

1 *Enterococcus faecalis* manganese exporter MntE alleviates manganese toxicity and is
2 required for mouse gastrointestinal colonization

³ Ling Ning Lam^{1,2}, Jun Jie Wong^{1,3}, Kelvin Kian Long Chong^{1,4}, and Kimberly A. Kline^{1,2,*}

4

⁵ ¹Singapore Centre for Environmental Life Science Engineering, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551

7 ²School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive,
8 Singapore 637551

⁹ ³Interdisciplinary Graduate School, Nanyang Technological University, Singapore 639798

¹⁰ ⁴Nanyang Technological University Institute for Health Technologies, Interdisciplinary

11 Graduate School, Nanyang Technological University, 50 Nanyang Drive, Singapore 637553

12 *Correspondence: kkline@ntu.edu.sg

13

14

15

16

28

21

22

23

24

25

26 **Abstract**

27 Bacterial pathogens encounter a variety of nutritional environments in the human host,
28 including nutrient metal restriction and overload. Uptake of manganese (Mn) is essential for
29 *Enterococcus faecalis* growth and virulence; however, it is not known how this organism
30 prevents Mn toxicity. In this study, we examine the role of the highly conserved MntE
31 transporter in *E. faecalis* Mn homeostasis and virulence. We show that inactivation of *mntE*
32 results in growth restriction in the presence of excess Mn, but not other metals, demonstrating
33 its specific role in Mn detoxification. Upon growth in the presence of excess Mn, an *mntE*
34 mutant accumulates intracellular Mn, iron (Fe), and magnesium (Mg), supporting a role for
35 MntE in Mn and Fe export, and a role for Mg in offsetting Mn toxicity. Growth of the *mntE*
36 mutant in excess Fe also results in increased levels of intracellular Fe, but not Mn or Mg,
37 providing further support for MntE in Fe efflux. Inactivation of *mntE* in the presence of
38 excess iron also results in the upregulation of glycerol catabolic genes and enhanced biofilm
39 growth, and addition of glycerol is sufficient to augment biofilm growth for both the *mntE*
40 mutant and its wild type parental strain, demonstrating that glycerol availability significantly
41 enhances biofilm formation. Finally, we show that *mntE* contributes to infection of the
42 antibiotic-treated mouse gastrointestinal (GI) tract, suggesting that *E. faecalis* encounters
43 excess Mn in this niche. Collectively, these findings demonstrate that the manganese exporter
44 MntE plays a crucial role in *E. faecalis* metal homeostasis and virulence.

45

46 **Introduction**

47 Manganese (Mn) is an essential metal for most bacteria and serves as a cofactor for proteins
48 involved in metabolism, DNA replication, respiration, and oxidative stress (1). Accordingly,
49 Mn acquisition contributes to bacterial virulence in multiple bacterial species (2-4). In order
50 to limit bacterial growth and virulence, the host sequesters Mn as a defense response termed

51 nutritional immunity (1, 4-6). To counteract these host-mediated defences, many bacterial
52 pathogens including Enterococci encode dedicated systems to acquire Mn.

53

54 Bacteria encode conserved ABC and NRAMP-family transporters for manganese uptake (1,
55 2). In *Enterococcus faecalis*, three manganese uptake systems have been described: the ABC-
56 type transporter encoded by *efaCBA* and two NRAMP transporters encoded by *mntH1* and
57 *mntH2* (7). These three Mn transport systems are functionally redundant since deletion of all
58 three transporter systems (*efaCBA*, *mntH1*, *mntH2*) is required to abrogate intracellular Mn
59 accumulation, rendering the triple mutant severely impaired in growth (7). Furthermore,
60 deletion of both *efaCBA* and *mntH2*, or all three transporters together results in attenuated
61 colonization in rabbit endocarditis and mouse catheter-associated urinary tract infection
62 (CAUTI) models (7). Together these observations demonstrate that the ability to acquire Mn
63 is essential for *E. faecalis* virulence.

