contrast, individual differences in event-level reinstatement did not explain
370 significant variance in exemplar-specific recall (all $ps > .33$). Thus, individual differences in
371 the integrity of hippocampal retrieval mechanisms and category-level cortical reinstatement
372 contribute to variability in pattern-completion-dependent (i.e., associative) memory in older
373 adults.

374 To determine whether these variables explain unique variance in memory
375 performance, we used hierarchical regression (see **Table 2** for model parameters).
376 Compared to a model with age alone (adjusted $R^2 = .126$), adding hippocampal activity
377 explained additional variance in performance (model comparison: $F(1,96) = 29.54$, $p < 10^{-7}$,
378 adjusted $R^2 = .325$). Moreover, adding a single reinstatement metric explained further

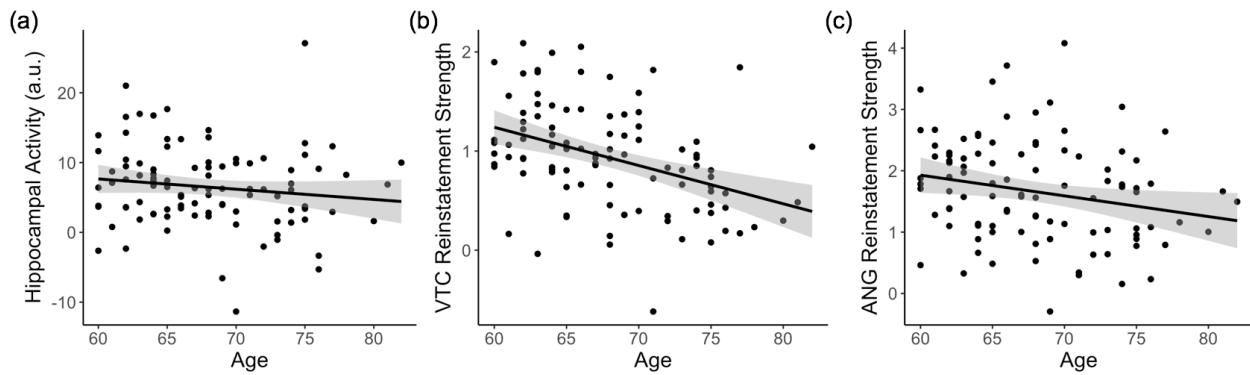
379 variance in performance (model comparison: VTC: $F(1,95) = 22.75, p < 10^{-6}$, adjusted $R^2 =$
380 .438; ANG: $F(1,95) = 8.25, p < .01$, adjusted $R^2 = .365$). However, when VTC and ANG were
381 both included in the same model, reinstatement strength in ANG was no longer a significant
382 predictor ($p = .412$). Thus, in older adults, individual differences in hippocampal activity and
383 cortical reinstatement strength provide complementary information, over and above age, in
384 explaining individual differences in associative memory, whereas indices of reinstatement
385 strength explain shared variance.

386
387 *Table 2: Summary of Regression Analysis Predicting Post-Test Exemplar-Specific Recall*
388

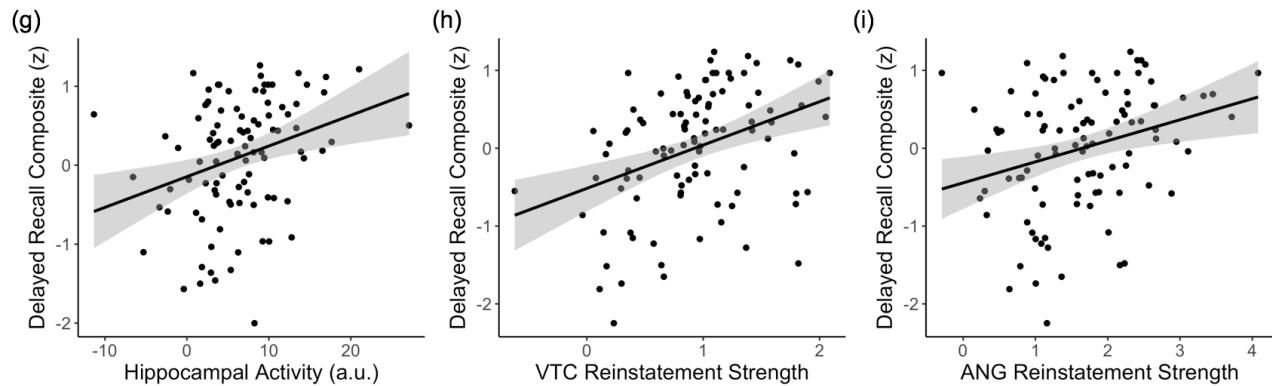
	Variable	β	SE	p	Adjusted R^2
Step 1	Age	-0.366	0.094	0.001***	0.126
Step 2	Age	-0.317	0.083	0.001***	0.325
	Hippocampal Activity _{adj}	0.472	0.087	0.001***	
Step 3a	Age	-0.184	0.080	0.023*	0.449
	Hippocampal Activity _{adj}	0.388	0.080	0.001***	
	VTC Reinstatement _{adj}	0.428	0.089	0.001***	
Step 3b	Age	-0.281	0.082	0.001***	0.365
	Hippocampal Activity _{adj}	0.407	0.088	0.001****	
	ANG Reinstatement _{adj}	0.289	0.108	0.009**	
Step 4	Age	-0.184	0.080	0.023***	0.448
	Hippocampal Activity _{adj}	0.374	0.082	0.001***	
	VTC Reinstatement _{adj}	0.391	0.100	0.001***	
	ANG Reinstatement _{adj}	0.093	0.113	0.412	
Step 5	Age	-0.137	0.079	0.087~	0.485
	Hippocampal Activity _{adj}	0.335	0.080	0.001****	
	VTC Reinstatement _{adj}	0.377	0.089	0.001****	
	Delayed Recall	0.299	0.110	0.008**	

389 Note. Adj = Adjusted by relevant nuisance regressors; SE= standard error; VTC = ventral
390 temporal cortex; ANG = angular gyrus; ~ $p < 0.1$, * $p < 0.05$, ** $p < .01$, *** $p < .001$ **** $p <$
391 10^{-5}
392

393 *Individual Differences in Pattern Completion Predict Independent Measures of Memory*


394 Finally, we examined whether our task-based fMRI measures of pattern completion —
395 hippocampal activity and cortical reinstatement — explain individual differences in an
396 independent measure of episodic memory, using a delayed recall composite score collected

397 in a separate neuropsychological testing session (see **Methods**). Controlling for age and
398 sex, hippocampal activity ($\beta = 0.19, p < .01$; **Figure 5g**) and VTC reinstatement strength ($\beta =$
399 $0.21, p < .01$; **Figure 5h**) predicted delayed recall score; the relationship with ANG
400 reinstatement strength did not reach significance ($\beta = 0.14, p = .11$; **Figure 5i**; see **Figure**
401 **S7g-i** for partial plots). Further, as for exemplar-specific recall, we found that hippocampal
402 activity and VTC reinstatement strength explained unique variance in delayed recall
403 performance (hippocampus: $\beta = 0.16, p < .05$; VTC: $\beta = 0.20, p < .05$, adjusted $R^2 = .231$).


