

1 **Short title:** bulliform cell cuticle in leaf rolling

2 **Corresponding author:** Laurie G. Smith ([lgsmith@ucsd.edu](mailto:lgsmith@ucsd.edu))

3

4 **Structure-function analysis of the maize bulliform cell cuticle and its role in dehydration**  
5 **and leaf rolling**

6 Matschi, Susanne<sup>1</sup>; Vasquez, Miguel F.<sup>1</sup>; Bourgault, Richard<sup>2</sup>; Steinbach, Paul<sup>3</sup>; Chamness,  
7 James<sup>4\*</sup>, Kaczmar, Nicholas<sup>4</sup>, Gore, Michael A.<sup>4</sup>, Molina, Isabel<sup>2</sup>; and Smith, Laurie G.<sup>1</sup>

8

9 <sup>1</sup> Section of Cell and Developmental Biology, University of California San Diego, La Jolla, CA  
10 92093, USA

11 <sup>2</sup> Department of Biology, Algoma University, Sault Ste. Marie, ON P6A 2G4, Canada

12 <sup>3</sup> Howard Hughes Medical Institute, University of California San Diego, La Jolla, CA 92093, USA

13 <sup>4</sup> Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University,  
14 Ithaca, NY 14853, USA

15

16 \*present address: Department of Genetics, Cell Biology, and Development, University of  
17 Minnesota, Saint Paul, MN 55108, USA

18 **One sentence summary:** Bulliform cells in maize have a specialized cuticle, lose more water  
19 than other epidermal cell types as the leaf dehydrates, and facilitate leaf rolling upon  
20 dehydration.

21 **List of author contributions:** SM, IM, and LGS conceived the project and designed  
22 experiments. SM and MFV conducted most experiments. RB and IM performed GC-MS analysis  
23 of cuticle composition, and PS and SM performed cryo-microscopy. JC, NK, MAG and LGS  
24 helped to establish and conduct the leaf rolling assay. SM, RB, IM and LGS analyzed data. SM  
25 and LGS wrote the article with contributions of all authors.

26 **Funding information:** This work was financially supported by U.S. National Science  
27 Foundation IOS1444507, a Deutsche Forschungsgemeinschaft (DFG) Fellowship (MA-7608/1-  
28 1) to SM, and by funding from the Canada Research Chairs program (CRC) to IM.

29

30 **Abstract:**

31 The cuticle is a hydrophobic layer on the outer surface plant shoots, which serves as an  
32 important interaction interface with the environment. It consists of the lipid polymer cutin,  
33 embedded with and covered by waxes, and provides protection against stresses including  
34 desiccation, UV radiation, and pathogen attack. Bulliform cells form in longitudinal strips on the  
35 adaxial leaf surface, and have been implicated in the leaf rolling response observed in drought  
36 stressed grass leaves. In this study, we show that bulliform cells of the adult maize leaf  
37 epidermis have a specialized cuticle, and we investigate its function along with that of bulliform  
38 cells themselves. Analysis of natural variation was used to relate bulliform strip patterning to leaf  
39 rolling rate, providing evidence of a role for bulliform cells in leaf rolling. Bulliform cells displayed  
40 increased shrinkage compared to other epidermal cell types during dehydration of the leaf,  
41 providing a potential mechanism to facilitate leaf rolling. Comparisons of cuticular conductance  
42 between adaxial and abaxial leaf surfaces, and between bulliform-enriched mutants vs. wild  
43 type siblings, provided evidence that bulliform cells lose water across the cuticle more rapidly  
44 than other epidermal cell types. Bulliform cell cuticles have a distinct ultrastructure, and  
45 differences in cutin monomer content and composition, compared to other leaf epidermal cells.  
46 We hypothesize that this cell type-specific cuticle is more water permeable than the epidermal  
47 pavement cell cuticle, facilitating the function of bulliform cells in stress-induced leaf rolling  
48 observed in grasses.

49

50 **Introduction**

51 Plants display a variety of responses to environmental stresses. An important drought stress  
52 response in grasses is reversible leaf rolling along the longitudinal leaf axis upon water limitation

53 or heat stress conditions. Leaf rolling prevents water loss, photosynthetic loss, and increases  
54 drought resistance in numerous species of the Poaceae (Kadioglu and Terzi, 2007; Saglam et  
55 al., 2014), which include staple crops like wheat, rice and maize. Dehydrated grass leaf blades  
56 fold longitudinally, reducing the exposed leaf surface area, with effect on leaf transpiration and  
57 canopy temperature (O'Toole et al., 1979; Turner et al., 1986). Leaf rolling is linked to osmotic  
58 adjustment and a change in leaf water potential upon dehydration (O'Toole and Cruz, 1980;  
59 Hsiao et al., 1984; Moulia, 1994). Changes in concentrations of organic acids or ions,  
60 accumulation of phytohormones, in part followed by changes in stress-responsive gene  
61 expression, and other abiotic and biotic factors contribute to leaf-rolling (Kadioglu et al., 2012).

62 Bulliform cells (BCs) are enlarged, colorless cells located in the epidermis, which in  
63 maize are usually arranged in 2 to 5 cell-wide strips along the longitudinal leaf axis solely on the  
64 adaxial side of the leaf (Ellis, 1976; Becroft et al., 2002; Sylvester and Smith, 2009). Being  
65 absent in juvenile maize leaves, their emergence in the leaf epidermis is one of the hallmarks of  
66 the vegetative phase change in maize, the transition from juvenile to adult leaves (Poethig R. S.,  
67 1990). The function of BCs, also called hinge or motor cells, is a matter of ongoing debate since  
68 the first description by Duval-Jouve (1875) postulating reversible rolling of the leaf blade  
69 resulting from changes in the turgor pressures of BCs. Adaxial rolling is conferred by differential  
70 top-bottom elastic shrinkage in the leaf cross-section (Moulia, 2000) which is thought to be  
71 guided by BCs due to their asymmetric location on the adaxial leaf surface. However, studies on  
72 leaf rolling in different grass types reach contradictory conclusions and could not resolve  
73 whether BCs cause rolling by collapse due to water loss, or whether their size and plasticity  
74 merely permit them to be compressed and allow rolling to occur (reviewed in Ellis, 1976; Moulia,  
75 2000; Evert, 2006). Numerous mutants with altered BC number, size or adaxial/abaxial  
76 patterning, mostly identified in rice and to a lesser extent in maize, show an effect on leaf rolling  
77 and underline the importance of this cell type and its distribution for the leaf rolling response

78 (Nelson et al., 2002; Xu et al., 2018; Gao et al., 2019). Only recently the genetic diversity of  
79 maize in combination with association mapping and machine learning techniques was employed  
80 to characterize the genetic basis of bulliform strip architecture, namely strip number and width,  
81 in a collection of diverse maize inbred lines, and identify a number of underlying candidate  
82 genes (Qiao et al., 2019).

83 The cuticle is the first layer of protection of aerial plant tissue and represents an  
84 important interaction surface with the environment. It shields the underlying tissue against  
85 environmental stresses such as non-stomatal water loss (Riederer and Schreiber, 1995), UV  
86 radiation (Krauss et al., 1997) and pathogen attack (Serrano et al., 2014), which in turn can  
87 affect cuticle biogenesis (Yeats and Rose, 2013). The biological functions of cuticles are  
88 determined by their physical properties, which depend on their chemical composition. The  
89 cuticle is comprised of two major components: the polyester cutin, which serves as the cuticle's  
90 framework (Fich et al., 2016), and cuticular waxes, a multitude of mainly hydrophobic  
91 compounds that are either embedded into the cutin polymer matrix (intracuticular waxes) or  
92 cover the cutin layer (epicuticular waxes) (Koch and Ensikat, 2008). Cutin polymer structures in  
93 different species and tissues remain elusive so far, as biochemical characterization of cutin can  
94 only be achieved by a description of its monomers after depolymerization. Typical cutin  
95 monomers are long-chain (C<sub>16</sub> and C<sub>18</sub>) fatty acid monomers that have a hydroxy group at the  
96  $\omega$ -position and midchain hydroxy or epoxy groups. Additionally, unsubstituted fatty acids,  
97 dicarboxylic acids (DCA), glycerol, and low amounts of phenolic compounds (e.g.  
98 hydroxycinnamic acids (HCAs) like coumarate and ferulate) can be present (Pollard et al.,  
99 2008). Cuticular waxes are derived from very long-chain fatty acids (VLCFAs), and usually  
100 consist of aldehydes, primary and secondary alcohols, hydrocarbons, ketones, and wax esters,  
101 and cyclic compounds including terpenoids and sterols (Yeats and Rose, 2013). Unlike cutin,  
102 waxes can be extracted from the cuticle with organic solvents.

103        The cuticle is generally described as having three layers of overlapping composition: 1)  
104    the innermost cuticular layer, continuous with the cell wall, which consists of polysaccharides,  
105    waxes and cutin; 2) the cuticle proper as the middle layer, with intracuticular waxes embedded  
106    in the cutin matrix but devoid of polysaccharides; 3) the epicuticular wax layer as the outermost  
107    layer of the cuticle on the plant surface which may be deposited as an amorphous film or in the  
108    form of epicuticular wax crystals (Bargel et al., 2006; Jeffree, 2006). Recent reassessments of  
109    the literature and emerging techniques however challenge the concept of the cuticle as a lipid  
110    layer independent from the cell wall with very defined structural elements (Fernández et al.,  
111    2016), and rather describe the cuticle as a form of lipidic modification of the cell wall (Yeats and  
112    Rose, 2013). The thickness, structure and chemical composition of cuticular matrices and epi-  
113    and intracuticular waxes vary widely between different organisms, developmental stages, and  
114    even organs within a species (Jeffree, 2006; Jetter et al., 2006). Understanding how the  
115    features of cuticle organization are related to its composition and function is an active area of  
116    research.

117        Retaining water in the epidermis and the underlying plant tissue to limit dehydration is  
118    one of the most important roles of the plant cuticle. It is well known that waxes, rather than cutin,  
119    provide the majority of the water retention capacity of the cuticle (Schönherr, 1976; Kerstiens,  
120    1996; Isaacson et al., 2009; Jetter and Riederer, 2016). Interestingly, cuticle thickness is no  
121    indicator of its function as a water barrier, but wax composition appears to be critical  
122    (Buschhaus and Jetter, 2012; Jetter and Riederer, 2016). In a direct comparison of cuticle  
123    permeability in several *Arabidopsis* mutants with either increased or decreased wax and/or cutin  
124    loads, most mutants displayed higher permeability than wild-type, even if their respective wax or  
125    cutin load was increased or showed a thicker cuticle (Sadler et al., 2016). Increased wax load in  
126    cutin mutants is often interpreted as a compensatory mechanism to ensure cuticular integrity

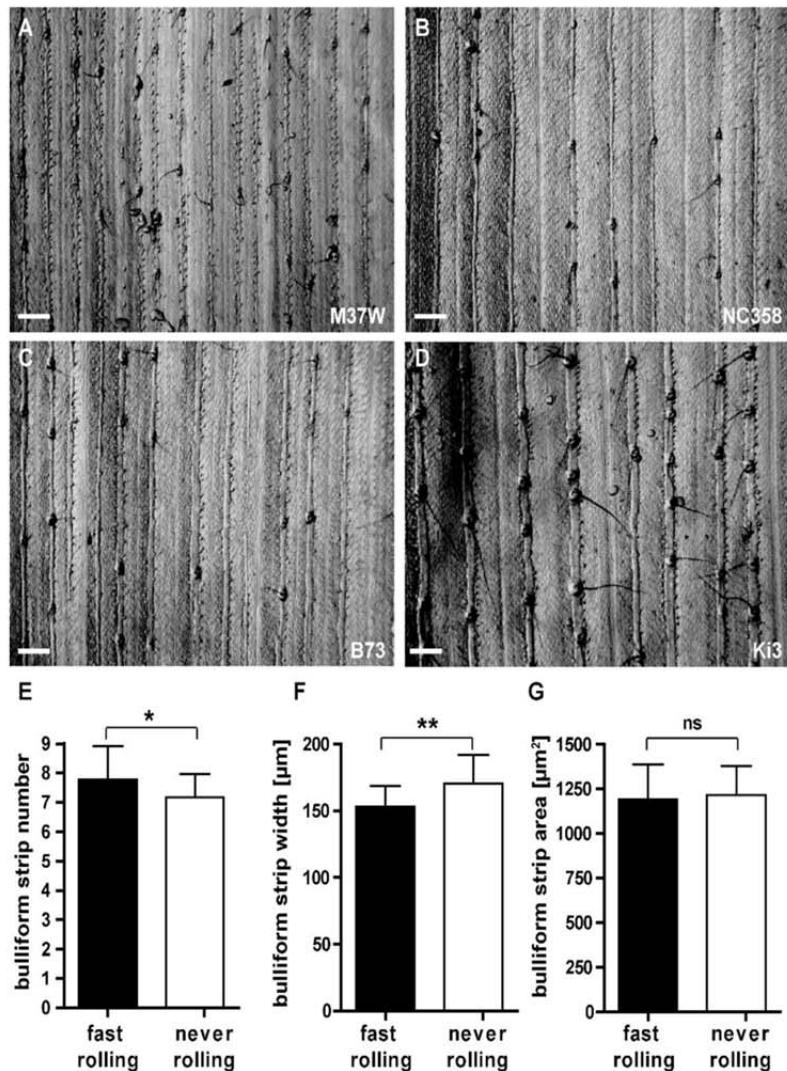
127 despite the insufficient cutin scaffold provided in these mutant backgrounds (Kurdyukov et al.,  
128 2006; Bessire et al., 2007).

129 The overwhelming majority of cuticle studies in maize focus on juvenile leaves, which  
130 are, in addition to other distinctive features, quite different in cuticle structure and composition  
131 compared to adult leaves (Bianchi and Marchesi, 1960; Bianchi and Avato, 1984; Bongard-  
132 Pierce et al., 1996). Only limited research is available on the cuticle composition of mature adult  
133 maize leaves and their functional impact, despite the fact that drought stress is most damaging  
134 to maize grain yield at the flowering stage (Grant et al., 1989), a time when juvenile leaves have  
135 died and only adult leaves remain. The wax profile of the adult leaf cuticle reveals high  
136 proportions of wax esters and alkanes and low abundance of free alcohols and aldehydes  
137 (Bianchi and Avato, 1984; Bourgault et al., 2020). The cutin polyester in the adult maize leaf  
138 mainly consists of di-hydroxy-hexadecanoic acid and typical members of the C<sub>18</sub> family of cutin  
139 acids, including hydroxy and hydroxy-epoxy acids, with low amounts of the HCA derivatives  
140 coumarate and ferulate also present (Espelie and Kolattukudy, 1979; Bourgault et al., 2020). In  
141 a developmental analysis of the maize leaf cuticle, the establishment of the water barrier  
142 properties of the adult leaf cuticle in maize coincided with a switch from alkanes to esters as the  
143 major wax type and the emergence of an osmophilic (likely cutin-rich) layer of the cuticle proper  
144 (Bourgault et al., 2020). Ultrastructurally, pavement cell cuticles of the adult leaf did not show a  
145 typical three-layered composition, consisting only of a cuticle proper and an epicuticular layer  
146 (Bourgault et al., 2020).

147 Little is known about variation in cuticle composition and structure on specific epidermal  
148 cell types and how this relates to their specialized functions. This is challenging to investigate  
149 due to the difficulty of separating different epidermal cell types for biochemical analysis of cuticle  
150 composition. One example of a comparative study was conducted on trichome cuticles in  
151 *Arabidopsis* (Hegebarth et al., 2016), where comparison of trichome-enriched and depleted

152 genotypes revealed an increase in longer-chain alkanes and alkenes in trichome-rich material.  
153 Integration of gene expression data lead to the conclusion that trichomes possess autonomous  
154 wax biosynthesis (Hegebarth et al., 2016; Hegebarth and Jetter, 2017). The exposed position of  
155 trichomes requires increased flexibility to withstand mechanical stress, but the role of the  
156 trichome cuticle, and its specific composition, is unclear (Hegebarth and Jetter, 2017).  
157 Furthermore, there is indirect evidence that the cuticles of guard cells have a different  
158 composition compared to those of pavement cells but these differences have yet to be  
159 characterized (Hegebarth and Jetter, 2017).

