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Abstract

Normative modelling is an emerging method for quantifying how individuals deviate from the
healthy populational pattern. Several machine learning models have been implemented to
develop normative models to investigate brain disorders, including regression, support vector
machines and Gaussian process models. With the advance of deep learning technology, the
use of deep neural networks has also been proposed. In this study, we assessed normative
models based on deep autoencoders using structural neuroimaging data from patients with
Alzheimer’s disease (n=206) and mild cognitive impairment (n=354). We first trained the
autoencoder on an independent dataset (UK Biobank dataset) with 11,034 healthy controls.
Then, we estimated how each patient deviated from this norm and established which brain
regions were associated to this deviation. Finally, we compared the performance of our nor-
mative model against traditional classifiers. As expected, we found that patients exhibited
deviations according to the severity of their clinical condition. The model identified medial
temporal regions, including the hippocampus, and the ventricular system as critical regions
for the calculation of the deviation score. Overall, the normative model had comparable
cross-cohort generalizability to traditional classifiers. In order to promote open science, we
are making all scripts and the trained models available to the wider research community.
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1. Introduction

Normative modelling is an emerging method for quantifying and describing how individ-
uals deviate from the expected pattern learned from a population or large sample (Marquand
et al., 2016). Recently, this approach has been applied to neuroimaging data to investigate
a number of brain disorders, such as attention deficit hyperactivity disorder (Kia and Mar-
quand, 2018; Wolfers et al., 2018), autism spectrum disorder (Pinaya et al., 2019; Zabihi
et al., 2019), schizophrenia (Kia and Marquand, 2018; Pinaya et al., 2019; Wolfers et al.,
2018) and dementia (Huizinga et al., 2018; Ziegler et al., 2014). The procedure of normative
modelling used in these studies has two steps: (i) first, statistical models are estimated to
characterise the typical brain data from a reference cohort; (ii) then, the estimated model
is applied to a target clinical cohort in order to quantify the variation (e.g. due to the effect
of brain disorders).

Many statistical models have been proposed for normative modelling, including regres-
sion, support vector machines and Gaussian process modelling (for an extensive list, see
Marquand et al. 2019). In Pinaya et al. (2019), we proposed a normative modelling ap-
proach based on the use of deep autoencoders to evaluate psychiatric patients. The use of
a deep learning approach (LeCun et al., 2015; Vieira et al., 2020) enables models to learn
multiple levels of representation about the intricate structure of the data and identify the
most important morphological characteristic of the healthy brain. In addition, in Pinaya
et al. (2019), the models were able to detect deviations at the level of the individual, with
patients with schizophrenia and patients with autism spectrum disorder presenting values
significantly higher than the healthy controls (HC).

Similar to psychiatric disorders, the clinical interpretation of magnetic resonance imaging
scans can be challenging in the context of neurodegenerative disorders, as brain alterations
may be difficult to distinguish from those related to healthy ageing. The identification of
disease-related alterations can be particularly tricky in the early stages of a disorder. For this
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reason, there is a grown interest in the development of methods for quantifying deviations of
regional brain volumes that can discriminate between healthy and pathological ageing, with
the ultimate aim of improving diagnostic and prognostic assessment of neurodegenerative
disorders (Brewer, 2009). Here, we used the autoencoder normative method (Pinaya et al.,
2019) to evaluate the most common type of dementia in the elderly worldwide, Alzheimer’s
disease (AD).

First, we trained the normative models using a large number of HC subjects (>11,000
participants). Then, we assessed the performance of these models using data from patients
with a diagnosis of mild cognitive impairment (MCI), the prodromal stage to AD, and
patients with a diagnosis of AD. This assessment involved calculating the deviation, i.e.
the extent to which subjects deviate from the norm, in five additional datasets composed
of patients with MCI, patients with AD, and HC subjects. We had two main hypotheses.
First, we hypothesised that the method would be robust and sensitive enough to create
deviation values that reflect the severity of the brain anatomical alterations due to the
disease, i.e. that individuals with AD would deviate from normality more than those with
MCI. Second, we hypothesised that the main brain regions driving the observed deviation
would include the medial temporal cortex and the ventricular system, consistent with the
results of previous neuroimaging studies of MCI and AD (Busatto et al., 2008; Pini et al.,
2016). Finally, we compared the performance of the normative approach against traditional
classifiers to discriminate the patient groups from the HC group.

2. Methods

2.1. Datasets

In our analysis, we used six datasets: the UK Biobank (Sudlow et al., 2015), the
Alzheimer’s Disease Neuroimaging Initiative (ADNI) (Mueller et al., 2005), the Australian
Imaging Biomarkers and Lifestyle Study of Ageing (AIBL) (Ellis et al., 2009), the Alzheimer’s
Disease Repository Without Borders (ARWiBo) (Frisoni et al., 2009; Galluzzi et al., 2010),
the Open Access Series of Imaging Studies: Cross-Sectional (OASIS-1) (Marcus et al., 2007),
and the Minimal Interval Resonance Imaging in Alzheimer’s Disease (MIRIAD) (Malone
et al., 2013).

