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Abstract	9	

Research	into	the	evolution	and	pathogenesis	of	Vibrio	cholerae	has	benefited	greatly	from	10	

the	generation	of	high	throughput	sequencing	data	to	drive	molecular	analyses.	The	steady	11	

accumulation	of	these	datasets	now	provides	a	unique	opportunity	for	in	silico	hypothesis	12	

generation	via	co-expression	analysis.	Here	we	leverage	all	published	V.	cholerae	RNA-13	

sequencing	data,	in	combination	with	select	data	from	other	platforms,	to	generate	a	gene	14	

co-expression	network	that	validates	known	gene	interactions	and	identifies	novel	genetic	15	

partners	across	the	entire	V.	cholerae	genome.	This	network	provides	direct	insights	into	16	

genes	influencing	pathogenicity,	metabolism,	and	transcriptional	regulation,	further	17	

clarifies	results	from	previous	sequencing	experiments	in	V.	cholerae	(e.g.	Tn-seq	and	ChIP-18	

seq),	and	expands	upon	micro-array	based	findings	in	related	gram-negative	bacteria.		19	

	20	

Importance	21	

Cholera	is	a	devastating	illness	that	kills	tens	of	thousands	of	people	annually.	Vibrio	22	

cholerae,	the	causative	agent	of	cholera,	is	an	important	model	organism	to	investigate	both	23	

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 9, 2020. ; https://doi.org/10.1101/2020.02.07.939611doi: bioRxiv preprint 

https://doi.org/10.1101/2020.02.07.939611
http://creativecommons.org/licenses/by/4.0/


bacterial	pathogenesis	and	the	impact	of	horizontal	gene	transfer	on	the	emergence	and	24	

dissemination	of	new	virulent	strains.	Despite	this	importance,	roughly	one	third	of	V.	25	

cholerae	genes	are	functionally	un-annotated,	leaving	large	gaps	in	our	understanding	of	26	

this	microbe.	Through	co-expression	network	analysis	of	existing	RNA-sequencing	data,	27	

this	work	develops	an	approach	to	uncover	novel	gene-gene	relationships	and	28	

contextualize	genes	with	no	known	function,	which	will	advance	our	understanding	of	V.	29	

cholerae	virulence	and	evolution.		30	

	31	

Introduction	32	

Since	the	completion	of	the	first	Vibrio	cholerae	genome	sequence	in	2000,	over	a	33	

thousand	V.	cholerae	isolates	have	been	sequenced	(1,	2).	These	sequences	has	allowed	for	34	

the	development	of	sophisticated	phylogeographic	models,	which	emphasize	the	35	

importance	of	controlling	the	spread	of	virulent	and	antibiotic	resistant	V.	cholerae	strains	36	

to	lower	disease	burden,	in	addition	to	fighting	endemic	local	strains	(2–6).	The	integration	37	

of	hundreds	of	genomes	paired	with	temporal	and	geographic	information	into	ever	38	

growing	phylogenies	enables	analyses	using	selection	models	to	predict	future	population	39	

trends	and	derive	biologically	meaningful	insights	into	V.	cholerae	evolution	(7,	8).	By	40	

developing	treatment	and	vaccination	strategies	based	on	phylogenic	models	(9),	41	

organizations	and	governments	can	more	efficiently	leverage	limited	resources	and	more	42	

effectively	prevent	disease	spread	in	line	with	the	World	Health	Organization’s	goal	of	43	

eradicating	cholera	by	2030	(10).		44	

Alongside	advances	in	genomics	research,	the	V.	cholerae	and	broader	bacterial	biology	45	

communities	have	benefited	greatly	from	other	next	generation	sequencing	(NGS)	46	
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technologies.	Targeted	sequencing	experiments	have	been	essential	in	mapping	complex	47	

virulence	pathways,	illuminating	a	novel	interbacterial	defense	system,	and	expanding	our	48	

knowledge	of	the	role	of	non-coding	RNA	(ncRNA)	in	the	vibrio	life	cycle	(11–17).	Further	49	

discoveries	such	as	transcription	factor	mediated	transposon	insertion	bias	(18)	and	the	50	

role	of	cAMP	receptor	protein	in	host	colonization	(19)	have	benefited	from	composite	51	

research	strategies	utilizing	multiple	technologies.	Similarly,	meta-analyses	utilizing	pooled	52	

data	from	multiple	experiments	are	empowered	by	the	increasing	availability	of	high	53	

quality	bacterial	NGS	datasets.		Expression	data	is	particularly	amenable	to	such	pooling	54	

and	can	be	used	to	accurately	group	genes	into	functional	modules	based	on	their	co-55	