404 Given the observed relationships between this standardized neuropsychological
405 measure and the present indices of pattern completion, we asked whether delayed recall
406 score alone could account for the observed relationship between the neural measures and
407 exemplar-specific recall. When delayed recall score was added to the full model (see **Table**
408 **2, Step 5**), this measure explained additional variance in exemplar-specific recall (model
409 comparison: $F(1,94) = 7.45, p < .01$, adjusted $R^2 = 0.485$), but hippocampal activity and VTC
410 reinstatement strength remained significant predictors (hippocampus: $\beta = 0.335, p < 10^{-5}$;
411 VTC reinstatement: $\beta = 0.377, p < 10^{-5}$). Together, these results support the hypothesis that
412 individual differences in the integrity of pattern completion processes, indexed by univariate
413 and pattern-based task-related fMRI metrics, explain variance in memory performance
414 across established hippocampal-dependent assays of episodic memory, and do so in a
415 manner that isn't captured by simple standardized neuropsychological tests.

416
417
418
419
420
421
422

423

424

425

426

427

*Figure 5. Individual Differences in Pattern Completion Assays. (a-c) Effects of age on hippocampal activity (associative hit – correct rejection) and reinstatement strength (mean logits) in VTC and ANG during associative hits. (d-f) Independent of age, individual differences in hippocampal activity and reinstatement strength in VTC and ANG during associative hits significantly predict exemplar-specific recall. (g-i) Independent of age, individual differences in hippocampal activity and VTC reinstatement strength also explain significant variability in standardized delayed recall performance; the relation with ANG reinstatement did not reach significance. Scatterplots reflect raw values for each measure. See **Supplementary Results (Figure S7)** for partial plots controlling for relevant nuisance variables. Each point represents an individual participant. Plots also show linear model predictions (black line) and 95% confidence intervals (shaded area). VTC = ventral temporal cortex; ANG = angular gyrus.*

438

439

440

441 **Discussion**

442 Using univariate and multivariate fMRI, the current investigation characterizes the integrity of
443 hippocampal pattern completion during associative retrieval in a large cohort of putatively
444 healthy older adults. We provide novel evidence for unique contributions of hippocampal and
445 cortical indices of pattern completion to a) trial-by-trial differences in episodic remembering
446 in older adults, as well as b) age-related and age-independent individual differences in
447 episodic memory performance. Taken together, these results provide novel insights into the
448 neural mechanisms supporting episodic memory, as well as those driving variability in
449 remembering across older adults.

450 The present analyses of trial-level brain-behaviour relationships significantly build on
451 work in younger adults (10, 26), demonstrating that trial-wise relationships (a) between
452 hippocampal activity and cortical reinstatement and (b) between each of these neural
453 measures and memory behaviour are present later in the lifespan. While directionality is a
454 difficult to establish with fMRI, these results are consistent with models of episodic retrieval
455 wherein hippocampal pattern completion, triggered by partial cues, drives reinstatement of
456 event representations in the cortex, which supports episodic remembering and memory
457 guided decision making (4-5). Further bolstering this interpretation, the relationship between
458 hippocampal activity and associative retrieval success was qualitatively strongest in DG/CA3
459 (see **Supplement**), consistent with a key role of CA3 in initiating pattern-completion
460 dependent retrieval (4-8). Moreover, the present results provide novel evidence for stability
461 in the trial-wise relationship between hippocampal activity and (a) cortical reinstatement and
462 (b) associative retrieval success, as neither relationship varied as a function of age.

463 Consistent with the observed trial-level relationship between hippocampal activity
464 and associative retrieval success, we also demonstrate a positive relationship between the
465 magnitude of hippocampal activity during associative hits and associative memory
466 performance. Our findings complement and build on prior work (36), as we demonstrate that
467 this effect was observed across hippocampal subfields, including DG/CA3, and did not vary
468 significantly as a function of age. These results are compatible with proposals that the

469 relationship between hippocampal ‘recollection success’ effects and memory performance
470 remains stable across the lifespan (36), as well as more broadly, with proposals that
471 preservation of hippocampal function is important for the maintenance of episodic memory in
472 older adults over time (47-48). We note, however, that a negative relationship between
473 hippocampal retrieval activity and memory performance has also been observed in older
474 adults (e.g., 39, 42). Differences across studies may be related to (a) the paradigms and/or
475 contrasts employed (e.g., associative recollection vs. lure discrimination), (b) image
476 resolution (e.g., individual subfields vs. the whole hippocampus), or (c) the make-up of the
477 study population (e.g., cognitively normal or cognitively impaired; 49). Additional well-
478 powered studies of hippocampal retrieval dynamics in older adults are needed to assess the
479 degree to which these variables alter the relationship between hippocampal activity and
480 memory behaviour.

481 The present results also provide novel insights into the basis of mnemonic decisions
482 in older adults. Specifically, we demonstrate that trial-wise indices of reinstatement strength
483 — indexed using classifier-derived evidence and encoding-retrieval pattern similarity —
484 were tightly linked to memory behaviour, including response accuracy and speed. This
485 finding suggests that retrieval was not ‘all or none’, but likely graded (50-52). Indeed, while
486 participants were instructed during scanning to recollect the specific associate, correct
487 category judgments (agnostic to correct exemplar-specific recall) could nonetheless be
488 supported by retrieval of generic category information (i.e., a *place*), prototypical details
489 (e.g., a bridge), specific exemplar details (e.g., the Golden Gate Bridge), or even retrieval of
490 erroneous, but category consistent details (e.g., Niagara Falls). The category-level
491 reinstatement effects observed here likely reflect some combination of these retrieval
492 outcomes, as suggested by the strong correlation between post-scan exemplar-specific
493 recall and within-scan associative d' , along with the observation that the proportion of
494 specific exemplars recalled post-scan was generally lower than correct categorical
495 judgements during scanning (though the former undoubtedly declined due to the longer
496 retention interval and interference effects).

497 Beyond the strength of reinstatement, the present results cannot adjudicate the
498 nature of the details recalled. For example, both category- and exemplar-specific associative
499 hits could be supported by retrieval of semantic details (e.g., the Golden Gate Bridge),
500 perceptual details (e.g., the bridge was red), or some combination (e.g., vividly recalling the
501 image of the Golden Gate Bridge). One possibility, though speculative, is that VTC and ANG
502 support representations of distinct types of event features (e.g., perceptual features in VTC
503 and semantic features in ANG). This possibility is in line with existing theories (53-54) and
504 also with the present observation that reinstatement strength in VTC and ANG made
505 complementary contributions to retrieval success. Regardless of the precise nature of the
506 details recalled, we demonstrate that, as in younger adults (10, 44, 51), recovery of stronger
507 mnemonic evidence was associated with greater accuracy and faster responses, and this
508 was true for representations supported by VTC and ANG alike. This relationship may reflect
509 reduced demands on post-retrieval monitoring and selection processes and/or greater
510 confidence in the face of stronger mnemonic evidence. Interestingly, the strength of the trial-
511 level relationship between reinstatement strength and behaviour weakened with increased
512 age. This could be related to age-related changes in decision criteria, retrieval monitoring
513 ability, response strategies, or some combination of these factors. Future work is needed to
514 explore the specific neurocognitive basis of this intriguing effect, which likely involves
515 interactions between the medial temporal lobe and frontoparietal regions (26, 55).