64

65 In contrast to Mn influx mechanisms that have been characterized in *E. faecalis*, Mn export
66 pathways have not been described. The contribution of Mn export to bacterial pathogenesis
67 and virulence has been demonstrated for some bacterial species (8-15) and is dependent on
68 two widely characterized classes of exporters – MntE, a cation diffusion facilitator (CDF)
69 family protein, and MntP, a 6 transmembrane helix protein typical of LysE transporter family
70 members (8). In *Escherichia coli* and *Neisseria meningitidis*, deletion of *mntP* and *mntX* Mn
71 exporters, respectively, both of which belong to the MntP class of exporters, results in
72 elevated intracellular Mn and increased sensitivity to Mn toxicity (16-18). In the case of *N.*
73 *meningitidis*, loss of MntX results in reduced bacterial titers recovered from the serum in a
74 mouse sepsis model (17). The CDF family of proteins has been characterized in several
75 bacterial species where they display broad metal specificity (19-23). In *Streptococcus*

76 *pneumoniae* and *Streptococcus pyogenes*, deletion of the *mntE* results in increased sensitivity
77 to Mn toxicity and intracellular Mn accumulation (9, 10, 24). Similarly, in *Streptococcus suis*,
78 deletion of *mntE* results in increased sensitivity to Mn toxicity and, like *S. pyogenes*, displays
79 increased sensitivity to oxidative stress (10, 12). Additionally, MntE mutants in *S.*
80 *pneumoniae* and *S. suis* are attenuated in mouse models of infection (9, 12). In
81 *Staphylococcus aureus*, an *mntE* mutant displays increased sensitivity to Mn and oxidative
82 stress when grown in Mn enriched media, and accumulates intracellular Mn (25).
83 Furthermore, loss of *S. aureus* *mntE* results in reduced mortality in mice after retro-orbital
84 infection (25). Taken together, these reports indicate that Mn import, export, and homeostasis
85 are important for virulence in many pathogens.

86

87 In a prior study, we discovered that a putative cation efflux transporter *OG1RF_10589*
88 (*OG1RF_RS03085*) contributed to *E. faecalis* biofilm formation specifically in iron-
89 supplemented media (26). Previous reports showed that *E. faecalis* *OG1RF_10589*
90 (identified as *czcD* in those studies) transcription was down-regulated when grown in blood
91 (27), and subsequently induced when *E. faecalis* was grown planktonically in both iron (Fe)-
92 supplemented (28) and Mn-supplemented media (29). The goal of this study was to
93 characterize the function of the predicted cation transporter *OG1RF_10589* in biofilm
94 formation. We show that this protein functions in Mn efflux and hence rename the gene
95 *mntE*. An *E. faecalis* *mntE* mutant grown in excess Mn accumulates intracellular Mn and Fe,
96 but is selectively sensitive only to Mn and not Fe toxicity. However, when *E. faecalis*
97 biofilms were grown in Fe-supplemented media, the conditions in which *mntE* contributed to
98 augmented biofilm formation, only three genes were differentially regulated in the *mntE*
99 mutant compared to wild type: the glycerol catabolic genes were all upregulated (*glpF2*,
100 *glpK*, *glpO*). Since we show that glycerol supplementation also promotes biofilm growth, this

101 result suggests that upregulation of glycerol catabolic genes likely contributes to enhanced
102 biofilm growth of the *mntE* mutant in iron-supplemented media that we reported previously.
103 Finally, we demonstrate MntE contributes to colonization of the mouse gastrointestinal (GI)
104 tract, suggesting that maintaining MntE-mediated metal homeostasis confers a fitness
105 advantage to *E. faecalis* in the mammalian host.

106

107 **Results**

108 ***mntE* is required for planktonic growth and biofilm formation when Mn is in excess**
109 The *Enterococcus faecalis* OG1RF genome encodes a putative cation efflux transporter
110 (*OG1RF_10589*) and this translated gene product displays 69% and 80% amino acid
111 similarity to the zinc exporter CzcD (Accession no. CWI93218.1) and the manganese
112 exporter MntE (*spy1552*) in *Streptococcus pneumoniae* (9, 10), respectively (see Materials
113 and Methods). MntE belongs to the cation diffusion facilitator (CDF) family of metal efflux
114 pumps (30). The predicted *E. faecalis* cation efflux transporter *OG1RF_10589* also shares
115 25% amino acid identity to the Mn exporter MneP (formerly called YdfM) in *B. subtilis* and
116 25% identity to FieF in *E. coli* which, export Mn and Fe, respectively (22, 31). Pairwise
117 alignment of *E. faecalis* MntE showed higher similarity to *S. pneumoniae* and *E. coli* as
118 compared to *B. subtilis* (**Figure S1**). *E. faecalis* *OG1RF_10589* possesses a DXDD motif
119 in transmembrane domain 5 (starting from amino acid 171 in the predicted OG1RF protein)
120 (**Figure S2**) which is typical of CDF transporters (32). CDF transporters possess six putative
121 transmembrane (TM) domains, a signature N-terminal amino acid sequence and a
122 characteristic C-terminal cation efflux domain (33, 34). The experiments below establish
123 *OG1RF_10589* to share properties with MntE and function in Mn homeostasis, so we refer to
124 *OG1RF_10589* as *mntE* henceforth. Based on the amino acid identity between *E. faecalis*
125 *OG1RF_10589* and Mn transporters in other bacterial species, as well as transcriptional