160 The current study aimed to develop a structure-function relationship of the unique BC  
161 cuticle with the proposed role of these cells in the leaf rolling response in grasses. Maize's  
162 genetic diversity was used to investigate the impact of architectural features of bulliform strip  
163 distribution on leaf rolling speed. On a cellular level, postulated increased water loss of BCs was  
164 examined *in situ* with a new cryo-confocal method and dehydration analysis of different BC-  
165 enriched tissue types. Variations in cuticles of different epidermal cell types were studied by  
166 TEM and lipid staining, and the biochemical composition of several bulliform-enriched or -  
167 depleted cuticle types was analyzed to identify a relationship between chemical monomer  
168 composition, cuticle ultrastructure and the proposed function of BCs in leaf rolling.  
169 Transcriptional analysis of the maize leaf cuticle maturation zone of bulliform-enriched mutants  
170 was carried out to identify key players of bulliform cuticle regulation. Together, these  
171 experiments provide new insights into the scarce knowledge about cell type-specific cuticles  
172 and how structural and compositional cuticle features could connect to the biological function of  
173 a specific cell type.

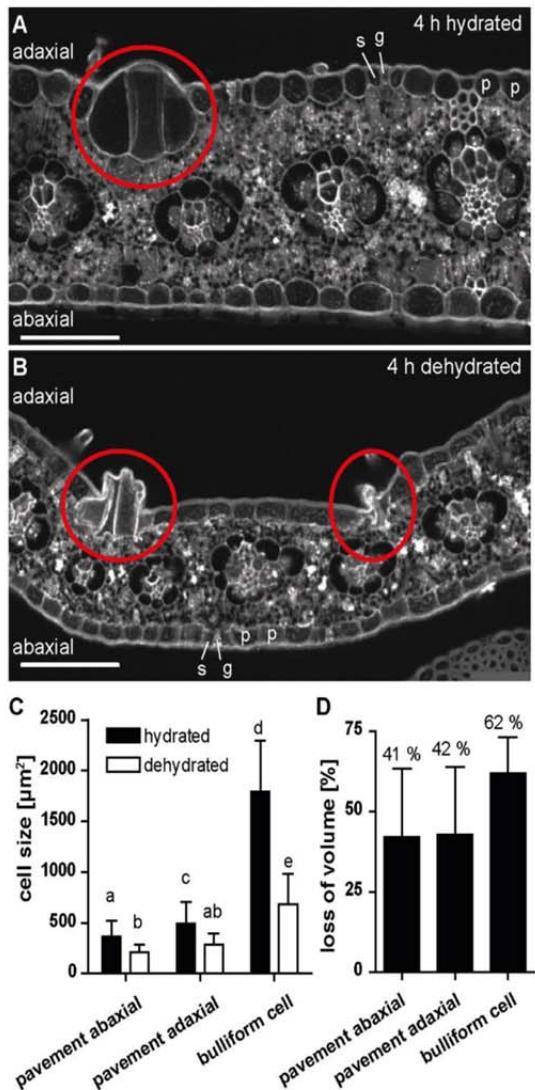

174

175

176 **Results:**

177 **Maize leaf rolling is impacted by variation in bulliform strip patterning**

178 Bulliform cells (BCs) are organized into 2-5 cell wide strips aligned with the proximodistal axis of  
179 the maize leaf, which are implicated to play a role in the leaf rolling response due to their  
180 asymmetric location on the adaxial side of the leaf. To investigate the role of specific  
181 architectural features like bulliform strip distribution, e.g. thickness and number, in the leaf  
182 rolling response in maize, phenotypic diversity in a panel of diverse maize inbred lines was used  
183 to query the relationship between bulliform cell pattern and the rolling response. Adult leaves of  
184 maize inbred lines differ dramatically in the frequency and width of bulliform strips (examples in  
185 Figure 1A-D, (Qiao et al., 2019)). In addition to their bulliform cell patterns, leaf rolling responses  
186 during dehydration were recorded for each of several hundred different maize inbred lines. Adult  
187 leaves were excised from each plant, hung from a line to allow them to dehydrate, and scored  
188 for their leaf rolling status as a function of time (Supplemental Table S1). Lines with extreme  
189 rolling behavior - “fast rollers” (scored as rolled within the first 90 minutes of dehydration, 25  
190 lines), and “never rollers” (no rolling observed in the assessed time frame of 225 minutes, 41  
191 lines) - were selected for analysis. Rolling behavior in these lines was significantly related to the  
192 pattern of bulliform cells (Figure 1E-G). Fast rolling leaves had a higher number of BC strips per  
193 unit area than never rolling leaves (Figure 1E), while the width of individual bulliform strips  
194 showed the inverse trend, with never rolling leaves exhibiting wider strips than fast rolling leaves  
195 (Figure 1F). However, overall bulliform coverage was not different between fast and never  
196 rollers (Figure 1G). Bulliform strip number and width appear to impact leaf rolling independently,  
197 since no correlation was seen between these features across the entire set of inbred lines  
198 studied (Supplemental Figure S1). In summary, our data support a role for bulliform cells in the  
199 leaf rolling response, and suggest that rolling is facilitated by more closely spaced and narrower  
200 bulliform strips.




**Figure 1. Bulliform patterning correlates with leaf rolling speed.** A-D) Grayscale images of leaf epidermal glue-impressions from four maize inbred lines showing extreme bulliform cell patterning phenotypes: M37W and NC358 with narrow bulliform strips, B73 and Ki3 with wide strips. Scale bar = 500  $\mu\text{m}$ . E-G) Comparison of bulliform strip number per field of view with standard size (E), strip width (F) and calculated bulliform strip area (number x width) (G) in 25 fast rolling maize inbreds (rolled within 90 minutes of dehydration; leaf rolling was assessed during a detached leaf dehydration assay in the dark in controlled conditions of 20-22 °C and 55-65 % humidity) and 41 never rolling inbreds (not rolled within 270 minutes of dehydration). Values are given as means  $\pm$  standard deviation (SD), statistical analysis used two-tailed unpaired Student's *t*-test, with \* $P < 0.05$ , \*\* $P < 0.01$ .

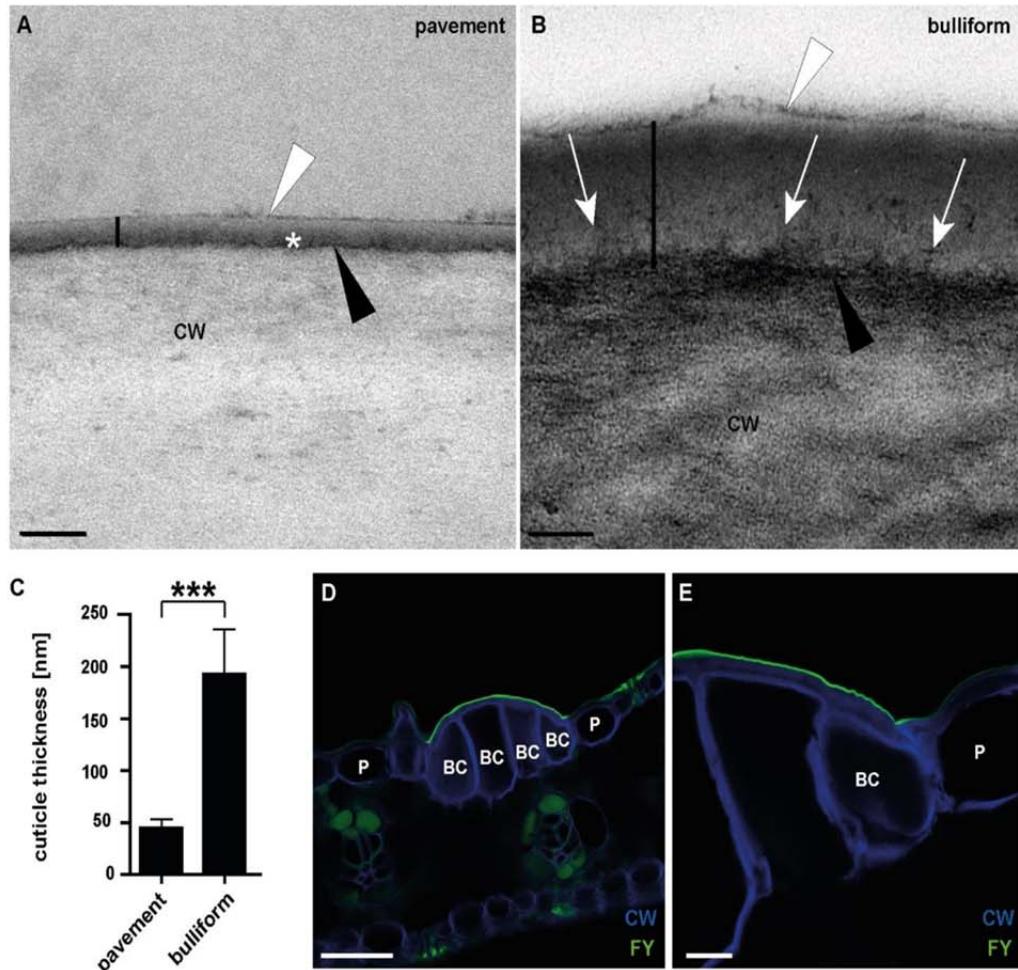
202 **Bulliform cells display differential shrinkage upon dehydration**

203 Disproportionate shrinkage of bulliform cells, located only on the adaxial side of the leaf, during  
204 leaf dehydration is thought to create a hinge-like effect promoting leaf rolling. However, we  
205 could not find published experimental evidence confirming this hypothesis. Indeed, it is  
206 technically challenging to investigate this, since conventional methods permitting visualization of  
207 plant tissues at the cellular level have the potential to cause cell shrinkage in their own right  
208 (e.g. fixation and dehydration prior to embedding in a sectioning medium), or reverse cell  
209 shrinkage (e.g. if freshly cut hand sections of dehydrated tissue are mounted in aqueous  
210 medium under a cover slip). To overcome these problems, a newly-established cryo-confocal  
211 imaging method was employed. After 4 hours of dehydration of intact (detached) adult leaves,  
212 or no dehydration, tissue fragments were shock-frozen in optimal cutting temperature compound  
213 (OCT) and cross-sectioned in a cryo-microtome. Autofluorescence of tissue cross sections  
214 exposed at the block face was then imaged in a custom-built liquid N<sub>2</sub>-cooled chamber mounted  
215 on a confocal microscope (Figure 2). In comparison with cross sections of fully hydrated control  
216 leaves (Figure 2A), pavement cells as well as bulliform cells (red circles) were smaller in  
217 dehydrated (rolled) leaves (Figure 2B). Bulliform cell shrank more than pavement cells (Figure  
218 2C,D), but no difference in shrinkage was observed comparing adaxial and abaxial pavement  
219 cells.

220 To investigate whether differential shrinkage of bulliform cells is due to water loss to the  
221 atmosphere (i.e. via evaporation across the bulliform cuticle) or to movement of water into  
222 neighboring cells, pavement cell volumes were examined as a function of proximity to bulliform  
223 cells and vice versa (Supplemental Figure S2). Bulliform cells lost the same volume upon  
224 dehydration, independent of their location in the center of a BC cell strip (#1) or at a peripheral  
225 position adjacent to a pavement cell (#2). Moreover, no consistent difference in shrinkage upon  
226 dehydration could be observed for pavement cells at different positions relative to BCs



**Figure 2. Bulliform cells show increased shrinkage upon dehydration.** A-B) Cross sections of (de-)hydrated maize leaf tissue after 4 hours in the dark. Tissue was shock-frozen after 4 hrs without fixation, and autofluorescence was detected by *in situ*-cryo-imaging as described in Methods. p = pavement cell, g = guard cell, s = subsidiary cell, red circle = group of bulliform cells. Scale bar = 100  $\mu$ m. C) Cell sizes (cross-sectional areas) of the indicated epidermal cell types, analyzed by ImageJ. D) Quantification of cell shrinkage of different cell types upon dehydration as loss of volume in percentage. Shrunken bulliform cells were counted only if their outlines could be seen as in the group on the left in B (i.e. severely shrunken bulliform groups such as the one on the right in B were not counted). Values given as means  $\pm$  SD (n = 88 - 194 cells per cell type). Statistical analysis used 1-way ANOVA, means with the same letter are not significantly different from each other; Tukey's post-test, P < 0.05.


228 not be determined with the images at hand, so we were not able to investigate the possibility of  
229 water transport from bulliform cells into underlying mesophyll cells. Taken together, our results  
230 show for the first time *in situ* that dehydration of a leaf leads to increased bulliform cell shrinkage  
231 relative to neighboring pavement cells. Analysis of relative cell volumes supports the possibility  
232 that water is lost differentially via evaporation across the BC cuticle rather than via transport into  
233 neighboring cells.

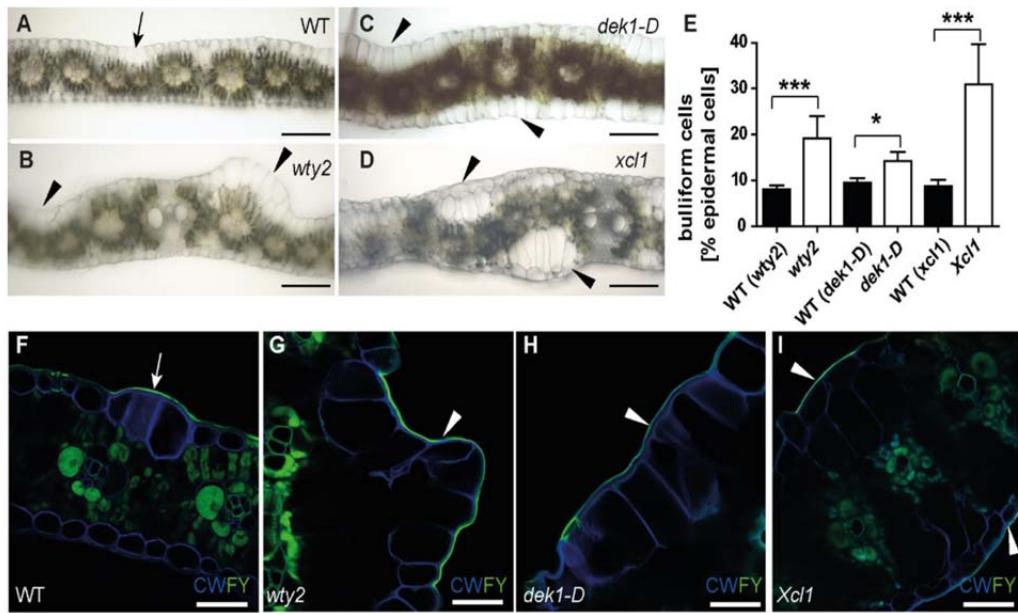
234

235

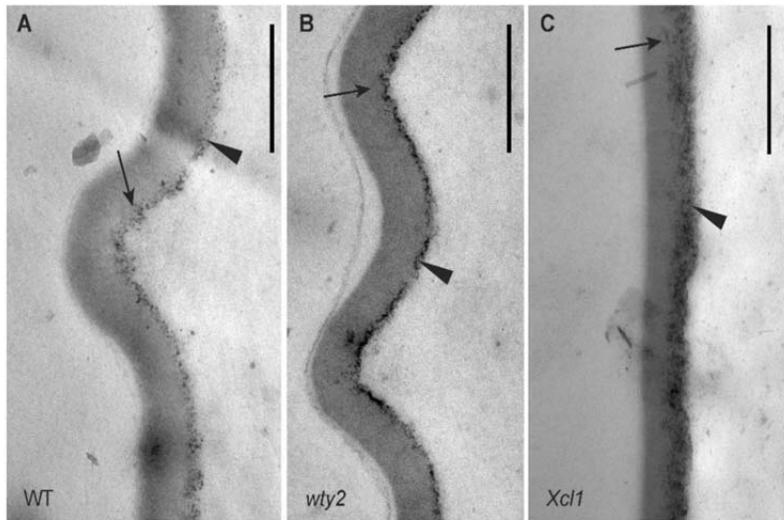
236 **Pavement and bulliform cell cuticles of the adult maize leaf are different**

