

1 **A comprehensive co-expression network analysis in *Vibrio cholerae***

2 Cory D. DuPai^a, Claus O. Wilke^{a,b}, and Bryan W. Davies^{a,c}

3

4 ^a Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX,
5 USA

6 ^b Department of Integrative Biology, The University of Texas at Austin, Austin, TX, USA

7 ^c Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA

8

9 **Abstract**

10 Research into the evolution and pathogenesis of *Vibrio cholerae* has benefited greatly from
11 the generation of high throughput sequencing data to drive molecular analyses. The steady
12 accumulation of these datasets now provides a unique opportunity for *in silico* hypothesis
13 generation via co-expression analysis. Here we leverage all published *V. cholerae* RNA-
14 sequencing data, in combination with select data from other platforms, to generate a gene
15 co-expression network that validates known gene interactions and identifies novel genetic
16 partners across the entire *V. cholerae* genome. This network provides direct insights into
17 genes influencing pathogenicity, metabolism, and transcriptional regulation, further
18 clarifies results from previous sequencing experiments in *V. cholerae* (e.g. Tn-seq and ChIP-
19 seq), and expands upon micro-array based findings in related gram-negative bacteria.

20

21 **Importance**

22 Cholera is a devastating illness that kills tens of thousands of people annually. *Vibrio*
23 *cholerae*, the causative agent of cholera, is an important model organism to investigate both

24 bacterial pathogenesis and the impact of horizontal gene transfer on the emergence and
25 dissemination of new virulent strains. Despite this importance, roughly one third of *V.*
26 *cholerae* genes are functionally un-annotated, leaving large gaps in our understanding of
27 this microbe. Through co-expression network analysis of existing RNA-sequencing data,
28 this work develops an approach to uncover novel gene-gene relationships and
29 contextualize genes with no known function, which will advance our understanding of *V.*
30 *cholerae* virulence and evolution.

31

32 **Introduction**

33 Since the completion of the first *Vibrio cholerae* genome sequence in 2000, over a
34 thousand *V. cholerae* isolates have been sequenced (1, 2). These sequences have allowed for
35 the development of sophisticated phylogeographic models, which emphasize the
36 importance of controlling the spread of virulent and antibiotic resistant *V. cholerae* strains
37 to lower disease burden, in addition to fighting endemic local strains (2–6). The integration
38 of hundreds of genomes paired with temporal and geographic information into ever
39 growing phylogenies enables analyses using selection models to predict future population
40 trends and derive biologically meaningful insights into *V. cholerae* evolution (7, 8). By
41 developing treatment and vaccination strategies based on phylogenetic models (9),
42 organizations and governments can more efficiently leverage limited resources and more
43 effectively prevent disease spread in line with the World Health Organization's goal of
44 eradicating cholera by 2030 (10).

45 Alongside advances in genomics research, the *V. cholerae* and broader bacterial biology
46 communities have benefited greatly from other next generation sequencing (NGS)

47 technologies. Targeted sequencing experiments have been essential in mapping complex
48 virulence pathways, illuminating a novel interbacterial defense system, and expanding our
49 knowledge of the role of non-coding RNA (ncRNA) in the vibrio life cycle (11–17). Further
50 discoveries such as transcription factor mediated transposon insertion bias (18) and the
51 role of cAMP receptor protein in host colonization (19) have benefited from composite
52 research strategies utilizing multiple technologies. Similarly, meta-analyses utilizing pooled
53 data from multiple experiments are empowered by the increasing availability of high
54 quality bacterial NGS datasets. Expression data is particularly amenable to such pooling
55 and can be used to accurately group genes into functional modules based on their co-
56 expression (20). In bacteria, weighted gene co-expression network analysis (WGCNA) (21)
57 has been successfully used to underscore biologically important genes and gene-gene
58 relationships via “guilt-by-association” approaches (22, 23). These studies have taken
59 advantage of larger and larger heterogeneous microarray datasets to provide novel
60 biological insights via existing data.

61 Despite major advances in sequencing technologies and research strategies, most of the
62 over two dozen existing RNA-seq experiments in *V. cholerae* have been limited to targeted
63 approaches that involve quantifying the differential abundance of genetic material across a
64 handful of conditions. Via these approaches, any change in expression observed in one
65 experiment is nearly impossible to generalize to other treatment conditions and analyses
66 are limited to a few pathways or genes of interest. In contrast, meta-analyses such as
67 WGCNA can uncover much broader relationships throughout the entire genome by
68 combining information from multiple datasets. As there is no existing co-expression
69 analysis in *V. cholerae* to date, the accumulation of over 300 publicly available RNA-seq

70 samples from targeted RNA-seq experiments represents a heretofore untapped resource
71 for the cholera community.

72 Motivated by the success of pooled genetic sequencing analyses, our current work
73 utilizes all publicly available *V. cholerae* RNA-seq based expression-level data to generate a
74 co-expression network. We expand upon existing bacterial WGCNA approaches by
75 integrating broader sequencing data (including ChIP-seq and Tn-seq) and multiple
76 annotation platforms into our analysis. Our network ultimately contributes information on
77 connections across all *V. cholerae* genes, including the roughly 1500 predicted but
78 functionally un-annotated genetic elements that account for some 37% of the genome.
79 More specifically, we implicate new loci in virulence regulation and clearly demonstrate a
80 powerful and accurate approach to hypothesis generation via our described network.

81

82 **Results**

83 **Gene network generation**

84 To generate our co-expression analysis in *V. cholerae*, we applied our WGCNA pipeline to
85 analyze twenty-seven *V. cholerae* RNA sequencing experiments deposited in NCBI's
86 Sequence Read Archive (SRA) in addition to two novel experiments. The RNA sequencing
87 samples are derived from experiments exploring a range of important *V. cholerae* processes
88 including intestinal colonization, quorum sensing, and stress response. In total, our
89 network includes 300 individual RNA-seq samples (supplementary table S1). All samples
90 were mapped to a recently inferred *V. cholerae* transcriptome derived from the N16961
91 reference genome (1, 13). This reference was chosen because the majority (293) of
92 samples were collected from strains N16961 or the closely related C6706 and A1552.

93 Figure 1 outlines the process used to generate our co-expression network with a small
94 subset of genes. Loci VC0384–VC0386 are known to be involved in cysteine metabolism
95 while the two genomically adjacent loci VC0383 and VC0388 do not share this function.
96 Following normalization of mapped transcripts (Fig. 1A), a weighted gene co-expression
97 network analysis was performed using WGCNA (21). First, a Pearson correlation matrix is
98 calculated for expression levels of all genes (Fig. 1B). This correlation matrix clearly
99 captures strong relationships between co-expressing genes such as VC0384–VC0386 but
100 can produce background noise from un-related gene pairs. We limit this noise by
101 calculating a topological overlap matrix (TOM) (24) that weights pairwise co-expression
102 data based on each gene's interactions with all other genes (Fig. 1C). In this way, the
103 relationships between genes that fall within the same subnetwork, i.e. VC0384-86, are
104 favored while the signal from unrelated genes, i.e. VC0383 and VC0388, is abated. This
105 TOM, after filtering for normalized values greater than 0.1, is used to construct an accurate
106 co-expression network that captures biologically meaningful relationships (Fig. 1D).