The UK Biobank is a study that aims to follow the health and well-being of 500,000
volunteer participants across the United Kingdom. From these participants, a subsample
was chosen to collect multimodal imaging, including structural neuroimaging. Here, we
used an early release of the project’s data comprising of 11,034 HC participants. The
inclusion criteria for the present study were: a) subjects who had the data collected in
the same MRI scanner (from Cheadle centre), b) age between 47 to 73 years old. The
only exclusion criterion was previous hospitalization associated with the diagnosis of mental
and behavioural disorders, disease of the nervous system, cerebrovascular diseases, benign
neoplasm of meninges, brain and other parts of the central nervous system, or injuries to
the head. More details about the dataset can be found elsewhere (Alfaro-Almagro et al.,
2018; Elliott and Peakman, 2008; Miller et al., 2016; Sudlow et al., 2015).
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The ADNI consortium started in 2003 as a public-private partnership, led by Principal
Investigator Michael W. Weiner. Its goal was to verify whether different neuroimaging
biomarkers and neuropsychological assessments can be combined to measure the progression
of MCI and to study the development of AD (for more up-to-date information, see http:

//www.adni-info.org). In this study, we included the structural MRI collected during the
ADNI GO, ADNI 2 and ADNI 3 phases. Similar to UK Biobank, we included only subjects
with age between 47 to 73 years old. The final dataset comprised of 517 subjects, where 212
were HC, 159 were patients with early MCI (EMCI), 82 were patient with late MCI (LMCI),
and 64 were patients with AD. In the ADNI datasets, participants were assigned to these
MCI stages based on different levels of impairment on a single episodic memory measure,
with the EMCI group showing milder episodic memory impairment than the LMCI group
(Aisen et al., 2010; Edmonds et al., 2019).

The AIBL dataset was developed to enhance the understanding of the pathogenesis of
AD, concentrating on its early diagnosis (more details can be found in Ellis et al. 2009).
Here, we included the structural MRI of subjects between 47 to 73 years old, to match the
age range of the UK Biobank dataset. The final group was composed of 346 subjects, where
262 were HC, 46 were patients with MCI (stage not known), and 38 were patients with AD.

The ARWiBo is a cross-sectional dataset including data from patients and controls en-
rolled at the Scientific Institute for the Research and Care of Alzheimer’s Disease [Istituto
di Ricovero e Cura a Carattere Scientifico (IRCCS) Centro San Giovanni di Dio Fatebene-
fratelli, Brescia, Italy]. A multidisciplinary team of neurologists, neuroscientists, image
analysists, neurophysiologists, and geneticists are involved in the assessment of patients.
As part of their assessment, participants undergo blood drawing (for APOE genotyping),
clinical and cognitive evaluations as well as high-resolution MRI scanning (more details can
be found in Frisoni et al. 2009 and Galluzzi et al. 2010). Here, we included the structural
MRI of subjects between 47 to 73 years old, to match the age range of the UK Biobank
dataset. The resulting group was composed of 319 subjects, including 215 HC, 67 patients
with MCI (stage not known), and 37 patients with AD.

The OASIS-1 dataset is the result of a collaborative effort of investigators from a single
acquisition site supported by the National Institute on Aging (NIA), the Howard Hughes
Medical Institute, the Biomedical Informatics Research Network (BIRN) and the Wash-
ington University Alzheimer’s Disease Research Center [Alzheimer’s Disease Research Cen-
ter (ADRC)]. This collaborative effort aimed to create a freely available MRI dataset for
the wider scientific community. The original dataset consisted of a cross-sectional collec-
tion of subjects aged 18 to 96. It included participants over the age of 60 who had re-
ceived a clinical diagnosis of very mild to moderate AD (for more information, please see
http://www.oasis-brains.org). In our analysis, we selected data collected from individu-
als who were between 47 to 73 years old, to match the age range of the UK Biobank dataset.
The resulting group was composed of 78 subjects, including 41 HC and 37 patients with
AD.

The MIRIAD dataset was designed to establish the minimal interval over which it would
be feasible to undertake clinical trials in AD using atrophy measured from longitudinal MRI
as an outcome measure (Malone et al., 2013). Here, we included the structural MRI of
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subjects between 47 to 73 years old, to match the age range of the UK Biobank dataset.
The resulting group was composed of 48 subjects, including 18 HC and 30 patients with
AD.

In the present study, we used the UK Biobank set to train the autoencoders and the
ADNI, AIBL, ARWiBo, OASIS-1, and MIRIAD datasets to assess the normative model
performance on data from patients with MCI and AD. To perform comparisons between HC
and patient groups, we ensured that there were no significant statistical differences regarding
age and sex in all three clinical datasets. We assessed each dataset independently using the
ANOVA test to verify any differences in age and the Chi-square test of homogeneity to
investigate differences in the sex ratios between groups (Table 1 and 2).

Table 1: Demographic information for the subjects from the UK Biobank dataset, the Alzheimer’s Disease
Neuroimaging Initiative (ADNI) dataset, and the Australian Imaging Biomarkers and Lifestyle Study of
Ageing (AIBL) dataset. We used ANOVA test and the chi-square test of homogeneity to test for significant
differences in age and sex between healthy controls and patients. Abbreviations: HC = healthy control;
EMCI = early mild cognitive impairment; LMCI = late mild cognitive impairment; AD = Alzheimer’s
disease; MCI = mild cognitive impairment; SD = standard deviation.