expression	(20).	In	bacteria,	weighted	gene	co-expression	network	analysis	(WGCNA)	(21)	56	

has	been	successfully	used	to	underscore	biologically	important	genes	and	gene-gene	57	

relationships	via	“guilt-by-association”	approaches	(22,	23).	These	studies	have	taken	58	

advantage	of	larger	and	larger	heterogeneous	microarray	datasets	to	provide	novel	59	

biological	insights	via	existing	data.	60	

Despite	major	advances	in	sequencing	technologies	and	research	strategies,	most	of	the	61	

over	two	dozen	existing	RNA-seq	experiments	in	V.	cholerae	have	been	limited	to	targeted	62	

approaches	that	involve	quantifying	the	differential	abundance	of	genetic	material	across	a	63	

handful	of	conditions.	Via	these	approaches,	any	change	in	expression	observed	in	one	64	

experiment	is	nearly	impossible	to	generalize	to	other	treatment	conditions	and	analyses	65	

are	limited	to	a	few	pathways	or	genes	of	interest.	In	contrast,	meta-analyses	such	as	66	

WGCNA	can	uncover	much	broader	relationships	throughout	the	entire	genome	by	67	

combining	information	from	multiple	datasets.	As	there	is	no	existing	co-expression	68	

analysis	in	V.	cholerae	to	date,	the	accumulation	of	over	300	publicly	available	RNA-seq	69	
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samples	from	targeted	RNA-seq	experiments	represents	a	heretofore	untapped	resource	70	

for	the	cholera	community.		71	

Motivated	by	the	success	of	pooled	genetic	sequencing	analyses,	our	current	work	72	

utilizes	all	publicly	available	V.	cholerae	RNA-seq	based	expression-level	data	to	generate	a	73	

co-expression	network.	We	expand	upon	existing	bacterial	WGCNA	approaches	by	74	

integrating	broader	sequencing	data	(including	ChIP-seq	and	Tn-seq)	and	multiple	75	

annotation	platforms	into	our	analysis.	Our	network	ultimately	contributes	information	on	76	

connections	across	all	V.	cholerae	genes,	including	the	roughly	1500	predicted	but	77	

functionally	un-annotated	genetic	elements	that	account	for	some	37%	of	the	genome.	78	

More	specifically,	we	implicate	new	loci	in	virulence	regulation	and	clearly	demonstrate	a	79	

powerful	and	accurate	approach	to	hypothesis	generation	via	our	described	network.	80	

	81	

Results	82	

Gene	network	generation	83	

To	generate	our	co-expression	analysis	in	V.	cholerae,	we	applied	our	WGCNA	pipeline	to	84	

analyze	twenty-seven	V.	cholerae	RNA	sequencing	experiments	deposited	in	NCBI’s	85	

Sequence	Read	Archive	(SRA)	in	addition	to	two	novel	experiments.	The	RNA	sequencing	86	

samples	are	derived	from	experiments	exploring	a	range	of	important	V.	cholerae	processes	87	

including	intestinal	colonization,	quorum	sensing,	and	stress	response.	In	total,	our	88	

network	includes	300	individual	RNA-seq	samples	(supplementary	table	S1).	All	samples	89	

were	mapped	to	a	recently	inferred	V.	cholerae	transcriptome	derived	from	the	N16961	90	

reference	genome	(1,	13).	This	reference	was	chosen	because	the	majority	(293)	of	91	

samples	were	collected	from	strains	N16961	or	the	closely	related	C6706	and	A1552.		92	
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Figure	1	outlines	the	process	used	to	generate	our	co-expression	network	with	a	small	93	

subset	of	genes.	Loci	VC0384–VC0386	are	known	to	be	involved	in	cysteine	metabolism	94	

while	the	two	genomically	adjacent	loci	VC0383	and	VC0388	do	not	share	this	function.	95	

Following	normalization	of	mapped	transcripts	(Fig.	1A),	a	weighted	gene	co-expression	96	

network	analysis	was	performed	using	WGCNA	(21).	First,	a	Pearson	correlation	matrix	is	97	

calculated	for	expression	levels	of	all	genes	(Fig.	1B).	This	correlation	matrix	clearly	98	

captures	strong	relationships	between	co-expressing	genes	such	as	VC0384–VC0386	but	99	

can	produce	background	noise	from	un-related	gene	pairs.	We	limit	this	noise	by	100	

calculating	a		topological	overlap	matrix	(TOM)	(24)	that	weights	pairwise	co-expression	101	

data	based	on	each	gene’s	interactions	with	all	other	genes	(Fig.	1C).	In	this	way,	the	102	

relationships	between	genes	that	fall	within	the	same	subnetwork,	i.e.	VC0384-86,	are	103	

favored	while	the	signal	from	unrelated	genes,	i.e.	VC0383	and	VC0388,	is	abated.	This	104	