107 In addition to co-expression data, our network and analyses incorporate information
108 from multiple other sources. Our network includes predicted pathway annotations and
109 gene functional knowledge from the NCBI Biosystems database as well as the DAVID,
110 Panther, and KEGG databases (25–28). Additionally, importance labels are applied to genes
111 with no known function which have been implicated as playing a role in intestinal
112 colonization or *in vitro* growth via Tn-seq based essentiality experiments (14, 29).
113 Information from ChIP-seq binding assays and microarray results were incorporated in
114 downstream analyses to substantiate network derived relationships. By combining all of
115 these data sources we were able to develop and analyze an informative network of co-

116 expressing genes that provides both qualitative and quantitative information about
117 relationships between transcripts across forty-nine gene-clusters covering the entire *V.*
118 *cholerae* genome (Supp. Data S1-2).

119

120 **Genes in known pathways cluster together and contextualize genes of unknown
121 function**

122 As proof of the accuracy of our approach, we have highlighted four clusters that
123 recapitulate known interactions between transcripts involved in specific pathways or
124 cellular processes (Fig. 2). The correct grouping of transcripts encoding products such as
125 ribosomal proteins, amino acid synthesis proteins, and tRNA transcripts that have largely
126 known functions and are involved in well-studied, highly conserved cellular processes
127 provides a positive control for the validity of our network clusters (Fig. 2A–C). Likewise,
128 the clustering of genes known to be involved in more specialized processes such as biofilm
129 formation (Fig. 2D) further underscores the success of our approach.

130 The subnetworks mentioned above also support the utility of our analysis in powering
131 guilt-by-association based inference of gene function (30). Because each of these gene
132 clusters contain co-expressing genes that are involved in the same biological process, it can
133 be assumed that unannotated genes in the same cluster are likely involved in the same
134 process. Such links, while not definitive on their own, can be used with other data to hint at
135 gene functions. For example, genes with known function in Fig. 2D are primarily involved
136 in biofilm formation (31, 32). This clustering of biofilm genes suggests that the few genes
137 with no known function in this subnetwork may be involved in the same process. Two of
138 these unannotated transcripts, VC1937 and VC2388, are, per GO cellular component

139 location labels, “integral membrane components.” Further, the VC2388 locus is directly
140 upstream of a Vcr084, a short RNA involved in quorum sensing which is essential for
141 biofilm formation (33). Taken together, this evidence suggests that VC1937 and VC2388
142 may play a role in some of the complex membrane restructuring necessary for biofilm
143 formation. In facilitating such guilt-by-association approaches to novel hypothesis
144 generation, our co-expression network serves as a highly efficient substitute for more
145 traditional screening assays.

146

147 **A virulence subnetwork suggests novel gene functions**

148 While the biofilm associated subnetwork presents a relatively simple example of the
149 functional insights our co-expression data can yield, the virulence-related subnetwork (Fig.
150 3A) represents a more complex case in which genes of known function provide clues to the
151 role of unannotated genes. The majority of transcripts in this module originate from within
152 the virulence-related ToxR regulon that consists principally of genes on the *V. cholerae*
153 pathogenicity island 1 (VC0809–VC0848) and cholera toxin sub-units A and B (*ctxAB*,
154 VC1456 and VC1457) (34). Other genes in this subnetwork, such as *vpsJ*, VC1806, VC1810,
155 and chitinase, are predominately localized to virulence islands and other areas of the
156 genome under tight control of the known virulence regulators ToxR, ToxT, or H-NS as
157 determined via ChIP and/or RNA-seq (35–37). The clustering of such genes with well-
158 characterized interactions into a cohesive subnetwork is further validation of our ability to
159 generate accurate co-expression maps of related genes. The association of uncharacterized
160 genes in these clusters suggests they may also play a role in *V. cholerae* virulence and
161 generates hypotheses about the function of unknown genes within this module.

162 Many of the important transcripts with unknown function are expected to co-express
163 with known virulence genes because they fall within vibrio pathogenicity island (VPI)-1
164 (VC0810, VC0821–VC0823, VC0842) or VPI-2 (VC1806, VC1810), or are proximal to other
165 virulence genes (VC1945) (38, 39). However, our analysis also identified genes such as
166 VCA0094–VCA0096 which are on a completely different chromosome than the rest of the
167 subnetwork and do not neighbor any known virulence elements.

168 A major benefit of our approach is that we incorporate additional regulatory data such
169 as ChIP and Tn-seq into our co-expression analysis, allowing us to verify the association
170 between VCA0094–VCA0096 and virulence pathways using existing experimental data. Tn-
171 seq analysis has previously identified VCA0094 and VCA0095 as essential for infection of a
172 rabbit intestine (14), suggesting that these loci play a role in virulence. Because transcripts
173 for these genes co-express with genes regulated by ToxT, ToxR, and H-NS, we also probed
174 existing ChIPseq binding datasets (12, 19, 35) to see if any of these well-studied
175 transcription factors bind near the VCA0094-96 loci. While ToxT binding was not observed
176 near this site (data not shown), our analysis identified significant peaks in the promoter
177 region of VCA0094 for both ToxR and H-NS as calculated via re-analysis of existing binding
178 data from (35). Both peaks showed a large and significant increase in binding affinity (\log_2
179 fold change in average occupancy) when compared against input controls (Fig. 3B). H-NS
180 showed a clear binding peak in the region of the VCA0094 promoter that extended in a
181 diffuse manner to the VCA0095 TSS while ToxR binding covered a similar region but was
182 more diffuse throughout (data not shown). Collectively these results indicate virulence
183 related functions for the products of the VCA0094–VCA0096 transcripts. Although the
184 exact mechanistic role of these genes remains elusive, we have nevertheless demonstrated

185 the ability of our pipeline to generate meaningful hypotheses by incorporating existing data
186 from a multitude of sources.

187

188 **Co-expression data provides an accurate *in silico* complement to RNA-seq**

189 In addition to the guilt-by-association inference described above, co-expression analysis
190 can provide a partial substitute or complement to RNA-seq experiments. Novel, meaningful
191 genetic relationships can be found in a co-expression network by focusing on the
192 transcripts that are co-regulated with a gene of interest.

193 We can apply a network-based approach in lieu of new RNA-seq based experiments to
194 identify genes which co-express with *rpoS* (VC0534) and are similarly involved in bacterial
195 stress response. As our network utilizes only RNA-seq based transcriptomics studies and
196 none of these studies involves direct manipulation of *rpoS*, we can compare existing
197 microarray data involving an *rpoS* (VC0534) deletion mutant (40) to determine how
198 accurate our approach is. When applying an absolute co-expression cutoff of 0.1, 273 genes
199 are identified as having a relationship with *rpoS* expression in both our network analysis
200 and the *rpoS* mutant microarray data (Fig. 4A). This represents nearly two-thirds of genes
201 identified as differentially expressed in the original microarray study. While our network
202 links far more genes with *rpoS* than the microarray approach, this is in line with recent
203 RNA-seq based work that found that 23% of the *E. coli* genome is regulated by RpoS (41).

204 Additionally, all of the flagella and chemotaxis related proteins highlighted as particularly
205 informative in the original study are identified by our analysis (Fig. 4B) and relevant values
206 (i.e. network co-expression and microarray-derived log fold change in expression) for the
207 273 shared transcripts have a Spearman correlation of -0.516. This accuracy is achieved

208 without any direct genetic manipulation of the *rpoS* locus in the RNA-seq datasets used to
209 generate our co-expression network and serves as a testament to the potential utility and
210 versatility of our approach.

211 Our approach to isolating genetic interactions also has advantages over
212 transcriptomics-focused sequencing. As seen in Fig. 4A, our network-based analysis
213 identifies far more genes associated with *rpoS*. This is likely because RNAseq-based
214 approaches are can identify a broader range of gene transcripts as they are not limited by
215 restrictive microarray probes (42). Separate from differences in underlying technology, co-
216 expression networks are also more likely to detect genes regulating a target's expression
217 than traditional transcriptomics experiments which largely capture downstream responses
218 to changes in a target's expression (43, 44). Thus, a co-expression network can provide an
219 alternative perspective to complement or clarify transcriptomics data.