237 Increased volume loss of bulliform cells upon leaf dehydration suggests the hypothesis  
238 that differential permeability of bulliform vs. pavement cell cuticles could lead to a difference in  
239 water loss. To investigate this hypothesis, cuticle structure was examined in adult, fully mature  
240 maize leaves via transmission electron microscopy (TEM) and confocal microscopy (Figure 3).  
241 As previously described, TEM reveals that pavement cells have a thin cuticle with four  
242 ultrastructurally-defined zones of distinct osmium staining characteristics (Figure 3A, Bourgault  
243 et al., 2020). The outermost, dark-staining layer (white arrowhead) represents epicuticular wax  
244 layer, while the innermost, dark-staining layer (black arrowhead) could reflect the pectin-rich  
245 wall/cuticle interface described for many other plant species (Jeffree, 2006). Between these two  
246 layers, darker- and lighter-staining layers can be observed, classified previously as distinct  
247 zones of the cuticle proper, since both layers are missing the polysaccharide fibrils  
248 characterizing the cuticular layer. Cuticles of bulliform cells (Figure 3B) are strikingly different  
249 from those of pavement cells: they are five-fold thicker (Figure 3C), and exhibit a different  
250 organization. The epicuticular wax layer (white arrowhead) of BCs is comparable, but the cell  
251 wall/cuticle interface (black arrowhead) is diffuse compared to a pavement cell. Dark-staining




**Figure 3: Bulliform and pavement cell cuticles have different thicknesses and ultrastructures.** A) Pavement cell cuticle from a fully expanded adult maize leaf, visualized by TEM (vertical black line marks the full extent of the cuticle). Four distinct layers or zones are visible: a thin, darkly stained layer (black arrowhead) at the interface between the cell wall (CW) and cuticle, dark (asterisk) and light zones of the cuticle proper, and a darkly stained epicuticular layer (white arrowhead). B) Bulliform cell cuticle, visualized by TEM (extent marked by vertical black line). The cell wall/cuticle interface (black arrowhead) is diffuse compared to that in pavement cells, and dark-staining fibrils (white arrows) reach from there into the cuticle. White arrowhead points to the epicuticular layer. Scale bar in A) and B) = 100 nm. C) Thickness of different cuticle types, as indicated by the black bars in A) and B). Values given as means  $\pm$  SD,  $n = 45$  (3 measurements in 3 different images per cuticle type of 5 biological replicates). Statistical analysis used two-tailed unpaired Student's *t*-test, with \*\*\* $P < 0.001$ . D-E) Fluorol yellow staining of leaf cross sections confirms a thicker cuticle over bulliform cells than over the neighboring pavement cells. FY = Fluorol Yellow (lipid stain), CW = Calcofluor White (cell wall counter stain). Scale bar in D) = 50 nm, in E) = 10 nm.

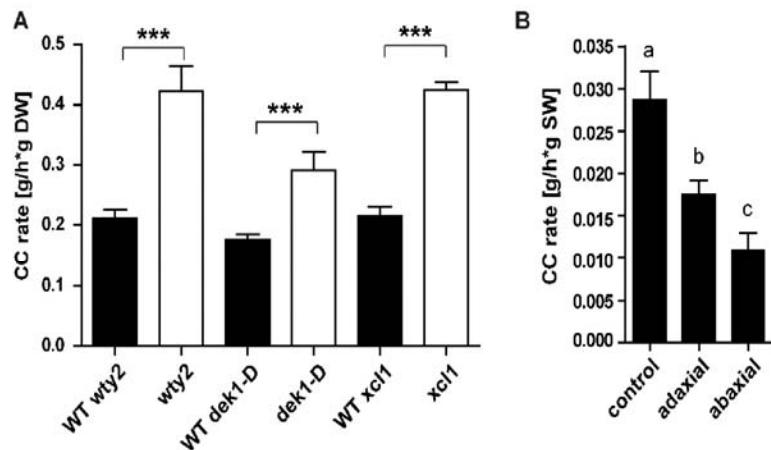
253 aligned perpendicular to the plane of the cuticle; these are characteristic of a cuticular layer with  
254 polysaccharides embedded (Jeffree, 2006; Mazurek et al., 2017). A layer devoid of these fibrils  
255 (cuticle proper) can be seen directly underneath the epicuticular wax layer. Therefore, bulliform  
256 cell cuticles exhibit a standard cuticle consisting of a cuticular layer, cuticle proper and  
257 epicuticular wax layer (Jeffree, 2006). A difference between pavement and bulliform cell cuticles  
258 was also apparent in leaf cross sections stained with Fluorol yellow 088 (FY) and imaged via  
259 confocal microscopy (Figure 3D,E). Whereas pavement cells showed very thin or no FY  
260 staining, BCs displayed bright FY staining. A clear, immediate decrease in cuticle thickness can  
261 be observed at the boundary between bulliform and pavement cell, where the two cell walls  
262 (stained by Calcofluor white (CW)) meet (Figure 3E). In summary, compared to pavement cells,  
263 bulliform cells have much thicker cuticle with a prominent cuticular layer.


264

## 265 **Bulliform-enriched tissue shows increased epidermal water loss upon dehydration**

266 To investigate the functional significance of the observed differences between BC and  
267 pavement cell cuticles, we examined the dehydration response of mutants with bulliform-  
268 enriched epidermal tissue. Three different maize mutant lines with previously described  
269 epidermal aberrations on adult leaves were identified and analyzed. The *warty2* (*wty2*) mutant is  
270 defect in a Tyrosine kinase (Luo et al., 2013), and shows, similar to *wty1*, disordered cell  
271 expansion in the leaf blade producing bulliform cell-like epidermal cells forming wart-like  
272 textures on both sides of the leaf (Figure 4A,B) (Reynolds et al., 1998; Sylvester and Smith,  
273 2009). Mutants homozygous for a weak allele of *defective kernel1* called *dek1-Dooner* (*dek1-D*),  
274 a mutation in a gene encoding a plasma-membrane protein with 21 transmembrane domains  
275 and a calpain protease domain, display an increased frequency of bulliform-like cells on both  
276 abaxial and adaxial surfaces (Figure 4C) (Becraft et al., 2002). The *extra cell layers1* (*Xcl1*)  
277 mutant, with a semi-dominant mutation in an unknown gene, causes extra cell layers with




**Figure 4: Three different epidermal mutants have increased bulliform cell coverage.** A-D) Bright field images of hand-sectioned adult leaves from the indicated genotypes depict previously reported aberrations in epidermal cell types. Arrow = wild-type-like bulliform strip (2 cells wide), arrowhead = areas with abnormal bulliform-like cells. Scale bar = 200  $\mu$ m. E) Quantification of bulliform cell number in three bulliform mutants as percentage of all epidermal cells, calculated using (F-I) Fluorol Yellow stained tissue cross section images. FY = Fluorol Yellow (lipid stain; green), CW = Calcofluor White (cell wall counter stain; blue). White arrow = FY staining of wild-type-like bulliform strip cuticle (3 cells wide), white arrowhead in G-I = areas with abnormal BC-like cells displaying increased FY staining of the cuticle. Scale bar = 50  $\mu$ m. Values in E) are given as means  $\pm$  SD (n = 300-380 epidermal cells counted, 4 biological replicates per genotype). Statistical analysis used two-tailed unpaired Student's t-test, with \*P < 0.05, \*\*\*P < 0.001.



**Figure 5: Cuticles of aberrant epidermal cells in bulliform-enriched mutants display BC-like ultrastructure.** A-C) Bulliform cell cuticle of wild-type, *wty2*, and *Xcl1* mutant, visualized by TEM. Images in B and C display the outer surface of abnormal bulliform-like cells in the respective mutants, identified by the presence of related abnormal epidermal features of the area (warts in *wty2*, extra cell layer in *Xcl1*) before acquiring the TEM images. The cell wall/cuticle interface (black arrowhead) is diffuse and dark-staining fibrils (arrows) reach into the cuticle towards the outer surface. Scale bar = 500 nm.

280 the three mutants was confirmed via Fluorol Yellow (FY) staining (Figure 4F-I). In *wty2* and  
281 *dek1-D* mutants, enlarged epidermal cells had FY staining characteristics of bulliform cells  
282 (Figure 4G,H). In *Xcl1*, epidermal cells overlying the extra (enlarged) cells on both adaxial and  
283 abaxial surfaces showed increased FY staining (Figure 4I). Quantification of the cells with  
284 increased FY staining revealed an increased proportion of bulliform-like cells in the epidermis of  
285 all three mutants (Figure 4E). TEM was conducted to further investigate the cuticles of aberrant,  
286 bulliform-like cells in *wty2* and *Xcl1* mutants (the *dek1-D* mutant, whose comparably low  
287 coverage of abnormal epidermal cells did not allow for a clear identification of these cells in the  
288 high magnification but low-throughput setting of TEM, was omitted from this analysis). Aberrant  
289 epidermal cells in both *wty2* and *Xcl1* mutants showed ultrastructural characteristics of wild-type  
290 bulliform cell cuticles (Figure 5).

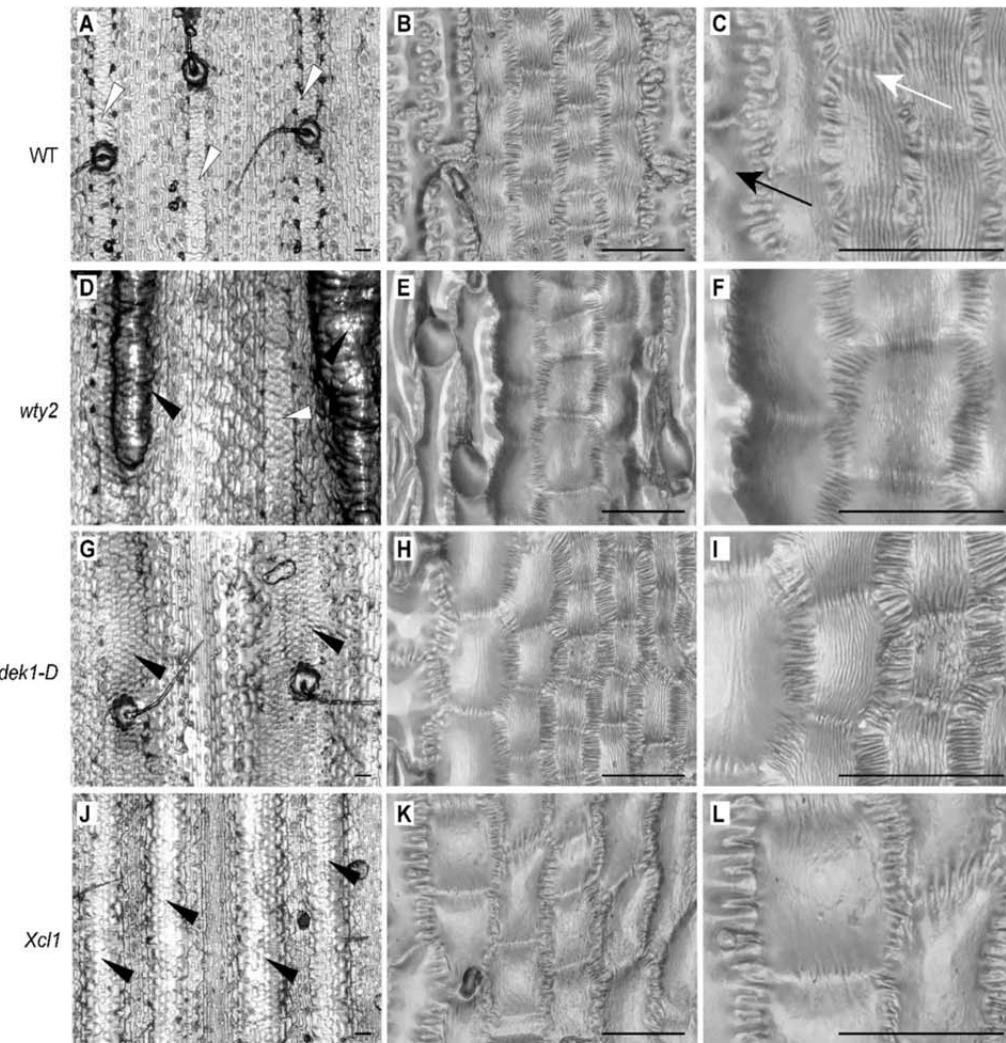
291 All three epidermal mutants displayed an increased number of bulliform-like cells on their  
292 surface, making them adequate tools to further investigate the role of bulliform cells and their  
293 cuticles in dehydration (Figure 6). This was assessed by measuring epidermal water loss, also  
294 called cuticular conductance ( $g_c$ ), of detached leaves in the dark to minimize stomatal water loss  
295 (Ristic and Jenks, 2002; Lin et al., 2019). Mature adult leaves of all three bulliform-enriched  
296 mutants showed a significantly increased  $g_c$  compared to their wild-type siblings (Figure 6A),  
297 supporting the hypothesis that the bulliform cuticle is more water permeable. To further  
298 investigate this hypothesis, a similar dehydration experiment compared  $g_c$  of adaxial leaf  
299 surfaces of adult wild-type leaves (containing bulliform cells), to that of bulliform-free abaxial  
300 surfaces. This was achieved by covering one or the other surface with petroleum jelly to prevent  
301 water loss from the covered side of the leaf (Fig 6B). Increased dehydration of the bulliform-  
302 containing, adaxial side of the leaf was observed compared to the abaxial, bulliform cell-free  
303 side, while the control without petroleum jelly constituted the full cuticular conductance. In  
304 conclusion, complementary experiments investigating the relationship between bulliform



**Figure 6: Bulliform-enriched tissues have increased cuticular conductance rates.**

Cuticular conductance, representing rates of water loss across the cuticle in the dark when stomata are closed, was measured during dehydration of detached leaves (20-22 °C, 55-65 % humidity). A) Cuticular conductance for three BC-enriched mutants *wty2*, *dek1-D*, and *Xcl1* and corresponding wild-types. CC rate is calculated as water loss (g) per hour per g dry weight (DW). Values are given as means  $\pm$  SD (n = 3-5 biological replicates per genotype). Statistical analysis used two-tailed unpaired Student's *t*-test, with \*\*\*P < 0.001. B) Cuticular conductance rate of adaxial and abaxial leaf surfaces (one-sided dehydration was achieved by covering one side of the leaf with petroleum jelly) compared to full CC rate, calculated as water loss (g) per hour per g starting weight (SW). Values are given as means  $\pm$  SD (n = 5-6 biological replicates per surface). Statistical analysis used 1-way ANOVA, means with the same letter are not significantly different from each other; Tukey's post-test, P < 0.05.

306 water in spite of their greater thickness, providing a possible mechanism to explain their  
307 differential shrinkage, assisting the rolling of grass leaves upon dehydration.