516 Although we observed robust group-level cortical reinstatement effects during
517 associative hits, reinstatement strength declined with age, and partially mediated the
518 relationship between age and episodic memory. These data provide neuroimaging evidence
519 in support of proposals that age-related episodic memory decline is driven, in part, by a loss
520 of specificity or precision in mnemonic representations, a possibility that has been well-
521 supported by behavioural evidence (56-58). Importantly, the effect of age on reinstatement
522 strength, and the relationship between reinstatement strength and memory performance,
523 was observed after accounting for variance in encoding classifier performance, a putative
524 assay of cortical differentiation (i.e., the ability to establish distinct neural patterns associated

525 with different visual stimulus categories) during memory encoding. Thus, although we found
526 that encoding classifier strength was a strong predictor of reinstatement strength, consistent
527 with prior work (35) and existing proposals regarding dedifferentiation of cortical
528 representations in older adults (59-61), the present results suggest that the observed
529 variance in reinstatement strength does not simply reflect downstream effects of cortical
530 differentiation. Instead, variance in reinstatement strength likely also provides information
531 about the precision with which event representations are retrieved in older adults.

532 Interestingly, while cortical reinstatement is a putative read-out of pattern completion,
533 a possibility further supported by the present data, the hippocampal and cortical metrics
534 defined here explained unique variance in memory performance, both at the trial level and
535 across individuals. Indeed, these measures together explained nearly three times as much
536 variance in exemplar-specific associative recall as age alone (**Table 2**). One possibility is
537 that hippocampal activity and cortical reinstatement strength index distinct aspects of
538 recollection: retrieval success vs. retrieval precision, respectively (e.g., 52, 62). That is,
539 whereas increases in hippocampal activity may signal recollection of some event details, this
540 signal alone may not indicate the fidelity or precision with which the event is recollected.
541 Conversely, reinstatement strength likely provides more information about the contents of
542 recollection, including the specificity or precision of mnemonic representations (e.g., recall of
543 generic as opposed to exemplar-specific details), and perhaps even the nature of the details
544 recollected (i.e., perceptual vs semantic). Alternatively, representations reinstated in cortex
545 may be differentially affected by top-down goal representations and decision processes (44-
546 45, 55), which contribute unique variance in memory performance beyond that explained by
547 hippocampal-cortical event replay. Future work is needed to examine whether the unique
548 variance explained by cortical reinstatement relates to frontoparietal control and decision
549 processes in older adults.

550 Indeed, it is important to note that variability in episodic remembering, and indeed
551 variability in the strength of the present pattern completion metrics, is likely influenced by a
552 number of variables, only some of which are measured here. For example, aging may affect

553 other processes at retrieval, including elaboration of retrieval cues (63) and post-retrieval
554 monitoring and selection (61, 64), as well as factors at encoding, including the differentiation
555 of stimulus representations (59-61), goal-directed or sustained attention (65-66), and
556 elaborative or 'strategic' encoding processes (67-68). These variables could vary both within
557 individuals (i.e., across trials), as well as between individuals (e.g., trait level differences).
558 The manner in which these variables impact pattern completion processes at retrieval, or
559 make independent contributions to episodic remembering in older adults, is an important
560 direction for future work. Nevertheless, the present results provide compelling initial
561 evidence that (a) hippocampal and cortical indices of pattern completion play a central role
562 in determining whether individual events will be remembered or forgotten, (b) that predicted
563 relationships between hippocampal activity, reinstatement strength, and associative memory
564 retrieval can be observed even late in the lifespan, and (c) and that these neural metrics
565 explain unique variance in memory performance across individuals.

566 Hippocampal and cortical indices of pattern completion not only explained variance in
567 our primary associative memory measures, but also in delayed recall performance on
568 standardized neuropsychological tests — among the most widely used assays of episodic
569 memory in the study of aging and disease. The relationship between these measures,
570 collected during separate testing sessions, suggests that the neural indices derived from
571 task-based fMRI are tapping into stable individual differences, and may represent a
572 sensitive biomarker of hippocampal and cortical function. Critically, we also demonstrate that
573 these neural and neuropsychological test measures explained unique variance in
574 associative memory, together accounting for 50% of the variance in exemplar-specific recall
575 across individuals. This not only indicates that the present neural indices provide information
576 that cannot be garnered from paper and pencil tests alone, but also suggests that we can
577 combine these neural metrics with existing measurement tools to build more accurate
578 models to explain individual differences in memory performance in older adults. An important
579 direction for future work is to assess whether combining task-related neural measures, such
580 as those identified here, with other known biomarkers of brain health and disease risk (e.g.,

581 in vivo measures of amyloid and tau accumulation, hippocampal volume, white matter
582 integrity; 69-70) can further increase sensitivity for explaining individual differences in
583 memory performance, as well as predicting future disease risk and memory decline prior to
584 the emergence of clinical impairment.

585 Taken together, the present results significantly advance our understanding of
586 fundamental retrieval processes supporting episodic memory in cognitively normal older
587 adults. By exploring how neural indices of pattern completion vary — both across trials and
588 across individuals — these findings demonstrate that hippocampal activity and cortical
589 reinstatement during memory retrieval provide a partial account for why and when older
590 adults remember, and they predict which older adults will perform better than others across
591 multiple widely adopted assays of episodic memory. Our findings also underscore the
592 striking heterogeneity in brain and behaviour among cognitively normal older adults, and
593 lend support to the hypothesis that this high within-group variance likely contributes to the
594 wealth of mixed findings in the literature, particularly for traditional group-level comparisons
595 in the context of small-to-moderate sample sizes. Collectively, our findings illustrate how an
596 individual differences approach can advance understanding of the neurocognitive
597 mechanisms underlying when and which older adults are more likely to remember.

598

599 **Methods**

600 *Participants.* One hundred and five cognitively healthy older adults (aged 60-82 yrs; 65
601 female) participated as part of the Stanford Aging and Memory Study. Eligibility included:
602 normal or corrected-to-normal vision and hearing; right-handed; native English speaking; no
603 history of neurological or psychiatric disease; a Clinical Dementia Rating score of zero
604 (CDR; 71); and performance within the normal range on a standardized neuropsychological
605 assessment (see *Neuropsychological Testing*). Data collection spanned multiple visits:
606 Neuropsychological assessment was completed on the first visit and the fMRI session
607 occurred on the second visit, with the exception of nine participants who completed the fMRI
608 session on the same day as the neuropsychological testing session. Visits took place ~6.18

609 weeks apart on average (range = 1–96 days). Participants were compensated \$50 for the
610 clinical assessment and \$80 for the fMRI session. All participants provided informed consent
611 in accordance with a protocol approved by the Stanford Institutional Review Board. Data
612 from five participants were excluded from all analyses due to excess head motion during
613 scanning (see *fMRI Pre-processing*), yielding a final sample of 100 older adults (60-82 yrs;
614 61 female; see Table 1 for demographics).

615

616 *Neuropsychological Testing.* Participants completed a neuropsychological test battery
617 consisting of standardized tests assessing a range of cognitive functions, including episodic
618 memory, executive function, visuospatial processing, language, and attention. Scores were
619 first reviewed by a team of neurologists and neuropsychologists to evaluate cognition and
620 reach a consensus assessment that each participant was cognitively healthy, defined as
621 performance on each task within 1.5 standard deviations of demographically adjusted
622 means. Subsequently, a composite delayed recall score was computed for each participant
623 by (a) z-scoring the delayed recall subtest scores from the Logical Memory (LM) subtest of
624 the Wechsler Memory Scale, 3rd edition (WMS-III; 72), Hopkins Verbal Learning Test-
625 Revised (HVLT-R; 73), and the Brief Visuospatial Memory Test-Revised (BVMT-R; 74), and
626 (b) then averaging. This composite score declined with age ($\beta = -0.21$, $p < .005$), was lower
627 in males than females ($\beta = -0.35$, $p < .05$), but did not vary with years of education ($\beta = 0.07$,
628 $p > .31$).

