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Abstract Classical Conditioning is a fundamental learning mechanism where the Ventral13

Striatum is generally thought to be the source of inhibition to Ventral Tegmental Area (VTA)14

Dopamine neurons when a reward is expected. However, recent evidences point to a new15

candidate in VTA GABA encoding expectation for computing the reward prediction error in the VTA.16

In this system-level computational model, the VTA GABA signal is hypothesised to be a combination17

of magnitude and timing computed in the Peduncolopontine and Ventral Striatum respectively.18

This dissociation enables the model to explain recent results wherein Ventral Striatum lesions19

affected the temporal expectation of the reward but the magnitude of the reward was intact. This20

model also exhibits other features in classical conditioning namely, progressively decreasing firing21

for early rewards closer to the actual reward, twin peaks of VTA dopamine during training and22

cancellation of US dopamine after training.23

24

Introduction25

26

27

The phasic firing activity ofmidbrain dopamine neurons is believed to encode a reward prediction28

error, which can guide learning and serve as an incentive signal. In his famous experiment, Pavlov29

observed that if food follows the ring of a bell, a dog comes to salivate after the bell is rung.30

This process is called classical (or pavlovian) conditioning: an unconditioned response (salivation)31

originally associated with an Unconditioned Stimulus (US, the food) becomes conditionally elicited32

by a Conditioned Stimulus (CS, the bell ring). Schultz and collaborators examined the activity of33

midbrain dopamine neurons in primates, during a classical conditioning task similar to Pavlov’s.34

They observed that originally, midbrain dopamine neurons responded with a burst of spikes to35

unexpected primary rewards (juice/water dripped in the mouth of thirsty primates), i.e. an US.36

After the primates learned the association between a tone CS and the reward US, dopamine cells37

responded to the reward-predicting CS. Moreover, these neurons stopped responding to US whose38

arrival was expected, being predicted by the CS. When cued rewards failed to be delivered, a large39
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percentage of dopamine neurons revealed a brief pause with respect to their background firing at40

the moment of expected reward in Figure 2.41

This predictive behavior of VTA Dopamine neurons was linked to the Temporal Difference Learning
algorithm in Reinforcement Learning (Sutton and Barto, 1998). The TD algorithm predicts a future
reward that occurs at a specific state ahead of time after a given number of trials. This prediction is

arrived through the computation of a reward prediction error (RPE) that enables learning the value

of each state. It is represented by the equation:

�t = rt + 
V̄t+1 − V̄t (1)

where rt is the reward (return) on time step t. Let V̄t be the correct prediction that is equal to the42

discounted sum of all future rewards. The discounting is done by powers of factor of 
 such that43

reward at distant time step is less important as compared to recent rewards.44

The TD algorithm is powerful in its heuristic value, as it links the activation of dopamine cells45

with classical conditioning. However, some properties of TD models are inconsistent with the46

electrophysiological data, and it lacks the biological realism needed to explain the mechanisms47

through which RPE-like activity emerges in dopamine cells. Most inconsistencies are concerned with48

the way time is represented in the TD model. Whereas the TD error signal travels back in time from49

US to CS when learning progresses, it has been reported in (Schultz et al., 1997) that US-related50

activation of VTA slowly decreases while the CS-related one increases. Ramping dopamine activity51

during the CS-US interval has been proposed to reflect back-propagating error signals averaged52

over trials (Niv et al., 2005) but this ramping can be observed in individual trials and is actually53

related to reward uncertainty (Fiorillo et al., 2003)(Fiorillo et al., 2005). More importantly, when54

US is delivered earlier than predicted, VTA dopaminergic neurons are activated at the actual time55

of the US but not at the usual time of reward (Hollerman and Schultz, 1998), contrarily to what is56

predicted by TD. Critically, when striatum is lesioned, experiments (Takahashi et al., 2016) show57

that VTA dopaminergic neurons signal a RPE when reward magnitude changes, but not when time58

of the reward is modified. This suggests that learning about reward timing is computationally59

and anatomically separated from learning about reward magnitude, i.e. a completely different60

implementation of reinforcement learning than is usually considered (Joel et al., 2002).61

Here we sought a system-level account of how the CS-US interval duration and the value of62

the reward are separately learned, and how these two features are combined to give rise to63

dopaminergic phasic activity. In particular, we considered two components of the meso-limbic64

loops that have been overlooked in previous models: VTA GABA cells and neurons from the65

Pedunculopontine Nucleus (PPN). We propose that VTA GABA neurons provide inhibitory drive66

onto VTA DA neurons (Eshel et al., 2015) , display persistent firing during the CS-US interval (Cohen67

et al., 2012) and are necessary to compute the RPE in DA cells (Eshel et al., 2015). Neurons from68

the PPN project to both VTA DA and GABA neurons and have been found necessary for appetitive69

conditioning (Yau et al., 2016). PPN neurons are classically believed to signal the delivery of70

actual reward (Vitay and Hamker, 2014). However, during conditioning, two types of response71

are recorded from neurons from the PPN : neurons responding to the actual reward magnitude,72

and a persistent neuronal firing during the CS-US interval, reflecting the prediction or expected73

reward magnitude (Okada and Kobayashi, 2009)(Okada and Kobayashi, 2013). Here we show that74

a system-level computational model can account for these yet-unexplained physiological and lesion75

data. We propose that the Ventral Striatum learns the reward timing and the Amygdala the reward76

magnitude, which is then transferred to the PPN. Expected reward timing and magnitude are77

subsequently combined at the level of VTA GABA cells to compute the expectation term needed by78

