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Abstract

Two fundamental aims that emerge when analyzing single-cell RNA-
seq data are that of identifying which genes vary in an informative manner
and determining how these genes organize into modules. Here we propose
a general approach to these problems that operates directly on a given
metric of cell-cell similarity, allowing for its integration with any method
(linear or non linear) for identifying the primary axes of transcriptional
variation between cells. Additionally, we show that when using multi-
modal data, our procedure can be used to identify genes whose expression
reflects alternative notions of similarity between cells, such as physical
proximity in a tissue or clonal relatedness in a cell lineage tree. In this
manner, we demonstrate that while our method, called Hotspot, is ca-
pable of identifying genes that reflect nuanced transcriptional variability
between T helper cells, it can also identify spatially-dependent patterns
of gene expression in the cerebellum as well as developmentally-heritable
expression signatures during embryogenesis.

Introduction

Transcriptome-scale profiling at a single-cell resolution has enabled comprehen-
sive categorization of cell types and states in diverse tissues [1, 2, 3], investiga-
tion of developmental transitions [4, 5], and in-depth characterization of disease
processes [6, 7]. While initial studies focused on the estimation of the transcrip-
tomes in small numbers of cells, the field is rapidly increasing the number of
cells per assay [8].

A primary problem that emerges in the analysis of single-cell RNA-seq (scRNA-
seq) data is the identification of genes that vary in an informative manner and
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the organization of these genes into gene modules. A general way to approach
this problem is to select for the genes which best reflect the primary axes of
variation between cells. Or alternately, finding genes that have similar expres-
sion in cells that are close to each other in terms of some biologically-relevant
metric. While the most immediate way of defining such a metric is through the
use of overall transcriptional similarity between cells, the emergence of multi-
modal single-cell technologies (which in addition to the cell transcriptome, can
profile cellular DNA [9], cell surface proteomes [10], spatial position [11, 12],
epigenetic modifications [13], or cell lineages [14]) allows for metric definitions
which use other cellular properties. For example, a spatial-metric could be used
to compare cells based on physical proximity, or a lineage-metric to compare
cells based on clonal relationships. The use of diverse metrics naturally leads
to new and interesting questions such as “which genes’ transcription may be
influenced by a cell’s location in a tissue?” or “which genes are expressed in a
manner consistent with the developmental and clonal relatedness between the
cells?”

To facilitate this type of analysis, we have developed a method for gene selection
and module identification, called Hotspot, which is flexible with respect to the
choice of cell metric. Here we present this method and demonstrate its use on
three different types of cell metrics - transcriptional, spatial, and lineage - using
publicly available and simulated single-cell data.

With transcriptional-only data, we show that our procedure selects informative
genes and gene components in a sample of CD4+ T cells, and we demonstrate
favorable performance when compared with other methods of feature selection.
Notably, our procedure operates on the output of single-cell dimensionality re-
duction procedures, and is particularly useful when combined with emerging
non-linear procedures (such as SIMLR [15], scVI [16], or DCA [17]) for which a
direct association between genes and model components is not easily computed.
Using a spatial-metric, we demonstrate Hotspot ’s use for identifying spatial
patterns of transcription in mouse cerebellum [12] and benchmark against a
leading method, SpatialDE [18], showing similar performance with significantly
reduced computation time. We further use a lineage-metric to show how our
procedure is able to identify developmentally-associated gene modules using a
CARISP/Cas9-based lineage-tracing data during mouse embryogenesis [14]. To
our knowledge, Hotspot is the first method proposed for this purpose.

Hotspot, is implemented as an open-source Python package and is available for
use at http://www.github.com/Yoseflab/Hotspot.
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Results

Leveraging Similarity Maps for Feature Selection and Mod-
ule Identification

The Hotspot procedure is divided into two main steps. In the first step, a
feature selection procedure is performed to isolate the genes which exhibit non-
random patterns of expression within the similarity map. This is followed by
the second step in which correlations are evaluated between genes (using the
similarity map) and genes are grouped into modules.

To compute the similarity graph, some notion of ’similarity’ between cells is
needed. If identifying spatial patterns, similar cells would be nearby cells in
2 or 3-dimensional space. For lineage data, similar cells would be nearby cells
within an inferred lineage tree [14]. The similarity map can also come from the
expression data itself for the case of identifying transcriptional modules in a
cluster-free manner. Here similar cells are cells with similar overall transcrip-
tional profiles - i.e. nearby cells in the reduced dimensional space that is output
from modeling procedures such as principal components analysis (PCA), diffu-
sion maps [19], or other factor models such as ZINB-WaVE [20], scVI [16], or
DCA [17].

Once a notion of similarity is selected, a similarity graph can be computed
between cells as a K-nearest neighbors graph. In this graph representation,
each cell is a node, and edges connect each cell to the K (configurable, but
typically around 30) most similar cells. This structure is already frequently
used in single-cell analysis for clustering [21] and visualization [22].

For the feature selection step, we seek genes whose expression is well represented
by the similarity graph - genes for which a cell’s expression is highly predictable
by it’s local neighborhood. This includes genes which are highly expressed in a
particular region of the graph (regardless of whether this region falls naturally
into a cluster) or genes whose expression exhibits a smooth gradient across the
space. To quantify this, we make use of a test statistic which extends previous
work in demographic analysis [23] and machine learning [24] by incorporating a
parametric null model for each gene’s expression so that statistical significance
and effect size can be efficiently estimated. These metrics are then used to rank
and filter genes both to aid in exploratory analysis and to limit the scope of the
module identification problem.

In the second step, the genes selected in the first step are grouped into modules
based on co-expression. Here, we extend the test statistic used in the feature
selection step to operate on pairs of genes and quantify the degree to which
two genes have correlated expression in the same regions of the similarity map.
This quantifies, for example, whether cells expressing high levels of one gene
tend to be near cells expressing high levels of another gene. After this metric
is evaluated on all pairs of genes, a hierarchical clustering procedure is used
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to group genes into modules. For full details on this procedure as well as the
feature selection method, see the Methods section.