UK
BIOBANK
n=11,034

ADNI
n=517 p

AIBL
n=346 p

HC
n=212

EMCI
n=159

LMCI
n=82

AD
n=64

HC
n=262

MCI
n=46

AD
n=38

Age, y .87 .28
Mean±SD 61.6±7.0 66.6±3.7 66.4±4.2 66.2±5.1 66.6±5.4 68.2±3.2 68.2±3.6 67.3±5.2
Range [47, 73] [56, 72] [56, 73] [56, 73] [56, 73] [60, 73] [56, 73] [55, 73]

Sex, n (%) .25 .15
Men 5180 (47) 90 (42) 72 (45) 40 (49) 36 (56) 113 (43) 19 (41) 17 (45)
Women 5854 (53) 122 (58) 87 (55) 42 (51) 28 (44) 149 (57) 27 (59) 21 (55)

2.2. MRI Processing

We used the FreeSurfer software (version 6.0) to estimate the brain regions’ volumes from
the T1 weighted images. This estimation was performed using the “recon-all” command
(see Fischl 2012 and Fischl et al. 2002, for more information). During this processing,
the cortical surface of each hemisphere was parcellated according to the Desikan-Killiany
atlas (Desikan et al., 2006) and anatomical volumetric measures were obtained via a whole-
brain segmentation procedure (Aseg atlas) (Fischl et al., 2002). The final data included the
cortical volume for each of the 68 cortical subregions (34 per hemisphere) and the volume
of 33 neuroanatomical structures, totalling 101 subregions/structures (the complete list is
presented in the supplementary materials).

2.3. Normative model

In this paper, we developed the normative model using the adversarial autoencoder
(AAE; Figure 1) (Makhzani et al., 2015; Pinaya et al., 2020). As an autoencoder, this
neural network has an encoder and a decoder. The function of the encoder is to take in an
input x and map it into a latent encoding space, creating a latent code h. Then, the goal of
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Table 2: Demographic information for the subjects from the Alzheimer’s Disease Repository Without Borders
(ARWiBo) dataset, the Open Access Series of Imaging Studies: Cross-Sectional (OASIS-1) dataset, and the
Minimal Interval Resonance Imaging in Alzheimer’s Disease (MIRIAD) dataset. We used ANOVA test and
the chi-square test of homogeneity to test for significant differences in age and sex between healthy controls
and patients. Abbreviations: HC = healthy control; AD = Alzheimer’s disease; MCI = mild cognitive
impairment; SD = standard deviation.

ARWiBo
n=319 p

OASIS-1
n=78 p

MIRIAD
n=48 p

HC
n=215

MCI
n=67

AD
n=37

HC
n=41

AD
n=37

HC
n=18

AD
n=30

Age, y .16 .07 .71
Mean±SD 65.1±4.4 66.4±5.7 65.1±6.0 68.2±3.8 69.7±3.1 66.7±4.1 66.2±4.6
Range [57, 73] [47, 73] [50, 73] [61, 73] [62, 73] [59, 73] [56, 73]

Sex, n (%) .70 .30 .76
Men 86 (40) 23 (34) 14 (38) 11 (27) 14 (38) 7 (39) 13 (43)
Women 129 (60) 44 (66) 23 (62) 30 (73) 23 (62) 11 (61) 17 (57)

the decoder is to reconstruct the input data based on the latent code. The AAE is a blend of
this autoencoder framework with adversarial training, which is used in generative adversarial
networks modelling (Goodfellow et al., 2014). This autoencoder uses the adversarial training
to shape the distribution of the latent code to look similar to a predefined prior distribution.
The AAE achieves this desired distribution by incorporating a discriminator network into its
structure. In this scheme, the discriminator receives two types of inputs: random numbers
sampled from the desired prior distribution, and the latent code. During the training process,
the discriminator will make predictions regarding whether its input data was sampled from
the prior distribution or the latent code. The adversarial training forces the encoder to
produce a latent code space that can fool the discriminator into predicting that the encoded
samples are just another sample from the prior distribution.

In this study, we trained the AAE to codify and reconstruct the data of HC subjects. The
main idea of this normative approach is that, since the AAE only learns how to reconstruct
images from HC individuals, it will be less precise at mapping images from patients, which
differ due to the pathological mechanisms of the disorder. As a result, the difference between
the reconstructed data and the original data will be larger in patients than HC individuals.

Regarding our model architecture, we used an encoder with two hidden layers with 100
neurons, and a latent code with a size of 20 neurons. The decoder and the discriminator
had a similar structure (two hidden layers with 100 neurons). All hidden layers had a leaky
ReLU non-linearity (Maas et al., 2013). The latent code and the decoder’s output layer had
a linear activation function.