TOM,	after	filtering	for	normalized	values	greater	than	0.1,	is	used	to	construct	an	accurate	105	

co-expression	network	that	captures	biologically	meaningful	relationships	(Fig.	1D).	106	

In	addition	to	co-expression	data,	our	network	and	analyses	incorporate	information	107	

from	multiple	other	sources.	Our	network	includes	predicted	pathway	annotations	and	108	

gene	functional	knowledge	from	the	NCBI	Biosystems	database	as	well	as	the	DAVID,	109	

Panther,	and	KEGG	databases	(25–28).	Additionally,	importance	labels	are	applied	to	genes	110	

with	no	known	function	which	have	been	implicated	as	playing	a	role	in	intestinal	111	

colonization	or	in	vitro	growth	via	Tn-seq	based	essentiality	experiments	(14,	29).	112	

Information	from	ChIP-seq	binding	assays	and	microarray	results	were	incorporated	in	113	

downstream	analyses	to	substantiate	network	derived	relationships.	By	combining	all	of	114	

these	data	sources	we	were	able	to	develop	and	analyze	an	informative	network	of	co-115	

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 9, 2020. ; https://doi.org/10.1101/2020.02.07.939611doi: bioRxiv preprint 

https://doi.org/10.1101/2020.02.07.939611
http://creativecommons.org/licenses/by/4.0/


expressing	genes	that	provides	both	qualitative	and	quantitative	information	about	116	

relationships	between	transcripts	across	forty-nine	gene-clusters	covering	the	entire	V.	117	

cholerae	genome	(Supp.	Data	S1-2).	118	

	119	

Genes	in	known	pathways	cluster	together	and	contextualize	genes	of	unknown	120	

function	121	

As	proof	of	the	accuracy	of	our	approach,	we	have	highlighted	four	clusters	that	122	

recapitulate	known	interactions	between	transcripts	involved	in	specific	pathways	or	123	

cellular	processes	(Fig.	2).	The	correct	grouping	of	transcripts	encoding	products	such	as	124	

ribosomal	proteins,	amino	acid	synthesis	proteins,	and	tRNA	transcripts	that	have	largely	125	

known	functions	and	are	involved	in	well-studied,	highly	conserved	cellular	processes	126	

provides	a	positive	control	for	the	validity	of	our	network	clusters	(Fig.	2A–C).	Likewise,	127	

the	clustering	of	genes	known	to	be	involved	in	more	specialized	processes	such	as	biofilm	128	

formation	(Fig.	2D)	further	underscores	the	success	of	our	approach.	129	

The	subnetworks	mentioned	above	also	support	the	utility	of	our	analysis	in	powering	130	

guilt-by-association	based	inference	of	gene	function	(30).	Because	each	of	these	gene	131	

clusters	contain	co-expressing	genes	that	are	involved	in	the	same	biological	process,	it	can	132	

be	assumed	that	unannotated	genes	in	the	same	cluster	are	likely	involved	in	the	same	133	

process.	Such	links,	while	not	definitive	on	their	own,	can	be	used	with	other	data	to	hint	at	134	

gene	functions.	For	example,	genes	with	known	function	in	Fig.	2D	are	primarily	involved	135	

in	biofilm	formation	(31,	32).	This	clustering	of	biofilm	genes	suggests	that	the	few	genes	136	

with	no	known	function	in	this	subnetwork	may	be	involved	in	the	same	process.	Two	of	137	

these	unannotated	transcripts,	VC1937	and	VC2388,	are,	per	GO	cellular	component	138	
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location	labels,	“integral	membrane	components.”	Further,	the	VC2388	locus	is	directly	139	

upstream	of	a	Vcr084,	a	short	RNA	involved	in	quorum	sensing	which	is	essential	for	140	

biofilm	formation	(33).		Taken	together,	this	evidence	suggests	that	VC1937	and	VC2388	141	

may	play	a	role	in	some	of	the	complex	membrane	restructuring	necessary	for	biofilm	142	

formation.	In	facilitating	such	guilt-by-association	approaches	to	novel	hypothesis	143	

generation,	our	co-expression	network	serves	as	a	highly	efficient	substitute	for	more	144	

traditional	screening	assays.	145	

	146	

A	virulence	subnetwork	suggests	novel	gene	functions	147	

While	the	biofilm	associated	subnetwork	presents	a	relatively	simple	example	of	the	148	

functional	insights	our	co-expression	data	can	yield,	the	virulence-related	subnetwork	(Fig.	149	