220

221 **Discussion**

222 We have successfully constructed the first *V. cholerae* co-expression network through a
223 computationally inexpensive process that is simple, easily expanded upon, and
224 straightforward to implement in other organisms. Our network effectively identifies
225 canonical gene clusters related to specific molecular pathways or functions, such as those
226 corresponding to rRNAs or biofilm proteins. We have also outlined two use-cases for the
227 data provided and have shown the accuracy of both approaches either experimentally or
228 using existing data. Additionally, we have included relevant network files as well as raw
229 read counts across RNA-seq conditions (Supp. Data S1-2 & Supp. Table S2) alongside all

230 code used in our analysis (see Materials and Methods) to encourage broad usage of this
231 data.

232 Our results have proven both the utility and accuracy of our approach despite in-depth
233 analysis limited to a handful of genes across five of the forty-nine observed gene clusters.

234 Furthermore, our work with the virulence subnetwork supports previously published
235 research loosely implicating genes VCA0094–96 in virulence and virulence related
236 functions. All three transcripts have shown up in screens focusing on biofilm development
237 (45), and SOS response (13). From a mechanistic perspective, protein homology analysis
238 via NCBI's Conserved Domain Database (46) indicates that VCA0094 possesses a DNA-
239 binding transcriptional regulator domain while VCA0096 contains domains that implicate
240 it in protein activation via proteolysis. These data combined with our novel findings hint at
241 the potential biological importance of this genomic locus.

242 When viewed through the lens of a specific gene of interest, co-expression data is in
243 large part analogous to the differential expression data produced by RNA-seq experiments.
244 While RNA-seq offers finer assay control and can be tailored more exactly to suit a specific
245 research question, there are both technical and practical limitations that may make such an
246 approach impractical. Whether an experimenter is interested in examining the role of an
247 essential locus or is limited by available resources, our co-expression analysis presents a
248 fast, free, and faithful alternative for probing genetic interactions as outlined in our analysis
249 of *rpoS* above.

250 Major motivations for this work include the successful implementation of bacterial-
251 focus, microarray-based co-expression networks and the lack of clear functional knowledge
252 for a large portion of *V. cholerae* genes. Besides more simple guilt-by-association studies

253 (22, 23), co-expression networks have helped to elucidate relationships in diverse
254 microbial communities (47–50) and enable comparisons across strains and species (51–
255 53). These works as well as the relative dearth of knowledge about the *V. cholerae* genome
256 (roughly two third of genes are annotated compared to around 86% percent of all *E. coli*
257 genes (54)) and the growing abundance of *V. cholerae* focused NGS data served as the
258 impetus for this research.

259 The calculated co-expression network, though accurate, could be improved via the
260 inclusion of more experiments and more extensive SRA annotations. Our somewhat limited
261 pooled dataset consisting of three hundred samples is an order of magnitude off from the
262 few thousand samples necessary to derive the most faithful co-expression estimates (55).
263 Though sample size will improve as more *V. cholerae* RNA-seq experiments are published,
264 more samples may also increase the risk posed by batch effects which cause spurious
265 correlations among genes through technical variation (56, 57). The diverse structure of our
266 current data helps to minimize the impact of batch effects but this would be offset by the
267 future inclusion of larger datasets from single experiments. While automated sample
268 clustering methods (58–60) can effectively group overly correlated samples, there is no
269 way to know if the correlation is biological (i.e. meaningful) or technical (i.e. noise) in
270 origin. Likewise, manual curation of batch annotations is also difficult since few SRA
271 records are extensively annotated with detailed experimental conditions (e.g. bacterial
272 growth stage, exact medium used). Thus, careful consideration may be necessary when
273 expanding and generalizing this analysis to include future data.

274 The mapping of raw reads to a transcriptome derived from a single reference genome
275 presents a limitation to our current work. While this approach is reasonable given the

276 similarity of the vast majority of included strains to our reference, a more elaborate
277 comparative transcriptomic strategy (61, 62) would be ideal if more diverse samples are
278 included in future analyses. This is especially true when considering the inclusion of
279 expression data from clinical samples which are likely to have much more genomic
280 variability than the closely related lab cultured strains used to construct our network. On
281 the other hand, because comparative transcriptomics requires defining homologous alleles
282 across all strains analyzed (63), such an approach would greatly increase the difficulty of
283 incorporating strains without an assembled genome.

284 In summary, our co-expression network can drive functional hypotheses for
285 unannotated genes in *V. cholerae*. As the Vibrio community steadily adds high quality data
286 from increasingly sophisticated sequencing experiments to public databases our imputed
287 network can only improve, providing ever deeper insights into the *V. cholerae* genome. At
288 the same time, highly annotated transcript-based co-expression networks can empower
289 research with related technologies (e.g. single cell transcriptomics and dual RNA-seq) and
290 research into a host of other clinically relevant bacteria, such as *Pseudomonas aeruginosa*
291 or *Staphylococcus aureus* which have over 2000 and 1400 RNA-seq experiments in SRA
292 respectively.

293

294 **Materials and Methods**

295 **Data Collection and Processing**

296 All RNA and ChIP sequencing data were downloaded from the Sequence Read Archive
297 (SRA)(64) and converted to compressed fastq files using the SRA toolkit
298 (<https://www.ncbi.nlm.nih.gov/sra/docs/toolkitsoft/>) (see Table S1 for details on

299 included experiments). RNA-seq samples were selected by searching the SRA on Sept 10th,
300 2019 for the Organism and Strategy terms “vibrio cholerae” and “rna seq” respectively,
301 resulting in 326 initial samples including the 34 novel samples from this publication
302 (PRJNA601792). Samples were mapped to a recently inferred *V. cholerae* transcriptome
303 derived from the N16961 reference genome (1, 13) using Kallisto version 0.45.1 (65). This
304 reference was chosen because the majority (293) of samples were collected from strains
305 N16961 or the closely related C6706 and A1552. 26 low quality samples with < 50% of
306 reads mapping to the reference transcriptome were discarded before further analysis,
307 leaving 300 samples used for further analysis.

308 For ChIP-seq analysis, accession numbers were identified via the relevant publications
309 (12, 19, 35) and sequences were downloaded from SRA and converted to fastq files as
310 above. Raw reads were mapped to the same N16961 reference genome using Bowtie 2
311 version 2.3.5.1 (66). From this mapping, peaks were identified using MACS2 version 2.1.2
312 with an extsize of 225 (various sizes from 150 to 500 were tested with little observable
313 difference in peaks identified) (67) and differential binding and significance were
314 calculated using DiffBind version 2.12.0 (68).

315 Processed Tn-seq data were collected directly from published datasets. *In vitro*
316 essentiality and semi-essentiality labels were derived from Chao et al. 2013 Table S1 (29),
317 with the original labels of domain essential and sick genes replaced with essential and
318 semi-essential respectively. We used Table S2 from Fu, Waldor, and Mekalanos 2013 (14)
319 to label genes involved in host infection, with any gene exhibiting a log₂ fold change less
320 than negative three deemed essential and any gene with a log₂ fold change between
321 negative one and negative three deemed semi-essential.