126 induction of the gene in the presence of both Mn and Fe (28, 29), we hypothesized that *E.*
127 *faecalis* OG1RF_10589 (MntE) exports Mn and Fe, and that absence of this gene would
128 result in increased sensitivity to metal toxicity and decreased growth in the presence of excess
129 Mn and/or Fe. To test this prediction, we performed planktonic growth assays comparing
130 wild type *E. faecalis* OG1RF to an isogenic *mntE::Tn* mutant in increasing concentrations of
131 Mn, Fe, zinc (Zn), copper (Cu), and magnesium (Mg). We observed a dose-dependent
132 reduction in growth of the *mntE::Tn* mutant when grown in Mn supplemented media after 8
133 hrs of incubation as measured by optical density (**Figure 1A**). However, there was no growth
134 defect for the *mntE::Tn* mutant when the media was supplemented with any other cationic
135 metal (**Figure S3**). Similarly, we observed significantly fewer colony forming units (CFU)
136 (approximately 2-3 log reduction) of *mntE::Tn* after 6 hours for all Mn concentrations tested
137 (**Figure 1B**). Complementing the *mntE::Tn* mutant with *mntE* under control of a nisin-
138 inducible promoter on a plasmid rescued Mn-mediated growth inhibition and restored CFU to
139 near wild type levels after 8hrs of exposure to 2 mM Mn (**Figure 1C-D**).
140

141 Since the absence of *mntE* leads to Mn-mediated growth inhibition under planktonic
142 conditions (**Figure 1A**), we next tested whether this was the case for biofilm formation. To
143 address this, we performed static *in vitro* crystal violet (CV) biofilm assays and macrocolony
144 biofilm assays. Using this biofilm accumulation assay, wild type *E. faecalis* biofilm biomass
145 was not significantly altered in the presence of 2 mM Mn. By contrast, the *mntE::Tn* mutant
146 was attenuated for biomass accumulation (**Figure 1E**). Similarly, in biofilm macrocolony
147 assays, biofilm CFU were not affected when wild type *E. faecalis* biofilm biomass was grown
148 in 2 mM Mn, but the *mntE::Tn* mutant had significantly fewer biofilm-associated CFU when
149 grown in excess Mn (**Figure 1F**). Complementation of *mntE::Tn* with *mntE* in *trans* restored

150 biofilm CFU to wild type levels. These results demonstrate that the absence of *mntE* leads to
151 increased sensitivity to Mn during both planktonic and biofilm growth.

152

153 **Absence of *mntE* results in intracellular metal accumulation**

154 The ability to regulate intracellular Mn is a key determinant for cell survival and growth.
155 Based on its predicted function in Mn export, we hypothesized that the absence of *mntE*
156 would lead to increased intracellular Mn. To test this hypothesis, we performed inductively
157 coupled plasma mass spectrometry (ICP-MS) on cells isolated from static 24 hr biofilms
158 grown in 2 mM Mn-supplemented media. While we did not observe differences in
159 intracellular metal accumulation when the *mntE::Tn* mutant was grown in control media
160 (**Figure 2A**), we observed that wild type *E. faecalis* accumulated more intracellular Mn when
161 grown in Mn-supplemented media and the *mntE::Tn* mutant accumulated significantly more
162 intracellular Mn compared to wild type, when both were grown in 2 mM Mn-supplemented
163 media (**Figure 2B**). Complementing the *mntE::Tn* mutant with *mntE* restored intracellular
164 Mn levels of the *mntE::Tn* mutant to that of wild type empty vector control strain (**Figure**
165 **2B**). Notably, growth of the *mntE::Tn* mutant in Mn-supplemented media also resulted in 10-
166 fold more intracellular Mg and 30-fold more intracellular Fe as compared to the wild type
167 strain (**Figure 2B**). We previously showed that the absence of *mntE* resulted in enhanced
168 biofilm growth in iron supplemented media (26). If MntE also exports Fe, as the data in
169 Figure 2B suggest, the absence of *mntE* should give rise to increased intracellular Fe due to
170 intracellular accumulation. Indeed, we observed that the *mntE::Tn* grown in Fe-supplemented
171 media accumulated significantly more intracellular Fe as compared to wild type, whereas
172 intracellular Mn and Mg were unchanged compared to wild type (**Figure 2C**).
173 Complementing the mutant strain with *mntE* resulted in restoration of intracellular Fe to