308

309

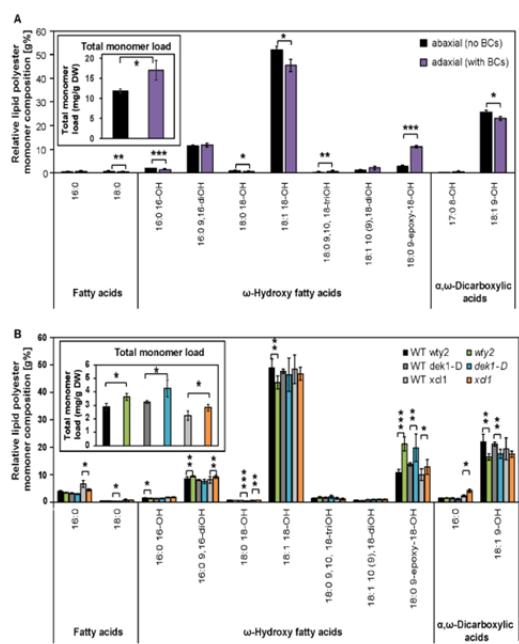
310

311 **Bulliform cell cuticle nanoridges are not the main driver of increased dehydration**

312 Bulliform cells show a reticulate pattern of cuticle nanoridges on their surfaces (Becraft et al.,  
313 2002), increasing cuticular surface area relative to overall cell surface area, and providing a  
314 possible mechanism to increase the rate of dehydration of bulliform cells relative to other  
315 epidermal cell types. To address the question of whether the observed increase in water loss  
316 from bulliform cells and bulliform-enriched tissues could be explained by this mechanism, high  
317 resolution surface imaging of leaf glue impressions was performed with a Keyence VHX-6000  
318 digital microscope system (Figure 7). Bulliform cells in wild-type leaves (white arrowheads) were  
319 organized in strips of 3-5 cells, and their cuticles displayed nanoridges aligned with the  
320 proximodistal axis of the leaf, often appearing to span cell-to-cell boundaries (white arrow)  
321 (Figure 7A-C). Adjacent pavement cells (black arrow) lacked these nanoridges. *wty2* mutants  
322 displayed normal bulliform strips (white arrowhead) as well as abnormal, epidermal cell bumps  
323 which, upon closer inspection, revealed an even denser than normal pattern of cuticular  
324 nanoridges (Figure 7D-F). *dek1-D* mutants usually had wider than normal bulliform strips, but  
325 cells in these strips varied with respect to cuticular nanoridges: cells in the center had  
326 nanoridges, whereas those towards the outer edges had few or no nanoridges (Figure 7G-I).  
327 Interestingly, in the last BC mutant, *Xcl1*, abnormal bulliform-like cells displayed no cuticular  
328 nanoridges whatsoever (Figure 7J-L). These differences are not due to variations in leaf water  
329 content, as all leaves were fully turgid at the time glue impressions were made. Imaging of



**Figure 7: Bulliform-like cells in bulliform enriched mutants do not necessarily have cuticle nanoridges.** Epidermal glue impressions of wild-type (A-C) and three bulliform-enriched mutants *wt2* (D-F), *dek1-D* (G-I), and *Xcl1* (J-L) at different magnifications. White arrowheads in A and D point to wild-type-like bulliform strips, while black arrowheads in D, G and J mark abnormal bulliform strips. White arrow depicts nanoridges spanning cell-to-cell boundaries, black arrow indicates a pavement cell without cuticle nanoridges. In the middle and right columns, higher magnification views of bulliform-like cells in each genotype show their surface features in more detail. Note the absence of nanoridges on bulliform-like cells in *Xcl1* mutants. Scale bar in A,D,G,J = 100 μm, in all others 50 μm.


331 like cells on these usually bulliform-free surfaces, where for *dek1-D* nanoridges could be  
332 observed in only some areas, while others displayed bulliform-like cells with a smooth surface  
333 (Supplemental Figure S3A,B). As for the adaxial surface, no nanoridges could be detected on  
334 the abaxial sides of *Xcl1* mutant leaves (Supplemental Figure S3C,D). In conclusion, increased  
335 water loss in the three analyzed bulliform-enriched mutants cannot be caused solely by surface  
336 area increase due to the presence of cuticle nanoridges on their excess bulliform-like cells,  
337 since not all of the mutants displayed these cuticle features despite a higher cuticular  
338 conductance rate.

339

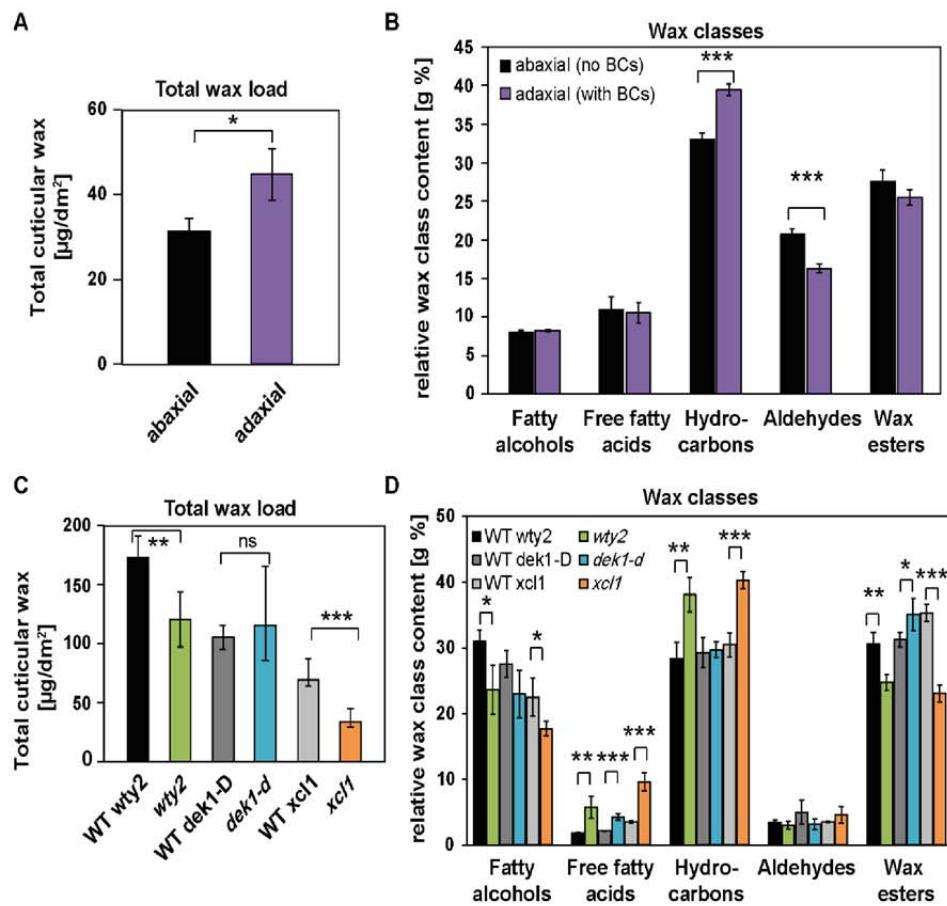
340 **Bulliform-enriched cuticles have a unique biochemical composition with major**  
341 **differences in cutin**

342 In an effort to identify unique and possibly functionally significant components of bulliform cell  
343 cuticles, we sought to biochemically characterize them. Since no method was available to  
344 physically separate bulliform from pavement cells on the scale needed to biochemically analyze  
345 their cuticles directly, two complementary approaches were taken to compare these cuticle  
346 types indirectly with respect to both wax and cutin monomer composition: (1) adaxial (bulliform-  
347 containing) and abaxial (bulliform-free) cuticles were compared (see methods for information on  
348 how this was achieved), and (2) leaf cuticles of the bulliform-overproducing mutants (*wty2*,  
349 *dek1-D*, and *Xcl1*) were compared to their respective wild-type siblings. We reasoned that  
350 compositional changes seen in both comparisons should provide insight into the specific  
351 composition of the bulliform cell cuticle.

352 The total lipid polyester (cutin) monomer load of wild-type adaxial cuticles was  
353 significantly higher than on the abaxial side (Figure 8A). The relative abundance of individual  
354 monomer classes in both adaxial and abaxial cuticles was determined via normalization to the



**Figure 8: Bulliform-enriched cuticles have a unique biochemical composition with major differences in cutin.** A) Representative profile of cutin monomer composition of abaxial (BC-free) and adaxial (BC-containing) adult maize leaf surfaces, extracted and depolymerized from epidermal peels after enzymatic digestion, and measured via GC-MS. Monomer content of single compounds was normalized to overall cutin monomer load (inset). B) Representative profile of cutin monomer composition of bulliform-enriched mutants after whole-tissue extraction and depolymerization, measured via GC-MS. Monomer content of single compounds was normalized to overall cutin monomer load (inset). Values are given as means  $\pm$  SD (n = 4).


1

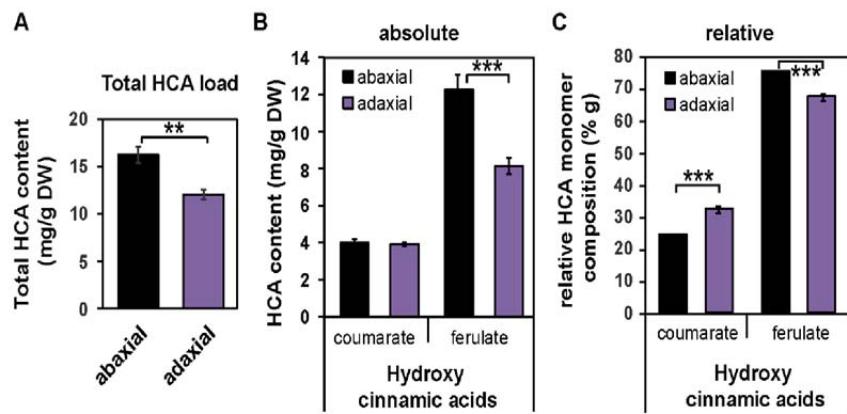
biological replicates per surface/genotype). Statistical analysis used two-tailed unpaired Student's *t*-test, with \*P < 0.05, \*\*P < 0.01, and \*\*\*P < 0.001.

2

356 FA, and DCAs, were reduced on the adaxial leaf surface (Figure 8A), while one compound, 18:0  
357 9-epoxy-18-OH, showed a major accumulation in the adaxial surface containing BCs. All three  
358 bulliform-enriched mutant cuticles (Figure 8B) also had a higher total cutin monomer load  
359 compared to wild-type, thus we compared their relative lipid polyester monomer composition.  
360 Most monomers found to be different in the adaxial/abaxial comparison did not overlap or  
361 overlapped only partially with the differential abundances detected in the bulliform mutant  
362 analysis. However, the polar cutin component that is highly enriched in the BC-containing  
363 adaxial wild-type cuticles, 18:0 9-epoxy-18-OH, was also significantly increased in all three  
364 bulliform-enriched mutant cuticles. These findings point to 18:0 9-epoxy-18-OH as a cutin  
365 monomer that is enriched in bulliform cell cuticles.

366 Cuticular wax analysis of bulliform-enriched tissues created a more complex picture  
367 (Figure 9). Total wax load on the adaxial (bulliform-containing) side of wild-type leaves was  
368 increased (Figure 9A), but decreased in two out of three of the bulliform-enriched mutants  
369 (Figure 9C). Relative amounts of individual wax types are presented in Figures 9B and 9D  
370 following normalization to the total wax load. A significant increase in hydrocarbons (alkanes  
371 and alkenes) was detected on the BC-containing adaxial side of wild-type leaves (Figure 9B),  
372 and hydrocarbons were also enriched in two of the three bulliform-enriched mutants (Figure  
373 9D). The mutant where hydrocarbon enrichment was not observed (*dek1-D*) shows the weakest  
374 bulliform enrichment phenotype (Figure 4I), and could have failed to show the hydrocarbon  
375 enrichment seen in the other two mutants for this reason. Thus, most of the data support the  
376 possibility of hydrocarbon enrichment in bulliform cell cuticular waxes. No other wax classes  
377 showed relative abundance changes that were in agreement between adaxial/abaxial  
378 comparisons and bulliform mutants vs. wild-type comparisons. While all three mutants showed  
379 increased free fatty acid content (Figure 9D), this difference was not seen in the adaxial/abaxial  
380 comparison (Figure 9B). Fatty alcohols and wax esters were decreased in two of the three




**Figure 9: Wax profiles of bulliform-enriched cuticles are diverse.** A) Total wax load of abaxial (BC-free) and adaxial (BC-containing) leaf surfaces, chloroform-extracted from one leaf surface or the other, and measured by GC-MS. B) Relative content of wax classes in adaxial and abaxial tissues after normalization to overall wax load. C) Total wax load of bulliform-enriched mutants after chloroform extraction of both leaf surfaces. D) Content of wax classes in bulliform-enriched mutants was normalized to overall wax load. Values are given as means  $\pm$  SD ( $n = 4$  biological replicates per surface/genotype). Statistical analysis used two-tailed unpaired Student's *t*-test, with \* $P < 0.05$ , \*\* $P < 0.01$ , and \*\*\* $P < 0.001$ .

382 which were found to be decreased in adaxial (bulliform-containing) surface waxes, did not show  
383 a difference in the bulliform mutant comparisons. Analysis of single compounds within each wax  
384 class (Supplemental Figure S4) also did not clearly point to specific wax molecules as specific  
385 to or enriched in BC cuticles. Thus, apart from evidence for hydrocarbon enrichment, we found  
386 no clear indication from these analyses of enrichment or depletion in individual wax classes or  
387 molecules in bulliform cuticles.

388

### 389 **Transcriptome analysis suggests a role of ferulate in BC cuticle maturation**

390 In order to identify genes whose functions underlie unique features of bulliform cell cuticles,  
391 gene expression analysis of the three bulliform mutants was conducted. The data were  
392 analyzed to search for genes differentially regulated in the same direction during cuticle  
393 maturation in all three mutants compared to their wild-type siblings. To this end, the previously  
394 characterized zone of cuticle maturation in developing adult leaves (from 10-30% of the length  
395 of a partially expanded leaf #8; Bourgault et al., 2020) was harvested from mutants and  
396 corresponding wild-types, and analyzed via RNAseq (Supplemental Figure S5). The three  
397 mutants displayed a varying degree of differential gene regulation, with 4833 differentially  
398 expressed genes (DEG) for *wty2* in the analyzed zone (Supplemental Figure S5A), comparably  
399 less differential gene expression for *dek1-D* with only 132 DEG (Supplemental Figure S5B), and  
400 527 DEG detected for *Xcl1* (Supplemental Figure S5C). However, the overlap between the  
401 DEGs in all three mutants was minimal, with only 4 genes showing a differential regulation in all  
402 three datasets (Supplemental Figure S5D, Supplemental Table S2), and only two of these  
403 genes deviating from wild-type values in the same direction in all three mutants (Supplemental  
404 Figure S5E). One of these genes, *Zm00001d008957*, which showed increased expression in all  
405 three BC mutants, encodes a putative indole-3-acetic acid-amido synthetase and is annotated  
406 as *aas10* (auxin amido synthetase10). BLAST analysis identified AtJAR1, an enzyme



**Figure 10: Ferulate is depleted in the adaxial (bulliform-containing) cuticle.** A) Total hydroxycinnamic acid (HCA) content of abaxial and adaxial leaf surfaces, extracted and depolymerized from epidermal peels after enzymatic digestion, and measured by GC-MS. B) Absolute and C) Relative content of coumarate and ferulate in abaxial vs. adaxial tissues. Values are given as means  $\pm$  SD (n = 4 biological replicates per surface). Statistical analysis used two-tailed unpaired Student's *t*-test, with \*\*P < 0.01 and \*\*\*P < 0.001.