Uncovering transcriptional modules in CD4+ T Cells

As a first evaluation for this approach, we simulated single-cell RNA-seq li-
braries with SymSim [25] so that we could compare Hotspot’s prediction against
a known, ground truth. For this test, five distinct transcriptional modules were
simulated in 3000 cells with varying effect sizes per gene along with a set of
negative control genes that varied independently. To mimic the complexity of
real data, we simulated a module structure which includes both nested struc-
ture and intersecting components(Supplementary Figure 1A). We first evaluated
the feature-selection procedure to determine how well Hotspot could detect the
500 genes which participated in the simulated modules and distinguish these
from the remaining 4500 genes which vary independently. Compared with the
highly-variable genes procedure (”HVG”, as implemented in Seurat [26]), and
the NBDisp procedure from [27], Hotspot is able to attain significantly im-
proved performance as demonstrated by Precision-Recall curves of Figure 1B.
Additionally, Hotspot shows marginal improvment over a PCA-based feature
selection described in [27] (and in the Methods section).

To evaluate the module assignment procedure in Hotspot, independently of
feature selection, we pre-selected the 500 simulated module genes and then
compared gene-module assignment accuracy using either standard correlation
or Hotspot’s local graph correlation metric followed by hierarchical clustering.
Here we demonstrate that Hotspot is able to leverage the similarity graph
to more accurately make gene-module assignments than standard measures of
correlation (Figure 1C). While improvements are small for genes with the largest
simulated gene-effect coefficients, the difference is more pronounced for those
with a weaker effect size suggesting that Hotspot is able to effectively leverage
the neighborhood graph to help estimate these more difficult cases.

To further demonstrate Hotspot, we ran our procedure on a set of 1500 CD4+ T
cells filtered from a sample of human PBMCs made available by 10x Genomics.
To evaluate feature selection on these cells, we utilized two approaches. We
first evaluated our methods’s ability to prioritize biologically relevant genes. To
quantify biological relevance, we computed a ”gene relevance” (GR) score for
every gene, as the number of CD4+ T Cell-related gene sets from MSigDB [28]
within which the gene is found (Methods). With this metric, we evaluated
the relevance of a set of genes as the average GR score for genes in the set.
Under this evaluation, Hotspot outperforms the commonly used highly-variable
genes selection procedure across all thresholds (Figure 1) and performs better
than a PCA-based procedure (Methods) for the top 1800 genes. When com-
paring against the NBDisp [27] procedure, performance is equivalent for the
top few hundred genes after which Hotspot’s genes have consistently higher GR
scores.
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To evaluate the feature selection procedure in an unsupervised manner, we at-
tempted to quantify the quality of the similarity map generated by scVI. Here
we reason that a more informative set of a genes will result in a similarity map
that more accurately represents the true cell states. To compare the quality of
different similarity maps, we made use of the surface protein abundance data
which accompanies this single-cell mRNA-seq dataset as an independent indi-
cator of cell state. We reason that that since protein abundance and mRNA
expression are both derived from the cell state, an increase in the autocorrela-
tion of protein abundance (when comparing two similarity maps generated from
mRNA expresssion alone) indicates an increase in the quality of the similarity
map.

The results of this evaluation (Figure 1B) show that, as we expected, employing
feature selection procedures tended to result in increased protein autocorrelation
when compared with a less-restrictive threshold based gene selection criteria.
Furthermore, the procedure utilized by Hotspot showed greater increases than
the other methods compared, though differences between the HVG, PCA, and
Hotspot feature selection procedures were not statistically significant (rank-
sums test, p < .05).

After selection of the top 500 significant genes by Hotspot, we ran the module
identification procedure on these genes (Figure 1C). Module 1 (includes CCR7
and SELL) and Module 3 (includes IL7R and S100A4) appear to distinguish the
naive and activated T cell subsets while other modules illustrate transcriptional
differences within the activated group. This includes Module 0 which highlights
a subset of these cells expressing Th1 associated genes (including IFNG nd
TBX21) and Module 2 which highlights another subset expressing higher levels
of genes associated with cytotoxicity (PRF1, GZMB). Module 6, on the other
hand, gathers genes associated with regulatory T cell activity (FOXP3, IL2RA
and inhibitory receptors CTLA4, and TIGIT). In this manner, Hotspot is able
to isolate distinct patterns of transcription even when they exhibit a nested,
hierarchical structure.

Combining Different Data modalities to identify Spatially-
Dependent Gene Components

In the growing field of spatial transcriptomics ([29, 30, 11, 12]) new experimental
methods have been developed which assay transcriptional profiles of single cells
while also retaining information on their spatial origin. By using the these
spatial positions to define the cell-cell similarity metric, Hotspot can be used to
identify genes which drive spatial features such as spatially-dependent patterns
of activation or non-random distributions of cell types.

To demonstrate this, we applied Hotspot to a sample consisting of 32,000
spatially-indexed transcriptional libraries from the mouse cerebellum [12]. As
these libraries are sequenced at a low depth (median UMIs/barcode is 45), we
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ran Hotspot in ’bernoulli’ mode where only the binary detection of a gene at each
position is modeled (Methods). Based on their spatial distributions, 560 genes
were identified with significant (non-zero) spatial autocorrelation (FDR < .05).
These genes are enriched in marker genes for cerebellar cell types (Figure 2b)
and are distinct from genes selected on the basis of high variability (Supplemen-
tary Figure 2A).