174 levels observed in wild type empty vector control strain (**Figure 2C**). These findings suggest
175 that MntE has the capacity to export both Mn and Fe.

176

177 **Magnesium supplementation alleviates manganese-mediated growth inhibition**

178 Since we observed increased intracellular Mg in the *mntE::Tn* biofilms grown in Mn-
179 supplemented media (**Figure 2**), we reasoned that increasing intracellular Mg may be a
180 bacterial response to counter accumulated intracellular Mn mediated toxicity as reported in
181 *Bradyrhizobium japonicum* (35). Therefore, we tested if supplementation of Mg would restore
182 growth attenuation of *mntE::Tn* when grown in 2 mM Mn-supplemented media during
183 planktonic and biofilm growth. Indeed, addition of Mg to Mn-supplemented media restored
184 growth to the *mntE::Tn* mutant and promoted growth of wild type *E. faecalis* in a dose-
185 dependent manner (**Figure 3A**). However, in the biofilm assay, we observed significantly
186 attenuated biofilm formation with increasing Mg supplementation for wild type, whereas
187 biofilm of the *mntE::Tn* mutant was augmented with Mg supplementation (**Figure 3B**), as it
188 was during planktonic growth (**Figure 3A**). In the macrocolony assay, the one-log reduction
189 in CFU observed for the *mntE::Tn* mutant in 2mM Mn-supplemented media was similarly
190 restored at all concentrations of Mg tested (**Figure 3C**). Alleviation of Mn-mediated growth
191 inhibition of *mntE::Tn* was specific to Mg, since Fe supplementation did not restore growth
192 (**Figure S4**). Furthermore, 2 mM Mg addition to Mn-supplemented media resulted in reduced
193 intracellular Mn for both wild type *E. faecalis* (3.33-fold) and *mntE::Tn* (2.21-fold) (**Figure**
194 **3D**). By contrast, supplementing 0.5 mM Mg to Mn-supplemented media resulted in 2-fold
195 and 4-fold increased intracellular Mg in the wild type and *mntE::Tn* mutant, respectively.
196 Further Mg supplementation significantly reduced intracellular Mg in both wild type and the
197 *mntE::Tn* mutant (**Figure 3E**). Together, these observations suggest that Mg supplementation

198 rescues Mn-mediated toxicity and growth inhibition in *E. faecalis*, and that Mg accumulation
199 can impact intracellular Mn pools and modulate biofilm growth.

200

201 ***mntE* expression is manganese responsive in *E. faecalis* biofilm**

202 Since complementation of *mntE* alleviates intracellular Mn accumulation in the *mntE::Tn*
203 mutant, we hypothesized that *mntE* would be transcriptionally upregulated upon *E. faecalis*
204 biofilm growth in Mn-supplemented media, as previously described for planktonically grown
205 *E. faecalis* (29). We performed qRT-PCR to analyze *mntE* transcript levels and observed a
206 significant increase in expression for wild type *E. faecalis* biofilms grown in Mn-
207 supplemented media compared to normal growth media (**Figure 4**). Since Mn exposure
208 resulted in upregulation of the *S. pneumoniae* MntE exporter and pilus expression (9), and
209 since pilus expression is critical for *E. faecalis* biofilm formation (36, 37), we hypothesized
210 that pilus expression might be Mn-responsive in *E. faecalis* biofilms as well. Indeed, we
211 observed that *ebpC*, encoding the major subunit of the *E. faecalis* endocarditis and biofilm-
212 associated pilus (Ebp) (36) was also significantly induced in Mn-supplemented media
213 (**Figure 4**).