2.4. Normative model training

To train the autoencoder, first, we performed the pre-processing of the brain features.
This involved estimating the relative brain region volumes for each subject by dividing the
original brain region volumes by the total intracranial volume. Then, we normalised the
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Figure 1: Structure of the normative model based on adversarial autoencoders. In this configuration, the
subject data is inputted into the encoder and then mapped to the latent code. This latent code is fed to
the decoder with the demographic data, and then the decoder generates a reconstruction of the original
data. During the training of the model, the discriminator predicts if its input data came from the latent
code or if it was randomly sampled from the chosen prior distribution (e.g. Gaussian distribution). Based
on these predictions, the adversarial autoencoder forces the encoder to produce a latent code similar to
the prior distribution selected. Since the model is trained on healthy controls data, it is expected that it
can reconstruct similar data relatively well, yielding a small reconstruction error. However, the model is
expected to generate a high error when processing data affected by unseen underlying mechanisms, e.g.
pathological mechanisms.

relative brain region volumes across all the participants in the training set. In this step,
we performed a normalisation robust to outliers by subtracting the median value of the
relative brain region volume and then scaling the data according to its interquartile range.
Centering and scaling was done independently for each brain region. The same relevant
statistics (median and interquartile range) were later used to normalise the data from the
clinical datasets before feeding them to the model.

In our analyses, we used a conditioned AAE (Makhzani et al., 2015). This type of au-
toencoder allows us to influence the model’s reconstruction using the demographic variables,
i.e. age and sex. To input these variables into the model, we transformed age and sex into
one-hot encoding vectors. After this transformation, each subject has an age vector with 27
positions, where each position corresponds to a year within the range of 47-73 years. In this
vector, all positions have value zero except the one that indicates the subject’s age which has
a value equal to 1. The subject’s sex was represented in a one-hot encoded vector with two
positions, one for male and one for female. The AAE’s decoder used these vectors together
with the latent code to reconstruct the brain data. This architecture forces the network to
disentangle the label information from the latent code (Makhzani et al., 2015).

With the features pre-processed and the conditioning data prepared, we trained the
autoencoder to minimise the mean squared value of its reconstruction error using Adam
optimizer (Kingma and Ba, 2014) for 200 epochs. A minibatch approach was used in this
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gradient descent-based optimizer, with a batch size of 256. The model was trained with
a cyclical learning rate (Smith, 2017), which allows convergence of the training with fewer
epochs. We started using a base learning rate with a value of 0.0001 and a maximum learning
rate value of 0.005, chosen using the “LR Range Test” (Smith, 2018). The learning rate
cycle had a basic triangular shape with an amplitude decaying (gamma = 0.98).

In this study, we accessed the robustness of the autoencoder approach by training it
with different simulated sets using the bootstrapping as the resampling method. We created
1,000 bootstrapped sets (each one with n = 11,032) by sampling with replacement from the
UK Biobank. These bootstrapped sets were used to train the AAE. With this resampling
method, we calculated: the value of the mean deviation (section 2.5) for each group from the
ADNI, AIBL, ARWiBo, OASIS-1, and MIRIAD datasets, the discriminative performance of
the normative approach (section 2.5), and the deviation from normality of each brain region
(section 2.6).

2.5. Analysis of the observed deviations

Similar to Pinaya et al. (2019), we processed the data of each subject using the AAE,
and we calculated the mean squared error between the reconstruction and the inputted data
as the metric of brain deviation (Eq. 1).

observed deviation =
1

number of regions

number of regions∑
i=1

(xi − x̂i)
2 (1)

where xi is the normalised value of the brain region i, x̂i is the autoencoder reconstructed
value of the brain region i, and number of regions is the number of cortical regions and
neuroanatomical structures used (i.e. number of regions = 101).

In each iteration of the bootstrap method, we used the trained autoencoder to obtain the
deviation metric of the subjects from the ADNI, AIBL, ARWiBo, OASIS-1, and MIRIAD
datasets. Then, we calculated the difference between the mean deviation scores of each pair
of groups. We identified a significant difference between groups if the confidence interval
(95% of confidence) of this difference did not include the zero. Besides, we used the subjects’
deviations to obtain the discriminative performance of the autoencoder approach, measured
by the area under the receiver operating characteristic curve (AUC).

2.6. Brain regions deviations

The autoencoder approach can quantify how much each brain region deviated from nor-
mality and contributed to the observed deviation. These values were obtained by measuring
the difference between the inputted value and its reconstruction. In our study, we quantified
the deviation for each subject from the ADNI, AIBL, ARWiBo, OASIS-1, and MIRIAD
datasets. Then, in each iteration of the bootstrap method, we calculated the effect size of
each brain region deviation – using Cliff’s delta (Cliff, 1993) value - between the HC group
and each patient group.
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2.7. Comparison against traditional machine learning classification

A further aim of the present study was to compare the performance of our normative
model against a traditional classification approach. To measure the performance of the clas-
sifiers, we calculated the AUC using the .632+ bootstrap method (Efron and Tibshirani,
1997) with 1,000 iterations. Each clinical dataset (ADNI, AIBL, ARWiBo, OASIS-1, and
MIRIAD) was analysed independently using the HC and patient groups to train the classi-
fiers. Besides, the analysis was performed as multiple binary classifications between HC and
each clinical group (e.g. HC versus LMCI).

In each iteration, first, we created the bootstrapped set by sampling the original data
(from ADNI, AIBL, ARWiBo, OASIS-1, and MIRIAD datasets) with replacement. This
bootstrapped set had the same size as the original dataset (for example, when analysing
the ADNI dataset to classify healthy controls and patients with Alzheimer’s disease, the
bootstrapped set had 212+64=276 subjects), and it contained repeated subjects (due to
replacement). For each iteration, the subjects not included in the bootstrapped set were
used as the out-of-bag set (i.e. test set).

