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Abstract

Research into the evolution and pathogenesis of Vibrio cholerae has benefited greatly from
the generation of high throughput sequencing data to drive molecular analyses. The steady
accumulation of these datasets now provides a unique opportunity for in silico hypothesis
generation via co-expression analysis. Here we leverage all published V. cholerae RNA-
sequencing data, in combination with select data from other platforms, to generate a gene
co-expression network that validates known gene interactions and identifies novel genetic
partners across the entire V. cholerae genome. This network provides direct insights into
genes influencing pathogenicity, metabolism, and transcriptional regulation, further
clarifies results from previous sequencing experiments in V. cholerae (e.g. Tn-seq and ChIP-

seq), and expands upon micro-array based findings in related gram-negative bacteria.

Importance
Cholera is a devastating illness that kills tens of thousands of people annually. Vibrio

cholerae, the causative agent of cholera, is an important model organism to investigate both
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bacterial pathogenesis and the impact of horizontal gene transfer on the emergence and
dissemination of new virulent strains. Despite this importance, roughly one third of V.
cholerae genes are functionally un-annotated, leaving large gaps in our understanding of
this microbe. Through co-expression network analysis of existing RNA-sequencing data,
this work develops an approach to uncover novel gene-gene relationships and
contextualize genes with no known function, which will advance our understanding of V.

cholerae virulence and evolution.

Introduction

Since the completion of the first Vibrio cholerae genome sequence in 2000, over a
thousand V. cholerae isolates have been sequenced (1, 2). These sequences has allowed for
the development of sophisticated phylogeographic models, which emphasize the
importance of controlling the spread of virulent and antibiotic resistant V. cholerae strains
to lower disease burden, in addition to fighting endemic local strains (2-6). The integration
of hundreds of genomes paired with temporal and geographic information into ever
growing phylogenies enables analyses using selection models to predict future population
trends and derive biologically meaningful insights into V. cholerae evolution (7, 8). By
developing treatment and vaccination strategies based on phylogenic models (9),
organizations and governments can more efficiently leverage limited resources and more
effectively prevent disease spread in line with the World Health Organization’s goal of
eradicating cholera by 2030 (10).

Alongside advances in genomics research, the V. cholerae and broader bacterial biology

communities have benefited greatly from other next generation sequencing (NGS)
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technologies. Targeted sequencing experiments have been essential in mapping complex
virulence pathways, illuminating a novel interbacterial defense system, and expanding our
knowledge of the role of non-coding RNA (ncRNA) in the vibrio life cycle (11-17). Further
discoveries such as transcription factor mediated transposon insertion bias (18) and the
role of cAMP receptor protein in host colonization (19) have benefited from composite
research strategies utilizing multiple technologies. Similarly, meta-analyses utilizing pooled
data from multiple experiments are empowered by the increasing availability of high
quality bacterial NGS datasets. Expression data is particularly amenable to such pooling
and can be used to accurately group genes into functional modules based on their co-
expression (20). In bacteria, weighted gene co-expression network analysis (WGCNA) (21)
has been successfully used to underscore biologically important genes and gene-gene
relationships via “guilt-by-association” approaches (22, 23). These studies have taken
advantage of larger and larger heterogeneous microarray datasets to provide novel
biological insights via existing data.

Despite major advances in sequencing technologies and research strategies, most of the
over two dozen existing RNA-seq experiments in V. cholerae have been limited to targeted
approaches that involve quantifying the differential abundance of genetic material across a
handful of conditions. Via these approaches, any change in expression observed in one
experiment is nearly impossible to generalize to other treatment conditions and analyses
are limited to a few pathways or genes of interest. In contrast, meta-analyses such as
WGCNA can uncover much broader relationships throughout the entire genome by
combining information from multiple datasets. As there is no existing co-expression

analysis in V. cholerae to date, the accumulation of over 300 publicly available RNA-seq
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samples from targeted RNA-seq experiments represents a heretofore untapped resource
for the cholera community.

Motivated by the success of pooled genetic sequencing analyses, our current work
utilizes all publicly available V. cholerae RNA-seq based expression-level data to generate a
co-expression network. We expand upon existing bacterial WGCNA approaches by
integrating broader sequencing data (including ChIP-seq and Tn-seq) and multiple
annotation platforms into our analysis. Our network ultimately contributes information on
connections across all V. cholerae genes, including the roughly 1500 predicted but
functionally un-annotated genetic elements that account for some 37% of the genome.
More specifically, we implicate new loci in virulence regulation and clearly demonstrate a

powerful and accurate approach to hypothesis generation via our described network.