629

630 *Materials.* Stimuli comprised words paired with colour photos of faces and scenes obtained
631 from online sources. For each participant, 120 words (out of 150 words total) were randomly
632 selected and paired with the pictures (60 word-face; 60 word-place) during a study phase,
633 and these 120 words plus the remaining 30 words (foils) appeared as cues during the
634 retrieval phase. Words were concrete nouns (e.g., “banana”, “violin”) between 4 and 8 letters
635 in length. Faces corresponded to famous people (e.g., “Meryl Streep”, “Ronald Reagan”)

636 and included male and female actors, musicians, politicians, and scientists. Places
637 corresponded to well-known locations (e.g., “Golden Gate Bridge”, “Niagara Falls”) and
638 included manmade structures and natural landscapes from a combination of domestic and
639 international locations.

640

641 *Behavioural Procedure.* Prior to scanning, participants completed a practice session that
642 comprised an abbreviated version of the task (12 word-picture pairs not included in the scan
643 session). This ensured that participants understood the task instructions and were
644 comfortable with the button responses. Participants had the option to repeat the practice
645 round multiple times if needed to grasp the instructions.

646 Next, concurrent with fMRI, participants performed an associative memory task
647 consisting of five rounds of alternating encoding and retrieval blocks (Figure 1). In each
648 encoding block, participants viewed 24 word-picture pairs (12 word-face and 12 word-place)
649 and were asked to intentionally form an association between each word and picture pair. To
650 ensure attention to the pairs, participants were instructed to indicate via button press
651 whether they were able to successfully form an association between items in the pair.
652 Following each encoding block, participants performed a retrieval task that probed item
653 recognition and associative recollection. In each block, 24 target words were interspersed
654 with 6 novel (foil) words; participants made a 4-way memory decision for each word.

655 Specifically, if they recognized the word and recollected the associated image, they
656 responded either ‘Face’ or ‘Place’ to indicate the category of the remembered image; if they
657 recognized the word but could not recollect sufficient details to categorize the associated
658 image, they responded ‘Old’; if they did not recognize the word as studied, they responded
659 ‘New’. Responses were made via right-handed button presses, with four different finger
660 assignments to the response options counterbalanced across participants. Using MATLAB
661 Psychophysics Toolbox (75), visual stimuli were projected onto a screen and viewed through
662 a mirror; responses were collected through a magnet-compatible button box.

663 During both encoding and retrieval blocks, stimuli were presented for 4s, followed by

664 an 8-s inter-trial fixation. During retrieval blocks, the probe word changed from black to
665 green text when there was 1s remaining, indicating that the end of the trial was approaching
666 and signaling participants to respond (if they had not done so already). After the MR scan
667 session, a final overt cued-recall test was conducted outside the scanner to evaluate the
668 degree to which participants were able to recollect the specific face or place associated with
669 each target word. On this post-test, participants were presented with studied words, in
670 random order, and asked to provide the name of the associate or, if not possible, a
671 description of the associate in as much detail as they could remember. The post-test was
672 self-paced, with responses typed out on a keyboard; participants were instructed to provide
673 no response if no details of the associate could be remembered.

674
675 *Memory Response Classification.* The fMRI retrieval trials were classified into six conditions:
676 associative hits (AH; studied words for which the participant indicated the correct associate
677 category), associative misses (AM; studied words for which the participant indicated the
678 incorrect associate category), item hits (IH; studied words correctly identified as 'old'), item
679 misses (IM; studied words incorrectly identified as 'new'), item false alarms (FAI; foils
680 incorrectly called 'old'), associative false alarms (FAA; foils incorrectly indicated as
681 associated with a 'face' or a 'place'), and correct rejections (CR; foils correctly identified as
682 'new'). Because the number of false alarms was low ($M = 5.1$, $SD = 4.7$), these trials were
683 not submitted to fMRI analysis.

684 In-scanner associative memory performance was estimated using a discrimination
685 index, associative d' . Hit rate was defined as the rate of correct category responses to
686 studied words (AH) and the false alarm rate was defined as the rate of incorrect associative
687 responses to novel words (FAA). Thus, associative $d' = Z('AH' | OLD / All OLD) - Z('FAA' |$
688 NEW / All NEW). We additionally calculated an old/new discrimination index to assess basic
689 understanding of and ability to perform the task. Here, hit rate was defined as the rate of
690 correct old responses to studied words, irrespective of associative memory (AH, AM, IH),
691 and the false alarm rate was defined as the rate of incorrect old responses to novel words

692 (FAA, FAI). Thus, old/new d' = $Z('AH' + 'AM' + 'IH' | OLD / All OLD) - Z('FAA' + 'FAI' | NEW /$

693 All NEW).

694 The post-test data were analysed using a semi-automated method. Participants'

695 typed responses were first processed with in house R code to identify exact matches to the

696 name of the studied image. Responses that did not include exact matches were flagged, and

697 subsequently assessed by a human rater, who determined the correspondence between the

698 description provided by the participant and the correct associate. We computed the

699 proportion of studied words for which the associate was correctly recalled (Exemplar

700 Correct/All Old). One participant did not complete the post-test, leaving 99 participants in all

701 analyses of the post-test data.

702

703 *MRI Data Acquisition.* Data were acquired on a 3T GE Discovery MR750 MRI scanner (GE

704 Healthcare) using a 32-channel radiofrequency receive-only head coil (Nova Medical).

705 Functional data were acquired using a multiband EPI sequence (acceleration factor = 3)

706 consisting of 63 oblique axial slices parallel to the long axis of the hippocampus (TR = 2 s,

707 TE = 30 ms, FoV = 215 mm x 215 mm, flip angle = 74, voxel size = 1.8 x 1.8 x 2 mm). To

708 correct for B0 field distortions, we collected two B0 field maps before every functional run,

709 one in each phase encoding direction. Two structural scans were acquired: a whole-brain

710 high-resolution T1-weighted anatomical volume (TR = 7.26 ms, FoV = 230 mm x 230 mm,

711 voxel size = 0.9 x 0.9 x 0.9 mm, slices = 186), and a T2-weighted high-resolution anatomical

712 volume perpendicular to the long axis of the hippocampus (TR = 4.2 s, TE = 65 ms, FOV =

713 220 mm, voxel size = 0.43 x 0.43 x 2 mm; slices = 29). The latter was used for manual

714 segmentation of hippocampal subfields and surrounding cortical regions (76).

715

716 *fMRI Pre-processing.* Data were processed using a workflow of FSL (77) and Freesurfer (78)

717 tools implemented in Nipype (79). Each timeseries was first realigned to its middle volume

718 using normalized correlation optimization and cubic spline interpolation. To correct for

719 differences in slice acquisition times, data were temporally resampled to the TR midpoint

720 using sinc interpolation. Finally, the timeseries data were high-pass filtered with a Gaussian
721 running-line filter using a cutoff of 128 s. The hemodynamic response for each trial was
722 estimated by first removing the effects of motion, trial artefacts (see **Supplementary**
723 **Methods**), and session from the timeseries using a general linear model. The residualized
724 timeseries was then reduced to a single volume for each trial by averaging across TRs 3-5
725 (representing 4-10s post-stimulus onset), corresponding to the peak of the hemodynamic
726 response function. To preserve the high resolution of the acquired data, the data were left
727 unsmoothed.