VTA DA neurons to generate a prediction error. We furthermore provide testable predictions for79

future experiments, on the role of PPN and VTA GABA in classical conditioning.80
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Results81

82

We built a system-level network in which reward prediction error (RPE) emerges during learning,83

from the interaction of the neruronal ensembles repersenting RPE computation. To illustrate how84

RPE is computed in the network, we subjected it to in silico experimental scenarios similar to a85

conditioning task. This analogue of classical conditioning consists in the repeated pairing of a CS86

with the US, separated by a fixed interval duration. The in silico experiments below examine how the87

value (magnitude) of the US reward and the duration of the CS-US interval are learned separately,88

and combined by VTA GABA cells. In turn, VTA GABA neurons provide the expectation term used to89

cancel the excitation of dopamine cells by the US, at the time of the expected reward (Cohen et al.,90

2012)(Eshel et al., 2015). Finally, we show how this new model provides a better description of91

experimental data that have been left unexplained yet, i.e. how dopamine cells respond to rewards92

delivered earlier than expected (Fiorillo et al., 2008), and how value and timing are dissociated by93

VS lesions (Takahashi et al., 2016).94

Model Architecture95

The system-level computational model attempts to explain how the dopamine reward prediction96

error is computed in appetitive conditioning in the VTA through understanding the roles of VTA GABA97

and Peduncolopontine (PPN) neurons. The model is shown in Figure 1. The model focuses on the98

computation inside the VTA carried out by two populations viz., the VTA DA and VTA GABA neurons.99

Lateral Hypothalamus (LH) projects to PPN RD and VS and these in turn project to VTA DA and100

VTA GABA respectively. When reward is delivered, it is reported to fire the Lateral Hypothalamus101

(LH) and activates the LH → PPN RD (Reward delivery) → VTA Dopamine pathway resulting in102

US dopamine firing prior to any sort of learning (Semba and Fibiger, 1992; Lokwan et al., 1999).103

Basolateral Amygdala (BLA) learns the magnitude of the US through the projections from VTA104

DA to BLA, which signal a reward prediction error that modulates synaptic plasticity. A pathway105

from LH to BLA learns that BLA firing for CS has the same amplitude as the US-induced firing106

(Sah et al., 2003). The immediate firing in response to the CS occurs through the BLA recognizing107

the cue encoded by the Infero-temporal cortex (IT), with BLA activating the VTA DA through the108

BLA→ CE → PPN RD → VTA DA pathway. The Central Nucleus of the Amygala (CE) has excitatory109

projections on PPN FT(Fixation Target) (Okada and Kobayashi, 2013) (Kobayashi and Okada, 2007)110

which displays persistent activity unless strongly inhibited. The LH also projects to the VS, which111

is also modulated by VTA DA neurons. Finally, excitatory projections from PPN FT and inhibitory112

projections from VS neurons to VTA GABA enable the final reward cancellation of VTA DA observed113

in electro-physiological experiments.114

Control Scenario115

In the following, we show how a reward prediction error emerges in VTA Dopamine cells with116

learning, as a consequence of network dynamics and plasticity.117

• Initial Trial118

The arrival of an unexpected reward induces a firing in the LH neurons. This LH firing119

subsequently activates VTA Dopamine neurons, through the PPN RD neurons (Figure 3 B top120

panel Trial1, Figure 3 C top panel Trial 1). Hence, the model reproduces that VTA Dopamine121

neurons fire upon the delivery of an unexpected reward. No activity in BLA and Ventral122

Striatum (VS) and VTA GABA (Figure 3 B bottom panel Trial1) is observed at this stage of123

learning. Indeed, Basolateral Amygdala (BLA) has not yet learned to associate the magnitude124

of the CS with the US, and the Ventral Striatum (VS) the timing of the CS-US interval duration.125

Hence, there is no expectation at the arrival of the CS.126

• Partial Conditioning127

3 of 16

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 7, 2020. ; https://doi.org/10.1101/2020.02.06.936997doi: bioRxiv preprint 

https://doi.org/10.1101/2020.02.06.936997
http://creativecommons.org/licenses/by/4.0/


Manuscript submitted to eLife

Figure 1. Model diagram illustrating the neuronal structures and their connections involved in Reward
Prediction Error (RPE) computation. Pointed arrows represent excitatory connections, while rounded arrows

represent inhibitory projections. Dashed lines represent learnable connections, while solid lines represent fixed

connections in the model. Ventral Tegmental Area has Dopamine (DA) and GABA populations which play a

central role in computing RPE. This RPE is transmitted to Basolateral Amydala (BLA) and the Ventral Striatum

(VS) where the modulatory connections undergo change depending on this signal. Both the VTA structures

receive inputs from distinct Peduncolopontine (PPN) neural populations. The PPN Reward Delivery (RD)

neurons deliver reward to VTA DA neurons from the Lateral Hypothalamus (LH) which receives the

unconditioned stimulus (US). The PPN Fixation target (FT) neurons receive their projections from the Central

Nucleus (CE) of the Amygdala and these PPN neurons along with Ventral Striatum (VS) project to VTA GABA

forming the inhibitory signal that cancels the VTA DA upon reward delivery. The BLA is regarded to learn the

association between unconditioned stimulus (US) and the conditioned stimulus (CS) and produces the

anticipatory firing in VTA DA through the BLA->CE->PPN RD->VTA DA pathway. The VS is posited to learn the

timing of the interval and it has inhibitory projections on VTA GABA.