Results

Gene network generation

To generate our co-expression analysis in V. cholerae, we applied our WGCNA pipeline to
analyze twenty-seven V. cholerae RNA sequencing experiments deposited in NCBI's
Sequence Read Archive (SRA) in addition to two novel experiments. The RNA sequencing
samples are derived from experiments exploring a range of important V. cholerae processes
including intestinal colonization, quorum sensing, and stress response. In total, our
network includes 300 individual RNA-seq samples (supplementary table S1). All samples
were mapped to a recently inferred V. cholerae transcriptome derived from the N16961
reference genome (1, 13). This reference was chosen because the majority (293) of

samples were collected from strains N16961 or the closely related C6706 and A1552.
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93 Figure 1 outlines the process used to generate our co-expression network with a small
94  subset of genes. Loci VC0384-VC0386 are known to be involved in cysteine metabolism
95  while the two genomically adjacent loci VC0383 and VC0388 do not share this function.
96 Following normalization of mapped transcripts (Fig. 1A), a weighted gene co-expression
97  network analysis was performed using WGCNA (21). First, a Pearson correlation matrix is
98 calculated for expression levels of all genes (Fig. 1B). This correlation matrix clearly
99  captures strong relationships between co-expressing genes such as VC0384-VC0386 but
100  can produce background noise from un-related gene pairs. We limit this noise by
101  calculating a topological overlap matrix (TOM) (24) that weights pairwise co-expression
102  data based on each gene’s interactions with all other genes (Fig. 1C). In this way, the
103  relationships between genes that fall within the same subnetwork, i.e. VC0384-86, are
104  favored while the signal from unrelated genes, i.e. VC0383 and VC0388, is abated. This
105 TOM, after filtering for normalized values greater than 0.1, is used to construct an accurate
106  co-expression network that captures biologically meaningful relationships (Fig. 1D).
107 In addition to co-expression data, our network and analyses incorporate information
108  from multiple other sources. Our network includes predicted pathway annotations and
109  gene functional knowledge from the NCBI Biosystems database as well as the DAVID,
110  Panther, and KEGG databases (25-28). Additionally, importance labels are applied to genes
111 with no known function which have been implicated as playing a role in intestinal
112 colonization or in vitro growth via Tn-seq based essentiality experiments (14, 29).
113  Information from ChIP-seq binding assays and microarray results were incorporated in
114  downstream analyses to substantiate network derived relationships. By combining all of

115 these data sources we were able to develop and analyze an informative network of co-
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116  expressing genes that provides both qualitative and quantitative information about

117  relationships between transcripts across forty-nine gene-clusters covering the entire V.
118  cholerae genome (Supp. Data S1-2).

119

120  Genes in known pathways cluster together and contextualize genes of unknown

121  function

122 As proof of the accuracy of our approach, we have highlighted four clusters that

123  recapitulate known interactions between transcripts involved in specific pathways or

124  cellular processes (Fig. 2). The correct grouping of transcripts encoding products such as
125 ribosomal proteins, amino acid synthesis proteins, and tRNA transcripts that have largely
126  known functions and are involved in well-studied, highly conserved cellular processes

127  provides a positive control for the validity of our network clusters (Fig. 2A-C). Likewise,
128  the clustering of genes known to be involved in more specialized processes such as biofilm
129  formation (Fig. 2D) further underscores the success of our approach.

130 The subnetworks mentioned above also support the utility of our analysis in powering
131  guilt-by-association based inference of gene function (30). Because each of these gene

132 clusters contain co-expressing genes that are involved in the same biological process, it can
133  be assumed that unannotated genes in the same cluster are likely involved in the same
134  process. Such links, while not definitive on their own, can be used with other data to hint at
135 gene functions. For example, genes with known function in Fig. 2D are primarily involved
136  in biofilm formation (31, 32). This clustering of biofilm genes suggests that the few genes
137  with no known function in this subnetwork may be involved in the same process. Two of

138  these unannotated transcripts, VC1937 and VC2388, are, per GO cellular component
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139  location labels, “integral membrane components.” Further, the VC2388 locus is directly
140  upstream of a Vcr084, a short RNA involved in quorum sensing which is essential for

141  biofilm formation (33). Taken together, this evidence suggests that VC1937 and VC2388
142  may play a role in some of the complex membrane restructuring necessary for biofilm

143  formation. In facilitating such guilt-by-association approaches to novel hypothesis

144  generation, our co-expression network serves as a highly efficient substitute for more

145  traditional screening assays.