322 **Network Construction**

323 Figure 1 highlights the process used to generate our co-expression network. Kallisto
324 derived reads were first imported into R via tximport (69), then normalized using DESeq2
325 version 1.24.0 (70), resulting in values that are comparable across conditions and
326 experiments. Following normalization, a weighted gene co-expression network analysis
327 was performed using WGCNA (21). This process is highlighted with a subset of data in
328 Figure 1 and consists of the sequential calculation of a Pearson correlation matrix,
329 adjacency matrix with power $\beta=6$, and, ultimately, topological overlap matrix (TOM) (24)
330 from normalized gene expression counts across conditions. We further filtered this TOM to
331 exclude samples with weighted co-expression <0.1 for all analysis included in the Results
332 section.

333 Predicted pathway annotations and gene functional knowledge are derived from the
334 NCBI Biosystems database as well as DAVID, Panther, and KEGG databases (25–28). Genes
335 lacking functional knowledge which are identified as essential or semi-essential in either
336 Tn-seq dataset are labeled in network visualizations as “important.”

337 **Data Availability**

338 SRA accession numbers and information on included samples can be found in
339 Supplementary Table S1. A full, unfiltered network graph is provided in Supplementary File
340 S1 with the corresponding node labels in Supplementary File S2. Raw, un-normalized read
341 counts are also provided in Supplementary Table S2. All data analysis and figure generation
342 were done using the R programming language, with code available at DOI:
343 10.5281/zenodo.3572870.

344

345

346 **References**

347 1. Heidelberg JF, Eisen JA, Nelson WC, Clayton RA, Gwinn ML, Dodson RJ, Haft DH, Hickey
348 EK, Peterson JD, Umayam L, Gill SR, Nelson KE, Read TD, Tettelin H, Richardson D,
349 Ermolaeva MD, Vamathevan J, Bass S, Qin H, Dragoi I, Sellers P, McDonald L, Utterback T,
350 Fleishmann RD, Nierman WC, White O, Salzberg SL, Smith HO, Colwell RR, Mekalanos JJ,
351 Venter JC, Fraser CM. 2000. DNA sequence of both chromosomes of the cholera pathogen
352 *Vibrio cholerae*. *Nature* 406:477–483.

353 2. Weill F-X, Domman D, Njamkepo E, Almesbahi AA, Naji M, Nasher SS, Rakesh A, Assiri
354 AM, Sharma NC, Kariuki S, Pourshafie MR, Rauzier J, Abubakar A, Carter JY, Wamala JF,
355 Seguin C, Bouchier C, Malliavin T, Bakhshi B, Abulmaali HHN, Kumar D, Njoroge SM,
356 Malik MR, Kiiru J, Luquero FJ, Azman AS, Ramamurthy T, Thomson NR, Quilici M-L. 2019.
357 Genomic insights into the 2016–2017 cholera epidemic in Yemen. *Nature* 565:230–233.

358 3. Greig DR, Schaefer U, Octavia S, Hunter E, Chattaway MA, Dallman TJ, Jenkins C. 2018.
359 Evaluation of Whole-Genome Sequencing for Identification and Typing of *Vibrio*
360 *cholerae*. *J Clin Microbiol* 56:e00831-18.

361 4. Domman D, Chowdhury F, Khan AI, Dorman MJ, Mutreja A, Uddin MI, Paul A, Begum YA,
362 Charles RC, Calderwood SB, Bhuiyan TR, Harris JB, LaRocque RC, Ryan ET, Qadri F,
363 Thomson NR. 2018. Defining endemic cholera at three levels of spatiotemporal
364 resolution within Bangladesh. *Nat Genet* 50:951–955.

365 5. Weill F-X, Domman D, Njamkepo E, Tarr C, Rauzier J, Fawal N, Keddy KH, Salje H, Moore
366 S, Mukhopadhyay AK, Bercion R, Luquero FJ, Ngandjio A, Dosso M, Monakhova E, Garin
367 B, Bouchier C, Pazzani C, Mutreja A, Grunow R, Sidikou F, Bonte L, Breurec S, Damian M,
368 Njanpop-Lafourcade B-M, Sapriel G, Page A-L, Hamze M, Henkens M, Chowdhury G,

369 Mengel M, Koeck J-L, Fournier J-M, Dougan G, Grimont PAD, Parkhill J, Holt KE, Piarroux
370 R, Ramamurthy T, Quilici M-L, Thomson NR. 2017. Genomic history of the seventh
371 pandemic of cholera in Africa. *Science* (80-) 358:785–789.

372 6. Domman D, Quilici M-L, Dorman MJ, Njamkepo E, Mutreja A, Mather AE, Delgado G,
373 Morales-Espinosa R, Grimont PAD, Lizárraga-Partida ML, Bouchier C, Aanensen DM,
374 Kuri-Morales P, Tarr CL, Dougan G, Parkhill J, Campos J, Cravioto A, Weill F-X, Thomson
375 NR. 2017. Integrated view of *Vibrio cholerae* in the Americas. *Science* 358:789–793.

376 7. Li Z, Pang B, Wang D, Li J, Xu J, Fang Y, Lu X, Kan B. 2019. Expanding dynamics of the
377 virulence-related gene variations in the toxigenic *Vibrio cholerae* serogroup O1. *BMC*
378 *Genomics* 20:360.

379 8. Rahman MH, Biswas K, Hossain MA, Sack RB, Mekalanos JJ, Faruque SM. 2008.
380 Distribution of genes for virulence and ecological fitness among diverse *Vibrio cholerae*
381 population in a cholera endemic area: tracking the evolution of pathogenic strains. *DNA*
382 *Cell Biol* 27:347–355.

383 9. Lessler J, Moore SM, Luquero FJ, McKay HS, Grais R, Henkens M, Mengel M, Dunoyer J,
384 M'bangombe M, Lee EC, Djingarey MH, Sudre B, Bompangue D, Fraser RSM, Abubakar A,
385 Perea W, Legros D, Azman AS. 2018. Mapping the burden of cholera in sub-Saharan
386 Africa and implications for control: an analysis of data across geographical scales. *Lancet*
387 (London, England) 391:1908–1915.

388 10. 2017. WHO | Ending Cholera. WHO.

389 11. Herzog R, Peschek N, Fröhlich KS, Schumacher K, Papenfort K. 2019. Three autoinducer
390 molecules act in concert to control virulence gene expression in *Vibrio cholerae*. *Nucleic*
391 *Acids Res* 47:3171–3183.

392 12. Davies BW, Bogard RW, Young TS, Mekalanos JJ. 2012. Coordinated Regulation of
393 Accessory Genetic Elements Produces Cyclic Di-Nucleotides for *V. cholerae* Virulence.
394 *Cell* 149:358–370.

395 13. Krin E, Pierlé SA, Sismeiro O, Jagla B, Dillies M-A, Varet H, Irazoki O, Campoy S, Rouy Z,
396 Cruveiller S, Médigue C, Coppée J-Y, Mazel D. 2018. Expansion of the SOS regulon of
397 *Vibrio cholerae* through extensive transcriptome analysis and experimental validation.
398 *BMC Genomics* 19:373.

399 14. Fu Y, Waldor MK, Mekalanos JJ. 2013. Tn-Seq Analysis of *Vibrio cholerae* Intestinal
400 Colonization Reveals a Role for T6SS-Mediated Antibacterial Activity in the Host. *Cell*
401 *Host Microbe* 14:652–663.

402 15. Mandlik A, Livny J, Robins WP, Ritchie JM, Mekalanos JJ, Waldor MK. 2011. RNA-Seq-
403 based monitoring of infection-linked changes in *Vibrio cholerae* gene expression. *Cell*
404 *Host Microbe* 10:165–174.

405 16. Kamp HD, Patimalla-Dipali B, Lazinski DW, Wallace-Gadsden F, Camilli A. 2013. Gene
406 Fitness Landscapes of *Vibrio cholerae* at Important Stages of Its Life Cycle. *PLoS Pathog*
407 9:e1003800.