The synaptic weights between IT and BLA are updated after each rewarding trial. Consequently,128

after a few trials (7 in our simulations), the BLA starts responding to the CS stimulus. This129

progressive learning in the BLA generates firing in VTA DA (Figure 3 B top panel) through130

PPN RD (Figure 3 C top panel) in response to the arrival of the CS, corresponding to a partial131

prediction of reward. BLA activity also generates a partial expectation through tonic firing132

in PPN FT (Figure 3 C bottom panel Trial 7). Hence, a partial cancellation of VTA dopamine133

neurons happens at this stage. At this stage, the time interval has been completely learned,134

contrary to the learning of the US magnitude.135

This corresponds to the activity of the Ventral Striatum reaching its minimum at the exact136

moment of reward. Hence, the VS does not exert any inhibition at the end of the interval,137

which results in the inhibition of VTA DA neurons at the expected time of the US. However,138

as the US magnitude is not fully learned yet, the activity of PPN FT to VTA GABA pathway139

only results in partial cancellation of VTA DA activity upon US delivery. This is consistent140

with experimental results on Partial conditioning (Pan et al., 2005), and designed as a partial141

expectation in the TD framework. (Figure 3 B bottom panel Trial 7). This partial expectation142

consists in a twin peak of VTA firing, at the respective times of the CS and the US.143

• Complete Reward Cancellation144

The final state of the circuit, after 16 CS-US pairings, is given in Figure 3 A. The magnitude of145

expectation originates from the CS firing in the Central Amygdala (CE) and is maintained in the146

PPN FT through a self-sustaining mechanism (Okada and Kobayashi, 2013) (Kobayashi and147

Okada, 2007). At the end of learning, the BLA neurons have reached an asymptote in their148

firing, which encodes for reward magnitude. Hence, PPN FT neurons display maximum tonic149

activity after the presentation of the CS. In parallel, as in partial conditioning, the presentation150

of the CS, which fires the IT and thereby the Orbitofrontal Cortex (OFC) (Carmichael and Price,151

1995), activates the VS that encodes the interval timing. It acts similar to a negative integrator152
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and progressively lowers the inhibition that VS exerts on PPN FT, to reach zero inhibition at153

the expected time of the reward. Both signals are combined by VTA GABA,the activity of which154

peaks at the time of the reward (Figure 3 B bottom panel Trial 16), cancelling VTA dopamine,155

which no longer shows firing at the time of the US when reward arrives through the LH (Figure156

3 B top panel Trial 16).157

The magnitude of expectation originates from the CS firing in the Central Amygdala (CE)158

and maintained in the PPN FT through a self sustaining mechanism (Okada and Kobayashi,159

2013) (Kobayashi and Okada, 2007). The GABA firing in the VTA is reflective of this (Yau et al.,160

2016) and the PPN FT integrates the magnitude from the Central Amygdala (CE) and timing161

information from the VS to achieve the ramping signal that encodes both time and magnitude162

of the reward delivery.163

Variability in Magnitude and Time164

1. Variability in Timing165

When a reward is delivered earlier than expected (i.e. with a shorter delay than the CS-US166

interval that has been learned), US firing is observed in VTA dopamine neurons. More precisely,167

in this case of earlier-than-expected US reward, VTA dopamine neurons fire less than the168

initial (before learning) firing observed at US delivery. This is consistent with the US being169

expected, albeit not at this precise timing. An interpretation would be that partial expectations170

are generated during the CS-US interval, hence the reward prediction decreases with time171

until the expected timing of US delivery. In our model, we observed that the earlier the172

reward was delivered, the higher was the VTA DA firing (Figure 4 B). VTA DA firing in Figure 4173

A (middle left panel) shows a reward delivered before the half-way-point (at the 100tℎ time174

step) evoking a dopamine firing, but less than the firing initially induced by an unpredicted175

reward. By contrast, Figure 4 B (middle left panel) shows an early reward delivered after the176

half-way-mark (at the 300tℎ time step), which induces lesser firing in VTA DA cells. The model177

is consistent with physiological data in primates, where earlier-than-expected rewards evokes178

progressively less firing as the reward delivery time increases (Fiorillo et al., 2008). Our model179

provides a mechanistic explanation for this data.180

2. Variability in Magnitude181

VTA Dopamine firing reflects the difference between the actual reward and the expected182

reward. For instance, VTA Dopamine neurons fire on US arrival if a reward is larger than183

expected (Figure 5 C middle panel). This corresponds to a positive reward prediction error,184

in accordance with physiological data. The subtractive nature of inhibition (Eshel et al.,185