408 (citation), as its closest relative in *Arabidopsis* (Supplemental Table S3). Other *Arabidopsis*  
409 proteins with high amino-acid sequence identity to AAS10 mostly belong to the auxin-  
410 responsive GH3 protein family. The other gene differentially regulated in the same direction in  
411 all three BC mutants (reduced expression) is *Zm00001d050455*, which is not functionally  
412 annotated in the maize genome but its closest relative in *Arabidopsis* encodes a hydroxy-  
413 cinnamoyl-CoA shikimate/quinate hydroxy-cinnamoyl transferase in *Arabidopsis* (HCT  
414 (Hoffmann et al., 2004), 37% identical at the protein level) (Supplemental Table S4).  
415 Interestingly, a slightly less similar gene (28% identity at the protein level, Supplemental Table  
416 S4) encodes *DEFICIENT IN CUTIN FERULATE* (*DCF*) in *Arabidopsis*. Defects in this gene lead  
417 to an almost complete absence of ferulate in the cutin fraction of rosette leaf cuticles  
418 (Rautengarten et al., 2012). A phylogenetic analysis of selected BAH family acyltransferases  
419 from maize and other organisms (Supplemental Fig. S6, after Molina and Kosma (2015))  
420 positioned the maize candidate *Zm00001d050455* (light blue) with several other designated  
421 maize “HCT” proteins in a distinct subclade within the HCT clade (dark blue), which might have  
422 evolved different functions than HCT. This led us to investigate if the reduced expression of  
423 *Zm00001d050455* in bulliform-enriched tissue indeed has an influence on HCA content  
424 specifically in the BC cuticle by using our previously described dataset. In the comparison of  
425 wild-type adaxial vs. abaxial cutin, isolated from epidermal peels, decrease in HCAs could be  
426 observed on the adaxial (bulliform-containing) side (Figure 10A), which was solely due to  
427 reduced ferulate content (Figure 10B). Analysis of relative HCA content revealed an increase of  
428 coumarate and decrease of ferulate in the adaxial cuticle (Figure 10C). This suggests that BC  
429 cuticles are indeed reduced in ferulate, supporting the hypothesis that the putative HCA  
430 biosynthetic gene *Zm00001d050455* promotes ferulate incorporation into the polyester and is  
431 downregulated in BCs relative to other epidermal cells (Supplemental Figure S5) leading to  
432 reduced ferulate content of BC cuticles. This analysis could not be readily extended to BC-  
433 enriched mutants because cutin analysis conducted on these mutants utilized whole leaves (not

434 epidermal peels), thereby including internal tissue. Previous work showed that that most HCAs  
435 in samples prepared this way are of non-epidermal origin (Bourgault et al., 2020) so they are not  
436 informative regarding cuticular HCA content. In summary, analysis of gene expression in BC-  
437 enriched mutants suggests roles for hormone and HCA biosynthesis in BC differentiation. These  
438 results combined with analysis of HCA content in adaxial vs. abaxial cuticles suggest that  
439 ferulate biosynthesis is downregulated during cuticle maturation to achieve reduced ferulate  
440 content in BC cuticles relative to other epidermal cell types.

441

442

443 **Discussion**

444 Variability in cuticle composition and structure is found between different plant species,  
445 developmental stages and tissue types (Jeffree, 2006; Jetter et al., 2006). But even within a  
446 tissue there are different cell types carrying out specific functions, which might require different  
447 surface properties and consequently cuticle types to support these functions. As one of the first  
448 examples of a structure-function relationship of a cell type-specific cuticle, this study set out to  
449 investigate BC cuticles in maize and their putative functional role in leaf rolling. Natural variation  
450 in maize was used to identify architectural features of bulliform strip distribution associated with  
451 leaf rolling speed, emphasizing the importance of bulliform strip architecture for leaf rolling.  
452 Ultrastructural and biochemical analyses were carried out to relate BC cuticle features to the  
453 unique wax and cutin composition of BCs, pointing to major differences in cutin load and  
454 composition, and thus presumably cutin structure in the BC cuticle. Functional analyses  
455 revealed increased water loss rates for BCs in dehydrating leaves, probably over the cuticle  
456 surface. These findings support the hypothesis that BC cuticles are more water permeable than  
457 pavement cell cuticles, possibly facilitating the function of bulliform cells in stress-induced leaf  
458 rolling of grasses.

459

460 **Maize leaf rolling is impacted by variation in bulliform strip patterning**

461 The role of BCs in leaf rolling has been a matter of ongoing debate for decades, and no clear  
462 conclusion has been drawn about their functional contribution to this important drought  
463 response (Ellis, 1976; Moulia, 2000). Loss of turgor in bulliform cells on the adaxial leaf surface  
464 has long been thought to induce rolling, with additional contribution by shrinkage of  
465 subepidermal sclerenchyma and mesophyll tissue due to water loss (Redmann, 1985). But  
466 rolling can also occur in leaves that lack bulliform cells (Shields, 1951), questioning the

467 necessity of this cell type for the leaf rolling response. The present study attempted to further  
468 establish a functional role for BCs in leaf rolling in maize by examining the relationship between  
469 bulliform patterning and leaf rolling across a large collection of genetically diverse maize lines.  
470 Data on bulliform strip pattern collected for a GWAS of this trait (Qiao et al., 2019) were  
471 analyzed in relation to leaf rolling rate data collected for the same plants. Faster rolling speed  
472 was positively correlated with bulliform strip frequency and negatively correlated with bulliform  
473 strip width, indicating that rolling is facilitated by more closely spaced and narrower bulliform  
474 strips. Nevertheless, to our knowledge, no other study has analyzed the impact of BC  
475 architectural variation in grasses on leaf rolling. A study on the flag leaf in wheat revealed that a  
476 drought-resistant variety, exhibiting faster leaf rolling than a comparable drought-susceptible  
477 genotype, had larger BCs, possibly contributing to the faster rolling response, but also other  
478 altered features like differences in cuticular composition (Willick et al., 2018). No information  
479 about the BC architecture across the leaf was collected in this case.

480 Our findings add to prior observations that many leaf rolling mutants in rice or maize  
481 show alterations in BC size, number or adaxial/abaxial positioning (Nelson et al., 2002; Xu et al.,  
482 2018; Gao et al., 2019). Leaf architecture in general seems to be important, as histological  
483 analyses of a collection of 46 adaxially or abaxially rolled mutants in rice showed that changes  
484 of number, size, and pattern of bulliform cells, sclerenchyma cells, parenchyma cells, and  
485 mesophyll cells as well as vascular bundles all could cause altered leaf rolling (Zou et al., 2014).  
486 However, these mutations usually lead to a constantly rolled leaf status rather than alterations in  
487 the inducibility or speed of rolling upon drought or heat stress. In general, our data support the  
488 conclusion that bulliform strip architecture and distribution across the leaf play a role in  
489 regulation of leaf rolling. Although a microscopic phenotype, bulliform strip patterning could  
490 represent an important agronomic trait with consequences on macroscopic phenotypes such as  
491 plant architecture and drought resistance.

492

493 **BC cuticles of the adult maize leaf are structurally and compositionally unique**

494 In the adult maize leaf, pavement cells, BCs, stomatal guard, and subsidiary cells all show  
495 different cuticle ultrastructure (Bourgault et al., 2020). The present study examined the  
496 ultrastructure of BC cuticles in detail. BCs exhibit a roughly 4-fold thicker cuticle with a  
497 prominent cuticular layer, which was not evident in pavement cell cuticles. This cuticular layer is  
498 ultrastructurally defined by the presence of osmiophilic fibrils oriented perpendicular to the plane  
499 of the cuticle, likely to be polysaccharides (Jeffree, 2006; Mazurek et al., 2017). This likens the  
500 BC cuticle more to the classic three-layered cuticle model than the pavement cell cuticle of  
501 maize leaves, which lack a well-defined cuticular layer but have two distinct layers of the cuticle  
502 proper (Bourgault et al., 2020).

503 This study also investigated the composition of the BC cuticle. The thickness and  
504 ultrastructure of pavement cell cuticles in adult maize leaves are indistinguishable on adaxial  
505 and abaxial surfaces (Bourgault et al., 2020). Thus, differences in cuticle composition between  
506 the two surfaces are likely due primarily to the presence of BCs and other cell types (e.g. hairs)  
507 present only on the adaxial side. To exclude contributions of other cell type-specific cuticles, a  
508 complementary analysis of bulliform-enriched tissue was undertaken by comparing three  
509 different bulliform-enriched mutants (*wty2*, *dek1-D* and *Xcl1*) to their respective wild-type  
510 siblings. Differences observed in both comparisons (bulliform mutants vs. wild-type, and adaxial  
511 vs. abaxial) very likely depict a true compositional difference between BC and pavement cell  
512 cuticles, and might indicate important functional components of this special cuticle type.

513 An overall increase of cutin (but not wax) load was found in bulliform-containing  
514 or -enriched tissue in all the comparisons. This increase is consistent with the dramatically  
515 increased thickness of the BC cuticle, an increase that is mostly due to the presence of a

516 (presumed cutin-containing) cuticular layer not present in pavement cell cuticles. Moreover, all  
517 comparisons agreed in identifying the cutin monomer 9,10-epoxy-18-hydroxyoctadecanoic acid  
518 as being highly enriched in bulliform cuticles. Together, our findings identify cutin load and  
519 monomer composition as the main differences between BC and pavement cell cuticles,  
520 potentially changing the physical properties of the cuticle due to different degrees of cross-  
521 linking in the polymer scaffold (Fich et al., 2016). Analysis of the petal cuticle in *Arabidopsis*  
522 revealed that cutin biosynthesis is required for the formation of cuticle nanoridges (Li-Beisson et  
523 al., 2009; Mazurek et al., 2017), supporting the idea that nanoridges found on the BC cuticle  
524 might be present due to different cutin load and/or composition, likely resulting in a different  
525 polyester structure, compared to pavement cells, which lack nanoridges. The functional  
526 significance of 9,10-epoxy-18-hydroxyoctadecanoic acid in the BC cuticle is unclear, but it has  
527 previously been implicated in freeze-resistance of cold-hardened rye (Griffith et al., 1985).  
528 Interestingly, this monomer was found to be the dominating cutin component in the mature leaf  
529 portion of *Clivia miniata*, where its accumulation is thought to indicate that the possible  
530 maximum of cross-linking in the cutin fraction had not been achieved (Riederer and Schönherr,  
531 1988). High content of monomers with unused functional groups for cross-linking, like epoxy  
532 substituents, can indicate a reduced proportion of actual cross-linking (Riederer and Schönherr,  
533 1988) suggesting a looser cutin scaffold.

534 The ability to draw definitive conclusions about differences in cuticle composition  
535 between BCs and other epidermal cell types is limited by the inability to isolate these cells in  
536 sufficiently large quantities for biochemical analysis of cuticles. A promising avenue for future  
537 analyses of cuticle specializations in BCs and other epidermal cell types would be the  
538 employment of single-cell *in-situ*-imaging techniques, previously shown with e.g. Infrared (IR),  
539 FTIR (Fourier transform IR) (Mazurek et al., 2013), Raman scattering spectroscopy techniques  
540 (Yu et al., 2008; Weissflog et al., 2010), or compositional analysis of waxes or cutin via matrix-

541 assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI) (Cha et al., 2009;  
542 Veličkovic et al., 2014). Jun and colleagues (2010) achieved a spatial resolution of ~12 µm in  
543 MS-imaging of flower tissue in *Arabidopsis*, with single pixel profiles demonstrating single-cell-  
544 level spatial resolution, allowing for semi-quantification of surface metabolites on single pixels of  
545 the flower tissue. Although these techniques require very specialized equipment and expertise,  
546 application of these and related methods seem to be able to deliver cell-to-cell resolution of  
547 cuticle composition.

548 Gene expression analysis of BC-enriched mutants yielded fewer candidates regulators  
549 of BC differentiation than anticipated, but identified two genes that were differentially expressed  
550 in the same direction the cuticle maturation zone of all three mutants compared to wild-type.  
551 One of these, *Zm00001d050455*, is a homolog of *Arabidopsis HCT*, which is involved in  
552 phenylpropanoid biosynthesis (Hoffmann et al., 2004). Another member of this gene family in  
553 *Arabidopsis*, *AtDCF*, encodes a protein that promotes ferulate esterification into the growing  
554 cutin polymer (Rautengarten et al., 2012). The reduced expression of *Zm00001d050455*  
555 observed in all 3 BC-enriched mutants could suggest a possible role for this gene in HCA  
556 deposition in cuticles. While a function similar to HCT would predict a role in ferulate  
557 biosynthesis, a function similar to DCF would suggest reduced incorporation of ferulate into the  
558 polyester upon downregulation of the gene in BCs. Phylogenetic analysis of members of the  
559 BAHD acyltransferase family positioned the candidate closer to the HCT clade than to proteins  
560 related to extracellular lipid biosynthesis like DCF, but the localization in a distinct subclade with  
561 several other designated “HCT” maize proteins might suggest that these genes might not be  
562 true homologs of HCT either and could have other distinct functions that affect hydroxycinnamic  
563 acid accumulation, maybe even specifically in the cuticle. In any case, comparative analysis of  
564 abaxial vs. adaxial cutin composition provided evidence that BC cuticles do indeed have  
565 reduced ferulate content compared to pavement cells, but a role for *Zm00001d050455* in

566 establishing this difference remains to be confirmed. In general, the functional role of ferulate in  
567 the cuticle remains unclear, but analyses of cuticle permeability in *Arabidopsis* mutants lacking  
568 the *DCF* gene suggest that cutin-bound ferulate does not affect structural and sealing properties  
569 of the cuticle (Rautengarten et al., 2012). Just as single cell analysis would provide more  
570 definitive insights into cell type differences in cuticle composition, more precise and definitive  
571 information about gene expression differences underlying the unique structural and  
572 compositional features of BC cuticles could be achieved in future work using single-cell RNA-  
573 sequencing strategies after isolating BCs from the cuticle maturation zone by techniques such  
574 as laser-capture microdissection or microfluidics (Chen et al., 2019).

575

#### 576 **Bulliform-enriched tissue shows increased water loss upon dehydration**

577 Several lines of evidence gathered in our study point to the conclusion that the bulliform cuticle  
578 could be more water permeable, leading to higher water loss of bulliform cells upon dehydration:  
579 1) BCs show increased volume loss upon dehydration compared to adjacent pavement cells, as  
580 shown in the cryo-confocal analysis of dehydrated tissue *in situ*. Water lost from BCs does not  
581 seem to be redistributed into the neighboring epidermal cells, as no decreasing gradient in  
582 volume loss of adjacent cells respective to their position to BCs was detected, which would be  
583 expected upon additional water entry to these cells from the BCs. Partial direction of water flow  
584 from BCs to mesophyll tissue cannot be excluded but could not be quantified with the images at  
585 hand. Indeed, Haberlandt and Drummond (1928) state that in rapidly transpiring organs the  
586 epidermis loses water to photosynthetic tissue with its higher osmotic pressure. Nevertheless, at  
587 least some of the water lost by BCs in this process has to cross the water barrier of the cuticle  
588 and exit the tissue, since the overall weight of the leaf is decreasing over time, as seen in our  
589 and many other studies using this or similar methods to evaluate cuticular conductance  
590 (Kerstiens, 1996; Ristic and Jenks, 2002; Lin et al., 2019). Importantly, all our dehydration

591 experiments, including this imagining experiment, were conducted in the dark to minimize  
592 stomatal transpiration, so increased volume loss of BCs upon dehydration suggests increased  
593 water loss over the cuticle. 2) Bulliform-enriched tissue shows higher water loss rates in  
594 detached leaf drying assays than comparable control tissue. Three different mutants with  
595 elevated bulliform cell surface areas showed increased cuticular conductance compared to their  
596 wild-type siblings, and wild type leaf adaxial leaf surfaces containing BCs displayed higher  
597 cuticular conductance than the abaxial surfaces lacking BCs. While studies of cuticular  
598 conductance have investigated this trait in a multitude of plant species (e.g. Table 1 in  
599 Kerstiens, 1996), only a few compare the  $g_c$  of adaxial and abaxial tissues. For example, no  
600 difference in cuticular conductance between adaxial and abaxial leaf surfaces could be  
601 measured for holm oak (Fernández et al., 2014) or beech (Hoad et al., 1996). While these are  
602 dicot species lacking BCs on their adaxial surface, a study in rice also showed increased  
603 adaxial cuticular conductance in leaves (Agarie et al., 1998), in agreement with our results of  
604 higher water loss of bulliform-containing tissue. Again, also under these circumstances water  
605 must be crossing the cuticle surface, since there is overall loss of water from the tissue shown  
606 by weight decrease of the leaf over time. These findings lead us to speculate that, indeed, the  
607 presence of bulliform cells could drive increased cuticular conductance, possibly facilitating leaf  
608 rolling upon dehydration.