We then used Hotspot to group the genes into modules on the basis of pair-wise
local correlation. This results in 6 transcriptional modules which correspond to
known cerebellar cell types (Figure 2) and are reproducible between different
cerebellar samples (Supplementary Figure 3). These modules reflect the primary
structure of the cerebellum, with Module 1 capturing the Purkinje layer of neu-
rons adjacent to the Granular layer (Module 6) followed by the oligodendrocytes
of the white matter (Module 3). By computing summary module scores, the
structure of the cerebellum becomes clearly visible (Figure 2C).

We compared our findings with an existing method for identifying expression
patterns in spatial transcriptomics - SpatialDE [18]. A key difference between
our method and SpatialDE is that the latter uses a Gaussian process model
which requires the inversion of a large matrix as part of its optimization proce-
dure. As a result, Hotspot is able to run much more quickly as the number of
cells/positions increases (see comparison in Supplementary Figure 2B). To com-
pare the results produced by each algorithm, we evaluated each for its ability to
detect known positives and for its reproducibility between the four cerebellum
samples produced by [12]. In using a set of marker genes for cell types in the
mouse cerebellum (derived from [31]), we show that both methods achieve sim-
ilar AUPR scores (Supplementary Figure 2C). To evaluate reproducibility, we
used the IDR metric [32] to compare results between pairs of cerebellum samples
and show that while both methods typically highlight several hundred genes at
an IDR level of 0.1, the results produced by Hotspot are more consistent between
pairs at this, and other, IDR thresholds (Supplementary Figure 2D).

In a similar manner, spatialDE is also able to identify modules of genes with
similar spatial distributions of transcription. In comparing the gene modules
output by Hotspot, we show that both methods are able to uncover similar
patterns of variation (Supplementary Figure 4), with Hotspot requiring a much
smaller runtime (93 seconds vs. 6.2 days for 10,000 cells).

Identifying developmental expression in mouse embryoge-
nesis

To demonstrate Hotspot on other measures of relatedness, we turned to a dataset
of lineage-traced embryogenesis [14]. In this system, mouse embryos were en-
gineered with a CRISPR Cas9 lineage-tracing system in which irreversible mu-
tations are generated randomly throughout development at specified cut cites.
The embryos then underwent single-cell sequencing at day 8.5 of development.
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Using the induced mutations, a cell’s developmental relationship to other cells
can be assessed, and here we use this relationship to compute the cell-cell sim-
ilarity metric when running Hotspot (see Methods for details). In this way,
Hotspot can be used to extract genes whose expression is similar among sim-
ilarly related cells and derive unsupervised modules associated with develop-
mental changes.

We ran this procedure on 1756 cells from [14] and identified 2554 developmen-
tally associated genes (FDR < .05). We further grouped these genes into 5
modules on the basis of expression changes with related cells (Figure 3A). To
identify annotations for these modules, we made use of the annotated develop-
mental cluster profiles from a separate dataset in [14] (Figure 3C. From this
comparison, it is clear that module 1 (which includes markers Cubn, Amot,
Amn, and Slc39a8) describes expression associated with the visceral and defini-
tive endoderm, module 3 (with Hbb-bh1, Gata1, Klf1, and Nfe2) is associated
with primitive blood, module 4 (with Srgn) is associated with the development
of the parietal endoderm, and module 5 (with Plac1 and Ascl2) is associated
with the differentiation of trophoblasts.

Notably, an expression signature associated with the emergence of Angioblasts
is identifiable when analyzing the expression data alone (Figures 3D, E) with
marker genes such as Pecam1 having high autocorrelation in expression space.
This same signature, however, is not detectable based on lineage similarity,
implying that either emerging Angioblasts are less related than cells of other
cell types at this developmental stage, or the number of cells or frequency of
lineage-tracing mutations were insufficient to capture this effect. In this way,
Hotspot can distinguish between genes and gene modules that have significant
variation due to gene expression correlations, and those that arise from the
inferred developmental tree.

Discussion

Here we have described a set of techniques for feature selection and module
identification in multi-modal single cell expression datasets. We demonstrate
the application of these techniques using several previously published datasets.
First, we show our approach may be used to identify spatially-varying gene ex-
pression and derive spatial gene modules using a single cell mouse cerebellar
dataset [12]. Notably, we compare against a leading method designed specifi-
cally for this purpose, SpatialDE [18], and demonstrate comparable performance
despite orders of magnitude of improvement in runtime. Second, in a dataset
consisting of a combination of gene expression and lineage-tracing data [14], we
demonstrate our approach for the purpose of identifying genes which exhibit
lineage-dependent expression patterns. Finally, we demonstrate the utility of
our approach when used with gene expression measurements alone. We use a
combination of public data and simulated data to show that our approach is
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able to better identify relevant features than leading approaches (such as the
commonly used highly-variable genes procedure) and that our metric of local
correlation is able to better detect gene-gene correlations when compared with
standard Pearson’s correlation.

The core of our method is the definition of two key test statistics. We defined a
statistic for local autocorrelation within a KNN similarity graph that takes in-
spiration from the Geary’s C [23] and the Laplacian Score [24] which have been
proposed for similar purposes. Notably our statistic differs from these by using
a parametric null model for a gene’s expression to avoid the need for a permu-
tation null and increase computational efficiency. Furthermore, we propose a
novel pairwise local correlation statistic as an extension to this approach so that
features (genes) may be grouped into modules on the basis of local expression
similarity within the graph.

In addition to the examples shown here, the flexibility of our approach per-
mits its application in other ways. Here we have varied the data used in the
cell-cell metric (spatial, lineage, or transcriptional) and used Hotspot to iden-
tify genes with associated expression. However, the inverse is also possible
in which the cell-cell metric is computed from gene expression and Hotspot is
used to identify additional features that associate in expression space: for exam-
ple, identifying specific lineage-tracing mutations, open chromatin regions (with
combined single-cell expression and ATAC-seq [13]), or CRISPR perturbations
associated with expression state changes. We have made the software behind
the Hotspot procedure available at http://www.github.com/yoseflab/hotspot so
that as single-cell technology evolves and additional modalities are incorporated,
this framework can continue to be used extract signals across different classes
of biological measurements.