2015) encodes the difference of magnitude between the actual magnitude of reward and the186

expected magnitude of reward ( Figure 5C middle panel).187

Dissociation of time and magnitude prediction errors following VS Lesions188

1. VS lesion affects time prediction error189

When an experimental lesion is made in the VS from rats (Takahashi et al., 2016) , earlier-than-190

expected US does not trigger firing in VTA Dopamine cells. Accordingly, our model reproduces191

this lack of timing prediction error, as the virtual lesion of the VS in the model abolishes the192

VTA Dopamine response to earlier-than-expected US. Moreover, VTA GABA cells, instead of193

displaying a ramping signal, provide a constant tonic inhibition, similar to PPN FT, throughout194

the duration of the trial (Figure 5 A middle right panel). Indeed, the model posits that lack195

of dopamine firing for the VS-lesioned scenario compared to the control scenario is due196

to the higher inhibition from the VTA GABA neurons (Figure 5 A middle right panel). The197

VS inhibitory signal acts as a "when" signal providing VTA GABA neurons with information198

enabling computation of reward expectation at a given point in time. Due to this information199

being lost because of lesion, VTA GABA neurons do not have a ramping signal that peaks at200

the right moment. Instead, they have a constant inhibition throughout the interval.201
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2. VS lesion does not alter magnitude prediction error202

The rewards with higher magnitude induce firing in VTA DA cells even if the VS is lesioned. A203

reward that is double the magnitude triggers the same effect on US VTA Dopamine as in the204

control scenario (Figure 5 B middle left panel).205

Since the VS encodes only temporal information, its lesion does not affect the magnitude206

encoding of the stimuli. This results in VTA DA firing showing the same subtractive effect as in207

the control scenario(Figure 5 B middle left panel). This is due to the VTA GABA encoding the208

magnitude from the BLA through the PPN FT neurons. A lack of VTA GABA ramping does not209

prevent the VTA DA from having the magnitude encoded within its population, and provides210

the same RPE at usual reward time. This behavior of VTA DA neurons in the case of a VS lesion211

with larger magnitude is also in accordance with experimental results (Takahashi et al., 2016).212

Figure 2. Delay Conditioning - In this paradigm, the conditioned stimulus (CS) persists until the presentation of the
unconditioned stimulus (US)

A B

C

D

Figure 3. (A) The figure represents the firing of the neuronal populations after training following the same color conventions
as the model architecture diagram. IT and LH indicate the stimulus and the reward respectively. PPN RD represent the phasic

signals received from BLA and the LH at stimulus onset and reward delivery. VTA DA neurons show firing only at the arrival of

the CS and VTA GABA neurons have a ramping expectation signal that fully cancels the VTA DA signal at reward delivery. BLA

and VS have encoded magnitude and timing of the reward respectively. (B) This figure portrays the evolution of the VTA and

PPN sub-populations throughout the duration of trials. VTA DA shows firing only at the reward delivery during initial trials while

VTA GABA shows no firing due to absence of any expectation at this stage. At Trial 7, VTA DA shows twin peaks reflecting both a

partial encoding at stimulus arrival and partial cancellation of reward signal. VTA GABA on the other hand has a ramping nature

at the precise time of the arrival of the reward indicating encoding of timing and partial encoding of expectation. The final trial

diagram shows the complete cancellation of the VTA DA signal at reward delivery and a complete encoding of stimulus at the CS

arrival. Correspondingly, VTA GABA has a larger expectation signal that ramps that has completely encoded the magnitude of

the reward signal. (C) shows the evolution of the PPN sub-populations during the sequence of trials with PPN RD signalling

reward delivery from LH to VTA DA during the initial trials and PPN FT not showing any sign of expectation at the same time. In

the middle of training, PPN RD reflects a partial firing for stimulus onset and the same reward signal firing as during the initial

trials. PPN FT also reflects this partial firing with a tonic nature of firing that passes onto VTA GABA. During the final trial stages,

PPN RD firing peaks for its stimulus arrival firing while a bigger tonic firing signal is observed for PPN FT. (D) portrays the

evolution of VTA DA CS and US signals and that of VTA GABA. Both VTA GABA and VTA DA CS show increased firing across the

trials while VTA DA US progressively reduces ultimately to the background firing rate of VTA DA. All the figures are averaged for

10 runs.
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A B C

Figure 4. These figures indicate the early firing scenarios on VTA and PPN sub-populations. LH indicates the reward delivered
earlier than usual and IT the stimulus. (A) denotes the arrival of the reward at 100tℎ time step after training where VTA DA shows

some firing compared to no firing after training when reward is delivered at the usual time. (B) This firing for an earlier reward is

still larger than a later arrival of early reward at 300 time steps where VTA DA barely shows any firing. (C) indicates the

progressively later "early" rewards fire less as early reward delivery times get closer to usual reward arrival times in accordance

with data on (Fiorillo et al., 2008)
A B C

Figure 5. Panel3- These figures indicate how timing information is lost but magnitude information of the reward is maintained
on VTA sub-populations. LH indicates the reward delivered earlier than usual and IT the stimulus. During the VS lesion scenario,

VTA GABA is no longer able to integrate the timing information coming from VS and just reflects the projection from PPN FT

neurons. Hence, early rewards are treated as any other reward that comes at the usual time, reflecting no firing (left panel). But

when the reward is of a higher magnitude (middle panel), it is able to indicate the prediction error just as in the control scenario

where VS is not lesioned and VTA GABA integrates both magnitude and timing.