3A)	represents	a	more	complex	case	in	which	genes	of	known	function	provide	clues	to	the	150	

role	of	unannotated	genes.	The	majority	of	transcripts	in	this	module	originate	from	within	151	

the	virulence-related	ToxR	regulon	that	consists	principally	of	genes	on	the	V.	cholerae	152	

pathogenicity	island	1	(VC0809–VC0848)	and	cholera	toxin	sub-units	A	and	B	(ctxAB,	153	

VC1456	and	VC1457)	(34).	Other	genes	in	this	subnetwork,	such	as	vpsJ,	VC1806,	VC1810,	154	

and	chitinase,	are	predominately	localized	to	virulence	islands	and	other	areas	of	the	155	

genome	under	tight	control	of	the	known	virulence	regulators	ToxR,	ToxT,	or	H-NS	as	156	

determined	via	ChIP	and/or	RNA-seq	(35–37).	The	clustering	of	such	genes	with	well-157	

characterized	interactions	into	a	cohesive	subnetwork	is	further	validation	of	our	ability	to	158	

generate	accurate	co-expression	maps	of	related	genes.	The	association	of	uncharacterized	159	

genes	in	these	clusters	suggests	they	may	also	play	a	role	in	V.	cholerae	virulence	and	160	

generates	hypotheses	about	the	function	of	unknown	genes	within	this	module.		161	
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Many	of	the	important	transcripts	with	unknown	function	are	expected	to	co-express	162	

with	known	virulence	genes	because	they	fall	within	vibrio	pathogenicity	island	(VPI)-1	163	

(VC0810,	VC0821–VC0823,	VC0842)	or	VPI-2	(VC1806,	VC1810),	or	are	proximal	to	other	164	

virulence	genes	(VC1945)	(38,	39).	However,	our	analysis	also	identified	genes	such	as	165	

VCA0094–VCA0096	which	are	on	a	completely	different	chromosome	than	the	rest	of	the	166	

subnetwork	and	do	not	neighbor	any	known	virulence	elements.		167	

A	major	benefit	of	our	approach	is	that	we	incorporate	additional	regulatory	data	such	168	

as	ChIP	and	Tn-seq	into	our	co-expression	analysis,	allowing	us	to	verify	the	association	169	

between	VCA0094–VCA0096	and	virulence	pathways	using	existing	experimental	data.	Tn-170	

seq	analysis	has	previously	identified	VCA0094	and	VCA0095	as	essential	for	infection	of	a	171	

rabbit	intestine	(14),	suggesting	that	these	loci	play	a	role	in	virulence.	Because	transcripts	172	

for	these	genes	co-express	with	genes	regulated	by	ToxT,	ToxR,	and	H-NS,	we	also	probed	173	

existing	ChIPseq	binding	datasets	(12,	19,	35)	to	see	if	any	of	these	well-studied	174	

transcription	factors	bind	near	the	VCA0094-96	loci.	While	ToxT	binding	was	not	observed	175	

near	this	site	(data	not	shown),	our	analysis	identified	significant	peaks	in	the	promoter	176	

region	of	VCA0094	for	both	ToxR	and	H-NS	as	calculated	via	re-analysis	of	existing	binding	177	

data	from	(35).	Both	peaks	showed	a	large	and	significant	increase	in	binding	affinity	(log2	178	

fold	change	in	average	occupancy)	when	compared	against	input	controls	(Fig.	3B).	H-NS	179	

showed	a	clear	binding	peak	in	the	region	of	the	VCA0094	promoter	that	extended	in	a	180	

diffuse	manner	to	the	VCA0095	TSS	while	ToxR	binding	covered	a	similar	region	but	was	181	

more	diffuse	throughout	(data	not	shown).	Collectively	these	results	indicate	virulence	182	

related	functions	for	the	products	of	the	VCA0094–VCA0096	transcripts.	Although	the	183	

exact	mechanistic	role	of	these	genes	remains	elusive,	we	have	nevertheless	demonstrated	184	
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the	ability	of	our	pipeline	to	generate	meaningful	hypotheses	by	incorporating	existing	data	185	

from	a	multitude	of	sources.	186	

	187	

Co-expression	data	provides	an	accurate	in	silico	complement	to	RNA-seq	188	

In	addition	to	the	guilt-by-association	inference	described	above,	co-expression	analysis	189	

can	provide	a	partial	substitute	or	complement	to	RNA-seq	experiments.	Novel,	meaningful	190	

genetic	relationships	can	be	found	in	a	co-expression	network	by	focusing	on	the	191	

transcripts	that	are	co-regulated	with	a	gene	of	interest.	192	

We	can	apply	a	network-based	approach	in	lieu	of	new	RNA-seq	based	experiments	to	193	