408 17. Pukatzki S, Ma AT, Sturtevant D, Krastins B, Sarracino D, Nelson WC, Heidelberg JF,
409 Mekalanos JJ. 2006. Identification of a conserved bacterial protein secretion system in
410 *Vibrio cholerae* using the *Dictyostelium* host model system. *Proc Natl Acad Sci* 103:1528
411 LP – 1533.

412 18. Kimura S, Hubbard TP, Davis BM, Waldor MK. 2016. The Nucleoid Binding Protein H-NS
413 Biases Genome-Wide Transposon Insertion Landscapes. *MBio* 7:e01351-16.

414 19. Manneh-Roussel J, Haycocks JRJ, Magán A, Perez-Soto N, Voelz K, Camilli A, Krachler A-

415 M, Grainger DC. 2018. cAMP Receptor Protein Controls *Vibrio cholerae* Gene Expression
416 in Response to Host Colonization. *MBio* 9:e00966-18.

417 20. Saelens W, Cannoodt R, Saeys Y. 2018. A comprehensive evaluation of module detection
418 methods for gene expression data. *Nat Commun* 9:1090.

419 21. Langfelder P, Horvath S. 2008. WGCNA: an R package for weighted correlation network
420 analysis. *BMC Bioinformatics* 9:559.

421 22. Jiang J, Sun X, Wu W, Li L, Wu H, Zhang L, Yu G, Li Y. 2016. Construction and application
422 of a co-expression network in *Mycobacterium tuberculosis*. *Sci Rep* 6:28422.

423 23. Liu W, Li L, Long X, You W, Zhong Y, Wang M, Tao H, Lin S, He H. 2018. Construction and
424 Analysis of Gene Co-Expression Networks in *Escherichia coli*. *Cells* 7:19.

425 24. Li A, Horvath S. 2006. Network neighborhood analysis with the multi-node topological
426 overlap measure. *Bioinformatics* 23:222–231.

427 25. Geer LY, Marchler-Bauer A, Geer RC, Han L, He J, He S, Liu C, Shi W, Bryant SH. 2009. The
428 NCBI BioSystems database. *Nucleic Acids Res* 38:D492–D496.

429 26. Huang DW, Sherman BT, Lempicki RA. 2008. Systematic and integrative analysis of large
430 gene lists using DAVID bioinformatics resources. *Nat Protoc* 4:44.

431 27. Kanehisa M, Goto S. 2000. KEGG: kyoto encyclopedia of genes and genomes. *Nucleic
432 Acids Res* 28:27–30.

433 28. Mi H, Dong Q, Muruganujan A, Gaudet P, Lewis S, Thomas PD. 2009. PANTHER version 7:
434 improved phylogenetic trees, orthologs and collaboration with the Gene Ontology
435 Consortium. *Nucleic Acids Res* 38:D204–D210.

436 29. Chao MC, Pritchard JR, Zhang YJ, Rubin EJ, Livny J, Davis BM, Waldor MK. 2013. High-
437 resolution definition of the *Vibrio cholerae* essential gene set with hidden Markov

438 model-based analyses of transposon-insertion sequencing data. *Nucleic Acids Res*
439 41:9033–9048.

440 30. van Dam S, Võsa U, van der Graaf A, Franke L, de Magalhães JP. 2017. Gene co-expression
441 analysis for functional classification and gene–disease predictions. *Brief Bioinform*
442 19:575–592.

443 31. Silva AJ, Benitez JA. 2016. *Vibrio cholerae* Biofilms and Cholera Pathogenesis. *PLoS Negl*
444 *Trop Dis* 10:e0004330.

445 32. Teschler JK, Zamorano-Sánchez D, Utada AS, Warner CJA, Wong GCL, Linington RG, Yildiz
446 FH. 2015. Living in the matrix: assembly and control of *Vibrio cholerae* biofilms. *Nat Rev*
447 *Microbiol* 13:255–68.

448 33. Papenfort K, Förstner KU, Cong J-P, Sharma CM, Bassler BL. 2015. Differential RNA-seq
449 of *Vibrio cholerae* identifies the VqmR small RNA as a regulator of biofilm formation.
450 *Proc Natl Acad Sci* 112:E766–E775.

451 34. Weber GG, Klose KE, Klose. 2011. The complexity of ToxT-dependent transcription in
452 *Vibrio cholerae*. *Indian J Med Res* 133:201–6.

453 35. Kazi MI, Conrado AR, Mey AR, Payne SM, Davies BW. 2016. ToxR Antagonizes H-NS
454 Regulation of Horizontally Acquired Genes to Drive Host Colonization. *PLOS Pathog*
455 12:e1005570.

456 36. Dorman MJ, Dorman CJ. 2018. Regulatory Hierarchies Controlling Virulence Gene
457 Expression in *Shigella flexneri* and *Vibrio cholerae*. *Front Microbiol*.

458 37. Ayala JC, Wang H, Silva AJ, Benitez JA. 2015. Repression by H-NS of genes required for
459 the biosynthesis of the *Vibrio cholerae* biofilm matrix is modulated by the second
460 messenger cyclic diguanylic acid. *Mol Microbiol* 97:630–645.

461 38. Boyd EF, Jermyn WS. 2002. Characterization of a novel *Vibrio* pathogenicity island (VPI-
462 2) encoding neuraminidase (*nanH*) among toxigenic *Vibrio cholerae* isolates.
463 *Microbiology* 148:3681–3693.

464 39. Karaolis DKR, Johnson JA, Bailey CC, Boedeker EC, Kaper JB, Reeves PR. 1998. A *Vibrio*
465 *cholerae* pathogenicity island associated with epidemic and pandemic strains. *Proc Natl*
466 *Acad Sci* 95:3134 LP – 3139.

467 40. Nielsen AT, Dolganov NA, Otto G, Miller MC, Wu CY, Schoolnik GK. 2006. *RpoS* controls
468 the *Vibrio cholerae* mucosal escape response. *PLoS Pathog* 2:e109–e109.

469 41. Wong GT, Bonocora RP, Schep AN, Beeler SM, Lee Fong AJ, Shull LM, Batachari LE, Dillon
470 M, Evans C, Becker CJ, Bush EC, Hardin J, Wade JT, Stoebel DM. 2017. Genome-Wide
471 Transcriptional Response to Varying *RpoS* Levels in *Escherichia coli* K-12. *J Bacteriol*
472 199:e00755-16.

473 42. Russo G, Zegar C, Giordano A. 2003. Advantages and limitations of microarray
474 technology in human cancer. *Oncogene* 22:6497–6507.

475 43. Serin EAR, Nijveen H, Hilhorst HWM, Ligterink W. 2016. Learning from Co-expression
476 Networks: Possibilities and Challenges. *Front Plant Sci* 7:444.

477 44. Koschmann J, Bhar A, Stegmaier P, Kel AE, Wingender E. 2015. “Upstream Analysis”: An
478 Integrated Promoter-Pathway Analysis Approach to Causal Interpretation of Microarray
479 Data. *Microarrays* (Basel, Switzerland) 4:270–286.

480 45. Mueller RS, McDougald D, Cusumano D, Sodhi N, Kjelleberg S, Azam F, Bartlett DH. 2007.
481 *Vibrio cholerae* Strains Possess Multiple Strategies for Abiotic and Biotic Surface
482 Colonization. *J Bacteriol* 189:5348–5360.