Methods

A test statistic for feature selection

In analyzing single-cell RNA-seq with Hotspot, the first step consists of select-
ing genes which are informative, given a cell-cell similarity metric. Intuitively
this can be thought of as identifying genes whose expression, if plotted onto a
visualization of the cell manifold (such as those produced by tSNE or UMAP),
produce non-random visual patterns and are therefore likely of interest to the
analyst. In our previous work [33], we made use of the Geary’s C [23] as a test
statistic to select gene signatures whose aggregate signature scores exhibited
this property. One drawback with this statistic, however, is the lack of a well-
defined null distribution, necessitating the use of permutations for significance
testing. To eliminate the computational burden this produces when operating
at the level of individual genes, we modify the Geary’s C and use....
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The Geary’s C is defined as:

C =
(N − 1)

∑
i

∑
j wij(xi − xj)2

2W
∑

i(xi − x̄)2

When applying this to scRNA-seq data, N represents the number of cells, xi
represents the expression of the gene under test in cell i, and wij represents the
’weight’ between cells i and j (with W defined as the sum of all such weights
over all cells). Weights are strictly non-negative and defined such that larger
values are assigned to cells with higher similarity, with values decaying to 0 for
highly dissimilar cells. In this way, lower values of C occur when similar cells
tend to also have similar expression values for the gene being tested. It should
be noted that a similar approach, termed the Laplacian Score [24], has been
proposed for the use of feature selection for machine learning.

Here we modify this test statistic by removing terms which don’t specifically
capture interactions between cells.

H =
∑
i

∑
j

wijxixj

The removed terms in the numerator and denominator control for global distri-
butional properties of the gene expression vector, x. Instead, we control for this

by evaluating expectations of H and computing a Z-score as Z = H−E[H]

var(H)
1
2

.

Additionally, we assign weights using a K-nearest-neighbors graph, such that
wij is only positive if cells i and j are neighbors and there are no self-edges. As
a result, the double summation can be re-expressed as a sum over edges, E in
the resulting sparse graph:

H =
∑

(i,j)∈E

wijxixj

To evaluate expectations of H, a null model is needed. For our null model, we
assume that expression values are drawn independently from some underlying
distribution for which we can compute E[xi] and E[x2i ] for each cell. Notably,
values for E[xi] and E[x2i ] in the null model are estimated on a per-cell basis
so that the effect of varying sequencing depths can be incorporated. Then
expectations of H can be expressed as:
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E[H] =
∑

(i,j)∈E

wij E[xi] E[xj ]

E[H2] =
∑

(i,j)∈E

∑
(k,l)∈E

wijwkl E[xixjxkxl]

var(H) = E[H2]− E[H]2

In computing E[H2], the lack of self edges implies that i 6= j and k 6= l, but
the inner expectation may not be split as edge (i, j) can share nodes with (k, l).
Additionally, computing E[H2] in this manner is difficult as a double summa-
tion over edges involves many terms (O(N2K2) for N cells and K neighbors).
However, an alternate summation may be used that can be evaluated in O(NK)
steps which first computes E[H2] assuming no edges share nodes and then cor-
rects the (much fewer) terms for which this is not true:

E[H2] =

 ∑
(i,j)∈E

wij E[xi] E[xj ]

2

+

∑
(i,j)∈E

w2
ij

(
E[x2i ] E[x2j ]− E[xi]

2 E[xj ]
2

)
+

∑
i

(
E[x2i ]− E[xi]

2
)(( ∑

j∈N(i)

wij E[xj ]
)2
−
∑

j∈N(i)

w2
ij E[xj ]

2

)

Finally, we can simplify further by standardizing each cell’s null model prior to
computing H. Here we define:

x̂i =
xi − E[xi]

var(xi)
1
2

Ĥ =
∑
i

∑
j

wij x̂ix̂j

Computing the null model for Ĥ is then simplified as E[x̂i] = 0 and E[x̂2i ] = 1
for all i. The resulting expression is then
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E[Ĥ] = 0

E[Ĥ2] =
∑
i

∑
j

w2
ij

Ẑ =
Ĥ − E[Ĥ]

var(Ĥ)
1
2

=

∑
i

∑
j wij x̂ix̂j

(
∑

i

∑
j w

2
ij)

1
2

To compute p-values the resulting Ẑ values are compared to the normal distri-
bution. When testing multiple genes, the Benjamini-Hochberg procedure [34] is
used to estimate the FDR.

Null models for gene expression

In computing the autocorrelation, a model is needed for each gene and cell de-
scribing the expected distribution of expression values under the null hypothesis
that each value is drawn independently. One utility of the approach described
above is that only the first and second moments of this distribution are needed,
allowing for flexibility in the choice of null model model. In this work, two
different models were used and are described here. Importantly, both explicitly
account for the per-barcode library size and adjust expected expression lev-
els accordingly. This is necessary so that genes are not incorrectly flagged as
significant due to autocorrelation in the library size.