identify	genes	which	co-express	with	rpoS	(VC0534)	and	are	similarly	involved	in	bacterial	194	

stress	response.	As	our	network	utilizes	only	RNA-seq	based	transcriptomics	studies	and	195	

none	of	these	studies	involves	direct	manipulation	of	rpoS,	we	can	compare	existing	196	

microarray	data	involving	an	rpoS	(VC0534)	deletion	mutant	(40)	to	determine	how	197	

accurate	our	approach	is.	When	applying	an	absolute	co-expression	cutoff	of	0.1,	273	genes	198	

are	identified	as	having	a	relationship	with	rpoS	expression	in	both	our	network	analysis	199	

and	the	rpoS	mutant	microarray	data	(Fig.	4A).	This	represents	nearly	two-thirds	of	genes	200	

identified	as	differentially	expressed	in	the	original	microarray	study.	While	our	network	201	

links	far	more	genes	with	rpoS	than	the	microarray	approach,	this	is	in	line	with	recent	202	

RNA-seq	based	work	that	found	that	23%	of	the	E.	coli	genome	is	regulated	by	RpoS	(41).	203	

Additionally,	all	of	the	flagella	and	chemotaxis	related	proteins	highlighted	as	particularly	204	

informative	in	the	original	study	are	identified	by	our	analysis	(Fig.	4B)	and	relevant	values	205	

(i.e.	network	co-expression	and	microarray-derived	log	fold	change	in	expression)	for	the	206	

273	shared	transcripts	have	a	Spearman	correlation	of	-0.516.	This	accuracy	is	achieved	207	
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without	any	direct	genetic	manipulation	of	the	rpoS	locus	in	the	RNA-seq	datasets	used	to	208	

generate	our	co-expression	network	and	serves	as	a	testament	to	the	potential	utility	and	209	

versatility	of	our	approach.	210	

Our	approach	to	isolating	genetic	interactions	also	has	advantages	over	211	

transcriptomics-focused	sequencing.	As	seen	in	Fig.	4A,	our	network-based	analysis	212	

identifies	far	more	genes	associated	with	rpoS.	This	is	likely	because	RNAseq-based	213	

approaches	are	can	identify	a	broader	range	of	gene	transcripts	as	they	are	not	limited	by	214	

restrictive	microarray	probes	(42).	Separate	from	differences	in	underlying	technology,	co-215	

expression	networks	are	also	more	likely	to	detect	genes	regulating	a	target’s	expression	216	

than	traditional	transcriptomics	experiments	which	largely	capture	downstream	responses	217	

to	changes	in	a	target’s	expression	(43,	44).	Thus,	a	co-expression	network	can	provide	an	218	

alternative	perspective	to	complement	or	clarify	transcriptomics	data.	219	

	220	

Discussion	221	

We	have	successfully	constructed	the	first	V.	cholerae	co-expression	network	through	a	222	

computationally	inexpensive	process	that	is	simple,	easily	expanded	upon,	and	223	

straightforward	to	implement	in	other	organisms.	Our	network	effectively	identifies	224	

canonical	gene	clusters	related	to	specific	molecular	pathways	or	functions,	such	as	those	225	

corresponding	to	rRNAs	or	biofilm	proteins.	We	have	also	outlined	two	use-cases	for	the	226	

data	provided	and	have	shown	the	accuracy	of	both	approaches	either	experimentally	or	227	

using	existing	data.	Additionally,	we	have	included	relevant	network	files	as	well	as	raw	228	

read	counts	across	RNA-seq	conditions	(Supp.	Data	S1-2	&	Supp.	Table	S2)	alongside	all	229	

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 9, 2020. ; https://doi.org/10.1101/2020.02.07.939611doi: bioRxiv preprint 

https://doi.org/10.1101/2020.02.07.939611
http://creativecommons.org/licenses/by/4.0/


code	used	in	our	analysis	(see	Materials	and	Methods)	to	encourage	broad	usage	of	this	230	

data.	231	

Our	results	have	proven	both	the	utility	and	accuracy	of	our	approach	despite	in-depth	232	

analysis	limited	to	a	handful	of	genes	across	five	of	the	forty-nine	observed	gene	clusters.	233	

Furthermore,	our	work	with	the	virulence	subnetwork	supports	previously	published	234	

research	loosely	implicating	genes	VCA0094–96	in	virulence	and	virulence	related	235	

functions.	All	three	transcripts	have	shown	up	in	screens	focusing	on	biofilm	development	236	