728 Images with motion or intensity artifacts were automatically identified as those TRs in
729 which total displacement relative to the previous frame exceeded 0.5mm or in which the
730 average intensity across the whole brain deviated from the run mean by greater than five
731 standard deviations. Runs in which the number of artifacts identified exceeded 25% of
732 timepoints, as well as runs in which framewise displacement exceeded 2mm, were
733 excluded. These criteria led to exclusion of data from five participants who exhibited excess
734 head motion across runs, as well as exclusion of one study and test run from an additional
735 participant. Across all included runs from 100 participants, an average of 2.4 (SD = 3.7)
736 encoding phase volumes (1.7% of volumes) and 2.6 (SD = 4.2) retrieval phase volumes
737 (1.5% of volumes) were identified as containing an artifact. Trials containing fMRI artifacts
738 were excluded from all analyses. To control for potential residual effects of head motion on
739 our primary variables of interest, we adjusted each variable of interest by mean framewise
740 displacement using linear regression (see **Supplementary Results**).

741 Using Freesurfer, we segmented the T1-weighted anatomical volume at the gray-
742 white matter boundary and constructed tessellated meshes representing the cortical surface
743 (78). Functional data from each run were registered to the anatomical volume with a six
744 degrees-of-freedom rigid alignment optimizing a boundary-based cost function (80). Finally,
745 runs 2-4 were resampled into the space of run 1 using cubic spline interpolation to bring the
746 data into a common alignment. All analyses were thus performed in participant native space,
747 avoiding normalization to a group template.

748

749 *Regions of Interest.* Our analyses focus specifically on hippocampal pattern completion
750 processes — via hippocampal univariate activity and multivariate cortical reinstatement
751 metrics — in the aging brain. Thus, analyses were conducted in three a priori regions of
752 interest (ROI), selected based on existing theoretical and empirical work to optimize the
753 measurement of this process. Analyses of task-evoked univariate activity were focused on
754 the hippocampus, whereas multivoxel pattern analyses were conducted in ventral temporal
755 cortex (VTC) and angular gyrus (ANG), two cortical areas that have been reliably linked to
756 cortical reinstatement in healthy younger adults (10, 25, 44-46). All ROIs were bilateral and
757 defined in participants' native space (**Figure 2**).

758 The hippocampal mask was defined manually using each participant's high-
759 resolution T2-weighted structural image using established procedures (76), and comprised
760 the whole hippocampus (see **Supplementary Results** for analysis of hippocampal
761 subfields). The VTC mask was composed of three anatomical regions: parahippocampal
762 cortex, fusiform gyrus, and inferior temporal cortex. The fusiform gyrus and inferior temporal
763 cortex masks were generated from each participant's Freesurfer autosegmentation volume
764 using bilateral inferior temporal cortex and fusiform gyrus labels. These were combined with
765 a manually defined bilateral parahippocampal cortex ROI, defined using established
766 procedures (76), to form the VTC mask. The ANG ROI was defined by the intersection of the
767 Freesurfer inferior parietal lobe label and the Default Network of the Yeo 7 network atlas
768 (81), defined on the Freesurfer average (fsaverage) cortical surface mesh. This intersection
769 was used to confine the ROI to the inferior parietal nodes of the Default Mode Network,
770 which predominantly encompasses ANG (45). To generate ROIs in participants' native
771 space from the fsaverage space label, we used the approach detailed in Waskom and
772 colleagues (55), which uses the spherical registration parameters to reverse-normalize the
773 labels, and then converts the vertex coordinates of labels on the native surface into the
774 space of each participant's first run using the inverse of the functional to anatomical

775 registration. Participant-specific ROIs were then defined as all voxels intersecting the
776 midpoint between the gray-white and gray-pial boundaries.

777

778 *Multivoxel Pattern Classification.* Our primary measure of cortical reinstatement during
779 memory retrieval was derived from multivoxel classification analysis. Classification was
780 implemented using Scikit-learn (82), nilearn (83), nibabel (84), and in house Python scripts,
781 and performed using L2-penalized logistic regression models as instantiated in the
782 LIBLINEAR classification library (regularization parameter C =1). These models were fit to
783 preprocessed BOLD data from VTC and ANG that were reduced to a single volume for each
784 trial by averaging across TRs 3-5. Prior to classification, the sample by voxel matrices for
785 each region were scaled across samples within each run, such that each voxel had zero
786 mean and unit variance. A feature selection step was also conducted, in which a subject-
787 specific univariate contrast was used to identify the top 250 voxels that were most sensitive
788 to each category (face, place) during encoding, yielding a set of 500 voxels over which
789 classification analyses were performed. Prior to each of 10 iterations of classifier training,
790 the data were subsampled to ensure an equal number of face and scene trials following
791 exclusion of trials with artefacts.

792 To first validate that classification of stimulus category (face/place) during encoding
793 was above chance for each ROI, we used a leave-one-run-out n-fold cross-validation
794 procedure on the encoding data. This yielded a value of probabilistic classifier output for
795 each trial, representing the degree to which the encoding pattern for a trial resembled the
796 pattern associated with a face or place trial. This output was converted to binary
797 classification accuracy indicating whether or not a given test trial was correctly classified
798 according to the category of the studied picture. Here we report the average classifier
799 accuracy across folds for each participant in each ROI.

800 To measure cortical reinstatement during memory retrieval, we trained a new
801 classifier on all encoding phase data, and then tested on all retrieval phase data. For each
802 retrieval trial, the value of probabilistic classifier output represented a continuous measure of

803 the probability (range 0-1) that the classifier assigned to the relevant category for each trial
804 (0 = certain place classification, 1 = certain face classification). For assessment of classifier
805 performance across conditions (associative hits, associative misses, item only hits, and item
806 misses) and ROI (VTC, ANG), we converted this continuous measure of classifier evidence
807 to binary classification accuracy, indicating whether or not a given retrieval trial was correctly
808 classified according to the category of the studied picture.

809 The significance of classifier performance for each condition and ROI was assessed
810 using permutation testing. We generated a null distribution for each participant by shuffling
811 the trial labels over 1000 iterations for each of the 10 subsampling iterations, calculating
812 mean classifier accuracy for each iteration. We then calculated the mean number of times
813 the permuted classifier accuracy met or exceeded observed classifier accuracy to derive a *p*
814 value indicating the probability that the observed classifier accuracy could arise by chance.

815 For trial-wise analyses relating cortical reinstatement strength to memory behaviour
816 (e.g., associative retrieval accuracy and reaction time) and other neural variables (e.g.,
817 hippocampal BOLD), a continuous measure of reinstatement strength was derived by
818 calculating the logits (log odds) of the probabilistic classifier output on each trial.
819 Reinstatement strength was signed in the direction of the correct associate for a given trial,
820 such that, regardless of whether the trial was a face or place trial, the evidence was positive
821 when the classifier guessed correctly, and negative when the classifier guessed incorrectly.
822 The magnitude of reinstatement strength was thus neutral with respect to which associate
823 category (face or place) was retrieved.