Negative Binomial

The negative binomial distribution is a common choice to model the counts
arising in single-cell RNA-seq experiments with UMIs [35]. Here we utilize the
NBDisp model proposed in [27] in which the mean of the distribution for every
gene is assumed to vary linearly with the library size for each cell. The model
is defined as:

lj =
∑
g

xgj/
∑
g

∑
j

xgj

µ̂gj =
∑
j

xgj lj

r̂g =
t2g
∑

j l
2
j

(ηc − 1)
∑

j(xgj − µ̂gj)2 − tg

for gene g and cell j. tg represents the total number of UMI counts for gene g,
ηc is the total number of cells, and µ̂gj and r̂g represent the negative binomial
mean and dispersion. Moments of expression are then estimated as:
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E[xgj ] = µ̂gj

var(xgj) = µ̂gj +
µ̂2
gj

r̂g

Bernoulli

As an alternative to the negative binomial model, we define a ”Bernoulli” model
where only the detection of a gene (defined as a UMI count greater than 0) is
estimated. This model may be a better choice for extremely sparse data where
detecting more than one count per gene in a cell is rare (such as the Slide-Seq [12]
analyzed in this article.) The model for gene g is formulated as:

xgj ∈ {0, 1}
logit(P (xgj = 1)) = ag + bg ∗ log10(nj)

where nj is the total number of UMI in cell j. Model parameters ag and bg
are fit on a per-gene basis. First cells are aggregated into 30 bins based on
UMI, with bin center’s n̂ and the average probability of detection per bin is
computed as p̂. Then linear regression is used to estimate model coefficients as
logit(p̂) = a+ b∗ log10n̂. We considered the use of logistic regression directly on
the sample values, but due to performance issues decided to utilize this binned
approximation.

Deriving gene modules

To compute gene modules, Hotspot uses a three-step procedure:

1. Find informative genes with high local autocorrelation

2. Evaluate pair-wise local correlations between genes

3. Cluster the resulting gene-gene affinity matrix

For step (1), the feature selection procedure described above is applied and
a cutoff is used to select the most highly-informative genes. In the step (2),
we modify our procedure for feature selection to evaluate correlations between
genes in a manner that also leverages the global cell-cell similarity map. We
denote this ’local correlation’. In this way, gene pairs which tend to be sparsely
expressed in the same regions of the similarity map can be detected as correlated
even if they are infrequently detected in the same cell. Finally, step (3) involves
in clustering the genes by genes local correlation matrix computed in step (2).
Here we found good performance in running a modified hierarchical clustering
procedure (details follow).
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Evaluating Pair-Wise Local Correlation

We define the following to evaluate local correlations between genes x and
y:

Hxy =
∑

(i,j)∈E

wij(xiyj + yixj)

Notably, while local autocorrelation tends to only exhibit positive values, local
correlations will often produce negative values. This makes sense intuitively as
genes expressed in different regions of the similarity map will overlap less than
expected if there values were drawn at random.

For the purpose of clustering, we transform this local correlation into a Z-score
by comparing it to its expected first and second moments under a null model.
We initially considered a null model that assumes expression values for genes
x and y are all independent. However, this formulation tends to significantly
underestimate the variance of the test statistic if at least one gene has high
autocorrelation - which is a guarantee since we pre-select these genes. Instead,
we compare against a null model where one gene’s values are fixed and the
other are assumed to be independent. In other words ”given the observed of
gene x, how extreme is Hxy compared with independent values of y”. Since the
test statistic is symmetric with respect to the choice of x and y, we compute
Z-scores using both P (Hxy|x) and P (Hxy|y) and conservatively retain the least-
significant (closest to zero) result.

The moments of Hxy under P (Hxy|x) are computed as:

E[yi] = 0 E[y2i ] = 1

E[Hxy] = E[
∑

(i,j)∈E

wij(xiyj + yixj)]

=
∑

(i,j)∈E

wij(xi E[yj ] + E[yi]xj)]

= 0

Values of y have been standardized with respect to one of the previously de-
scribed gene models. Values of x are held fixed (i.e., they are not random
variables).

Computing E[H2
xy] is more involved. First we note that the value can be ex-

pressed as a sum of edge pairs:

let Eij = wij(xiyj + yixj)
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E[H2
xy] = E[(

∑
(i,j)∈E

Eij)
2]

E[H2
xy] = E[(

∑
(i,j)∈E

Eij)(
∑

(k,l)∈E

Ekl)]

E[H2
xy] =

∑
(i,j)∈E

∑
(k,l)∈E

E[EijEkl]

To compute this efficiently, we make note that when evaluating expectations of
pairs of edges, E[EijEkl] , there are three possible situations:

(1): edge pair shares no noes (i, j, k, l all distinct):

E[EijEkl]

= wijwkl E[xiyjxkyl + xiyjxlyk + xjyixkyl + xjyixlyk]

= 0

(2): edge pair shares one node (for example, i = k):

E[EijEil]

= wijwilE[x2i yjyl + xiyjxlyi + xjyixiyl + xjy
2
i xl]

= wijwilxjxl

(3): edge pair shares two nodes (for example, i = k and j = l):

E[EijEij ]

= w2
ij E[x2i y

2
j + xiyjxjyi + xjyixiyj + x2jy

2
i ]

= wij2(x2i + x2j )

Since only products of edges that share neighbors need to be considered, we can
compute the expectation in O(E) time as:

E[H2
xy] = (

N∑
i

∑
j∈N(i)

wijxj)
2

where N is the number of nodes and N(i) are nodes which share an edge with
node i.

Clustering the Gene-Gene Affinity Matrix

Once the gene by gene matrix of Z-scores has been computed, we apply a
bottom-up clustering procedure with two parameters: MIN CLUSTER GENES,
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and FDR THRESHOLD. Iteratively, the two genes/modules with the highest
pair-wise Z-score are merged, using the UPGMA procedure to derive updated
Z-scores between the resulting module and the remaining modules and/or genes.
If a module accumulates more than MIN CLUSTER GENES, then it is assigned
a label. To preserve hierarchical structure between modules, if two labeled mod-
ules are merged, a new label is not assigned and genes merged into the resulting
composite module remain unlabeled. The FDR THRESHOLD parameter is
used to set a minimum significant Z-score by applying the Benjamini-Hochberg
procedure [34] to the associated p-values of all Z-scores and selecting the mini-
mal such Z-score which is below the FDR threshold. If at any point in the above
merging procedure the maximal Z-score falls below this threshold, the procedure
halts as further gene assignments fall below the significance threshold and are
therefore ambiguous.