483 46. Marchler-Bauer A, Bo Y, Han L, He J, Lanczycki CJ, Lu S, Chitsaz F, Derbyshire MK, Geer

484 RC, Gonzales NR, Gwadz M, Hurwitz DI, Lu F, Marchler GH, Song JS, Thanki N, Wang Z,

485 Yamashita RA, Zhang D, Zheng C, Geer LY, Bryant SH. 2017. CDD/SPARCLE: Functional

486 classification of proteins via subfamily domain architectures. *Nucleic Acids Res*

487 45:D200–D203.

488 47. Duran-Pinedo AE, Paster B, Teles R, Frias-Lopez J. 2011. Correlation Network Analysis

489 Applied to Complex Biofilm Communities. *PLoS One* 6:e28438.

490 48. Geng H, Tran-Gyamfi MB, Lane TW, Sale KL, Yu ET. 2016. Changes in the Structure of the

491 Microbial Community Associated with *Nannochloropsis salina* following Treatments

492 with Antibiotics and Bioactive Compounds. *Front Microbiol* 7:1155.

493 49. Meisel JS, Sfyroera G, Bartow-McKenney C, Gimblet C, Bugayev J, Horwinski J, Kim B,

494 Brestoff JR, Tyldsley AS, Zheng Q, Hodkinson BP, Artis D, Grice EA. 2018. Commensal

495 microbiota modulate gene expression in the skin. *Microbiome* 6:20.

496 50. Jackson MA, Bonder MJ, Kuncheva Z, Zierer J, Fu J, Kurilshikov A, Wijmenga C,

497 Zhernakova A, Bell JT, Spector TD, Steves CJ. 2018. Detection of stable community

498 structures within gut microbiota co-occurrence networks from different human

499 populations. *PeerJ* 6:e4303.

500 51. Hosseinkhan N, Mousavian Z, Masoudi-Nejad A. 2018. Comparison of gene co-expression

501 networks in *Pseudomonas aeruginosa* and *Staphylococcus aureus* reveals conservation

502 in some aspects of virulence. *Gene* 639:1–10.

503 52. Peña-Castillo L, Mercer RG, Gurinovich A, Callister SJ, Wright AT, Westbye AB, Beatty JT,

504 Lang AS. 2014. Gene co-expression network analysis in *Rhodobacter capsulatus* and

505 application to comparative expression analysis of *Rhodobacter sphaeroides*. *BMC*

506 *Genomics* 15:730.

507 53. Wang J, Wu G, Chen L, Zhang W. 2013. Cross-species transcriptional network analysis
508 reveals conservation and variation in response to metal stress in cyanobacteria. *BMC*
509 *Genomics* 14:112.

510 54. Keseler IM, Mackie A, Santos-Zavaleta A, Billington R, Bonavides-Martínez C, Caspi R,
511 Fulcher C, Gama-Castro S, Kothari A, Krummenacker M, Latendresse M, Muñiz-Rascado
512 L, Ong Q, Paley S, Peralta-Gil M, Subhraveti P, Velázquez-Ramírez DA, Weaver D, Collado-
513 Vides J, Paulsen I, Karp PD. 2017. The EcoCyc database: reflecting new knowledge about
514 *Escherichia coli* K-12. *Nucleic Acids Res* 2016/11/29. 45:D543–D550.

515 55. Ballouz S, Verleyen W, Gillis J. 2015. Guidance for RNA-seq co-expression network
516 construction and analysis: Safety in numbers. *Bioinformatics* 31:2123–2130.

517 56. Li S, Tighe SW, Nicolet CM, Grove D, Levy S, Farmerie W, Viale A, Wright C, Schweitzer
518 PA, Gao Y, Kim D, Boland J, Hicks B, Kim R, Chhangawala S, Jafari N, Raghavachari N,
519 Gandara J, Garcia-Reyero N, Hendrickson C, Roberson D, Rosenfeld JA, Smith T,
520 Underwood JG, Wang M, Zumbo P, Baldwin DA, Grills GS, Mason CE. 2014. Multi-platform
521 assessment of transcriptome profiling using RNA-seq in the ABRF next-generation
522 sequencing study. *Nat Biotechnol* 32:915–925.

523 57. Goh WW Bin, Wang W, Wong L. 2017. Why Batch Effects Matter in Omics Data, and How
524 to Avoid Them. *Trends Biotechnol*. Elsevier Ltd.

525 58. Leek JT, Storey JD. 2007. Capturing heterogeneity in gene expression studies by
526 surrogate variable analysis. *PLoS Genet* 3:1724–1735.

527 59. Alter O, Brown PO, Botstein D. 2000. Singular value decomposition for genome-Wide
528 expression data processing and modeling. *Proc Natl Acad Sci U S A* 97:10101–10106.

529 60. Leek JT, Scharpf RB, Bravo HC, Simcha D, Langmead B, Johnson WE, Geman D, Baggerly

530 K, Irizarry RA. 2010. Tackling the widespread and critical impact of batch effects in high-
531 throughput data. *Nat Rev Genet.*

532 61. Cohen O, Doron S, Wurtzel O, Dar D, Edelheit S, Karunker I, Mick E, Sorek R. 2016.
533 Comparative transcriptomics across the prokaryotic tree of life. *Nucleic Acids Res*
534 44:W46–W53.

535 62. Chang YM, Lin HH, Liu WY, Yu CP, Chen HJ, Wartini PP, Kao YY, Wu YH, Lin JJ, Lu MYJ, Tu
536 SL, Wu SH, Shiu SH, Ku MSB, Li WH. 2019. Comparative transcriptomics method to infer
537 gene coexpression networks and its applications to maize and rice leaf transcriptomes.
538 *Proc Natl Acad Sci U S A* 116:3091–3099.

539 63. Rodríguez-García A, Sola-Landa A, Barreiro C. 2017. RNA-Seq-Based Comparative
540 Transcriptomics: RNA Preparation and Bioinformatics BT - Microbial Steroids: Methods
541 and Protocols, p. 59–72. *In* Barredo, J-L, Herráiz, I (eds.), . Springer New York, New York,
542 NY.

543 64. Leinonen R, Sugawara H, Shumway M, Collaboration INSD. 2011. The sequence read
544 archive. *Nucleic Acids Res* 2010/11/09. 39:D19–D21.

545 65. Bray NL, Pimentel H, Melsted P, Pachter L. 2016. Near-optimal probabilistic RNA-seq
546 quantification. *Nat Biotechnol* 34:525–527.

547 66. Langmean B, Salzberg SL. 2012. Bowtie 2. *Nat Methods* 9:357–359.

548 67. Gaspar JM. 2018. Improved peak-calling with MACS2. *bioRxiv* 496521.

549 68. Ross-Innes CS, Stark R, Teschendorff AE, Holmes KA, Ali HR, Dunning MJ, Brown GD,
550 Gojis O, Ellis IO, Green AR, Ali S, Chin S-F, Palmieri C, Caldas C, Carroll JS. 2012.
551 Differential oestrogen receptor binding is associated with clinical outcome in breast
552 cancer. *Nature* 481:389.

553 69. Soneson C, Love MI, Robinson MD. 2015. Differential analyses for RNA-seq: transcript-
554 level estimates improve gene-level inferences. *F1000Research* 4:1521.

555 70. Love MI, Huber W, Anders S. 2014. Moderated estimation of fold change and dispersion
556 for RNA-seq data with DESeq2. *Genome Biol* 15:550.