Next, we obtained the relative brain region volumes of each subject by dividing the
original volume by the total intracranial volume. Then, we normalised the values of the
relative brain volumes across the subjects. In this normalisation step, we removed the
median value of the brain regions and scaled the data according to the interquartile range.
Centering and scaling was done independently for each brain region. The same relevant
statistics (median and interquartile range) were later used to normalise the out-of-bag set.

To perform the classification analysis, we used a relevance vector machine (RVM) (Tip-
ping, 2000) with a linear kernel. The RVM is a Bayesian treatment of identical functional
form to the Support Vector Machines (SVM) (Cortes and Vapnik, 1995). One advantage
of the RVM form over the SVM is that it is not necessary to estimate the error/margin
trade-off parameter ’C’. After we trained the RVM on the bootstrapped set, we used the
model to obtain the predicted probability of a subject belonging to the patient class. Us-
ing these probabilities, we calculated two AUC values, one for the bootstrapped set (called
“resubstitution” metric) and one for the test set (called “out-of-bag” metric). By using the
.632+ bootstrap method, we minimised the optimistic and pessimistic bias of the estimate
and obtained the AUC value (Eq.2).

AUCbootstrap =
1

b

b∑
i=1

(ω ∗ AUCout-of -bag + (1 − ω) ∗ AUCresubstitution) (2)

where b was the number of iterations and the weight ω was defined considering the relative
overfitting rate (full description in Efron and Tibshirani 1997). To obtain the confidence
interval (CI; 95% of confidence), we used the percentile method (Efron, 1981). Next, we
compared these confidence intervals with the AUC obtained during the normative approach.

Finally, we compared the generalization of the classifiers with the results of the autoen-
coders. In this analysis, we used each trained classifier to predict the group of the subjects
from the other clinical datasets. In order to verify if the performance in the independent
datasets was significantly different from the normative approach, we calculated the difference

9

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 11, 2020. ; https://doi.org/10.1101/2020.02.10.931824doi: bioRxiv preprint 

https://doi.org/10.1101/2020.02.10.931824
http://creativecommons.org/licenses/by-nc-nd/4.0/


between the AUCs of this generalization analysis and the AUCs of the autoencoders. With
the 1,000 measures of the difference, we calculated its confidence interval (95% confidence)
to verify if this difference is different from zero.

2.8. Experiments
We conducted our experiments in Python 3 using the Tensorflow 2.0 library

(http://www.tensorflow.org/) and the sklearn rvm library (http://github.
com/Mind-the-Pineapple/sklearn-rvm). We have made publicly available the
codes and trained models used in this study at http://github.com/Warvito/

Normative-modelling-using-deep-autoencoders. A Google’s Colaboratory notebook
that calculates the deviations scores of new data is available at https://colab.research.
google.com/github/Warvito/Normative-modelling-using-deep-autoencoders/blob/

master/notebooks/predict.ipynb.

3. Results

3.1. Comparison of deviation values for healthy controls and patients
Figure 2 shows the mean value of the observed deviation for each group. For the ADNI

dataset, we found a mean value of 0.28 ([0.27, 0.32]; 95% CI) for HC; 0.29 ([0.28, 0.35]; 95%
CI) for EMCI; 0.32 ([0.30, 0.38]; 95% CI) for LMCI; 0.37 ([0.34, 0.47]; 95% CI) for AD. For
the AIBL dataset, we found a mean value of 0.30 ([0.28, 0.33]; 95% CI) for HC; 0.36 ([0.34,
0.42]; 95% CI) for MCI; and 0.40 ([0.36, 0.50]; 95% CI) for AD. For the ARWiBo dataset,
we found a mean value of 0.32 ([0.30, 0.38]; 95% CI) for HC; 0.37 ([0.34, 0.47]; 95% CI) for
MCI; and 0.46 ([0.40, 0.62]; 95% CI) for AD. For the OASIS-1 dataset, we found a mean
value of 0.41 ([0.39, 0.46]; 95% CI) for HC and 0.65 ([0.58, 0.79]; 95% CI) for AD. For the
MIRIAD dataset, we found a mean value of 0.26 ([0.24, 0.30]; 95% CI) for HC and 0.48
([0.41, 0.71]; 95% CI) for AD.