Computing Per-Cell Module Scores

To visualize gene modules, it is useful to evaluate per-cell module scores which
can then be plotted onto UMAPs, spatial plots, dendrograms, etc. When com-
puting module scores, Hotspot uses the following procedure: first counts are
centered using the selected null model (e.g., ’bernoulli’ or ’Negative Binomial’).
Then the resulting values are smoothed using the KNN graph - the smoothed
expression for each cell is computed as the weighted average of its neighbors in
the graph. These smoothed values are then modeled with PCA using a single
component, and the cell-loadings are reported as the model scores (potentially
with a sign flip so that gene coefficients are positive).

Analysis of Mouse Cerebellum samples

Barcode expression and position information was downloaded for four mouse
cerebellum samples (Puck 180819 9, Puck 180819 10, Puck 180819 11, and Puck 180819 12)
from https://portals.broadinstitute.org/single_cell/study/slide-seq-study

as directed in [12]. For all analyses involving a single sample, Puck 180819 12
was used.

When running Hotspot, genes were initially prefiltered to remove those detected
in less than 50 cells. For feature selection, a neighborhood size of 300 was used
and the ’bernoulli’ model was used to model gene detection probabilities. For
pair-wise correlation and module identification, genes were selected with an FDR
< .05 and the neighborhood size was reduced to 30 to identify spatial modules
at a finer resolution.

When running spatialDE, genes were again prefiltered to remove those detected
in less than 50 cells. Initial runs of spatialDE tended to erratically select an
unreasonably small length scale with poor results, and so we recomputed the
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length-scale values with a minimum of 50 prior to fitting the model. When com-
puting modules with spatialDE, we selected a length scale of 350 (following the
tools guidelines to select a length scale slightly larger than the average per-gene
optimal length scale) and 10 components as an initial run with 5 components
did not appear to capture all spatial patterns.

To evaluate the performance of feature selection with the cerebellum data, we
sought to create a list of ’true’ positives. We reasoned that the spatial patterns
in the cerebellum would be largely influenced by changes in the composition
of cell types and so marker genes for cerebellum cell types could be used a
positive gene list. To create this list, we downloaded raw expression data from
the DropViz [31] database and computed marker gene sets for each of the 11
annotated mouse cerebellum clusters. For each cluster, we evaluating a 1 vs. all
ranksums test for differential expression on every gene and retained the top 100
genes above a significance threshold (FDR < 0.1). The eleven lists were then
merged to create a true positive set for the precision-recall curves. These same
marker gene lists were also used when characterizing Hotspot modules.

In addition to this marker-gene based approach, we evaluated performance based
on reproducibility between pairs of mouse cerebellum samples. For the four
samples, Hotspot and spatialDe were both run in the same manner as described
above and for each of the six sample pairs, the reproducibility of the gene
ordering was evaluating using the Irreprodicible Discovery Rate (IDR) met-
ric [32].

Analysis of Mouse Embryogenesis Lineage-Tracing Data

Expression data from Chan et al. [14] was downloaded from NCBI GEO (acces-
sion GSE117542). For this analysis, the sample corresponding to Embryo 3 was
used. The developmental lineage was inferred by running the Cassiopeia-Greedy
algorithm [36] with priors determined from the frequency of indels across all ob-
served embryos (as done in the original study [14]). Hotspot was run using two
different metrics to compare outputs: the ’tree’ metric in which the KNN graph
was formed from the 30 nearest neighbors according to the inferred lineage and
the ’transcription’ metric in which PCA was run (on log2(x + 1)-transformed
counts-per-10, 000 expression values) and the KNN graph was formed from the
30 nearest neighbors in the reduced (top 20 component) transformed space.
For both cases, genes were pre-filtered to remove those expressed in less than
10 cells, and the negative binomial model was used (with adjustment for li-
brary size). To evaluate local correlations between genes, for the tree-metric all
genes with autocorrelation passing the 0.05 FDR threshold were selected. For
the transcription metric, a large number of genes has significant autocorrela-
tion and so the top 2000 (based on Z-score) were selected for local correlations.
When extracting modules, a local correlation FDR threshold of 0.05 was used
and MIN CLUSTER GENES settings of 30 and 50 were used (for tree-metric and
transcription-metric respectively).
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In evaluating the modules computed from Hotspot, the expression data from
[14] was used. Specifically the Cell State Kernels were downloaded from NCBI
GEO (accession GSE122187) and for each module returned by Hotspot, the ker-
nel values were plotted (after standardizing across cell types) for the intersection
of the 712 kernel genes and the genes in each module.

UMAP projections were generated by first running PCA (as described above)
and then running UMAP [22] on the transformed space (top 20 components)
with n neighbors=30.

Analysis of CD4 T Cell Transcriptomes

For the CD4 T cells, we made use of the public ”5k pbmc protein v3” available
from 10x Genomics. Digital gene expression was downloaded from 10x and the
full set of PBMCs was filtered based on surface protein abundance to extract
CD4 T cells. First, the protein abundance measurements were log-transformed
(log(x + 1)) and then each protein was mean-centered individually. Cells were
retained based on manual thresholding of bimodal markers (specifically CD4 >
3, CD3 > 2.5, CD14 < 2). Additionally , we discarded cells with low recovered
mRNA UMI counts (UMI < 3100) or with a high proportion of counts from
mitochondrial genes (>16%). This resulted in 1486 CD4 T cells.

When running the Highly Variable Genes procedure, Seurat’s FindVariable-
Genes method was used. First counts were log-normalized with a scale factor of
10,000. Then FindVariableGenes was run with a x.low.cutoff = .01, x.high.cutoff
= 3.04 (corresponds to a high-end cut-off of 20 counts/10,000), and y.cutoff =
.5. Resulting genes were then ordered in descending order by the reported
’gene.dispersion.scaled’.