557

558 Legends:

559 Figure 1: General outline of network construction.

560 1A) Normalized (log2) expression reads for the same genes across multiple conditions supply
561 the basis for our co-expression analysis. In this small example, it is clear that genes VC0384-
562 VC0386 have a very similar expression pattern across conditions. 1B) Correlations are
563 calculated from the normalized counts in A for every pair of genes. The pattern seen in A
564 becomes much clearer when looking at the correlation. 1C) An adjacency matrix (not shown) is
565 calculated from the correlations in B and ultimately used to produce a topological overlap
566 matrix (TOM) that supplies network edge weights with less noise than the raw correlation
567 matrix. While the single of co-expressing pairs is dampened slightly, this step greatly decreases
568 spurious relationships as it favors transcripts which coexpress with similar sets of genes
569 rather than potentially noisy direct correlations. 1D) The final network groups transcripts that
570 tightly co-express while indicating what pathway they are involved in. This network also
571 includes functional and essentiality based knowledge. In this case, the three genes involved in
572 cysteine metabolism (VC0383-VC0385, *cysHIJ*) form a subnetwork while the other genes do
573 not meet our 0.10 co-expression cutoff.

574

575 Figure 2: Sub-networks recapitulating known results

576 The four depicted subnetworks each contain subsets of transcripts which are known to be
577 largely involved in the same biological process. For each subnetwork, the nodes represent
578 transcripts while the edges represent a co-expression relationship of at least 0.1 between
579 transcripts. A) This sub-network consists completely of tRNA transcripts. B) These transcripts
580 are almost completely related to ribosomal structure and/or function. C) These transcripts
581 play a role in amino acid synthesis. D) This sub-network contains a majority of transcripts that
582 play a role in biofilm formation in addition to unrelated genes.

583

584 Figure 3: Virulence related subnetwork.

585 3A) This subnetwork contains a majority of genes that are predicted to be involved in
586 virulence related pathways, providing clues to the genes with no known functions such as
587 those at locus VCA0094-VCA0096. 3B) Mean binding affinity (log2 fold change in occupancy
588 compared to loading control) for different virulence-associated transcription factors near the
589 VCA0094-96 locus. Both HNS and TOXR show a significant binding preference for this region.

590 Error bars indicate standard deviation from the mean.

591

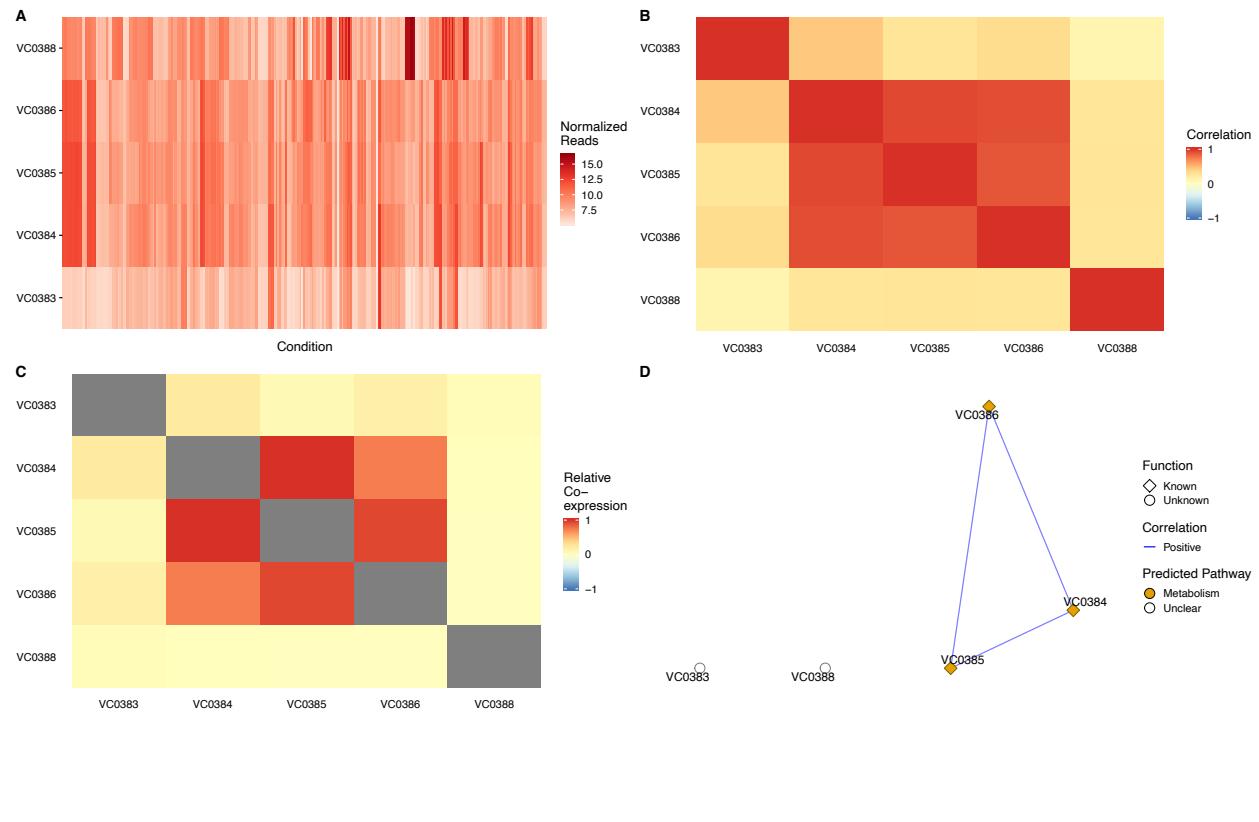
592 Figure 4: Comparing RpoS microarray data to co-expressing genes in our WGCNA
593 A) Overlap of genes with expression pattern related to *rpoS* expression as identified via our
594 network analysis (blue) and existing microarray data (red). The overlapping region identifies
595 272 genes that are common between the two analyses. B) Breakdown of shared genes
596 (overlapping region in A). All of the flagellar and chemotaxis genes highlighted as particularly
597 important in the microarray dataset are identified by both methods.