824
825 *Pattern Similarity Analysis.* To complement the classification analyses, we used pattern
826 similarity analyses to measure cortical reinstatement. This approach involved computing the
827 similarity (Pearson correlation) between trial-wise activity patterns extracted from ROIs
828 during encoding and retrieval (i.e., encoding-retrieval similarity; ERS). This analysis
829 approach affords the opportunity to not only examine reinstatement at the categorical level
830 (i.e., within-category ERS – between-category ERS) but also at the trial-unique item level

831 (i.e., within-event ERS – within-category ERS). For this analysis, we again used the
832 voxelwise activity patterns for each ROI, computing the correlation between encoding and
833 retrieval patterns separately for successful (i.e., associative hits) and unsuccessful (i.e.,
834 associative misses, item only hits, item misses) retrieval trials, such that the events being
835 compared (within-event, within-category, between-category) were matched on associative
836 retrieval success. All correlations were Fisher transformed before computing the mean
837 correlation between different events of interest.

838

839 *Statistical Analysis.* All statistical analyses were implemented in the R environment (version
840 3.4.4). Trial-wise analyses were conducted using mixed effects models (linear and logistic)
841 using the lmer4 statistical package (85). Each model contained fixed effects of interest, a
842 random intercept modeling the mean subject-specific outcome value, and a random slope
843 term modeling the subject-specific effect of the independent variable of interest (e.g.,
844 hippocampal activity, reinstatement strength). Models also contained relevant nuisance
845 regressors, including stimulus category, ROI encoding classifier strength (when
846 reinstatement strength (logits) was the independent or dependent variable), ROI univariate
847 activity in category-selective voxels (when reinstatement strength (logits) was the
848 independent variable or dependent variable); the significance of these variables was
849 explored in separate models (see **Supplementary Results**). Random slopes were
850 uncorrelated from random intercepts to facilitate model convergence. The significance of
851 effects within mixed-model regressions was obtained using log-likelihood ratio tests,
852 resulting in χ^2 values and corresponding *p*-values. A Wald *z*-statistic was additionally
853 computed for model parameters to determine simultaneous significance of coefficients within
854 a given model. All continuous variables were *z*-scored within participant across all trials prior
855 to analysis.

856 Individual differences analyses were conducted using multiple linear regression. In all
857 regression models, each neural variable was adjusted by the relevant nuisance regressors,
858 namely head motion (mean framewise displacement) and, where relevant, ROI encoding

859 classifier strength (mean logits). Age-independent models adjusted memory scores by age.
860 Main text figures depict raw values for interpretability (see **Supplementary Figures** for
861 partial plots). Hierarchical Regression was used to assess the relative contributions of each
862 independent variable to memory performance. F ratio statistics were used to determine
863 change in explained variance (R^2) at each step compared to the previous step. The
864 explanatory power of each regression model was evaluated descriptively using the
865 explained variance (adjusted R^2). All continuous variables were z-scored across participants
866 prior to analysis, producing standardized coefficients. All analyses used a two-tailed level of
867 0.05 for defining statistical significance.

868

869

870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921

References

1. Spencer WD, Raz N. 1995. Differential effects of aging on memory for content and context: A meta-analysis. *Psychol Aging*. 10:527–539
2. Rönnlund M, Nyberg L, Bäckman L, Nilsson LG. 2005. Stability, growth and decline in adult life-span development of declarative memory: Cross-sectional and longitudinal data from a population-based study. *Psychol Aging*. 20:3–18.
3. Old SR, Naveh-Benjamin M. 2008. Differential effects of age on item and associative measures of memory: A meta-analysis. *Psychol Aging*. 23:104–118.
4. Marr, D. 1971. Simple memory: a theory for archicortex. *Philos Trans R Soc Lond B BiolSci*. 262:23–81.
5. McClelland JL, McNaughton BL, O'Reilly RC. 1995. Why there are complementary learning systems in the hippocampus and neocortex: insights from the successes and failures of connectionist models of learning and memory. *Psychol Rev*. 102:419–457.
6. Tanaka KZ, Pevzner A, Hamidi AB, Nakazawa Y, Graham J, Wiltgen BJ. 2014. Cortical representations are reinstated by the hippocampus during memory retrieval. *Neuron*. 84: 347–354.
7. Staresina BP, Reber TP, Niedeik J, Boström J, Elger CE, Mormann F. 2019. Recollection in the human hippocampal-entorhinal cell circuitry. *Nature Comm*. 10:
8. Nakazawa K, Quirk MC, Chitwood RA, Watanabe M, Yeckel MF, Sun LD, ... Tonegawa S. 2002. Requirement for hippocampal CA3 NMDA receptors in associative memory recall. *Science*. 297:211-218.
9. Gelbard-Sagiv H, Mukamel R, Harel M, Malach R, Fried I. 2008. Internally generated reactivation of single neurons in human hippocampus during free recall. *Science*. 32: 96–101.
10. Gordon AM, Rissman J, Kiani R, Wagner AD. 2014. Cortical reinstatement mediates the relationship between content-specific encoding activity and subsequent recollection decisions. *Cereb Cortex*. 24: 3350–3364.
11. Lister JP, Barnes CA. 2009. Neurobiological changes in the hippocampus during normative aging. *Arch Neurol*. 66:829–833.
12. Leal SL, Yassa MA. 2013. Perturbations of neural circuitry in aging, mild cognitive impairment, and Alzheimer's disease. *Ageing Res Rev*. 12:823–831.
13. Eldridge L, Knowlton B, Furmanski C, Bookheimer S, Engel S. 2000. Remembering episodes: a selective role for the hippocampus during retrieval. *Nat Neurosci*. 3:1149–1152.
14. Dobbins IG, Rice HJ, Wagner AD, Schacter DL. 2003. Memory orientation and success: separable neurocognitive components underlying episodic recognition. *Neuropsychologia*. 41:318–333.
15. Yonelinas AP, Otten LJ, Shaw KN, Rugg MD. 2005. Separating the brain regions involved in recollection and familiarity in recognition memory. *J Neurosci*. 25:3002–3008.

922 16. Nyberg L, Habib R, McIntosh AR, Tulving E. 2000. Reactivation of encoding-related
923 brain activity during memory retrieval. *Proc Natl Acad Sci USA*. 97:11120–11124.
924
925 17. Wheeler ME, Petersen SE, Buckner RL. 2000. Memory's echo: vivid remembering
926 reactivates sensory-specific cortex. *Proc Natl Acad Sci USA*. 97:11125–11129.
927
928 18. Kahn I, Davachi L, Wagner AD. 2004. Functional-neuroanatomic correlates of
929 recollection: implications for models of recognition memory. *J Neurosci*. 24:4172–
930 4180.
931
932 19. Norman KA, Polyn SM, Detre GJ, Haxby JV. 2006. Beyond mindreading: multi-voxel
933 pattern analysis of fMRI data. *Trends Cogn Sci*. 10:424–430.
934
935 20. Kriegeskorte N, Mur M, Bandettini P. 2008. Representational similarity analysis—
936 Connecting the branches of systems neuroscience. *Frontiers in Systems
937 Neuroscience*. 2: 1–28.
938
939 21. Polyn SM, Natu VS, Cohen JD, Norman KA. 2005. Category-specific cortical activity
940 precedes retrieval during memory search. *Science*. 310:1963–1966.
941
942 22. Johnson JD, Rugg MD. 2007. Recollection and the reinstatement of encoding-related
943 cortical activity. *Cereb Cortex*. 17: 2507–2515.
944
945 23. Staresina BP, Henson RNA, Kriegeskorte N, Alink A. 2012. Episodic reinstatement in
946 the medial temporal lobe. *J Neurosci*. 32:18150–18156.
947
948 24. Ritchey M, Wing EA, LaBar KS, Cabeza R. 2012. Neural similarity between encoding
949 and retrieval is related to memory via hippocampal interactions. *Cereb Cortex*.
23:2818–2828.
950
951 25. Kuhl BA, Chun MM. 2014. Successful Remembering Elicits Event-Specific Activity
952 Patterns in Lateral Parietal Cortex. *J Neurosci*. 34:8051– 8060.
953
954 26. Gagnon SA, Waskom ML, Brown TI, Wagner AD. 2018. Stress Impairs Episodic
955 Retrieval by Disrupting Hippocampal and Cortical Mechanisms of Remembering.
956 *Cereb Cortex*. 29: 2947-296
957
958 27. Cabeza R, Daselaar SM, Dolcos F, Prince S E, Budde M, Nyberg L. 2004. Task-
959 independent and task-specific age effects on brain activity during working memory,
960 visual attention and episodic retrieval. *Cereb Cortex*. 14: 364–375.
961
962 28. Dennis NA, Kim H, Cabeza R. 2008. Age-related differences in brain activity during
963 true and false memory retrieval. *J Cog Neuro*. 20:1390-1402.
964
965 29. Wang TH, Johnson JD, de Chastelaine M, Donley BE, Rugg MD. 2016. The effects
966 of age on the neural correlates of recollection success, recollection-related cortical
967 reinstatement, and post-retrieval monitoring. *Cereb Cortex*. 26:1698–1714.
968
969 30. Trelle AN, Henson RN, Simons JS. 2019. Neural evidence for age-related
970 differences in representational quality and strategic retrieval processes. *Neurobiol
971 Aging*. 84:50-60.
972
973 31. McDonough IM, Cervantes SN, Gray SJ, Gallo DA. 2014. Memory's aging echo: age-
974 related decline in neural reactivation of perceptual details during recollection.
Neuroimage. 98:346–358.