146

147  Avirulence subnetwork suggests novel gene functions

148  While the biofilm associated subnetwork presents a relatively simple example of the

149  functional insights our co-expression data can yield, the virulence-related subnetwork (Fig.
150  3A) represents a more complex case in which genes of known function provide clues to the
151 role of unannotated genes. The majority of transcripts in this module originate from within
152  thevirulence-related ToxR regulon that consists principally of genes on the V. cholerae

153  pathogenicity island 1 (VC0809-VC0848) and cholera toxin sub-units A and B (ctxAB,

154  VC1456 and VC1457) (34). Other genes in this subnetwork, such as vps/, VC1806, VC1810,
155 and chitinase, are predominately localized to virulence islands and other areas of the

156  genome under tight control of the known virulence regulators ToxR, ToxT, or H-NS as

157  determined via ChIP and/or RNA-seq (35-37). The clustering of such genes with well-

158 characterized interactions into a cohesive subnetwork is further validation of our ability to
159  generate accurate co-expression maps of related genes. The association of uncharacterized
160 genes in these clusters suggests they may also play a role in V. cholerae virulence and

161  generates hypotheses about the function of unknown genes within this module.
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162 Many of the important transcripts with unknown function are expected to co-express
163  with known virulence genes because they fall within vibrio pathogenicity island (VPI)-1
164 (VC0810,VC0821-VC0823,VC0842) or VPI-2 (VC1806,VC1810), or are proximal to other
165  virulence genes (VC1945) (38, 39). However, our analysis also identified genes such as
166  VCA0094-VCA0096 which are on a completely different chromosome than the rest of the
167  subnetwork and do not neighbor any known virulence elements.

168 A major benefit of our approach is that we incorporate additional regulatory data such
169 as ChIP and Tn-seq into our co-expression analysis, allowing us to verify the association
170  between VCA0094-VCA0096 and virulence pathways using existing experimental data. Tn-
171  seq analysis has previously identified VCA0094 and VCA0095 as essential for infection of a
172  rabbitintestine (14), suggesting that these loci play a role in virulence. Because transcripts
173  for these genes co-express with genes regulated by ToxT, ToxR, and H-NS, we also probed
174  existing ChIPseq binding datasets (12, 19, 35) to see if any of these well-studied

175  transcription factors bind near the VCA0094-96 loci. While ToxT binding was not observed
176  near this site (data not shown), our analysis identified significant peaks in the promoter
177  region of VCA0094 for both ToxR and H-NS as calculated via re-analysis of existing binding
178  data from (35). Both peaks showed a large and significant increase in binding affinity (log:
179  fold change in average occupancy) when compared against input controls (Fig. 3B). H-NS
180 showed a clear binding peak in the region of the VCA0094 promoter that extended in a
181  diffuse manner to the VCA0095 TSS while ToxR binding covered a similar region but was
182  more diffuse throughout (data not shown). Collectively these results indicate virulence
183  related functions for the products of the VCA0094-VCA0096 transcripts. Although the

184  exact mechanistic role of these genes remains elusive, we have nevertheless demonstrated
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185  the ability of our pipeline to generate meaningful hypotheses by incorporating existing data
186  from a multitude of sources.

187

188 Co-expression data provides an accurate in silico complement to RNA-seq

189 In addition to the guilt-by-association inference described above, co-expression analysis
190 can provide a partial substitute or complement to RNA-seq experiments. Novel, meaningful
191  genetic relationships can be found in a co-expression network by focusing on the

192  transcripts that are co-regulated with a gene of interest.