Discussion213

Role of Timing in conditioning214

The importance of CS-US interval timing is one of the key postulates of the proposed theory215

underlying the model. In this model, the interval timing mechanism uses the dopamine signal216

since the onset of the CS to learn the underlying temporal distribution to predict the arrival of the217

reward, however it needn’t be the case. Learning the interval time separating the CS and the reward218

could happen without dopamine with a phenomenon called sensory-preconditioning (Sadacca219

et al., 2016). Our model predicts that since time and magnitude are separate signals in the brain,220

the learning of time precedes the learning of magnitude for reward prediction error to take place.221

Interval timing learning in animals has been observed to happen in very few trials and sometimes222

even one. The model posits that interval timing learning is an integral part of reward prediction223

error computation in appetitive learning and the learning of timing happens before the magnitude224

of the stimulus so as to construct an inhibitory signal that has a ramping nature before it ramps to225

its maximum amplitude. The timing mechanism used in the model is very simplistic, reflecting the226

learning of a single parameter to get the final slope of inhibition. It is possible that more complex227

timing mechanisms are incorporated in the striatum to accommodate stochasticity in the temporal228

interval.229

This is consistent with the original Temporal Difference Reinforcement Learning (TDRL) represen-230

tation of dopamine where the cue is tracked since the onset of its presentation, state by state until231

reward is delivered as in the complete serial compound (CSC) stimulus representation (Schultz et al.,232

1997). Here too, the state is tracked at each time point using the timing signal. However, unlike the233

TD model , which is model-free and tracks value across states, this model learns a separate value234

signal for state similar to the Successor Representation (SR)(Dayan, 1993) where reward and state235
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representation are computed separately unlike TD-Learning. This dissociation enables the model236

to learn changes in magnitude independent of the state and learn the state independent of the237

magnitude.238

Dual pathway model239

The dual pathway models of classical conditioning posit that the mechanism with which the CS firing240

occurs at the onset of a trained cue is dissociated from the expectation that inhibits the reward241

signal at the time of the reward. Our model too, largely follows the same pattern but with some242

deviations (O’reilly et al., 2007). This model replicates the observation in Fiorillo et al. (2008) about243

early rewards delivered at different time points exhibiting different firing. The interpretation of244

this model is that, this dopamine error is indicating a mismatch in state rather than a mismatch in245

magnitude. Since magnitude is a separate signal and does not require updating, the early reward246

firing is indicative of a violation of a belief of the state the animal is in. This prediction error is247

predicted to happen between the striatal inhibition and VTA GABA. This inhibition is also predicted248

to play a role in the lesion experiments done by Takahashi et al. (2016) where VS lesions hamper249

the ability of the animal in tracking state. This lesion inturn has an effect on VTA GABA which is no250

longer inhibited and only serves the magnitude component of the reward prediction error. Hence,251

early reward prediction errors no longer happen, because the animal does not recognize state252

prediction errors and expects the reward to happen all the time. It was also found in the study that253

VTA non dopamine neurons have a higher firing after the VS lesions consistent with our model and254

our model predicts, VTA GABA to have higher firing when VS is lesioned. This model hypothesis a255

continuous ramping signal that is active throughout the duration of the CS and the US, peaking at256

the time of the US and speculates that this inhibition signal and the CS firing could have the same257

source.258

Heterogeneity of PPN259

Though much of PPN’s anatomical and chemical characteristics are unknown, studies have shown260

functional differences between populations inside PPN. Specific populations within PPN exist which261

fire phasically for rewards and others which have sustained firing from reward prediction to delivery262

of reward, and the activation sustaining till the delivery of the reward even if the arrival of the263

reward is delayed (Okada and Kobayashi, 2009). Moreover these neurons seem to encode amount264

of reward firing higher for rewards with larger magnitude (Okada and Kobayashi, 2009) (Hong265

and Hikosaka, 2014) portraying a graded firing signal capable of differentiating reward amounts266

consistent with this models characteristics. Studies have also pointed out a growing role for PPN267

projections to VTA non-dopamine neurons as necessary for appetitive pavlovian conditioning (Yau268

et al., 2016) and activation of PPN glutamate neurons to be reinforcing (Yoo et al., 2017). The269

hypothesis of this model is that a subset of PPN neurons (PPN FT) convey reward magnitude270

information to the VTA GABA neurons and any optogenetic silencing of these neurons can interfere271

with the computation of reward prediction error, though isolating these neurons could prove272

difficult owing the structures heterogeneity.273

VTA GABA theory of computing RPE in classical conditioning274

Previous studies have implicated the striatum (Usuda et al., 1998) as the source of the inhibitory275

signal cancelling the dopamine. But, recent projection-specific activation by optogenetic studies276

among others have shown that the inhibition from striatum has weak to no inhibitory effects on277