609 Is it likely that the much thicker BC cuticle, with major changes in cutin and less in  
610 waxes, is more water permeable than other epidermal cuticle types? While some data connect a  
611 thicker cuticle to a lower cuticular water loss rate in maize (Ristic and Jenks, 2002), there is a  
612 long line of evidence that cuticle thickness in general cannot be taken as measure for water  
613 permeance (Riederer and Schreiber, 2001; Jetter and Riederer, 2016). Cuticle composition  
614 rather than thickness seems to be the determining factor for cuticular permeability, which  
615 generally is attributed to wax components rather than cutin monomers (Kerstiens, 1996;

616 Buschhaus and Jetter, 2012; Jetter and Riederer, 2016). Indeed, several mutants with altered  
617 wax or cutin composition showed higher cuticle permeability despite increased cuticle thickness  
618 (Xiao et al., 2004; Kurdyukov et al., 2006; Sadler et al., 2016). The accumulation of epoxy-  
619 monomers in the cutin fraction of BCs might be an indication of a less-cross-linked cutin scaffold  
620 in these cells, since cuticles high in these monomers with unused functional groups for cross-  
621 linking are assumed to show a lower actual degree of cross-linking (Riederer and Schönherr,  
622 1988). This difference in polymer structure might lead to the necessity of increased cuticle  
623 thickness to still be able to provide adequate water barrier properties of this specialized cuticle,  
624 even if more water permeable than other cell type cuticles. Additionally, existence of a layer with  
625 polysaccharide fibrils in the BC cuticle could indicate an aqueous connection for easier water  
626 passage through the matrix of cutin and waxes with hydrophilic domains provided by  
627 polysaccharides (Fernández et al., 2017), while the cuticular layer and polysaccharide fibrils are  
628 absent in pavement cells.

629 In conclusion, we demonstrate that the maize BCs show higher water loss upon  
630 dehydration compared to other epidermal cells. The exact role of BCs and their specialized  
631 cuticle in the leaf rolling response of maize has yet to be elucidated, but leaf rolling appears to  
632 be facilitated by this thicker, yet likely more water permeable cuticle type unique to BCs.  
633 Integration of biochemical, transcriptomic, ultrastructural, and functional data suggest an  
634 important role for the cutin matrix in this cuticle type, including the compound 9,10-epoxy-18-  
635 hydroxyoctadecanoic acid. Together, our findings advance knowledge of cuticle  
636 composition/structure/function relationships, and how cuticle specialization can contribute to cell  
637 and organ functions.

638

639

640

641 **Material and Methods:**

642 *Plant material and growth conditions:*

643 Maize inbred B73 was used for experiments unless otherwise stated. All mutants analyzed were  
644 introgressed into the B73 background. *wty2* seeds were obtained from Prof. Anne Sylvester  
645 (University of Wyoming), *dek1-D* seeds from Prof. Phil Becraft (Iowa State University), and *Xc1*  
646 seeds from Prof. Neelima Sinha (UC Davis). Plant materials and experimental field designs for  
647 the leaf rolling analysis have been described previously (Lin et al., 2019; Qiao et al., 2019). For  
648 histological, biochemical, and functional analyses, plants were grown in 8-inch pots in a  
649 glasshouse on the UCSD campus in La Jolla, CA (latitude 32.8856, longitude -117.2297),  
650 without supplementary lighting or humidity control, and with temperatures in the range of 18–30  
651 °C. All experiments presented focused on fully expanded adult leaves before or during flowering  
652 stage, starting with the first fully adult leaf (#8 in B73) or concentrating on the leaf subtending  
653 the uppermost ear, or one leaf above or below.

654

655 *Cuticular conductance*

656 Cuticular conductance was determined as described previously (Lin et al., 2019). In short, whole  
657 adult leaves (3-5 per genotype) were cut 2.5 cm below the ligule and incubated in a dark, well-  
658 ventilated room for 2 h at 20-22 °C and 55-65% RH, with cut ends immersed in water for  
659 stomatal closure and full hydration (porometer studies established that 2 h was more than  
660 sufficient to reach  $g_{min}$  indicating stomatal closure; Lin et al., 2019). After removal of excess  
661 water on the leaf blades, leaves were hung to dry in the same dark, temperature-and humidity-  
662 controlled room. To determine  $g_c$ , wet weight of each leaf was recorded every 45 - 60 min over  
663 a time period of 270 - 300 min, for a total of five or six measurements per leaf. Leaf dry weight

664 was acquired after 4 days of incubation at 60 °C in a forced-air oven. Dry weight was shown to  
665 be a reasonable approximation of leaf surface area for normalization of  $g_c$  (Lin et al., 2019), and  
666 was used in the calculation of adult leaf cuticular conductance as follows ( $g_c$ ):  $g_c (g/h^*g) = -b /$   
667 dry weight, where  $b (g/h)$  is the coefficient of the linear regression of leaf wet weight (g) on time  
668 (h), and dry weight (g) is an approximation of leaf surface area. In case of petroleum jelly  
669 treatment of adaxial or abaxial leaf surfaces, weight loss over time was normalized to starting  
670 weight since complete drying of petroleum jelly-treated leaves was not possible.

671

672 *Leaf rolling analysis:*

673 Leaf rolling was scored on a set of 468 maize inbred lines from the Wisconsin Diversity panel  
674 (Hansey et al., 2011), which at the same time was evaluated for genetic variation of bulliform  
675 patterning (Qiao et al., 2019) and leaf cuticular conductance ( $g_c$ ) of adult maize leaves (Lin et  
676 al., 2019). Data on leaf rolling (Supplemental Table S1) was collected during the phenotypic  
677 evaluation of  $g_c$  in 2016 at the Maricopa Agricultural Center, Maricopa, AZ. Leaf rolling was  
678 recorded during each weight recording for  $g_c$  analysis, in 45 minutes intervals at 6 time points  
679 (TPs) over a span of 270 minutes, using a visual scale of 0 = not rolled, and 1 = rolled. Our  
680 score 1 corresponded to score 5 of fully rolled leaves according to Moulia (1994) (with maize  
681 belonging to rolling type 2), while score 0 (not rolled) corresponded to scores 1-4 in Moulia's  
682 scoring scale. The TP when leaves were scored to be rolling for the first time (TP1  
683 corresponding to 45 min of dehydration, TP6 corresponding to 270 min), were extracted for  
684 each inbred, while leaves which were scored to be unrolled at TP6 got assigned the  
685 hypothetical rolling time point TP7 as the most conservative estimation. Pearson's correlations  
686 between bulliform patterning (number and width of BC strips, Supplemental Table S1, extracted  
687 BLUPs for the Maricopa/AZ environment from Qiao et al., 2019) and leaf rolling data was  
688 analyzed for 291 inbreds in total (overlap between datasets of 316 lines with data for leaf rolling

689 and dataset of 410 lines with data for bulliform patterning). Lines with extreme rolling behavior -  
690 “fast rollers” (rolled within the first 90 minutes of dehydration, 25 lines), and “never rollers” (no  
691 rolling observed in the assessed time frame, 41 lines) – were grouped and additionally graphed  
692 independently.

693

694 *Cryo-microscopy of dehydrated leaves:*

695 Adult B73 leaves were cut below the ligule and hung to dry in the dark for 4 h, while control  
696 leaves were kept hydrated by submerging the cut end in water. Immediately after, blade tissue  
697 from the mid-section of the leaves was cut, submerged in cryomolds containing room-  
698 temperature optimal cutting temperature compound (OCT, Sakura Finetek USA) and frozen in  
699 liquid nitrogen. The frozen OCT blocks were milled flat using a Leica CM 1950 cyrostat,  
700 exposing the leaf tissue remaining in the block at the biologically relevant level while discarding  
701 the remnants of the cryosections. The frozen block face with the exposed, intact leaf tissue was  
702 transferred to a Nikon A1plus Eclipse Ni-E confocal microscope, equipped with a liquid nitrogen-  
703 cooled imaging chamber custom-built by Paul Steinbach (laboratory of Dr. Roger Tsien, UCSD),  
704 designed to maintain the frozen samples at ~40° C, and imaged directly with the confocal  
705 microscope with a 4X (NA 2.0) objective. Autofluorescence of plant tissue was detected with  
706 excitation at 405 nm and emission detection at 525 nm. Cell size measurements were done with  
707 ImageJ (v1.50i, <https://imagej.nih.gov/ij/>).

708

709 *TEM and other Imaging:*

710 TEM sample preparation and imaging was done as previously described (Bourgault et al.,  
711 2020). Glue impressions of adult maize leaves were collected as described previously (Qiao et  
712 al., 2019). For examples of natural variation of bulliform strip patterning in Figure 1A-D,

713 impressions of different inbreds were imaged with a Nikon SMZ-U Stereoscopic Zoom  
714 Microscope, using a 0.5 objective lens with a Lumenera InfinityX camera attached. For analysis  
715 of cuticular nanoridges, glue impressions of bulliform mutants were imaged with a Keyence  
716 VHX-6000 digital microscope, equipped with a VH-ZST lens. Hand cross sections of adult leaf  
717 blade material of bulliform mutants were imaged on a Nikon Eclipse E600 Microscope with a  
718 Lumenera InfinityX camera attached.

719

720 *Fluorol Yellow staining:*

721 Tissue samples of the middle section of adult leaves were collected and fixed in Formalin-Acid-  
722 Alcohol (ethanol (>90%) 50 %, glacial acetic acid 5 %, formalin (37% formaldehyde) 10%).  
723 Fixed samples were infiltrated in gradual increases to 30% sucrose solution, embedded in OCT  
724 compound (Sakura Finetek USA) and frozen into cryoblocks. 20  $\mu$ m block face sections were  
725 collected on 1% polyethylenimine (PEI) coated slides, stained with 0.1% calcofluor white (aq.,  
726 Sigma Aldrich) for five minutes followed by 0.01% Fluorol Yellow (Santa Cruz Biotechnology) in  
727 lactic acid solution for 30 minutes, mounted in Vectashield anti-fade mounting medium  
728 (VECTOR Laboratories), and sealed underneath a coverslip by nail polish. Images were  
729 captured on a Zeiss LSM 880 Confocal with FAST Airyscan using Plan-Apochromat 10X/0.45  
730 M27, Plan-Apochromat 20x/0.8 M27, Plan-Apochromat 63x/1.4 Oil DIC M27 objectives set at  
731 515nm emission/488nm excitation wavelength for Fluorol Yellow and 450nm emission/405nm  
732 excitation wavelength for calcofluor white. Collected images were processed through  
733 superresolution Airyscan and composite pictures were processed through ImageJ. Cell counts  
734 of epidermal cell types were done with ImageJ.

735

736 *Analysis of leaf cuticular lipids*

737 Abaxial and adaxial B73 cuticles: Adaxial and abaxial leaf surfaces were used from the portion  
738 between 20 and 42 cm of maize B73 partially expanded leaf #8 after removing the midrib. Total  
739 waxes were extracted following the method described in Buschhaus et al. (2007) with some  
740 modifications. A 25 ml glass tube containing 8 ml chloroform was placed against the leaf surface  
741 held to the rim of the tube using mild thumb pressure. The chloroform was shaken against the  
742 surface of the leaf for 30 seconds. This was repeated along the entire 22 cm length of the leaf  
743 and each leaf-half was used for either abaxial or adaxial extraction. Internal standards were  
744 added to the extracts; 1.5 µg of each, n-tetracosane (24:0 alkane), 1-pentadecanol (15:0-OH)  
745 and heptadecanoic acid (17:0). Extracts were dried under a nitrogen stream and analyzed as  
746 described in Bourgault et al. (2020). To determine cutin monomer composition of adaxial and  
747 abaxial leaf surfaces, cuticles were isolated from the same portion of B73 leaves described  
748 above, using enzymatic digestion (Bourgault et al., 2020). Isolated cuticles were delipidated and  
749 dried under a nitrogen stream. Dry weight was recorded at this stage and 10 µg internal  
750 standards were added to all extracts; pentadecanolactone (C15:0 ring) and methyl  
751 heptadecanoic acid (17:0). Samples were then depolymerized and the released monomers  
752 analyzed by GC-MS as described in Bourgault et al. (2020).

753 Bulliform mutant cuticles: Total waxes were extracted by chloroform immersion from bulliform-  
754 overproducing mutants (*wty2*, *dek1-D*, and *Xcl1*) and their respective wild-type siblings using  
755 expanded segments of adult leaves. Tissues remaining after chloroform extraction were  
756 delipidated and chemically depolymerized. Both wax extracts and cutin monomers were  
757 transformed into their TMSi derivatives and analyzed by GC-MS and GC-FID following the same  
758 procedures described in Bourgault et al. (2020).

759

760 *RNAseq analysis:*

761 Total plant RNA of developing adult leaves (10-30 % of leaf length of the maturing leaf at 50 to  
762 60 cm, where cuticle maturation is most prominent according to Bourgault et al., 2020) was  
763 isolated with the RNeasy Plant Mini Kit (Qiagen) according to the manufacturer's instructions.  
764 Library preparation and RNAseq were performed by Novogene. Sequencing libraries were  
765 generated using the NEBNext® Ultra™ RNA Library Prep Kit for Illumina (NEB, USA).  
766 Clustering of index-coded samples was performed on a cBot Cluster Generation System using  
767 TruSeq PE Cluster Kit v3-cBot-HS (Illumina). Sequencing was carried out on an Illumina  
768 platform, and paired-end reads were generated. The filtered reads were aligned to the most  
769 recent version of the maize reference genome, B73\_v4 (release-44), using HISAT2 (version  
770 2.1.0, Kim et al., 2015). HTSeq v0.6.1 (Anders et al., 2015) was used to count the reads  
771 numbers mapped to each gene, and the Fragments Per Kilobase of transcript sequence per  
772 Million base pairs sequenced (FPKM) of each gene was calculated based on the length of the  
773 gene and reads count mapped to this gene. Differential expression analysis was performed  
774 using the DESeq R package (1.18.0, Anders and Huber, 2010), and p-values were adjusted  
775 using the Benjamini and Hochberg's approach. Amino acid sequences of maize candidate  
776 genes were compared to Arabidopsis protein sequences using the BLAST tool (Altschul et al.,  
777 1997) on the TAIR website (<https://www.arabidopsis.org>).

778

779 *Statistical analysis:*

780 Statistically significant differences were determined by the statistical tests referred to in Figure  
781 legends using GraphPadPrism (version 4; GraphPad Software).

782

783 *Data availability:*

784 The raw RNAseq data will be deposited at NCBI SRT with SRA accession number xxx.

785

786 **Supplemental Data:**

787 **Supplemental Figure S1.** Bulliform strip number and width are not correlated.

788 **Supplemental Figure S2.** Positional analysis of epidermal cell shrinkage upon dehydration.

789 **Supplemental Figure S3:** Abaxial BC-like cells in bulliform-enriched mutants do not necessarily  
790 have cuticle nanoridges.

791 **Supplemental Figure S4:** Single compound wax profiles of bulliform-enriched cuticles.

792 **Supplemental Figure S5:** RNAseq analysis of bulliform-enriched mutants.