598

599

600

601 Figure 1



602

603

604

605

606

607

608

609

610

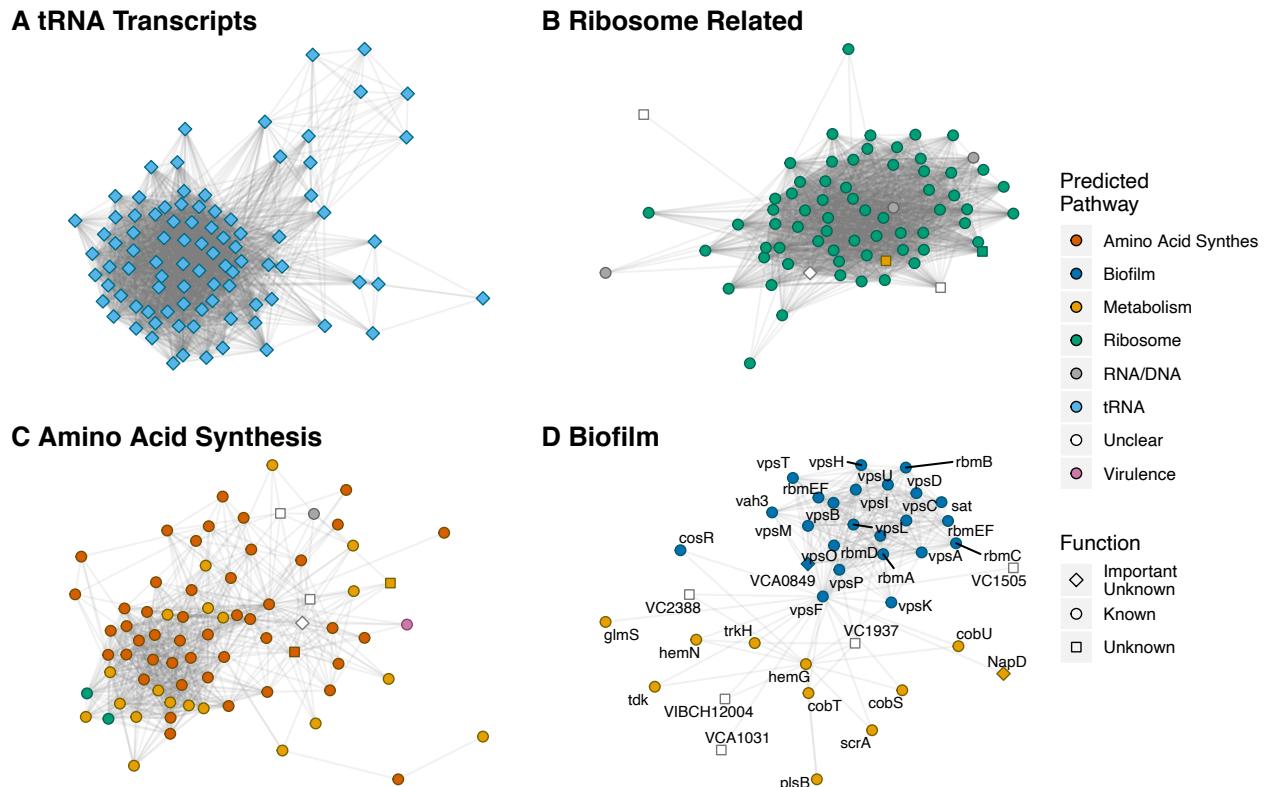
611

612

613

614

615 Figure 2



616

617

618

619

620

621

622

623

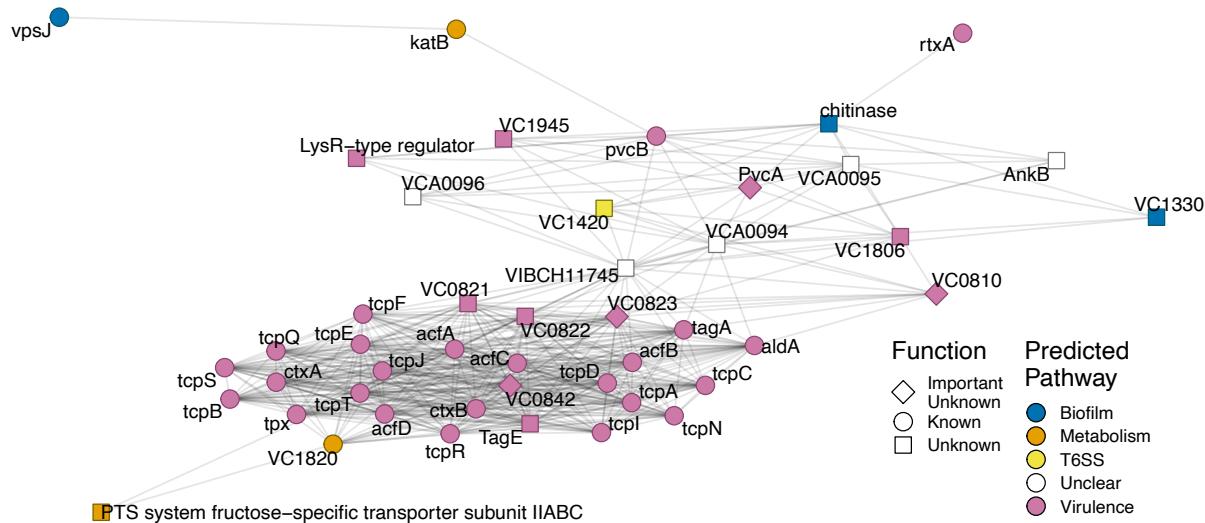
624

625

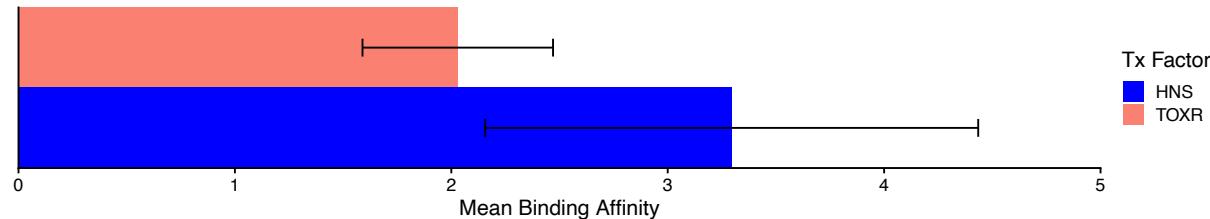
626

627 Figure 3

A



B



628

629

630

631

632

633

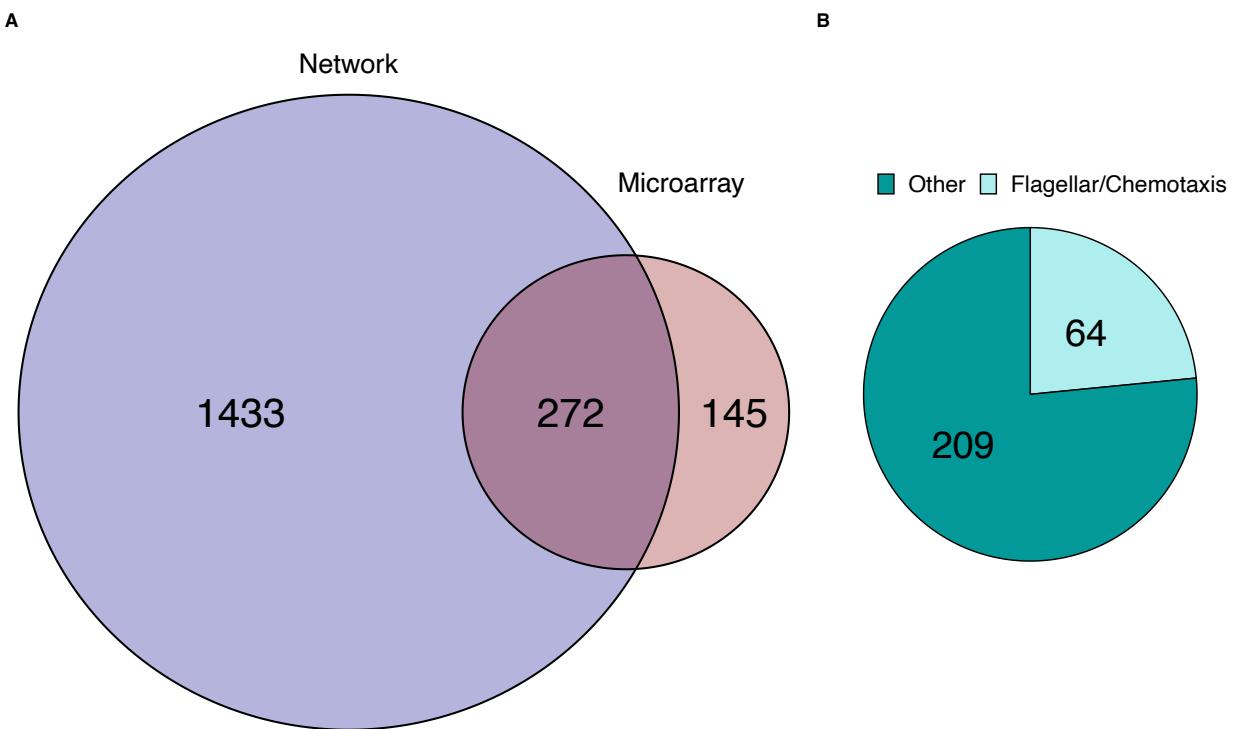
634

635

636

637

638 Figure 4



639