For the NBDisp procedure, the NBumiFitModel function as implemented in
the M3Drop [27] package was used with default settings on raw gene counts.
Additionally, for consistency with the HVG procdure, a high-end cutoff of 20
counts/10,000 was used. Output genes were ordered by the reported ’q.value’
in ascending order.

For the PCA procedure, the feature proposed by [27] was used. Specifically, prin-
cipal components analysis was run with 5 components on the log-transformed,
scaled counts/10,000. A genes score was reported as the sum of the absolute
value of its PCA coefficients in the top 5 components. Genes were then ordered
in descending order based on this score.

To compute gene relevance (GR) scores, we downloaded the c7 immune signa-
ture set from MSigDB [28]. Gene sets were filtered to retain sets describing
comparisons between CD4 T cells, specifically sets with one of the following
terms (Th1, Th2, Tfh, Treg, Tconv, T, Th17, Tcell, NKTcell, CD4, Thymo-
cyte) and none of these terms (DC, PDC, Macrophage, BMDM, Monocyte,
Neutrophil, Mast, B, BCell, NKCell, NK) resulting in 706 CD4-relevant gene
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sets. For every gene, its GR score was computed as the number of CD4-relevant
gene sets in which it appears. When evaluating a set of genes (selected by the
Hotspot, HVG, NBDisp, or PCA procedure), the resulting metric was reported
as the average GR score for the set.

To evaluate a set of genes using protein autocorrelation, the raw counts were
subset to include only the genes under evaluation and then scVI [16] was run
with 10 latent components. Hotspot was then used to evaluate the autocorrela-
tion of the surface protein measurements. This is predicated on the assumption
that a more informative set of genes leads to a latent space model that more
accurately reflects true cell state, and that both mRNA expression and protein
surface abundance are derived from this cell state. Therefore, we would expect
a more informative set of genes to result in increased autocorrelation values
for surface proteins as well. The resulting protein Z-scores for each of the four
methods were then compared with the Z-scores from a fifth run where genes
were selected with a simple thresholding procedure (all genes expressed in at
least 10 cells).

Other implementation details are as follows: Within Hotspot, protein abun-
dance was modeled using a depth-adjusted normal model. First protein counts
were log-transformed, and then the log of the total protein counts (per cell) were
linearly regressed out of the transformed protein counts as we observed signifi-
cant correlation between individual protein counts and the total counts in other
proteins, per cell. This normalized protein abundance matrix was then stan-
dardized on a per-protein basis. In selecting genes with Hotspot, PCA was first
used with 20 components to create the latent space for cell-cell similarities. For
all procedures, the top 1000 reported genes were used. To avoid evaluating on
surface proteins which were not expressed in CD4 T cells (and whose detection
therefore represents background noise), we fit a 2-component gaussian mixture
model on the log-transformed surface abundance measurement on all PBMCs
for each protein and retained proteins where the sparation between peaks (in
log-space) was at least 2 and at least 1% of CD4 T cells were assigned to the
higher (active) component.

In identifying expression modules in the CD4 T cells, first SCVI was run on the
top 1000 highly variable genes with 10 components. This latent space was then
used as input to Hotspot and modules were created from top 500 genes based
on autocorrelation. For module creation, an FDR THRESHOLD of 0.05 was
used along with a MIN CLUSTER GENES setting of 15.

Simulated Transcriptional Profiles

Simulated data was used to evaluate the performance of Hotspot when run
on transcriptional data alone. To generate simulated single-cell profiles, we
used the SymSim [25] framework. For each of 10 simulation replicates, UMI
count profiles were generated for 3000 cells consisting of 5000 genes. 5 gene
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components were generated by varying the ’synthesis’ parameter with 100 genes
participating in each component. The components were generated with the
following structure:

• Component 1: Affects all cells

• Component 2: Affects 300 cells which had positive Component 1 values

• Component 3: Affects 30 cells which had positive Component 1 values

• Component 4: Affects all cells which had negative Component 1 values

• Component 5: Affects all cells

For full implementation details, see accompanying code.

When evaluating feature selection on this data, methods were run as described
here. Seurat’s [26] ’FindVariableGenes’ function was used as the Highly Variable
Genes (HVG) method with x.low.cutoff = 0.1, x.high.cutoff = 100, and y.cutoff
= 0.5. The NBDisp method from [27] was run with default settings. For
the PCA procedure, as described in [27], we first ran PCA on the log(x + 1)
transformed scaled counts per 10,000 values retaining the top 5 components.
Genes were then ordered using the sum of the absolute value of their compo-
nent weights in descending order. When running Hotspot, we used the cell-
components of this same PCA procedure as the latent space to construct the
KNN graph (300 neighbors), and the NBDisp model (from [27]) as the expres-
sion null model.