214

215 Although the *mntE::Tn* mutant accumulates intracellular Fe, and *mntE* is induced in response
216 to Fe during planktonic growth (28), *mntE* is not upregulated in *E. faecalis* biofilms when
217 grown in Fe-supplemented media (data not shown). However, we previously showed that the
218 absence of *mntE* resulted in augmented biofilm formation in Fe-supplemented media (26). To
219 identify other Fe-regulated genes that might contribute to Fe-augmented biofilm formation,
220 we performed RNA sequencing and compared transcriptional profiles of wild type and
221 *mntE::Tn* *E. faecalis* biofilms grown in Fe-supplemented media. Strikingly, the only
222 differentially regulated genes were the upregulation of glycerol catabolic genes (*glpF2*, *glpO*,

223 *glpK*) in the *mntE* mutant in response to Fe when compared to the non-iron supplemented
224 media TSBG control (**Table S1**). We speculated that glycerol serves as an energy source to
225 promote biofilm growth for the *mntE::Tn* mutant in Fe-supplemented media. We were unable
226 to simultaneously delete both *mntE* and *glpF2* in order to test this hypothesis. Instead,
227 increasing glycerol concentrations in the growth media enhanced biofilm formation in both
228 the wild type control and *mntE::Tn* mutant, regardless of Fe supplementation (**Figure S5**). By
229 contrast, these three glycerol catabolic genes (*glpF2*, *glpO*, *glpK*) were not upregulated under
230 Mn supplemented conditions in wild type *E. faecalis* biofilm (**Figure 4**) and global
231 transcriptional analysis showed that these genes are not Fe responsive in wild type OG1RF
232 biofilm grown in Fe-supplemented media (38). Taken together, these results indicate that
233 upregulation of glycerol catabolic genes is specifically observed in the absence of *mntE* when
234 intracellular Fe levels are high and that glycerol supplementation contributes to biofilm
235 growth.

236

237 **Absence of MntE does not alter oxidative stress tolerance in *E. faecalis***

238 Since the absence of *mntE* results in intracellular Mn accumulation, we speculated that
239 accumulation of Mn may alter *E. faecalis* oxidative stress tolerance. The increased
240 availability of intracellular Mn could enhance Mn-dependent antioxidant defenses, as has
241 been reported in *Streptococcus* spp. (10, 12). Alternatively, increased intracellular Mn could
242 lead to increase sensitivity to oxidative stress as reported for *Xanthomonas oryzae* and *S.*
243 *pyogenes* (8, 12, 39). However, the *E. faecalis* *mntE::Tn* mutant did not display altered
244 sensitivity to oxidizing agents when compared to wild type (**Figure S6A-B**), nor did
245 hydrogen peroxide production significantly change when compared to wild type, as has been
246 reported for *S. pneumoniae* when Mn is in excess (9) (**Figure S6C**). Therefore, we conclude
247 that increased intracellular Mn does not impact oxidative stress tolerance in *E. faecalis*.

248

249 **MntE is required for *E. faecalis* expansion in the mouse GI tract**

250 Given the importance of Mn acquisition for *E. faecalis* virulence (7) and the role of MntE in
251 Mn homeostasis, we tested whether MntE contributes to *E. faecalis* virulence. Using an
252 antibiotic-treated mouse model of gastrointestinal (GI) tract colonization, we observed that
253 the *mntE::Tn* mutant was significantly attenuated for colonization in the cecum, small
254 intestine, and colon as compared to wild type *E. faecalis* (**Figure 5**). These results suggest
255 that the GI tract represents a natural reservoir abundant with Fe, Mn, or other MntE-effluxed
256 metals. Indeed, ICP-MS analysis of GI tissue showed the presence of Mn and Fe (**Figure S7**).
257 Therefore, our results demonstrate that MntE and Mn homeostasis, and potentially MntE-
258 mediated Fe homeostasis, are important for *E. faecalis* colonization of the antibiotic-treated
259 mouse GI tract.

260

261 **Discussion**

262 We previously showed that the absence of MntE resulted in enhanced iron-augmented
263 biofilm (26), however the role of MntE and its contribution to iron-augmented biofilm were
264 not characterized. We show that MntE is essential for Mn homeostasis to prevent Mn
265 toxicity, and contributes to changes in intracellular Fe and Mg pools, which in turn can alter
266 glycerol catabolism and growth. Finally, we demonstrate that MntE is required for *E. faecalis*
267 expansion in the mouse gastrointestinal (GI) tract.