(45),	and	SOS	response	(13).	From	a	mechanistic	perspective,	protein	homology	analysis	237	

via	NCBI’s	Conserved	Domain	Database	(46)	indicates	that	VCA0094	possesses	a	DNA-238	

binding	transcriptional	regulator	domain	while	VCA0096	contains	domains	that	implicate	239	

it	in	protein	activation	via	proteolysis.	These	data	combined	with	our	novel	findings	hint	at	240	

the	potential	biological	importance	of	this	genomic	locus.	241	

When	viewed	through	the	lens	of	a	specific	gene	of	interest,	co-expression	data	is	in	242	

large	part	analogous	to	the	differential	expression	data	produced	by	RNA-seq	experiments.	243	

While	RNA-seq	offers	finer	assay	control	and	can	be	tailored	more	exactly	to	suit	a	specific	244	

research	question,	there	are	both	technical	and	practical	limitations	that	may	make	such	an	245	

approach	impractical.	Whether	an	experimenter	is	interested	in	examining	the	role	of	an	246	

essential	locus	or	is	limited	by	available	resources,	our	co-expression	analysis	presents	a	247	

fast,	free,	and	faithful	alternative	for	probing	genetic	interactions	as	outlined	in	our	analysis	248	

of	rpoS	above.	249	

Major	motivations	for	this	work	include	the	successful	implementation	of	bacterial-250	

focus,	microarray-based	co-expression	networks	and	the	lack	of	clear	functional	knowledge	251	

for	a	large	portion	of	V.	cholerae	genes.	Besides	more	simple	guilt-by-association	studies	252	
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(22,	23),	co-expression	networks	have	helped	to	elucidate	relationships	in	diverse	253	

microbial	communities	(47–50)	and	enable	comparisons	across	strains	and	species	(51–254	

53).	These	works	as	well	as	the	relative	dearth	of	knowledge	about	the	V.	cholerae	genome	255	

(roughly	two	third	of	genes	are	annotated	compared	to	around	86%	percent	of	all	E.	coli	256	

genes	(54))	and	the	growing	abundance	of	V.	cholerae	focused	NGS	data	served	as	the	257	

impetus	for	this	research.	258	

The	calculated	co-expression	network,	though	accurate,	could	be	improved	via	the	259	

inclusion	of	more	experiments	and	more	extensive	SRA	annotations.	Our	somewhat	limited	260	

pooled	dataset	consisting	of	three	hundred	samples	is	an	order	of	magnitude	off	from	the	261	

few	thousand	samples	necessary	to	derive	the	most	faithful	co-expression	estimates	(55).	262	

Though	sample	size	will	improve	as	more	V.	cholerae	RNA-seq	experiments	are	published,	263	

more	samples	may	also	increase	the	risk	posed	by	batch	effects	which	cause	spurious	264	

correlations	among	genes	through	technical	variation	(56,	57).	The	diverse	structure	of	our	265	

current	data	helps	to	minimize	the	impact	of	batch	effects	but	this	would	be	offset	by	the	266	

future	inclusion	of	larger	datasets	from	single	experiments.	While	automated	sample	267	

clustering	methods	(58–60)	can	effectively	group	overly	correlated	samples,	there	is	no	268	

way	to	know	if	the	correlation	is	biological	(i.e.	meaningful)	or	technical	(i.e.	noise)	in	269	

origin.	Likewise,	manual	curation	of	batch	annotations	is	also	difficult	since	few	SRA	270	

records	are	extensively	annotated	with	detailed	experimental	conditions	(e.g.	bacterial	271	

growth	stage,	exact	medium	used).	Thus,	careful	consideration	may	be	necessary	when	272	

expanding	and	generalizing	this	analysis	to	include	future	data.	273	

The	mapping	of	raw	reads	to	a	transcriptome	derived	from	a	single	reference	genome	274	

presents	a	limitation	to	our	current	work.	While	this	approach	is	reasonable	given	the	275	
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similarity	of	the	vast	majority	of	included	strains	to	our	reference,	a	more	elaborate	276	

comparative	transcriptomic	strategy	(61,	62)	would	be	ideal	if	more	diverse	samples	are	277	

included	in	future	analyses.	This	is	especially	true	when	considering	the	inclusion	of	278	

expression	data	from	clinical	samples	which	are	likely	to	have	much	more	genomic	279	

variability	than	the	closely	related	lab	cultured	strains	used	to	construct	our	network.	On	280	

the	other	hand,	because	comparative	transcriptomics	requires	defining	homologous	alleles	281	

across	all	strains	analyzed	(63),	such	an	approach	would	greatly	increase	the	difficulty	of	282	

incorporating	strains	without	an	assembled	genome.		283	

In	summary,	our	co-expression	network	can	drive	functional	hypotheses	for	284	

unannotated	genes	in	V.	cholerae.	As	the	Vibrio	community	steadily	adds	high	quality	data	285	