To evaluate the module assignment procedure, we sought to compare whether
the use of Hotspot’s local correlation resulted in an improvement over Pearson’s
correlation - the intuition being that taking into account a cell’s local neighbor-
hood should increase the signal of an association between two genes with true,
biological correlation. To decouple feature selection from this evaluation, we
pre-selected the 500 non-random genes and computed both Hotspot’s pair-wise
local correlation (Z-scores) and Pearson correlation coefficients between gene
pairs. For evaluating Pearson correlation, the standardized values (under the
library-size-adjusted negative binomial distribution) were used when computing
correlation coefficients and associated p-values. Then, genes were grouped into
modules using the hierarchical procedure implemented by Hotspot and an FDR
cutoff of 0.05. The modules formed by either procedure clearly mapped clearly
to the original 5 modules, and so we evaluated each by computing the overall
accuracy (proportion of genes correctly assigned to their true module) over the
500 genes. Additionally, the accuracy was computed within bins of genes based
on the gene mean expression and the gene-effect coefficient magnitude used by
SymSim. As with the feature selection evaluations, this was repeated over 10
replicate simulations.
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Figure 1: Evaluating Hotspot on a Transcriptional Dataset of CD4
T Cells A) Comparing feature selection for four methods - Hotspot, HVG
(highly variable genes, as implemented in Seurat[26]), NBDisp (from [27]), and
a PCA-based procedure (as described in [27]). For each method, the average
Gene Relevance score (computed as the number of CD4-relevant gene sets from
MSigDB [28] a gene is found in) is computed on the output set of genes as the
selection threshold is varied. B) For each method in (A) the top 1000 genes
were used to build a latent space model in scVI [16]. The autocorrelation Z-
scores of 15 surface protein expression (not included in model building) are
used to evaluate estimates of cell state. Shown is the difference (change in Z-
score) for each of the 15 proteins when comparing the scVI models from the
selected top 1000 features to a model built from all genes above an expression
threshold (1̃2000). C) Top 500 genes selected by Hotspot are grouped into 12
modules on the basis of pair-wise local correlation. D) Module summary scores
are visualized on a UMAP of the dataset.
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Figure 2: Spatial Gene Signatures Hotspot is used to identify spatially-
relevant genes within a spatial single cell expression sample from mouse cere-
bellum. A) Genes with significant spatial autocorrelation (845 genes, FDR <
.05) are grouped into 6 gene modules on the basis of pair-wise spatial correla-
tions. B) Spatial modules are associated with specific cerebellar cell types as
shown by enrichment in cell-type specific marker genes. C) Spatial gene mod-
ules are visualized with their summary, per barcode, module scores (top row).
Beneath each plot of the module score, the expression of the gene with the
highest spatial autocorrelation is visualized for comparison.
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Figure 3: Lineage Gene Signatures A) 2554 genes with significant (FDR <
.05) lineage autocorrelation are grouped into 5 gene modules on the basis of
pair-wise lineage correlation. B) Module summary scores are plotted against a
UMAP of the expression data. C) A set of 42 manually annotated kernels from
[14] representing cell types in mouse embryogenesis is used to identify putative
labels for lineage-derived gene modules. For each module, the kernel values of
the module genes are visualized. D) Similar to (C), only modules derived from
gene expression (not lineage) are shown instead. E) Annotating cells which are
most similar to the Angioblast kernel (top) along with an Angioblast marker
gene, Pecam1 (bottom). Panels C-E show Hotspot is able to distinguish between
gene modules with transcriptional support (such as that of Angioblasts) and
those with lineage support.

25

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 7, 2020. ; https://doi.org/10.1101/2020.02.06.937805doi: bioRxiv preprint 

https://doi.org/10.1101/2020.02.06.937805
http://creativecommons.org/licenses/by-nc-nd/4.0/


Supplementary Figure 1: Evaluation with Simulated Transcriptional Pro-
files A) SymSim was used to simulated 5 gene modules (each with 500 genes)
affecting a varying number of cells (see Methods for full details). Visualized here
are the cell-effect coefficients on a UMAP projection of the simulated dataset.
B) Precision and Recall for four methods of feature selection - Hotspot, HVG
(highly variable genes, as implemented in Seurat[26]), NBDisp (from [27]), and
a PCA-based procedure (as described in [27]). Evaluations from 10 replicate
simulations are shown with the trace denoting the mean and the shading denot-
ing the minimum and maximum across replicates. Point-estimates are shown
for Hotspot (crosses) when selecting an FDR threshold of 0.05. C) Comparison
of the local correlation statistic developed here with that of Pearson correla-
tion for the task of correctly assigning genes to the same module. Left panel
shows overall accuracy while right shows accuracy per 5 gene-effect quantiles
(quantile 1 represents genes with the weakest simulated effect strength, 5 the
strongest). Bars represent the mean of 10 simulations and vertical lines denote
bootstrapped 95% confidence intervals.
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Supplementary Figure 2: Supplementary Figures for Spatial Gene Sig-
natures A) Mean and Fano factor of expression measurement for all genes in
the Puck 180819 12 mouse cerebellum sample. B) Comparison of SpatialDE
and Hotspot in terms of their ability to identify marker genes for mouse cere-
bellar cell types. C) Runtime comparison between SpatialDE and Hotspot. D)
Comparison of Hotspot and Spatial in terms of reproducibility between similar
samples. The Irreproducible Discovery Rate (IDR) metric is used to compare
genes selected between six pairs of mouse cerebellar samples.27
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Supplementary Figure 3: Comparison of spatial gene correlations be-
tween samples A) For each pair of the 845 spatial genes (taken from the
Puck 180819 12 sample), the spatial correlation Z-score is evaluated in all four
samples and results are compared with that of sample Puck 180819 12. B) the
same pair-wise Z-scores from (A) are visualized as a gene by gene correlation
plot to compare the modules across the four samples. C) A comparison of
the overlap between gene modules identified in the Puck 180819 12 sample and
those identified in the other 3 samples.
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Supplementary Figure 4: Comparison of modules identification pro-
cedure in Hotspot and SpatialDE A) Overlap coefficient between mod-
ules identified by Hotspot and modules identified by SpatialDE in the
Puck 180819 12 sample. B) Runtime comparison for the two algorithms with
varying number of cells. Each trial run on 500 genes using 16 threads, one core
per thread. C) Hotspot/SpatialDE module pairs (from A) are visualized us-
ing the spatial coordinates of the sample. Both procedures are able to identify
similar patterns with Hotspot running in orders of magnitude less time.
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Supplementary Figure 5: Q-Q plots for test statistics For each dataset
analyzed in the study, the theoretical quantiles of the test statistic (for local
autocorrelation, top row, and for local pair-wise correlation, bottom row) are
compared against those computed on shuffled data. A) Expression/positions
from Puck 180819 12 of the Slide-Seq [12] data. B) CD4 Expression data from
10x Genomics. C) Expression and lineage data from [14], Embryo3. When
computing shuffled Z-scores for pairs of genes, only the second gene in the pair
is shuffled.
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