When we analysed the confidence interval of the difference between groups in the observed
deviation, we obtained that, for the ADNI dataset, the difference between HC and EMCI
was in the range [-0.03, 0.00], the difference between HC and LMCI was in the range [-0.06,
-0.03], the difference between HC and AD group was in the interval of [-0.16, -0.06], the
difference between EMCI and LMCI was in the range [-0.03, -0.02], the difference between
EMCI and AD was in the range [-0.14, -0.06], and the difference between LMCI and AD
was in the range [-0.10, -0.03]. For the AIBL dataset, the difference between HC and MCI
was in the range [-0.09, -0.05], the difference between HC and AD was in the range [-0.17,
-0.07], the difference between MCI and AD was in the range [-0.09, 0.00]. For the ARWiBo
dataset, the difference between HC and MCI was in the range [-0.08, -0.03], the difference
between HC and AD was in the range [-0.24, -0.10], the difference between MCI and AD
was in the range [-0.16, -0.06]. For the OASIS-1 dataset, the difference between HC and AD
was in the range [-0.18, -0.33]. Finally, for the MIRIAD dataset, the difference between HC
and AD was in the range [-0.16, -0.41]. In summary, the five independent datasets presented
mean deviation scores significantly different between their groups, except the comparison
between HC and EMCI in the ADNI dataset and the comparison between MCI and AD in
the AIBL dataset.
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Figure 2: Mean value of the observed deviation calculated by the autoencoder for each group. The square
marker indicates the mean value and the horizontal bars indicates the 95% confidence interval calculated
using the percentile method on the bootstrap analysis. Abbreviations: AD = Alzheimer’s disease; EMCI =
early mild cognitive impairment; LMCI = late mild cognitive impairment; MCI = mild cognitive impairment;
HC = healthy controls; ADNI = Alzheimer’s Disease Neuroimaging Initiative; AIBL = Australian Imaging
Biomarkers and Lifestyle Study of Ageing; ARWiBo = Alzheimer’s Disease Repository Without Borders;
OASIS-1 = Open Access Series of Imaging Studies: Cross-Sectional; MIRIAD = Minimal Interval Resonance
Imaging in Alzheimer’s Disease.

3.2. Normative model performance in discriminative tasks

We examined if the observed deviations were able to indicate if a person belonged to
the patient or HC group (Figure 3). For the ADNI dataset, the normative approach had an
AUC = 0.49 ([0.47, 0.51]; 95% CI) for patients with EMCI, an AUC = 0.61 ([0.58, 0.64];
95% CI) for patients with LMCI, and an AUC = 0.74 ([0.70, 0.79]; 95% CI) for patients
with AD. For the AIBL dataset, the normative approach had an AUC = 0.60 ([0.58, 0.64];
95% CI) for patients with MCI, and an AUC = 0.71 ([0.65, 0.78]; 95% CI) for patients with
AD. For the ARWiBo dataset, the normative approach had an AUC = 0.64 ([0.61, 0.68];
95% CI) for patients with MCI, and an AUC = 0.84 ([0.78, 0.89]; 95% CI) for patients with
AD. For the OASIS-1 dataset, the normative approach had an AUC = 0.72 ([0.67, 0.78];
95% CI) for patients with AD. For the MIRIAD dataset, the normative approach had an
AUC = 0.91 ([0.83, 0.97]; 95% CI) for patients with AD.
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1A) ADNI dataset - HC vs. EMCI 1B) ADNI dataset - HC vs. LMCI 1C) ADNI dataset - HC vs. AD

2A) AIBL dataset - HC vs. MCI 2B) AIBL dataset - HC vs. AD 3A) ARWiBo dataset - HC vs. MCI

3B) ARWiBo dataset - HC vs. AD 4) OASIS-1 dataset - HC vs. AD 5) MIRIAD dataset - HC vs. AD

Figure 3: Discriminative performance of the normative approach. The solid line indicates the mean receiver
operating characteristic curve across the bootstrap iterations with the shaded area indicating the 95%
confidence interval calculated using the percentile method on the bootstrap analysis. The dashed line
indicates the chance level. Abbreviations: AD = Alzheimer’s disease; AUC-ROC = area under the receiver
operating characteristic curve; EMCI = early mild cognitive impairment; LMCI = late mild cognitive
impairment; MCI = mild cognitive impairment; HC = healthy controls; ADNI = Alzheimer’s Disease
Neuroimaging Initiative; AIBL = Australian Imaging Biomarkers and Lifestyle Study of Ageing; ARWiBo
= Alzheimer’s Disease Repository Without Borders; OASIS-1 = Open Access Series of Imaging Studies:
Cross-Sectional; MIRIAD = Minimal Interval Resonance Imaging in Alzheimer’s Disease.

3.3. Brain regions deviations

Figures 4 present the Cliff’s delta of each brain region when comparing its deviation in
the HC group against the deviation in the patient groups. Only the regions with effect sizes
significantly different from zero are shown (complete list presented in the supplementary
materials). Among the regions showing significant deviation in patients with AD, we found
the lateral ventricles, temporal horns, hippocampus, entorhinal cortex, parahippocampal
cortex, and amygdala. A number of these regions also showed a high deviation in patients
with MCI, including the lateral ventricles and hippocampus. Finally, we also noted that
effect sizes were smaller for the regions identified in patients with MCI relative to those
identified in patients with AD.
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1B) ADNI dataset - HC vs. LMCI 1C) ADNI dataset - HC vs. AD

2A) AIBL dataset - HC vs. MCI 2B) AIBL dataset - HC vs. AD 3A) ARWiBo dataset - HC vs. MCI

3B) ARWiBo dataset - HC vs. AD 4) OASIS-1 dataset - HC vs. AD 5) MIRIAD dataset - HC vs. AD