from	increasingly	sophisticated	sequencing	experiments	to	public	databases	our	imputed	286	

network	can	only	improve,	providing	ever	deeper	insights	into	the	V.	cholerae	genome.	At	287	

the	same	time,	highly	annotated	transcript-based	co-expression	networks	can	empower	288	

research	with	related	technologies	(e.g.	single	cell	transcriptomics	and	dual	RNA-seq)	and	289	

research	into	a	host	of	other	clinically	relevant	bacteria,	such	as	Pseudomonas	aeruginosa	290	

or	Staphylococcus	aureus	which	have	over	2000	and	1400	RNA-seq	experiments	in	SRA	291	

respectively.	292	

	293	

Materials	and	Methods	294	

Data	Collection	and	Processing	295	

All	RNA	and	ChIP	sequencing	data	were	downloaded	from	the	Sequence	Read	Archive	296	

(SRA)(64)	and	converted	to	compressed	fastq	files	using	the	SRA	toolkit	297	

(https://www.ncbi.nlm.nih.gov/sra/docs/toolkitsoft/)	(see	Table	S1	for	details	on	298	
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included	experiments).	RNA-seq	samples	were	selected	by	searching	the	SRA	on	Sept	10th,	299	

2019	for	the	Organism	and	Strategy	terms	“vibrio	cholerae”	and	“rna	seq”	respectively,	300	

resulting	in	326	initial	samples	including	the	34	novel	samples	from	this	publication	301	

(PRJNA601792).	Samples	were	mapped	to	a	recently	inferred	V.	cholerae	transcriptome	302	

derived	from	the	N16961	reference	genome	(1,	13)	using	Kallisto	version	0.45.1	(65).	This	303	

reference	was	chosen	because	the	majority	(293)	of	samples	were	collected	from	strains	304	

N16961	or	the	closely	related	C6706	and	A1552.	26	low	quality	samples	with	<	50%	of	305	

reads	mapping	to	the	reference	transcriptome	were	discarded	before	further	analysis,	306	

leaving	300	samples	used	for	further	analysis.		307	

For	ChIP-seq	analysis,	accession	numbers	were	identified	via	the	relevant	publications	308	

(12,	19,	35)	and	sequences	were	downloaded	from	SRA	and	converted	to	fastq	files	as	309	

above.	Raw	reads	were	mapped	to	the	same	N16961	reference	genome	using	Bowtie	2	310	

version	2.3.5.1	(66).	From	this	mapping,	peaks	were	identified	using	MACS2	version	2.1.2	311	

with	an	extsize	of	225	(various	sizes	from	150	to	500	were	tested	with	little	observable	312	

difference	in	peaks	identified)	(67)	and	differential	binding	and	significance	were	313	

calculated	using	DiffBind	version	2.12.0	(68).	314	

Processed	Tn-seq	data	were	collected	directly	from	published	datasets.	In	vitro	315	

essentiality	and	semi-essentiality	labels	were	derived	from	Chao	et	al.	2013	Table	S1	(29),	316	

with	the	original	labels	of	domain	essential	and	sick	genes	replaced	with	essential	and	317	

semi-essential	respectively.	We	used	Table	S2	from	Fu,	Waldor,	and	Mekalanos	2013	(14)	318	

to	label	genes	involved	in	host	infection,	with	any	gene	exhibiting	a	log2	fold	change	less	319	

than	negative	three	deemed	essential	and	any	gene	with	a	log2	fold	change	between	320	

negative	one	and	negative	three	deemed	semi-essential.		321	
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Network	Construction	322	

Figure	1	highlights	the	process	used	to	generate	our	co-expression	network.	Kallisto	323	

derived	reads	were	first	imported	into	R	via	tximport	(69),	then	normalized	using	DESeq2	324	

version	1.24.0	(70),	resulting	in	values	that	are	comparable	across	conditions	and	325	

experiments.	Following	normalization,	a	weighted	gene	co-expression	network	analysis	326	

was	performed	using	WGCNA	(21).	This	process	is	highlighted	with	a	subset	of	data	in	327	

Figure	1	and	consists	of	the	sequential	calculation	of	a	Pearson	correlation	matrix,	328	

adjacency	matrix	with	power	ß=6,	and,	ultimately,	topological	overlap	matrix	(TOM)	(24)	329	

from	normalized	gene	expression	counts	across	conditions.	We	further	filtered	this	TOM	to	330	

exclude	samples	with	weighted	co-expression	<0.1	for	all	analysis	included	in	the	Results	331	

section.		332	

Predicted	pathway	annotations	and	gene	functional	knowledge	are	derived	from	the	333	