193 We can apply a network-based approach in lieu of new RNA-seq based experiments to
194  identify genes which co-express with rpoS (VC0534) and are similarly involved in bacterial
195  stress response. As our network utilizes only RNA-seq based transcriptomics studies and
196 none of these studies involves direct manipulation of rpoS, we can compare existing

197  microarray data involving an rpoS (VC0534) deletion mutant (40) to determine how

198  accurate our approach is. When applying an absolute co-expression cutoff of 0.1, 273 genes
199 areidentified as having a relationship with rpoS expression in both our network analysis
200  and the rpoS mutant microarray data (Fig. 4A). This represents nearly two-thirds of genes
201 identified as differentially expressed in the original microarray study. While our network
202  links far more genes with rpoS than the microarray approach, this is in line with recent
203  RNA-seq based work that found that 23% of the E. coli genome is regulated by RpoS (41).
204 Additionally, all of the flagella and chemotaxis related proteins highlighted as particularly
205 informative in the original study are identified by our analysis (Fig. 4B) and relevant values
206  (i.e.network co-expression and microarray-derived log fold change in expression) for the

207 273 shared transcripts have a Spearman correlation of -0.516. This accuracy is achieved
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208  without any direct genetic manipulation of the rpoS locus in the RNA-seq datasets used to
209 generate our co-expression network and serves as a testament to the potential utility and
210  versatility of our approach.

211 Our approach to isolating genetic interactions also has advantages over

212 transcriptomics-focused sequencing. As seen in Fig. 4A, our network-based analysis

213  identifies far more genes associated with rpoS. This is likely because RNAseq-based

214  approaches are can identify a broader range of gene transcripts as they are not limited by
215  restrictive microarray probes (42). Separate from differences in underlying technology, co-
216  expression networks are also more likely to detect genes regulating a target’s expression
217  than traditional transcriptomics experiments which largely capture downstream responses
218  to changes in a target’s expression (43, 44). Thus, a co-expression network can provide an
219  alternative perspective to complement or clarify transcriptomics data.

220

221  Discussion

222 We have successfully constructed the first V. cholerae co-expression network through a
223  computationally inexpensive process that is simple, easily expanded upon, and

224  straightforward to implement in other organisms. Our network effectively identifies

225  canonical gene clusters related to specific molecular pathways or functions, such as those
226  corresponding to rRNAs or biofilm proteins. We have also outlined two use-cases for the
227  dataprovided and have shown the accuracy of both approaches either experimentally or
228  using existing data. Additionally, we have included relevant network files as well as raw

229  read counts across RNA-seq conditions (Supp. Data S1-2 & Supp. Table S2) alongside all
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230  code used in our analysis (see Materials and Methods) to encourage broad usage of this
231 data.

232 Our results have proven both the utility and accuracy of our approach despite in-depth
233  analysis limited to a handful of genes across five of the forty-nine observed gene clusters.
234  Furthermore, our work with the virulence subnetwork supports previously published

235  research loosely implicating genes VCA0094-96 in virulence and virulence related

236  functions. All three transcripts have shown up in screens focusing on biofilm development
237  (45), and SOS response (13). From a mechanistic perspective, protein homology analysis
238  via NCBI's Conserved Domain Database (46) indicates that VCA0094 possesses a DNA-

239  binding transcriptional regulator domain while VCA0096 contains domains that implicate
240 itin protein activation via proteolysis. These data combined with our novel findings hint at
241  the potential biological importance of this genomic locus.

242 When viewed through the lens of a specific gene of interest, co-expression data is in
243  large part analogous to the differential expression data produced by RNA-seq experiments.
244  While RNA-seq offers finer assay control and can be tailored more exactly to suit a specific
245  research question, there are both technical and practical limitations that may make such an
246  approach impractical. Whether an experimenter is interested in examining the role of an
247  essential locus or is limited by available resources, our co-expression analysis presents a
248  fast, free, and faithful alternative for probing genetic interactions as outlined in our analysis
249  of rpoS above.

250 Major motivations for this work include the successful implementation of bacterial-
251  focus, microarray-based co-expression networks and the lack of clear functional knowledge

252 foralarge portion of V. cholerae genes. Besides more simple guilt-by-association studies
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253 (22, 23), co-expression networks have helped to elucidate relationships in diverse

254  microbial communities (47-50) and enable comparisons across strains and species (51-
255  53). These works as well as the relative dearth of knowledge about the V. cholerae genome
256  (roughly two third of genes are annotated compared to around 86% percent of all E. coli
257  genes (54)) and the growing abundance of V. cholerae focused NGS data served as the

258  impetus for this research.