Figure 4: Brain regions deviations. The square marker indicates the mean effect size (Cliff’s delta) between
the healthy control group and the respective patient groups. The horizontal bars indicate the 95% confidence
interval calculated using the percentile method on the bootstrap analysis. Only the regions with a mean
effect size significantly different from zero are presented. Abbreviations: AD = Alzheimer’s disease; AUC-
ROC = area under the receiver operating characteristic curve; EMCI = early mild cognitive impairment;
LMCI = late mild cognitive impairment; MCI = mild cognitive impairment; HC = healthy controls; ADNI
= Alzheimer’s Disease Neuroimaging Initiative; AIBL = Australian Imaging Biomarkers and Lifestyle Study
of Ageing; ARWiBo = Alzheimer’s Disease Repository Without Borders; OASIS-1 = Open Access Series of
Imaging Studies: Cross-Sectional; MIRIAD = Minimal Interval Resonance Imaging in Alzheimer’s Disease.
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3.4. Traditional machine learning classification

Using the RVM, we verified the performance of a traditional classifier when performing
binary classification between HC and patients. For the ADNI dataset, we obtained an AUC
= 0.69 ([0.58, 0.77]; 95% CI) when analysing patients with EMCI, an AUC = 0.76 ([0.64,
0.84]; 95% CI) when analysing patients with LMCI, and an AUC = 0.93 ([0.87, 0.97]; 95%
CI) when analysing patients with AD. For the AIBL dataset, an AUC = 0.37 ([0.00, 0.78];
95% CI) when analysing subjects with MCI, and we obtained an AUC = 0.93 ([0.86, 0.93];
95% CI) when analysing patients with AD. Note, that the AUC for the AIBL dataset when
analysing MCI had a wide interval. This interval was exacerbated due to the presence of
overfitting and the .632+ bootstrap method compensatory effect that reduce the effect of
bias caused by this overfitting. For the ARWiBo dataset, we obtained an AUC = 0.68 ([0.52,
0.78]; 95% CI) when analysing subjects with MCI, and an AUC = 0.94 ([0.87, 0.98]; 95%
CI) when analysing patients with AD. For the OASIS-1 dataset, we obtained an AUC =
0.86 ([0.69, 0.96]; 95% CI) when analysing patients with AD. For the MIRIAD dataset, we
obtained an AUC = 0.86 ([0.70, 0.96]; 95% CI) when analysing patients with AD.

To identify significant differences between the performance of the normative models and
traditional classifiers, we calculated the confidence interval (95% of confidence) of the dif-
ference in AUC between the two methods. For the ADNI dataset we found that when
classifying HC and EMCI the difference was in the range [-0.28, -0.09], when classifying HC
and LMCI the difference was in the range [-0.24, -0.04], and when classifying HC and AD
the difference was in the range [-0.25, -0.12]. For the AIBL dataset, when classifying the HC
and MCI the difference of performance was in the range [-0.17, 0.74], and when classifying
HC and AD the difference was in the range [-0.29, -0.12]. For the ARWiBo dataset, when
classifying the HC and MCI the difference of performance was in the range [-0.15, 0.12], and
when classifying HC and AD the difference was in the range [-0.17, 0.00]. For the OASIS-1
dataset, when classifying HC and AD the difference was in the range [-0.25, 0.04]. Finally,
For the MIRIAD dataset, when classifying HC and AD the difference was in the range [-0.15,
0.06]. In summary, the traditional classifiers were superior to the normative models when
predicting the difference between the groups in the ADNI dataset and the difference between
HC and AD for the AIBL dataset; in contrast the performance of the two approaches was
comparable for all other comparisons.

Finally, we examined how a classifier trained on a certain dataset would perform when
applied to other datasets (i.e. cross-cohort generalizability). The results of this examination
are presented in Table 3 and Table 4. When predicting AD, the classifiers had a higher
mean performance than the normative approach in most cases (except when the model was
trained on MIRIAD dataset and evaluated on ARWiBo dataset). However, the difference was
not significantly different in almost half of the cases. When predicting MCI, the classifiers
presented a lower mean performance in all cases, but the difference was not significantly
different.
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Table 3: Generalization performance of the classifiers for the classification between HC and patients with
Alzheimer’s disease. In this table, the rows indicate the dataset where the classifier is trained and the
columns indicate the dataset where the performance was tested. The area under the receiver operating
characteristic curve is shown with the upper and lower bound of its 95% confidence interval. Performance
significantly different from the normative approach calculated using the confidence interval of the difference
between the approach across the bootstrap scheme is indicated by “*”.

ADNI AIBL ARWiBo OASIS-1 MIRIAD
ADNI - 0.89 [0.93, 0.83]* 0.88 [0.81, 0.93] 0.84 [0.76, 0.90]* 0.98 [0.95, 1.00]
AIBL 0.88 [0.82, 0.93]* - 0.89 [0.93, 0.83]* 0.86 [0.80, 0.91]* 0.98 [0.94, 1.00]
ARWiBo 0.88 [0.81, 0.92]* 0.88 [0.83, 0.92]* - 0.80 [0.72, 0.86] 0.96 [0.91, 0.99]
OASIS-1 0.90 [0.84, 0.93]* 0.89 [0.83, 0.93]* 0.86 [0.77, 0.92] - 0.96 [0.91, 1.00]
MIRIAD 0.89 [0.83, 0.93]* 0.87 [0.80, 0.91]* 0.82 [0.73, 0.91] 0.83 [0.74, 0.89] -

Table 4: Generalization performance of the classifiers for the classification between HC and patients with
mild cognitive impairment. In this table, the rows indicate the dataset where the classifier is trained and the
columns indicate the dataset where the performance was measured. The area under the receiver operating
characteristic curve is shown with the upper and lower bound of its 95% confidence interval. No case had a
performance significantly different from the normative approach calculated using the confidence interval of
the difference between the approach across the bootstrap scheme.