975
976 32. Abdulrahman H., Fletcher PC, Bullmore E, Morcom A . 2015. Dopamine and memory
977 dedifferentiation in aging. *Neuroimage*. 153:211-220.
978
979 33. St-Laurent M, Abdi H, Bondad A, Buchsbaum ER. 2014. Memory reactivation in
980 healthy aging: evidence of stimulus-specific dedifferentiation. *J Neurosci*. 34:4175–
981 4186.
982
983 34. Folville A., Bahri MA, Delhaye E, Salmon E, D'Argembeau A, Bastin C. 2019. Age-
984 related differences in the neural correlates of vivid remembering. *Neuroimage*. doi:
985 <https://doi.org/10.1016/j.neuroimage.2019.116336>.
986
987 35. Johnson MK, Kuhl BA, Mitchell KJ, Ankudowich E, Durbin KA. 2015. Age-related
988 differences in the neural basis of the subjective vividness of memories: Evidence
989 from multivoxel pattern classification. *Cogn Affect Behav Neurosci*. 15: 644–661.
990
991 36. de Chastelaine M, Mattson JT, Wang TH, Donley BE, Rugg MD. 2016. The neural
992 correlates of recollection and retrieval monitoring: Relationships with age and
993 recollection performance. *Neuroimage*. 138:164-175.
994
995 37. Henson, RN, Campbell, KL, Davis, SM., Taylor, JR, Emery, T, Erzinclioglu, S, Cam-
996 CAN, Kieviet, R. 2016. Multiple determinants of lifespan memory differences.
997 *Scientific Reports*, 6,
998
999 38. Nyberg L, Lovden M, Riklund K, Lindenberger U, Backman L. 2012. Memory aging
1000 and brain maintenance. *Trends Cogn Sci*. 16:292-305.
1001
1002 39. Carr VA, Bernstein JD, Favila SE, Rutt BK, Kerchner GA, Wagner AD. 2017.
1003 Individual differences in associative memory among older adults explained by
1004 hippocampal subfield structure and function. *Proc Natl Acad Sci USA*. 114: 12075–
1005 12080.
1006
1007 40. Cabeza R, Albert M, Belleville S, Craik FIM, Duarte A, Grady CL, Lindenberger U,
1008 Nyberg L, Park DC, Reuter-Lorenz PA, Rugg MD, Steffener J, Rajah MN. 2018.
1009 Maintenance, reserve and compensation: the cognitive neuroscience of healthy
1010 ageing. *Nat Rev Neurosci*. 19: 701–710.
1011
1012 41. Yassa MA, et al. 2011. Pattern separation deficits associated with increased
1013 hippocampal CA3 and dentate gyrus activity in nondemented older adults.
1014 *Hippocampus* 21:968–979.
1015
1016 42. Reagh ZM, Noche JA, Tustison NJ, Delisle D, Murray EA, Yassa MA. 2018.
1017 Functional imbalance of anterolateral entorhinal cortex and hippocampal
1018 dentate/CA3 Underlies Age-Related Object Pattern Separation Deficits. *Neuron*
1019 97:1187–1198.
1020
1021 43. Grande X, Berron D, Horner AJ, Bisby JA, Duzel E, Burgess N. 2019. Holistic
1022 Recollection via pattern completion involves hippocampal subfield CA3. *J Neurosci*.
1023 39:8100-8111.
1024
1025 44. Kuhl BA, Johnson MK, Chun MM. 2013. Dissociable Neural Mechanisms for Goal-
1026 Directed Versus Incidental Memory Reactivation. *J Neurosci*. 33:16099– 16109.
1027

1028 45. Favila SE, Samide R, Sweigart SC, Kuhl BA (2018) Parietal representations of
1029 stimulus features are amplified during memory retrieval and flexibly aligned with top-
1030 down goals. *J Neurosci*. 38: 7809-7821

1031

1032 46. Lee H, Samide R, Richter FR, Kuhl BA. 2019. Decomposing Parietal Memory
1033 Reactivation to Predict Consequences of Remembering. *Cereb Cortex*. 29:3305-
1034 3318.

1035

1036 47. Persson J, Pudas S, Lind J, Kauppi K, Nilsson LG, Nyberg L. 2012. Longitudinal
1037 structure-function correlates in elderly reveal MTL dysfunction with cognitive decline.
1038 *Cereb Cortex*. 22:2297-2304.

1039

1040 48. Pudas S, Persson J, Josefsson M, de Luna X, Nilsson LG, Nyberg L. 2013. Brain
1041 characteristics of individuals resisting cognitive decline over two decades. *J
1042 Neurosci*. 33:8668-8677.

1043

1044 49. Dickerson BC, Sperling RA. 2008. Functional abnormalities of the medial temporal
1045 lobe memory system in mild cognitive impairment and Alzheimer's disease: Insights
1046 from functional MRI studies. *Neuropsychologia*. 46:1624-1635.

1047

1048 50. Mickes L, Wais PE, Wixted JT. 2009. Recollection is a continuous process:
1049 implications for dual process theories of recognition memory. *Psychol Sci*. 20:509-
1050 515.

1051

1052 51. Kuhl BA, Rissman J, Chun MM, Wagner AD. 2011. Fidelity of neural reactivation
1053 reveals competition between memories. *Proc Natl Acad Sci USA*. 108: 5903-5908.

1054

1055 52. Harlow IM, Yonelinas AP. 2016. Distinguishing between the success and precision of
1056 recollection. *Memory*. 24:114-127.

1057

1058 53. Bonnici HM, Richter FR, Yazar Y, Simons JS. 2016. Multimodal feature integration in
1059 the angular gyrus during episodic and semantic retrieval. *J Neurosci*. 36:5462-5471.