793 **Supplemental Figure S6:** Phylogeny of selected BAH family acyltransferases with maize  
794 candidate genes.

795 **Supplemental Table S1.** Leaf rolling and bulliform strip patterning data

796 **Supplemental Table S2.** Genes differentially expressed in all three bulliform-enriched mutants

797 **Supplemental Table S3.** TAIR protein BLAST results for Zm00001d008957

798 **Supplemental Table S4.** TAIR protein BLAST results for Zm00001d050455

799

800

801 **Acknowledgements:**

802 We thank Prof. Anne Sylvester (University of Wyoming), Prof. Phil Becroft (Iowa State  
803 University), and Prof. Neelima Sinha (UC Davis) for donation of seeds. We also thank Prof.  
804 Siobhan Braybrook (UC Los Angeles) for use and help with the Keyence imaging system  
805 equipment. This work was financially supported by U.S. National Science Foundation  
806 IOS1444507, a Deutsche Forschungsgemeinschaft (DFG) Fellowship (MA-7608/1-1) to SM,  
807 and by funding from the Canada Research Chairs program (CRC) to IM.

808

809

810

811

812

813

814

815 **Figure legends:**

816 **Figure 1. Bulliform patterning correlates with leaf rolling speed.** A-D) Grayscale images of  
817 leaf epidermal glue-impressions from four maize inbred lines showing extreme bulliform cell  
818 patterning phenotypes: M37W and NC358 with narrow bulliform strips, B73 and Ki3 with wide  
819 strips. Scale bar = 500  $\mu$ m. E-G) Comparison of bulliform strip number per field of view with  
820 standard size (E), strip width (F) and calculated bulliform strip area (number x width) (G) in 25  
821 fast rolling maize inbreds (rolled within 90 minutes of dehydration; leaf rolling was assessed  
822 during a detached leaf dehydration assay in the dark in controlled conditions of 20-22 °C and  
823 55-65 % humidity) and 41 never rolling inbreds (not rolled within 270 minutes of dehydration).  
824 Values are given as means  $\pm$  standard deviation (SD), statistical analysis used two-tailed  
825 unpaired Student's *t*-test, with \*P < 0.05, \*\*P < 0.01.

826

827 **Figure 2. Bulliform cells show increased shrinkage upon dehydration.** A-B) Cross sections  
828 of (de-)hydrated maize leaf tissue after 4 hours in the dark. Tissue was shock-frozen after 4 hrs  
829 without fixation, and autofluorescence was detected by *in situ*-cryo-imaging as described in  
830 Methods. p = pavement cell, g = guard cell, s = subsidiary cell, red circle = group of bulliform  
831 cells. Scale bar = 100  $\mu$ m. C) Cell sizes (cross-sectional areas) of the indicated epidermal cell  
832 types, analyzed by ImageJ. D) Quantification of cell shrinkage of different cell types upon  
833 dehydration as loss of volume in percentage. Shrunken bulliform cells were counted only if their  
834 outlines could be seen as in the group on the left in B (i.e. severely shrunken bulliform groups  
835 such as the one on the right in B were not counted). Values given as means  $\pm$  SD (n = 88 - 194  
836 cells per cell type). Statistical analysis used 1-way ANOVA, means with the same letter are not  
837 significantly different from each other; Tukey's post-test, P < 0.05.

838

839 **Figure 3: Bulliform and pavement cell cuticles have different thicknesses and**  
840 **ultrastructures.** A) Pavement cell cuticle from a fully expanded adult maize leaf, visualized by

841 TEM (vertical black line marks the full extent of the cuticle). Four distinct layers or zones are  
842 visible: a thin, darkly stained layer (black arrowhead) at the interface between the cell wall (CW)  
843 and cuticle, dark (asterisk) and light zones of the cuticle proper, and a darkly stained  
844 epicuticular layer (white arrowhead). B) Bulliform cell cuticle, visualized by TEM (extent marked  
845 by vertical black line). The cell wall/cuticle interface (black arrowhead) is diffuse compared to  
846 that in pavement cells, and dark-staining fibrils (white arrows) reach from there into the cuticle.  
847 White arrowhead points to the epicuticular layer. Scale bar in A) and B) = 100 nm. C) Thickness  
848 of different cuticle types, as indicated by the black bars in A) and B). Values given as means  $\pm$   
849 SD, n = 45 (3 measurements in 3 different images per cuticle type of 5 biological replicates).  
850 Statistical analysis used two-tailed unpaired Student's *t*-test, with \*\*\*P < 0.001. D-E) Fluorol  
851 yellow staining of leaf cross sections confirms a thicker cuticle over bulliform cells than over the  
852 neighboring pavement cells. FY = Fluorol Yellow (lipid stain), CW = Calcofluor White (cell wall  
853 counter stain). Scale bar in D) = 50 nm, in E) = 10 nm.

854

855 **Figure 4: Three different epidermal mutants have increased bulliform cell coverage. A-D)**  
856 Bright field images of hand-sectioned adult leaves from the indicated genotypes depict  
857 previously reported aberrations in epidermal cell types. Arrow = wild-type-like bulliform strip (2  
858 cells wide), arrowhead = areas with abnormal bulliform-like cells. Scale bar = 200  $\mu$ m. E)  
859 Quantification of bulliform cell number in three bulliform mutants as percentage of all epidermal  
860 cells, calculated using (F-I) Fluorol Yellow stained tissue cross section images. FY = Fluorol  
861 Yellow (lipid stain; green), CW = Calcofluor White (cell wall counter stain; blue). White arrow =  
862 FY staining of wild-type-like bulliform strip cuticle (3 cells wide), white arrowhead in G-I) = areas  
863 with abnormal BC-like cells displaying increased FY staining of the cuticle. Scale bar = 50  $\mu$ m.  
864 Values in E) are given as means  $\pm$  SD (n = 300-380 epidermal cells counted, 4 biological  
865 replicates per genotype). Statistical analysis used two-tailed unpaired Student's *t*-test, with  
866 \*P < 0.05, \*\*\*P < 0.001.

867

868 **Figure 5: Cuticles of aberrant epidermal cells in bulliform-enriched mutants display BC-**  
869 **like ultrastructure. A-C)** Bulliform cell cuticle of wild-type, *wty2*, and *Xcl1* mutant, visualized by  
870 TEM. Images in B and C display the outer surface of abnormal bulliform-like cells in the  
871 respective mutants, identified by the presence of related abnormal epidermal features of the  
872 area (warts in *wty2*, extra cell layer in *Xcl1*) before acquiring the TEM images. The cell

873 wall/cuticle interface (black arrowhead) is diffuse and dark-staining fibrils (arrows) reach into the  
874 cuticle towards the outer surface. Scale bar = 500 nm.

875

876 **Figure 6: Bulliform-enriched tissues have increased cuticular conductance rates.**  
877 Cuticular conductance, representing rates of water loss across the cuticle in the dark when  
878 stomata are closed, was measured during dehydration of detached leaves (20-22 °C, 55-65 %  
879 humidity). A) Cuticular conductance for three BC-enriched mutants *wty2*, *dek1-D*, and *Xcl1* and  
880 corresponding wild-types). CC rate is calculated as water loss (g) per hour per g dry weight  
881 (DW). Values are given as means ± SD (n = 3-5 biological replicates per genotype). Statistical  
882 analysis used two-tailed unpaired Student's *t*-test, with \*\*\*P < 0.001. B) Cuticular conductance  
883 rate of adaxial and abaxial leaf surfaces (one-sided dehydration was achieved by covering one  
884 side of the leaf with petroleum jelly) compared to full CC rate, calculated as water loss (g) per  
885 hour per g starting weight (SW). Values are given as means ± SD (n = 5-6 biological replicates  
886 per surface). Statistical analysis used 1-way ANOVA, means with the same letter are not  
887 significantly different from each other; Tukey's post-test, P < 0.05.

888

889 **Figure 7: Bulliform-like cells in bulliform enriched mutants do not necessarily have**  
890 **cuticle nanoridges.** Epidermal glue impressions of wild-type (A-C) and three bulliform-enriched  
891 mutants *wty2* (D-F), *dek1-D* (G-I), and *Xcl1* (J-L) at different magnifications. White arrowheads  
892 in A and D point to wild-type-like bulliform strips, while black arrowheads in D, G and J mark  
893 abnormal bulliform strips. White arrow depicts nanoridges spanning cell-to-cell boundaries,  
894 black arrow indicates a pavement cell without cuticle nanoridges. In the middle and right  
895 columns, higher magnification views of bulliform-like cells in each genotype show their surface  
896 features in more detail. Note the absence of nanoridges on bulliform-like cells in *Xcl1* mutants.  
897 Scale bar in A,D,G,J = 100 µm, in all others 50 µm.

898

899 **Figure 8: Bulliform-enriched cuticles have a unique biochemical composition with major**  
900 **differences in cutin.** A) Representative profile of cutin monomer composition of abaxial (BC-  
901 free) and adaxial (BC-containing) adult maize leaf surfaces, extracted and depolymerized from  
902 epidermal peels after enzymatic digestion, and measured via GC-MS. Monomer content of  
903 single compounds was normalized to overall cutin monomer load (inset). B) Representative

904 profile of cutin monomer composition of bulliform-enriched mutants after whole-tissue extraction  
905 and depolymerization, measured via GC-MS. Monomer content of single compounds was  
906 normalized to overall cutin monomer load (inset). Values are given as means  $\pm$  SD (n = 4  
907 biological replicates per surface/genotype). Statistical analysis used two-tailed unpaired  
908 Student's *t*-test, with \*P < 0.05, \*\*P < 0.01, and \*\*\*P < 0.001.

909

910 **Figure 9: Wax profiles of bulliform-enriched cuticles are diverse.** A) Total wax load of  
911 abaxial (BC-free) and adaxial (BC-containing) leaf surfaces, chloroform-extracted from one leaf  
912 surface or the other, and measured by GC-MS. B) Relative content of wax classes in adaxial  
913 and abaxial tissues after normalization to overall wax load. C) Total wax load of bulliform-  
914 enriched mutants after chloroform extraction of both leaf surfaces. D) Content of wax classes in  
915 bulliform-enriched mutants was normalized to overall wax load. Values are given as means  $\pm$   
916 SD (n = 4 biological replicates per surface/genotype). Statistical analysis used two-tailed  
917 unpaired Student's *t*-test, with \*P < 0.05, \*\*P < 0.01, and \*\*\*P < 0.001.

918

919 **Figure 10: Ferulate is depleted in the adaxial (bulliform-containing) cuticle.** A) Total  
920 hydroxycinnamic acid (HCA) content of abaxial and adaxial leaf surfaces, extracted and  
921 depolymerized from epidermal peels after enzymatic digestion, and measured by GC-MS. B)  
922 Absolute and C) Relative content of coumarate and ferulate in abaxial vs. adaxial tissues.  
923 Values are given as means  $\pm$  SD (n = 4 biological replicates per surface). Statistical analysis  
924 used two-tailed unpaired Student's *t*-test, with \*\*P < 0.01 and \*\*\*P < 0.001.

925

926

## Parsed Citations

**Agarie S, Uchida H, Agata W, Kubota F, Kaufman PB (1998) Effects of silicon on transpiration and leaf conductance in rice plants (*Oryza sativa* L.). *Plant Prod Sci* 1: 89–95**  
Pubmed: [Author and Title](#)  
Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

**Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. *Nucleic Acids Res* 25: 3389–3402**  
Pubmed: [Author and Title](#)  
Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

**Anders S, Huber W (2010) Differential expression analysis for sequence count data. *Genome Biol* 11: R106**  
Pubmed: [Author and Title](#)  
Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

**Anders S, Pyl PT, Huber W (2015) HTSeq—a Python framework to work with high-throughput sequencing data. *Bioinformatics* 31: 166–169**  
Pubmed: [Author and Title](#)  
Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

**Bargel H, Koch K, Cerman Z, Neinhuis C (2006) Evans Review No. 3: Structure-function relationships of the plant cuticle and cuticular waxes - a smart material? *Funct Plant Biol* 33: 893–910**  
Pubmed: [Author and Title](#)  
Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

**Becraft P, Li K, Dey N, Asuncion-Crabb Y (2002) The maize *dek1* gene functions in embryonic pattern formation and cell fate specification. *Development* 129: 5217–5225**  
Pubmed: [Author and Title](#)  
Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

**Bessire M, Chassot C, Jacquot A-C, Humphry M, Borel S, Petétot JM-C, Métraux J-P, Nawrath C (2007) A permeable cuticle in *Arabidopsis* leads to a strong resistance to *Botrytis cinerea*. *EMBO J* 26: 2158–68**  
Pubmed: [Author and Title](#)  
Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

**Bianchi A, Marchesi G (1960) The surface of the leaf in normal and glossy maize seedlings. *Z Vererbungsl* 91: 214–219**  
Pubmed: [Author and Title](#)  
Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

**Bianchi G, Avato P (1984) Surface waxes from grain, leaves, and husks of maize (*Zea mays* L.). *Cereal Chem* 61: 45–47**  
Pubmed: [Author and Title](#)  
Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

**Bongard-Pierce DK, Evans MMS, Poethig RS (1996) Heteroblastic features of leaf anatomy in maize and their genetic regulation. *Int J Plant Sci* 157: 331–340**  
Pubmed: [Author and Title](#)  
Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

**Bourgault R, Matschi S, Vasquez M, Qiao P, Sonntag A, Charlebois C, Mohammadi M, Scanlon MJ, Smith LG, Molina I (2020) Constructing functional cuticles: analysis of relationships between cuticle lipid composition, ultrastructure and water barrier function in developing adult maize leaves. *Ann Bot* 125: 79–91**  
Pubmed: [Author and Title](#)  
Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

**Buschhaus C, Herz H, Jetter R (2007) Chemical composition of the epicuticular and intracuticular wax layers on adaxial sides of *Rosa canina* leaves. *Ann Bot* 100: 1557–1564**  
Pubmed: [Author and Title](#)  
Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

**Buschhaus C, Jetter R (2012) Composition and physiological function of the wax layers coating *Arabidopsis* leaves:  $\beta$ -Amyrin negatively affects the intracuticular water barrier. *Plant Physiol* 160: 1120–1129**  
Pubmed: [Author and Title](#)  
Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

**Cha S, Song Z, Nikolau BJ, Yeung ES (2009) Direct profiling and imaging of epicuticular waxes on *Arabidopsis thaliana* by laser desorption/ionization mass spectrometry using silver colloid as a matrix. *Anal Chem* 81: 2991–3000**  
Pubmed: [Author and Title](#)  
Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

**Chen G, Ning B, Shi T (2019) Single-Cell RNA-Seq Technologies and Related Computational Data Analysis. *Front Genet* 10: 317**  
Pubmed: [Author and Title](#)  
Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Duval-Jouve M (1875) *Histotaxie des feuilles de graminées*. Bull la Société Bot Fr 22: 115–117

Pubmed: [Author and Title](#)

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Ellis RP (1976) A procedure for standardizing comparative leaf anatomy in the Poaceae. II. The epidermis as seen in surface view. Bothalia 12: 65–109

Pubmed: [Author and Title](#)

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Espelie KE, Kolattukudy PE (1979) Composition of the aliphatic components of "suberin" from the bundle sheaths of *Zea mays* leaves. Plant Sci Lett 15: 225–230

Pubmed: [Author and Title](#)

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Evert RF (2006) Epidermis. Esau's Plant Anat 211–253

Pubmed: [Author and Title](#)

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Fernández V, Bahamonde HA, Peguero-Pina JJ, Gil-Pelegrín E, Sancho-Knapik D, Gil L, Goldbach HE, Eichert T (2017) Physico-chemical properties of plant cuticles and their functional and ecological significance. J Exp Bot 68: 5293–5306

Pubmed: [Author and Title](#)

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Fernández V, Guzmán-Delgado P, Graça J, Santos S, Gil L (2016) Cuticle structure in relation to chemical composition: Re-assessing the prevailing model. Front Plant Sci 7: 1–14