AIBL ARWiBo
AIBL - 0.61 [0.54, 0.67]
ARWiBo 0.59 [0.53, 0.65] -

4. Discussion

In this study, we evaluated the performance of the normative modelling approach based
on deep autoencoders on data from patients with MCI and AD. Consistent with our first hy-
pothesis, we found that the approach was effective in generating deviation values that reflect
the severity of the disease, with patients with AD showing higher deviations than patients
with MCI, and patients with LMCI showing larger deviations than patients with EMCI.
We also measured how much each brain region deviated from normality and contributed
to the observed deviation. Here, we found that regions from the ventricular system and
medial temporal lobe were among those making the greatest significant contribution to de-
viation, consistent with our second hypothesis. Finally, we compared the performance of the
normative approach versus a traditional classification approach. Although a higher perfor-
mance was found for traditional classifiers in most cases, the difference was not statistically
significant in the majority of cases.

We have replicated previous findings that the autoencoder is capable of detecting neu-
roanatomical deviation in individuals with brain disorders (Pinaya et al., 2019). In par-
ticular, in each of our five independent datasets, the normative model was able to assign
higher values to patients with AD than healthy controls. This pattern was expected since
the disorder is associated with profound alterations in the brain morphometry which were
not present in the training set (Busatto et al., 2008; Pini et al., 2016). In addition, we have
expanded these findings by demonstrating for the first time that autoencoders are capable
of discriminating between different stages of the disease progress (i.e. EMCI versus LMCI
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versus AD). In particular, we observed that the MCI group presented intermediary deviation
values in three independent datasets (ADNI, AIBL and ARWiBo). These values were also
expected since the MCI is considered as a transitory stage between HC and AD (Morris
et al., 2001), and usually present less brain atrophy compared to AD (Pihlajamaki et al.,
2009). In addition, within the ADNI dataset, the MCI subjects were divided into two cate-
gories, EMCI and LMCI. Although individuals in both stages meet the conventional criteria
for MCI, EMCI is associated with less pronounced symptoms thought to reflect an earlier
point in the clinical spectrum than LMCI. In our analyses, we found that the patients with
LMCI had a significantly (i.e. the confidence interval of the difference between the group do
not overlap zero) larger deviation than patients with EMCI providing further confirmation
that that deep autoencoders are capable of discriminating between different stages of the
disease course.

With the autoencoder based approach, it was possible to identify the brain regions with
the highest deviations from the expected normative values. Consistent with our second hy-
pothesis, the AD group showed high levels of deviation in structures that are part of the
ventricular system (such as the lateral ventricles, temporal horns, and 3rd ventricle) and in
the medial temporal cortex, including the hippocampus, entorhinal cortex, parahippocam-
pal cortex, and amygdala. Progressive ventricular expansion is one of the most reliable
morphological changes in dementia patients, reflecting the increasing atrophy of the brain
(Thompson et al., 2004). Likewise, medial temporal cortex atrophy is among the most con-
sistent findings in neuroimaging studies of AD (Busatto et al., 2008; Fox and Schott, 2004)
and an established marker of AD (Drago et al., 2011). While deviations in the MCI group
had a smaller sizes than those in the AD group, there was a high degree of overlap in the
hippocampus, parahippocampal cortex and several temporoparietal regions, consistent with
previous neuroimaging studies of MCI (Chételat et al., 2002; Hämäläinen et al., 2007; Kang
et al., 2019; Pennanen et al., 2005). The smaller effect size in MCI might be explained by
two (not mutually-exclusive) factors: i) earlier stage in the AD course, hence milder atrophy,
ii) heterogeneity of the MCI construct. Since MCI patients were not selected based on AD
biomarkers (i.e., presence of beta-amyloid and tau protein in the cerebrospinal fluid) (Mul-
der et al., 2010), this group will likely include a mixture of AD and non-AD cases, hence
the milder/diluted effect.

Finally, we compared the performance of our normative approach with traditional clas-
sifiers. The performance of the classifiers was measured in two schemes, on data from the
same dataset where the model was trained and on data from independent clinical datasets
(generalization performance). Although the traditional classifiers had a better mean per-
formance in most cases, the differences between the two approaches were not statistically
significant in most of the cases, especially when predicting the subjects from the ARWiBo,
OASIS-1 and MIRIAD datasets. This similarity was more evident during the prediction of
the patients with MCI (with exception the ADNI dataset).

Different from a case-control context, the normative approach does not need to be trained
in a dataset with reasonable balancing between HC and patient groups. It is trained using
only healthy controls, which enables the use of large cohorts of HC participants (Marquand
et al., 2016, 2019), such as UK Biobank and Human Connectome Project (Van Essen et al.,
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2013). However, different from traditional classifiers, our normative approach cannot specify
the diagnosis of the analysed subjects. Rather than seeing normative approaches as an
alternative to classifiers, both methods could be used cooperatively to obtain computational
systems with more reliable predictions. In order to promote open science, we have made all
scripts and the trained models available to the wider research community (http://github.
com/Warvito/Normative-modelling-using-deep-autoencoders).
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