1060

1061 54. Binder JR, Desai RH. 2011. The neurobiology of semantic memory. *Trends Cogn
1062 Sci*. 15:527-536.

1063

1064 55. Waskom ML, Kumaran D, Gordon AM, Rissman J, Wagner AD. 2014. Frontoparietal
1065 representations of task context support the flexible control of goal-directed cognition.
1066 *J Neurosci*. 34:10743-10755.

1067

1068 56. Luo L, Craik FIM. 2009. Age differences in recollection: Specificity effects at retrieval.
1069 *J Mem Lang*. 60:421-436.

1070

1071 57. Trelle, AN, Henson RN, Green DAE, Simons JS. 2017. Declines in representational
1072 quality and strategic retrieval processes contribute to age-related increases in false
1073 recognition. *J Exp Psychol Learn*. 43:1883-1897.

1074

1075 58. Korkki SM, Richter FR, Jayarathnarajah P, Simons JS. 2018. Healthy aging reduces
1076 the precision of episodic memory retrieval. doi: <http://dx.doi.org/10.1101/468579>.

1077

1078 59. Voss MW, Erickson KI, Chaddock L, Prakash RS, Colcombe SJ, Morris KS,
1079 Doerkens S, Hu L, McAuley E, Kramer AF. 2008. Dedifferentiation in the visual
1080 cortex: An fMRI investigation of individual differences in older adults. *Brain Res*.
1081 1244:121-131.

1082

1083 60. Carp J, Park J, Polk TA, Park DC. 2011. Age differences in neural distinctiveness
1084 revealed by multivoxel pattern analysis. *Neuroimage*. 56:736-743.

1085
1086 61. Trelle AN, Henson RN, Simons JS. 2019. Neural evidence for age-related
1087 differences in representational quality and strategic retrieval processes. *Neurobiol
1088 Aging*. 84:50-60.

1089
1090 62. Richter FR, Cooper RA, Bays PM, Simons JS. 2016. Distinct neural mechanisms
1091 underlie the success, precision, and vividness of episodic memory. *eLife*. 5:e18260.

1092
1093 63. Morcom AM, Rugg MD. 2004. Effects of age on retrieval cue processing as revealed
1094 by ERPs. *Neuropsychologia*. 42:1525–1542.

1095
1096 64. McDonough IM, Wong JT, Gallo DA. 2013. Age-related differences in prefrontal
1097 cortex activity during retrieval monitoring: testing the compensation and dysfunction
1098 accounts. *Cereb Cortex*. 23:1049–1060.

1099
1100 65. Geerligs L, Saliasi E, Maurits NM, Renken RJ, Lorist MM. 2014. Brain mechanisms
1101 underlying the effects of aging on different aspects of selective attention.
1102 *Neuroimage*. 91:52-62.

1103
1104 66. Hultsch DF, MacDonald SWS, Dixon RA. 2002. Variability in reaction time
1105 performance of younger and older adults. *J Gerontol B Psychol Sci Soc Sci* 57:101-
1106 115.

1107
1108 67. Luo L, Hendriks T, Craik FIM. 2007. Age differences in recollection: Three patterns of
1109 enhanced encoding. *Psychol Aging*. 22:269–280.

1110
1111 68. Trelle AN, Henson RN, Simons JS. 2015. Identifying age-invariant and age-limited
1112 mechanisms for enhanced memory performance: Insights from self-referential
1113 processing in younger and older adults. *Psychol Aging*. 30: 324-333.

1114
1115 69. Hedden T, Schultz AP, Rieckmann A, Mormino EC, Johnson KA, Sperling RA,
1116 Buckner RL. 2016. Multiple Brain Markers are Linked to Age-Related Variation in
1117 Cognition. *Cereb Cortex*. 26:1388–400.

1118
1119 70. Jack CR Jr, Bennett DA, Blennow K, Carrillo MC, Dunn B, Haeberlein SB, Holtzman
1120 DM, Jagust W, Jessen F, Karlawish J et al. 2018. NIA-AA research framework:
1121 toward a biological definition of Alzheimer’s disease. *Alzheimers Dement*. 14:535-
1122 562

1123
1124 71. Morris, J.C. 1993. The Clinical Dementia Rating (CDR): Current version and scoring
1125 rules. *Neurology*, 43(11), 2412-2414.

1126
1127 72. Wechsler, 1997. Wechsler Memory Scale Logical Memory Test.

1128
1129 73. Brandt, 1991. Hopkins Verbal Learning Test-Revised (HVLT-R).

1130
1131 74. Benedict, 1997. Brief Visuospatial Memory Test-Revised (BVMT-R).

1132
1133 75. Brainard, DH. 1997. The psychophysics toolbox. *Spaialt Vision*. 10:433–436.

1134
1135 76. Olsen RK, Nichols EA, Chen J, Hunt JF, Glover GH, Gabrieli JDE, Wagner AD.
1136 2009. Performance-related sustained and anticipatory activity in human medial
1137 temporal lobe during delayed match-to-sample. *J Neurosci*. 29:11880–11890.

1138
1139 77. Smith SM, Jenkinson M, Woolrich MW, Beckmann CF, Behrens TE,
1140 Johansen-Berg H, Bannister PR, De Luca M, Drobniak I, Flitney DE,
1141 Niazy RK, Saunders J, Vickers J, Zhang Y, De Stefano N, Brady JM, Matthews PM.
1142 2004. Advances in functional and structural MR image analysis and implementation
1143 as FSL. *Neuroimage*. 23:S208–S219.

1144
1145 78. Dale AM, Fischl B, Sereno MI. 1999. Cortical surface-based analysis I—segmentation
1146 and surface reconstruction. *Neuroimage*. 9:179 –194.

1147
1148 79. Gorgolewski K, Burns CD, Madison C, Clark D, Halchenko YO, Waskom
1149 ML, Ghosh SS. 2011. Nipype: a flexible, lightweight and extensible neuroimaging
1150 data processing framework in python. *Front Neuroinform*. 5:13.

1151
1152 80. Greve DN, Fischl B. 2009. Accurate and robust brain image alignment using
1153 boundary-based registration. *Neuroimage* 48:63–72.

1154
1155 81. Yeo BTT, Krienen FM, Sepulcre J, Sabuncu MR, Lashkari D, Hollinshead M,
1156 Roffman JL, Smoller JW, Zöllei L, Polimeni JR, Fischl B, et al. 2011. The
1157 organization of the human cerebral cortex estimated by intrinsic functional
1158 connectivity. *J Neurophysiol*. 106:1125–1165.

1159
1160 82. Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, Blondel M,
1161 Prettenhofer P, Weiss R, Dubourg V, Vanderplas J. 2011. Scikit-learn: machine
1162 learning in Python. *J Machine Learn Res*. 12:2825–2830.

1163
1164 83. Abraham A, Pedregosa F, Eickenberg M, Gervais P, Mueller A, Kossaifi J, Gramfort
1165 A, Thirion B, Varoquaux G. 2014. Machine learning for neuroimaging with scikit-
1166 learn. 1–10

1167
1168 84. Brett M, Hanke M, Cipollini B, Côté MA, Markiewicz C, Gerhard S, Garyfallidis E.
1169 2016. nibabel: 2.1.0 Zenodo. doi: <http://doi.org/10.5281/zenodo.60808>

1170
1171 85. Bates D, Maechler M, Bolker B, Walker S. 2015. Fitting Linear Mixed-Effects Models
1172 Using lme4. *J Stat Softw*. 67:1–48.

1173
1174
1175
1176