DA neurons when stimulating direct striatal inputs on DA neurons in the VTA (Keiflin and Janak,278

2015) (Bocklisch et al., 2013) (Chuhma et al., 2011)(Xia et al., 2011)(Klein-Flügge et al., 2011). There279

have been a number of recent results, suggesting an alternate pathway within VTA which might280

be responsible for this inhibitory signal. Moreover, optogenetic studies done on VTA (Cohen et al.,281

2012)(Eshel et al., 2016) have pointed out not only does the VTA GABA neurons exert enough282

inhibition to cancel VTA DA neurons but the inhibition is also subtractive in nature and hence283
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suitable for computation of reward prediction error (Eshel et al., 2015). This model hypothesises284

that the ramping nature of expectation which encodes both magnitude of the stimulus and time of285

arrival is encoded in the VTA GABA which acts as the site of integration between these two different286

dimensions of the reward. One possible explanation of this distributed nature of reward prediction287

error could be that this is what allows for rapid recomputation of values (either of time ormagnitude)288

and allows the animal to exhibit and sometimes fast, adaptive behavior. Parallels could be drawn289

with the literature of reinforcement learning that the animals are not purely engaged in model-free290

reinforcement learning and that the dopamine signal itself could be not just performing reward291

prediction errors and differences in timing could elicit an error from the dopamine system for state292

prediction errors. For example, dopamine firing for early reward delivery could be interpreted as293

a state prediction error where the animals has to reevaluate the time of the reward rather than294

the magnitude of the reward. The precise interpretation of the dopamine prediction error could295

be handled by the upstream areas to determine what computations are to be done to reflect a296

changed scenario.297

This model examines the role of VTA GABA in computing the reward prediction error along with298

a few other subtrates based on some of the results provided by Takahashi et al. (2016). This paper299

adopts a semi-markov approach to explain the findings while the model given here attempts to300

provide a system level model of how the underlying neuronal substrates might act. There are a few301

other behaviors that is observed in the model. The authors note that removing VS does not remove302

expectation and the animal in effect expects reward all the time, this could be the VTA GABA signal303

we observe in the model when VS is lesioned. VTA GABA loses its ramping functionality and has a304

flat tonic firing pattern carrying on its earlier peak expectation thoughout the duration of the trial,305

The authors also note that "non-dopaminergic" neurons show significantly higher baseline firing306

rate when VS is lesion. Our model hypothesises that it is indeed the VTA GABA neurons that are307

now exhibiting a higher flat expectation due to the VS being lesioned. Thus, the model proposes308

that it is the VS input to VTA GABA that gives its expectation signal the temporal specificity that the309

authors mention in their paper.310

Methods and Materials311

Evaluation of the model312

The paradigm used to evaluate the model is a simple CS-US associative learning task and also313

considers how the expectation cancels out the dopamine peak at the time of the reward. The trial314

duration is 500 time steps with each time step corresponding to 1ms. The stimulus is presented315

at the 10tℎ time step and is kept switched on till the arrival of the reward at the 400tℎ time step316

(400ms). The reward and the stimulus have by default a magnitude of 1. The number of trials for317

the entire conditioning to happen was set at 14 trials (i.e. trials required for the learning algorithm318

to converge).319

Model Description320

Computational principles321

The system-level model is composed of mean-field description of neuronal populations representing322

distinct, interconnected brain structures. Population dynamics is described by its average firing323

frequency across time U (t), which is taken as the positive part of a membrane potential V (t),324

represented by the following equations:325

�.
dV (t)
dt

= (−V (t) + gexc(t) − ginℎ(t) + B + �(t)) (2)

U (t) = (V (t))+ (3)
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Here � is the time constant of the cell, B is the baseline firing rate and �(t) is the additive noise326

term chosen randomly at each time step from a uniform distribution between −0.01 and 0.01.327

The incoming afferent synaptic currents gexc and ginℎ represent the weighted sum of excitatory328

and inhibitory firing rates, respectively, the weight representing the synaptic weights between the329

populations.330

Some of the neuronal populations extract a short-term phasic activity from their incoming331

inputs, by removing out the tonic component of the input. This is done by the following equations:332

�.
dx(t)
dt

= (−x(t) + x(t)) (4)

��,k(x(t)) = (x(t) − k.x(t))+ (5)

Here x(t) integrates the incoming input x(t) with a time constant � and thus represents the tonic333

component of the input, while ��,k(x(t)) represents the positive part of the difference between334

x(t) and x(t). Hence, The constant k controls how much of the original input is kept, a k value335

of 0 indicates the entire synaptic input is to be preserved and a k value of 1 outputs the phasic336

component only, i.e. the entire tonic component has been entirely removed.337

A Bound function is used when the firing of a population is described with an upper and a lower

limit in certain populations.