259 The calculated co-expression network, though accurate, could be improved via the

260 inclusion of more experiments and more extensive SRA annotations. Our somewhat limited
261 pooled dataset consisting of three hundred samples is an order of magnitude off from the
262  few thousand samples necessary to derive the most faithful co-expression estimates (55).
263  Though sample size will improve as more V. cholerae RNA-seq experiments are published,
264 more samples may also increase the risk posed by batch effects which cause spurious

265  correlations among genes through technical variation (56, 57). The diverse structure of our
266  current data helps to minimize the impact of batch effects but this would be offset by the
267  future inclusion of larger datasets from single experiments. While automated sample

268  clustering methods (58-60) can effectively group overly correlated samples, there is no
269  way to know if the correlation is biological (i.e. meaningful) or technical (i.e. noise) in

270  origin. Likewise, manual curation of batch annotations is also difficult since few SRA

271  records are extensively annotated with detailed experimental conditions (e.g. bacterial
272  growth stage, exact medium used). Thus, careful consideration may be necessary when
273  expanding and generalizing this analysis to include future data.

274 The mapping of raw reads to a transcriptome derived from a single reference genome

275  presents alimitation to our current work. While this approach is reasonable given the
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276  similarity of the vast majority of included strains to our reference, a more elaborate

277  comparative transcriptomic strategy (61, 62) would be ideal if more diverse samples are
278  included in future analyses. This is especially true when considering the inclusion of

279  expression data from clinical samples which are likely to have much more genomic

280  variability than the closely related lab cultured strains used to construct our network. On
281  the other hand, because comparative transcriptomics requires defining homologous alleles
282  across all strains analyzed (63), such an approach would greatly increase the difficulty of
283  incorporating strains without an assembled genome.

284 In summary, our co-expression network can drive functional hypotheses for

285 unannotated genes in V. cholerae. As the Vibrio community steadily adds high quality data
286  from increasingly sophisticated sequencing experiments to public databases our imputed
287  network can only improve, providing ever deeper insights into the V. cholerae genome. At
288  the same time, highly annotated transcript-based co-expression networks can empower
289  research with related technologies (e.g. single cell transcriptomics and dual RNA-seq) and
290 research into a host of other clinically relevant bacteria, such as Pseudomonas aeruginosa
291  or Staphylococcus aureus which have over 2000 and 1400 RNA-seq experiments in SRA
292  respectively.

293

294  Materials and Methods

295 Data Collection and Processing

296  All RNA and ChIP sequencing data were downloaded from the Sequence Read Archive
297  (SRA)(64) and converted to compressed fastq files using the SRA toolkit

298  (https://www.ncbi.nlm.nih.gov/sra/docs/toolkitsoft/) (see Table S1 for details on
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299  included experiments). RNA-seq samples were selected by searching the SRA on Sept 10th,
300 2019 for the Organism and Strategy terms “vibrio cholerae” and “rna seq” respectively,
301 resulting in 326 initial samples including the 34 novel samples from this publication

302 (PRJNA601792). Samples were mapped to a recently inferred V. cholerae transcriptome
303 derived from the N16961 reference genome (1, 13) using Kallisto version 0.45.1 (65). This
304 reference was chosen because the majority (293) of samples were collected from strains
305 N16961 or the closely related C6706 and A1552. 26 low quality samples with < 50% of
306 reads mapping to the reference transcriptome were discarded before further analysis,
307 leaving 300 samples used for further analysis.

308 For ChIP-seq analysis, accession numbers were identified via the relevant publications
309 (12,19, 35) and sequences were downloaded from SRA and converted to fastq files as
310 above. Raw reads were mapped to the same N16961 reference genome using Bowtie 2
311  version 2.3.5.1 (66). From this mapping, peaks were identified using MACS2 version 2.1.2
312  with an extsize of 225 (various sizes from 150 to 500 were tested with little observable
313 difference in peaks identified) (67) and differential binding and significance were

314  calculated using DiffBind version 2.12.0 (68).