Pubmed: [Author and Title](#)

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Fernández V, Sancho-Knapik D, Guzmán P, Peguero-Pina JJ, Gil L, Karabourniotis G, Khayet M, Fasseas C, Heredia-Guerrero JA, Heredia A, et al (2014) Wettability, polarity, and water absorption of holm oak leaves: effect of leaf side and age. Plant Physiol 166: 168–180

Pubmed: [Author and Title](#)

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Fich EA, Segerson NA, Rose JKC (2016) The plant polyester cutin: Biosynthesis, structure, and biological roles. Annu Rev Plant Biol 67: 18.1–18.27

Pubmed: [Author and Title](#)

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Gao L, Yang G, Li Y, Fan N, Li H, Zhang M, Xu R, Zhang M, Zhao A, Ni Z, et al (2019) Fine mapping and candidate gene analysis of a QTL associated with leaf rolling index on chromosome 4 of maize (*Zea mays* L.). Theor Appl Genet 132: 3047–3062

Pubmed: [Author and Title](#)

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Grant RF, Jackson BS, Kiniry JR, Arkin GF (1989) Water deficit timing effects on yield components in maize. Agron J 81: 61–65

Pubmed: [Author and Title](#)

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Griffith M, Huner NPA, Espelie KE, Kolattukudy PE (1985) Lipid polymers accumulate in the epidermis and mesome sheath cell walls during low temperature development of winter rye leaves. Protoplasma 125: 53–64

Pubmed: [Author and Title](#)

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Haberlandt G, Drummond M (1928) *Physiological plant anatomy*, Macmillan and Co., London

Pubmed: [Author and Title](#)

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Hansey CN, Johnson JM, Sekhon RS, Kaepller SM, de Leon N (2011) Genetic diversity of a maize association population with restricted phenology. Crop Sci 51: 704–715

Pubmed: [Author and Title](#)

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Hegebarth D, Buschhaus C, Wu M, Bird D, Jetter R (2016) The composition of surface wax on trichomes of *Arabidopsis thaliana* differs from wax on other epidermal cells. Plant J 88: 762–774

Pubmed: [Author and Title](#)

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Hegebarth D, Jetter R (2017) Cuticular waxes of *Arabidopsis thaliana* shoots: Cell-type-specific composition and biosynthesis. Plants 6: 1–19

Pubmed: [Author and Title](#)

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Hoad SP, Grace J, Jeffree CE (1996) A leaf disc method for measuring cuticular conductance. J Exp Bot 47: 431–437

Pubmed: [Author and Title](#)

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

**Hoffmann L, Besseau S, Geoffroy P, Ritzenthaler C, Meyer D, Lapierre C, Pollet B, Legrand M (2004) Silencing of hydroxycinnamoyl-coenzyme A shikimate/quinate hydroxycinnamoyl-transferase affects phenylpropanoid biosynthesis. *Plant Cell* 16: 1446 LP – 1465**

Pubmed: [Author and Title](#)

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

**Hsiao TC, O'toole JC, Yambao EB, Turner NC (1984) Influence of osmotic adjustment on leaf rolling and tissue death in rice (*Oryza sativa* L.). *Plant Physiol* 75: 338–341**

Pubmed: [Author and Title](#)

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

**Isaacson T, Kosma DK, Matas AJ, Buda GJ, He Y, Yu B, Pravitasari A, Batteas JD, Stark RE, Jenks MA, et al (2009) Cutin deficiency in the tomato fruit cuticle consistently affects resistance to microbial infection and biomechanical properties, but not transpirational water loss. *Plant J* 60: 363–377**

Pubmed: [Author and Title](#)

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

**Jeffree CE (2006) The fine structure of the plant cuticle. *Annu Plant Rev* Vol 23 Biol Plant Cuticle. Blackwell Publishing Ltd, pp 11–125**

Pubmed: [Author and Title](#)

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

**Jetter R, Kunst L, Samuels AL (2006) Composition of plant cuticular waxes. *Annu Plant Rev* Vol 23 Biol Plant Cuticle 145–181**

Pubmed: [Author and Title](#)

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

**Jetter R, Riederer M (2016) Localization of the transpiration barrier in the epi- and intracuticular waxes of eight plant species: Water transport resistances are associated with fatty acyl rather than alicyclic components. *Plant Physiol* 170: 921–934**

Pubmed: [Author and Title](#)

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

**Jun JH, Song Z, Liu Z, Nikolau BJ, Yeung ES, Lee YJ (2010) High-spatial and high-mass resolution imaging of surface metabolites of *Arabidopsis thaliana* by laser desorption-ionization mass spectrometry using colloidal silver. *Anal Chem* 82: 3255–3265**

Pubmed: [Author and Title](#)

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

**Kadioglu A, Terzi R (2007) A dehydration avoidance mechanism: Leaf rolling. *Bot Rev* 73: 290–302**

Pubmed: [Author and Title](#)

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

**Kadioglu A, Terzi R, Saruhan N, Saglam A (2012) Current advances in the investigation of leaf rolling caused by biotic and abiotic stress factors. *Plant Sci* 182: 42–48**

Pubmed: [Author and Title](#)

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

**Kerstiens G (1996) Cuticular water permeability and its physiological significance. *J Exp Bot* 47: 1813–1832**

Pubmed: [Author and Title](#)

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

**Kessler S, Seiki S, Sinha N (2002) *Xcl1* causes delayed oblique periclinal cell divisions in developing maize leaves, leading to cellular differentiation by lineage instead of position. *Development* 129: 1859–1869**

Pubmed: [Author and Title](#)

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

**Kim D, Langmead B, Salzberg SL (2015) HISAT: a fast spliced aligner with low memory requirements. *Nat Methods* 12: 357–360**

Pubmed: [Author and Title](#)

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

**Koch K, Ensikat HJ (2008) The hydrophobic coatings of plant surfaces: Epicuticular wax crystals and their morphologies, crystallinity and molecular self-assembly. *Micron* 39: 759–772**

Pubmed: [Author and Title](#)

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

**Krauss P, Markstädter C, Riederer M (1997) Attenuation of UV radiation by plant cuticles from woody species. *Plant Cell Environ* 20: 1079–1085**

Pubmed: [Author and Title](#)

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

**Kurdyukov S, Faust A, Nawrath C, Bär S, Voisin D, Efremova N, Franke R, Schreiber L, Saedler H, Métraux J-P, et al (2006) The epidermis-specific extracellular BODYGUARD controls cuticle development and morphogenesis in *Arabidopsis*. *Plant Cell* 18: 321–339**

Pubmed: [Author and Title](#)

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

**Li-Beisson Y, Pollard M, Sauveplane V, Pinot F, Ohlrogge J, Beisson F (2009) Nanoridges that characterize the surface morphology of flowers require the synthesis of cutin polyester. *Proc Natl Acad Sci* 106: 22008 LP – 22013**

Pubmed: [Author and Title](#)

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

**Li-Beisson Y (2016) Cutin and suberin polyesters. Encycl Life Sci 1–12**

Pubmed: [Author and Title](#)

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

**Lin M, Matschi S, Vasquez M, Chamness J, Kaczmar N, Baseggio M, Miller M, Stewart EL, Qiao P, Scanlon MJ, et al (2019) Genome-wide association study for maize leaf cuticular conductance identifies candidate genes involved in the regulation of cuticle development. bioRxiv 835892**

Pubmed: [Author and Title](#)

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

**Luo A, Rasmussen C, Hoyt C, Sylvester A (2013) Warty2 encodes a putative receptor-like Tyr kinase that contributes to maize leaf blade cell expansion. Maize Genet Conf Abstr. p54:T24**

Pubmed: [Author and Title](#)

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

**Mazurek S, Garroum I, Daraspe J, De Bellis D, Olsson V, Mucciolo A, Butenko MA, Humbel BM, Nawrath C (2017) Connecting the molecular structure of cutin to ultrastructure and physical properties of the cuticle in petals of *Arabidopsis*. Plant Physiol 173: 1146–1163**

Pubmed: [Author and Title](#)

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

**Mazurek S, Mucciolo A, Humbel BM, Nawrath C (2013) Transmission Fourier transform infrared microspectroscopy allows simultaneous assessment of cutin and cell-wall polysaccharides of *Arabidopsis* petals. Plant J 74: 880–891**

Pubmed: [Author and Title](#)

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

**Molina I, Kosma D (2015) Role of HXXD-motif/BAHD acyltransferases in the biosynthesis of extracellular lipids. Plant Cell Rep 34: 587–601**

Pubmed: [Author and Title](#)

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

**Moulia B (1994) The biomechanics of leaf rolling. Biomimetics 2: 267–281**

Pubmed: [Author and Title](#)

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

**Moulia B (2000) Leaves as shell structures: Double curvature, auto-stresses, and minimal mechanical energy constraints on leaf rolling in grasses. J Plant Growth Regul 19: 19–30**

Pubmed: [Author and Title](#)

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

**Nelson JM, Lane B, Freeling M (2002) Expression of a mutant maize gene in the ventral leaf epidermis is sufficient to signal a switch of the leaf's dorsoventral axis. Development 129: 4581–4589**

Pubmed: [Author and Title](#)

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

**O'Toole JC, Cruz RT (1980) Response of leaf water potential, stomatal resistance, and leaf rolling to water stress. Plant Physiol 65: 428–432**

Pubmed: [Author and Title](#)

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

**O'Toole JC, Cruz RT, Singh TN (1979) Leaf rolling and transpiration. Plant Sci Lett 16: 111–114**

Pubmed: [Author and Title](#)

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

**Poethig R. S. (1990) Phase change and the regulation of shoot morphogenesis in plants. Science 250: 923–30**

Pubmed: [Author and Title](#)

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

**Pollard M, Beisson F, Li Y, Ohlrogge JB (2008) Building lipid barriers: Biosynthesis of cutin and suberin. Trends Plant Sci 13: 236–246**

Pubmed: [Author and Title](#)

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

**Qiao P, Lin M, Vasquez M, Matschi S, Chamness J, Baseggio M, Smith LG, Sabuncu MR, Gore MA, Scanlon MJ (2019) Machine learning enables high-throughput phenotyping for analyses of the genetic architecture of bulliform cell patterning in maize. G3 Genes|Genomes|Genetics 9: 4235–4243**

Pubmed: [Author and Title](#)

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

**Rautengarten C, Ebert B, Ouellet M, Nafisi M, Baidoo EEK, Benke P, Stranne M, Mukhopadhyay A, Keasling JD, Sakuragi Y, et al (2012) *Arabidopsis* Deficient in Cutin Ferulate encodes a transferase required for feruloylation of  $\omega$ -hydroxy fatty acids in cutin polyester. Plant Physiol 158: 654–665**

Pubmed: [Author and Title](#)

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

**Redmann RE (1985) Adaptation of grasses to water stress - leaf rolling and stomate distribution. Ann Missouri Bot Gard 72: 833**

Pubmed: [Author and Title](#)

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

**Reynolds J, Eisses J, Sylvester A (1998) Balancing division and expansion during maize leaf morphogenesis: Analysis of the mutant, warty-1. Development 125: 259–268**

Pubmed: [Author and Title](#)

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

**Riederer M, Schönherr J (1988) Development of plant cuticles: Fine structure and cutin composition of *Clivia miniata* Reg. leaves. Planta 174: 127–138**

Pubmed: [Author and Title](#)

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

**Riederer M, Schreiber L (1995) Waxes - The transport barriers of plant cuticles. Waxes Chem Mol Biol Funct 130–156**

Pubmed: [Author and Title](#)

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

**Riederer M, Schreiber L (2001) Protecting against water loss: Analysis of the barrier properties of plant cuticles. J Exp Bot 52: 2023–2032**

Pubmed: [Author and Title](#)

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

**Ristic Z, Jenks M a. (2002) Leaf cuticle and water loss in maize lines differing in dehydration avoidance. J Plant Physiol 159: 645–651**

Pubmed: [Author and Title](#)

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

**Sadler C, Schroll B, Zeisler V, Waßmann F, Franke R, Schreiber L (2016) Wax and cutin mutants of *Arabidopsis*: Quantitative characterization of the cuticular transport barrier in relation to chemical composition. Biochim Biophys Acta - Mol Cell Biol Lipids 1861: 1336–1344**

Pubmed: [Author and Title](#)

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

**Saglam A, Kadioglu A, Demiralay M, Terzi R (2014) Leaf rolling reduces photosynthetic loss in maize under severe drought. Acta Bot Croat 73: 315–332**

Pubmed: [Author and Title](#)

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

**Schönherr J (1976) Water permeability of isolated cuticular membranes: The effect of cuticular waxes on diffusion of water. Planta 131: 159–164**

Pubmed: [Author and Title](#)

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

**Serrano M, Coluccia F, Torres M, L'Haridon F, Métraux J-P (2014) The cuticle and plant defense to pathogens. Front Plant Sci 5: 274**

Pubmed: [Author and Title](#)

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

**Shields LM (1951) The involution mechanism in leaves of certain xeric grasses. Phytomorphology 1: 225–241**

Pubmed: [Author and Title](#)

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

**Sylvester AW, Smith LG (2009) Cell biology of maize leaf development. In JL Bennetzen, SC Hake, eds, *Handb Maize Its Biol*. Springer New York, New York, NY, pp 179–203**

Pubmed: [Author and Title](#)

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

**Turner NC, O'Toole JC, Cruz RT, Namuco OS, Ahmad S (1986) Responses of seven diverse rice cultivars to water deficits I. Stress development, canopy temperature, leaf rolling and growth. F Crop Res 13: 257–271**

Pubmed: [Author and Title](#)

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

**Veličkovic D, Herdier H, Philippe G, Marion D, Rogniaux H, Bakan B (2014) Matrix-assisted laser desorption/ionization mass spectrometry imaging: A powerful tool for probing the molecular topology of plant cutin polymer. Plant J 80: 926–935**

Pubmed: [Author and Title](#)

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

**Weissflog I, Vogler N, Akimov D, Dellith A, Schachtschabel D, Svatos A, Boland W, Dietzek B, Popp J (2010) Toward *in vivo* chemical imaging of epicuticular waxes. Plant Physiol 154: 604–610**

Pubmed: [Author and Title](#)

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

**Willick IR, Lahlali R, Vijayan P, Muir D, Karunakaran C, Tanino KK (2018) Wheat flag leaf epicuticular wax morphology and composition in response to moderate drought stress are revealed by SEM, FTIR-ATR and synchrotron X-ray spectroscopy. Physiol Plant 162: 316–332**

Pubmed: [Author and Title](#)

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

**Xiao F, Goodwin SM, Xiao Y, Sun Z, Baker D, Tang X, Jenks MA, Zhou J-M (2004) *Arabidopsis CYP86A2* represses *Pseudomonas syringae* type III genes and is required for cuticle development. *EMBO J* 23: 2903–2913**

Pubmed: [Author and Title](#)

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

**Xu P, Ali A, Han B, Wu X (2018) Current advances in molecular basis and mechanisms regulating leaf morphology in rice. *Front Plant Sci* 9: 1528**

Pubmed: [Author and Title](#)

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

**Yeats TH, Rose JKC (2013) The formation and function of plant cuticles. *Plant Physiol* 163: 5–20**

Pubmed: [Author and Title](#)

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

**Yu MML, Konorov SO, Schulze HG, Blades MW, Turner RFB, Jetter R (2008) In situ analysis by microspectroscopy reveals triterpenoid compositional patterns within leaf cuticles of *Prunus laurocerasus*. *Planta* 227: 823–834**

Pubmed: [Author and Title](#)

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

**Zou L, Zhang Z, Qi D, Peng M, Lu T (2014) Cytological mechanisms of leaf rolling in rice. *Crop Sci* 54: 198–209**

Pubmed: [Author and Title](#)

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)