 (x) =

⎧

⎪

⎨

⎪

⎩

0 if x < 0
x if 0 < x < 1
1 if x > 1

(6)

A threshold function is also used in some populations and it outputs 1 when the input exceeds338

a threshold Γ, 0 otherwise:339

ΔΓ(x) =

{

0 if x < Γ
1 otherwise

(7)

The learning rules defined in the model are based on the Hebbian learning rule and a DA

modulated learning rule in the case of BLA like the multiplicative three factor learning rule. The

evolution over time of the weightw(t) of a synapse between the neuronal population pre (presynaptic
neurons) and the neuronal population post (postsynaptic neurons) is governed by:

dw(t)
dt

= (�.Upre(t).Upost(t)) (8)

where w is the weight term, � the learning rate, Upre(t) and Upre(t) are indicating the firing rates of340

the presynaptic and postsynaptic neuronal populations, respectively.341

Population definitions342

Representations of inputs343

The sensory inputs of the CS and the reward input of the US are encoded by the inferotemporal344

cortex (IT) and the lateral hypothalamus (LH), respectively, simply as square wave signals:345

U (t) = I(t)+ (9)

where I(t) is an external input resulting either from a stimulus or from a reward.346
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Basolateral Amygdala347

The BLA receives inputs about the CS from the IT, the US from the LH, as well as VTA DA output. This348

allows the BLA to learn to associate the CS with the US, thus providing a magnitude expectation.349

The equation below is the same equation as in Equation 2 without the inhibitory component and350

with the presence of a tonic to phasic conversion.351

�.
dV (t)
dt

= (−V (t) + ��exc,k(gexc(t)) + �(t)) (10)

U (t) = (V (t))+

with � = 10ms, �exc = 10ms, k= 1.
The CS is learned by updating the synaptic weights between IT and BLA and the learning rule is

given by:

dw(t)
dt

= D.�.Upre(t).(Umag − Upost(t))+ (11)

Here D indicates the presence of the US corresponding to the dopaminergic neuronal modulation352

from the VTA, � is the learning rate equal to 0.003, Umag is the magnitude of LH firing, Upre and Upost353

are the firing rates of presynaptic and postsynpatic neurons, respectively.354

Central Amygdala355

The CE is the output nuclei of the amygdala and it projects to both the PPN nuclei, relaying356

information from the BLA. The CE projects to the PPN RD neurons that convey US and CS firing to357

the VTA dopamine neurons and PPN FT neurons that convey reward expectation.358

The equations for the membrane potential and the firing rate are the same as Equation 10 and359

Equation 3, respectively, with � = 20ms, �exc = 5ms, k = 1.360

361

Peduncolopontine nucleus362

The PPN has two distinct populations in this model for reward and expectation. The PPN is a363

heterogeneous structure both in terms of neuronal populations and of responses during classical364

conditioning (Okada and Kobayashi, 2009). Hence, we modeled two distinct subpopulations reflect-365

ing the two major classes of responses found experimentally: FT (Fixation Target) population, which366

activates briefly upon CS or US presentation, and RD (Reward Delivery) population, which display367

sustained activity during the CS-US interval.368

PPN RD369

The PPN Reward Delivery neurons signal the occurrence of the CS and the US from the CE and the370

LH, respectively. It also contains a sub-population of inhibitory neurons that inhibits the PPN FT371

neurons.372

The equations for the membrane potential and the firing rate are the same as Equation 10 and373

Equation 3 respectively, with � = 5ms, �exc = 5ms, k = 1.374

375

PPN FT376

The PPN FT neurons encode the magnitude expectation delivered to the VTA GABA neurons. The377

PPN FT neurons receive information from the CE and are inhibited by the PPN RD neurons. They378

serve to maintain a constant magnitude that is conveyed to the VTA GABA neurons for final reward379

prediction error computation. The equations for the membrane potential and the firing rate are380

the same as Equation 2 without baseline firing and Equation 3 respectively with � = 5ms.381

382
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Ventral Striatum and OFC383

It has long been thought that the Ventral Striatum (VS) is responsible for the reward prediction term384

in RPE calculation. In our model, the VS encodes the duration of the CS-US interval only. The VS is385

composed of inhibitory cells, and signals the timing of expected reward to VTA GABA cells through386

a decrease in activity. The OFC (Orbitofrontal Cortex) relays the presence of the US from the IT387

to the VS. Then, a simplified timing model comprising a negative integrator similar to the timing388

algorithm in Rivest and Bengio (2011) signals the interval duration through a slowly decreasing389

activity until the expected timing of the US. To do so, the integrator here has an amplitude of 1 at390

the beginning of the trial and after weight updating, decreases its firing to 0 at the precise time of391

reward delivery. In this framework, learning the CS-US interval consists in adjusting the slope of the392

slowly-decreasing activity.393

Mechanism of timing394

The timing mechanism in the VS transforms a phasic excitatory input into a decreasing sustained395

activity, which slope depends upon the weights.396

�.
dV (t)
dt

= (gexc(t)) − V .ΔΓ(��mod,k(gmod(t)) − B) + �(t)) (12)

U (t) = (gexc(t) − ΔΓ(��mod,k(gmod(t)) − B) −  (V (t))+ (13)

with � = 1ms, �mod = 5ms, k = 1, Γ = 6 and B is the baseline firing rate from VTA dopamine to397