315 Processed Tn-seq data were collected directly from published datasets. In vitro

316  essentiality and semi-essentiality labels were derived from Chao et al. 2013 Table S1 (29),
317  with the original labels of domain essential and sick genes replaced with essential and
318  semi-essential respectively. We used Table S2 from Fu, Waldor, and Mekalanos 2013 (14)
319  to label genes involved in host infection, with any gene exhibiting a log fold change less
320 than negative three deemed essential and any gene with a log fold change between

321 negative one and negative three deemed semi-essential.
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322 Network Construction

323  Figure 1 highlights the process used to generate our co-expression network. Kallisto

324  derived reads were first imported into R via tximport (69), then normalized using DESeq2
325  version 1.24.0 (70), resulting in values that are comparable across conditions and

326  experiments. Following normalization, a weighted gene co-expression network analysis
327  was performed using WGCNA (21). This process is highlighted with a subset of data in

328  Figure 1 and consists of the sequential calculation of a Pearson correlation matrix,

329  adjacency matrix with power 3=6, and, ultimately, topological overlap matrix (TOM) (24)
330 from normalized gene expression counts across conditions. We further filtered this TOM to
331  exclude samples with weighted co-expression <0.1 for all analysis included in the Results
332  section.

333 Predicted pathway annotations and gene functional knowledge are derived from the
334  NCBI Biosystems database as well as DAVID, Panther, and KEGG databases (25-28). Genes
335 lacking functional knowledge which are identified as essential or semi-essential in either
336 Tn-seq dataset are labeled in network visualizations as “important.”

337 Data Availability

338  SRA accession numbers and information on included samples can be found in

339  Supplementary Table S1. A full, unfiltered network graph is provided in Supplementary File
340  S1 with the corresponding node labels in Supplementary File S2. Raw, un-normalized read
341  counts are also provided in Supplementary Table S2 All data analysis and figure generation
342  were done using the R programming language, with code available at DOI:

343 10.5281/zenodo.3572870.

344
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557

558 Legends:

559  Figure 1: General outline of network construction.

560 1A) Normalized (log2) expression reads for the same genes across multiple conditions supply
561 the basis for our co-expression analysis. In this small example, it is clear that genes VC0384-
562 VCO0386 have a very similar expression pattern across conditions. 1B) Correlations are

563 calculated from the normalized counts in A for every pair of genes. The pattern seen in A

564 becomes much clearer when looking at the correlation. 1C) An adjacency matrix (not shown) is
565 calculated from the correlations in B and ultimately used to produce a topological overlap

566 matrix (TOM) that supplies network edge weights with less noise than the raw correlation

567  matrix. While the single of co-expressing pairs is dampened slightly, this step greatly decreases
568 spurious relationships as it favors transcripts which coexpress with similar sets of genes

569 rather than potentially noisy direct correlations. 1D) The final network groups transcripts that
570 tightly co-express while indicating what pathway they are involved in. This network also

571 includes functional and essentiality based knowledge. In this case, the three genes involved in
572  cysteine metabolism (VC0383-VC0385, cysHIJ) form a subnetwork while the other genes do
573 notmeet our 0.10 co-expression cutoff.

574

575  Figure 2: Sub-networks recapitulating known results
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576  The four depicted subnetworks each contain subsets of transcripts which are known to be
577 largely involved in the same biological process. For each subnetwork, the nodes represent
578  transcripts while the edges represent a co-expression relationship of at least 0.1 between
579  transcripts. A) This sub-network consists completely of tRNA transcripts. B) These transcripts
580 are almost completely related to ribosomal structure and/or function. C) These transcripts
581 play arole in amino acid synthesis. D) This sub-network contains a majority of transcripts that
582  play arole in biofilm formation in addition to unrelated genes.

583

584  Figure 3: Virulence related subnetwork.

585  3A) This subnetwork contains a majority of genes that are predicted to be involved in

586  virulence related pathways, providing clues to the genes with no known functions such as
587  those atlocus VCA0094-VCA0096. 3B) Mean binding affinity (log2 fold change in occupancy
588 compared to loading control) for different virulence-associated transcription factors near the
589 VCA0094-96 locus. Both HNS and TOXR show a significant binding preference for this region.
590  Error bars indicate standard deviation from the mean.

591

592  Figure 4: Comparing RpoS microarray data to co-expressing genes in our WGCNA

593  A) Overlap of genes with expression pattern related to rpoS expression as identified via our
594  network analysis (blue) and existing microarray data (red). The overlapping region identifies
595 272 genes that are common between the two analyses. B) Breakdown of shared genes

596 (overlapping region in A). All of the flagellar and chemotaxis genes highlighted as particularly
597 important in the microarray dataset are identified by both methods.

598
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