NCBI	Biosystems	database	as	well	as	DAVID,	Panther,	and	KEGG	databases	(25–28).	Genes	334	

lacking	functional	knowledge	which	are	identified	as	essential	or	semi-essential	in	either	335	

Tn-seq	dataset	are	labeled	in	network	visualizations	as	“important.”	336	

Data	Availability	337	

SRA	accession	numbers	and	information	on	included	samples	can	be	found	in	338	

Supplementary	Table	S1.	A	full,	unfiltered	network	graph	is	provided	in	Supplementary	File	339	

S1	with	the	corresponding	node	labels	in	Supplementary	File	S2.	Raw,	un-normalized	read	340	

counts	are	also	provided	in	Supplementary	Table	S2	All	data	analysis	and	figure	generation	341	

were	done	using	the	R	programming	language,	with	code	available	at	DOI:	342	

10.5281/zenodo.3572870.	343	

	344	

345	
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	557	

Legends:	558	

Figure	1:	General	outline	of	network	construction.		559	

1A)	Normalized	(log2)	expression	reads	for	the	same	genes	across	multiple	conditions	supply	560	

the	basis	for	our	co-expression	analysis.	In	this	small	example,	it	is	clear	that	genes	VC0384-561	

VC0386	have	a	very	similar	expression	pattern	across	conditions.	1B)	Correlations	are	562	

calculated	from	the	normalized	counts	in	A	for	every	pair	of	genes.	The	pattern	seen	in	A	563	

becomes	much	clearer	when	looking	at	the	correlation.	1C)	An	adjacency	matrix	(not	shown)	is	564	

calculated	from	the	correlations	in	B	and	ultimately	used	to	produce	a	topological	overlap	565	

matrix	(TOM)	that	supplies	network	edge	weights	with	less	noise	than	the	raw	correlation	566	

matrix.	While	the	single	of	co-expressing	pairs	is	dampened	slightly,	this	step	greatly	decreases	567	

spurious	relationships	as	it	favors	transcripts	which	coexpress	with	similar	sets	of	genes	568	

rather	than	potentially	noisy	direct	correlations.	1D)	The	final	network	groups	transcripts	that	569	

tightly	co-express	while	indicating	what	pathway	they	are	involved	in.	This	network	also	570	

includes	functional	and	essentiality	based	knowledge.	In	this	case,	the	three	genes	involved	in	571	

cysteine	metabolism	(VC0383-VC0385,	cysHIJ)	form	a	subnetwork	while	the	other	genes	do	572	

not	meet	our	0.10	co-expression	cutoff.	573	

	574	

Figure	2:	Sub-networks	recapitulating	known	results	575	
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The	four	depicted	subnetworks	each	contain	subsets	of	transcripts	which	are	known	to	be	576	

largely	involved	in	the	same	biological	process.	For	each	subnetwork,	the	nodes	represent	577	

transcripts	while	the	edges	represent	a	co-expression	relationship	of	at	least	0.1	between	578	

transcripts.	A)	This	sub-network	consists	completely	of	tRNA	transcripts.	B)	These	transcripts	579	

are	almost	completely	related	to	ribosomal	structure	and/or	function.	C)	These	transcripts	580	

play	a	role	in	amino	acid	synthesis.	D)	This	sub-network	contains	a	majority	of	transcripts	that	581	

play	a	role	in	biofilm	formation	in	addition	to	unrelated	genes.	582	

	583	

Figure	3:	Virulence	related	subnetwork.	584	

3A)	This	subnetwork	contains	a	majority	of	genes	that	are	predicted	to	be	involved	in	585	

virulence	related	pathways,	providing	clues	to	the	genes	with	no	known	functions	such	as	586	

those	at	locus	VCA0094-VCA0096.	3B)	Mean	binding	affinity	(log2	fold	change	in	occupancy	587	

compared	to	loading	control)	for	different	virulence-associated	transcription	factors	near	the	588	

VCA0094-96	locus.	Both	HNS	and	TOXR	show	a	significant	binding	preference	for	this	region.	589	

Error	bars	indicate	standard	deviation	from	the	mean.	590	

	591	

Figure	4:	Comparing	RpoS	microarray	data	to	co-expressing	genes	in	our	WGCNA	592	

A)	Overlap	of	genes	with	expression	pattern	related	to	rpoS	expression	as	identified	via	our	593	

network	analysis	(blue)	and	existing	microarray	data	(red).	The	overlapping	region	identifies	594	

272	genes	that	are	common	between	the	two	analyses.	B)	Breakdown	of	shared	genes	595	

(overlapping	region	in	A).	All	of	the	flagellar	and	chemotaxis	genes	highlighted	as	particularly	596	

important	in	the	microarray	dataset	are	identified	by	both	methods.	597	

	598	
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