VS. Γ ensures a minimum threshold to be achieved for the VTA dopamine phasic firing to enable398

modulation.  () is a bounded function.399

Figure 6. The slope is decreased at every iteration until it exceeds the duration (the red line) enabling exact correction of the
weight encoding the duration to be found (the black line). The colors indicate the progressive iterations

As described in figure 6, weight is updated after each iteration according to the following rule:

dw(t)
dt

= (−�.w + ΔΓ(U (t)).w.(U (t)∕(1 − U (t))) (14)

where � is the learning rate equal to 0.4 The first term decreases the weights based on � and400

the weights keep decreasing until the bound is reached when ΔΓ(U (t)) becomes greater than 0 at401

the time of the reward. The correcting update is the second term of the weight updating and the402

slope is increased with a weight increase encoding the duration of the interval.403

404

It should be noted that the model postulates that the learning of time happens before the405

learning of value of the stimulus, i.e., its magnitude.406
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VTA407

The VTA comprises two major neuronal populations, dopaminergic (DA) and gabaergic (GABA),408

glutamatergic cells representing less than 3 percent of VTA cells. VTA GABA neurons locally inhibit409

VTA DA neurons and participate in the computation of reward prediction error in VTA DA cells (Cohen410

et al., 2012). More precisely, VTA GABA neurons display a sustained, slowly-increasing ramping411

activity during the CS-US interval (Eshel et al., 2015) but only significantly affect phasic DA activity412

(i.e. the RPE) rather tonic DA activity during the interval. We thus modeled the two populations413

from the VTA as follows.414

VTA Dopamine415

The VTA dopaminergic (DA) neurons receive excitatory inputs from the PPN RD population, which416

conveys actual reward and reward prediction from the amygdala; and inhibitory inputs from the417

VTA GABA cells, which signal reward expectation. The difference between these excitatory and418

inhibitory inputs constitutes the reward prediction error (RPE) (Sutton and Barto, 1998) (Glimcher,419

2011). VTA DA neurons broadcast this RPE to the system. During learning, VTA DA neurons initially420

fire upon US reward delivery. This US activity progressively gets canceled by VTA GABA signaling the421

reward expectation, and at the same time, phasic firing upon CS arrival develops with learning.422

�.
dV (t)
dt

= (−V (t) + ��exc,k(gexc(t)) − ��inℎ,k(ginℎ(t)) + �(t))

U (t) = (V (t) + B)+ (15)

With � = 5ms, �exc = 5ms, k = 1 and B is the baseline firing rate of the VTA Dopamine equal to 0.2423

424

VTA GABA425

VTA GABA neurons combine inputs from the VS, which encodes the expected time of reward, and426

from the PPN, which signals expected reward magnitude. VTA GABA neurons thus encode reward427

expectation and inhibit VTA DA neurons. The equation for membrane potential is the same as in428

Equation 2 without baseline firing and population dynamics follows Equation 3 with � = 20ms.429

This model is implemented in Python, and uses the DANA library for neuronal computation430

(Rougier and Fix, 2012). Description of all the other model parameters is detailed in Table 1. The431

model can be accessed in the following link : https://github.com/palladiun/Pavlovian-Conditioning-432

VTA-GABA433
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Architectural parameters

Parameter Meaning Value

US input_size size of input vectors from LH 1

CS input_size size of input vectors from IT 4

VTA Dopamine_size number of neurons in VTA Dopamine 10

VTA GABA_size number of neurons in VTA GABA 5

BLA_size number of neurons in BLA 1

CE_size number of neurons in CE 1

OFC_size number of neurons in OFC 1

PPN RD_size number of neurons in PPN RD 4

PPN FT_size number of neurons in PPN FT 4

PPN Magnitude_size number of neurons in PPN Magnitude 4

Equation parameters

BLA_CE constant weights from BLA to CE 0.15

LH_PPN_RD constant weights from LH to PPN_RD 1.2

LH_BLA constant weights from LH to BLA 1

IT_OFC constant weights from IT to OFC .25

CE_PPN_RD constant weights from CE to PPN_RD 2

CE_PPN_Mag constant weights from CE to PPN_Mag .3

PPN_RD_PPN_Mag constant weights from PPN_RD to PPN_Mag 0.8

PPN_RD_VTA_Dop constant weights from PPN_RD to VTA_Dop 1

PPN_Mag_PPN_Rel constant weights from PPN_Mag to PPN_Rel 0.2

VS_PPN_Rel constant weights from VS to PPN_Rel 1

PPN_Rel_VTA_GABA constant weights from PPN_Rel to VTA_GABA 0.25

VTA_Dopamine_BLA constant weights from VTA_Dopamine to BLA 1

VTA_Dopamine_BLA constant weights from VTA_Dopamine to VS 1

VTA_GABA_VTA_Dopamine constant weights between VTA_GABA and VTA_Dopamine 0.2

OFC_VS initial weights between OFC and VS 0.006

IT_BLA initial weights between OFC and VS 0.01

Table 1. Table describing network architecture and parameters used in activation and learning rules.
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