268

269 Metal exporters serve to maintain intracellular metal homeostasis. The observation that Mg
270 and Fe accumulate within *E. faecalis* *mntE* mutant cells during growth in Mn-supplemented
271 media suggests either that MntE can efflux Mg and Fe, or that growth in Mn-supplemented
272 media results in the increased import of these metals. Although Mg²⁺ has similar ionic radii

273 to Fe^{2+} and Mn^{2+} , we are not aware of any reports documenting Mg^{2+} efflux from CDF family
274 of proteins (30) or Mg transporters in *E. faecalis*. However, conserved families of bacterial
275 proteins have been identified for Mg uptake and efflux (40). Therefore, these findings
276 together suggest that the observed Mg accumulation in the *E. faecalis mntE* mutant may be
277 mediated by transporters which have yet to be characterized in *E. faecalis*. With regard to Fe
278 accumulation, and consistent with the possibility that MntE effluxes Fe, *mntE* was previously
279 reported to be upregulated when *E. faecalis* was grown in Fe-supplemented media
280 planktonically (28), and the absence of MntE resulted in increased intracellular Fe. While the
281 absence of MntE also similarly resulted in intracellular Mn accumulation, no growth
282 inhibition for the *mntE::Tn* mutant was observed even at the highest Fe concentration tested
283 as compared to Mn in this study. Based on these data, we speculate that MntE may be the
284 sole exporter for Mn in *E. faecalis*, whereas MntE may be one of several redundant export
285 systems for Fe.

286

287 Altered Mn homeostasis affects sensitivity to oxidative stress and has been demonstrated to
288 attenuate virulence in *S. pyogenes* (11, 41), *S. pneumoniae* (9, 42), and *S. aureus* (43). Given
289 the sequence and functional conservation between *E. faecalis* MntE and MntE from other
290 Gram positive species, we examined its role in *E. faecalis* oxidative stress tolerance and
291 virulence. While we found no evidence for a role of *E. faecalis* MntE during growth in the
292 presence of oxidative damaging agents, it contributes to growth in the antibiotic-treated GI
293 tract. A major factor in *E. faecalis* adhesion, virulence, and biofilm formation is the sortase-
294 assembled pilus (Ebp) (37, 44-46). However, transcription of the gene encoding the major
295 pilus subunit *ebpC* is upregulated in Mn-supplemented media, even when biofilm biomass
296 accumulation is attenuated compared to wild type. Since Ebp are important for GI
297 colonization (47), and since the *mntE* mutant is attenuated in mouse GI colonization, we

298 speculate the upregulation of pilus expression observed *in vitro* either does not occur in the
299 mouse GI tract, or that pilus expression *in vivo* is insufficient to complement the virulence
300 defect of the *mntE* mutant.

301

302 In this study, we observed that when Mn is in excess, an *E. faecalis* *mntE* mutant accumulates
303 intracellular Mn, Fe, and Mg. It is likely that altered intracellular metal homeostasis may be
304 the driving force underlying Mn-mediated growth inhibition and the *in vivo* virulence defect.

305 Multiple mismetallation outcomes could be at play resulting in its sensitization to Mn
306 toxicity. The accumulation of intracellular Mg in the absence of *mntE*, coupled with the
307 ability of Mg supplementation to reduce intracellular Mn, restore growth, and protect from
308 Mn toxicity, suggests that mismetallation of Mg-metalloproteins by Mn may be an
309 underlying reason for *E. faecalis* growth inhibition. Magnesium can serve as a cofactor for
310 Mg-dependent enzymes, and can help to stabilize protein complexes and cellular structures
311 (48, 49). Due to the similar ionic radii of these divalent ions, we postulate that Mn cations can
312 displace Mg. The displacement of Mg could in turn result in non-functional or altered
313 function of the metalloprotein. Although there is no evidence for this in *E. faecalis* to date,
314 this idea has been proposed in other bacterial spp. In *B. subtilis*, the loss of *mpfA*, encoding a
315 Mg efflux pump, leads to increased intracellular Mg and suppressed Mn toxicity (50).

316 Despite the increased sensitivity to Mg toxicity, the *mpfA* mutant is less sensitive to Mn
317 toxicity. Further, supplementing the growth media with Mg rendered both wild type *B.*
318 *subtilis* and its Mn efflux mutant ($\Delta mneP\Delta mneS$) less sensitive to Mn intoxication, and also
319 less sensitive to Fe, Co and Zn intoxication (50). In *Bradyrhizobium japonicum*, removal of
320 Mn from Mg-limited media partially restores growth defects due to depletion of Mg, which
321 suggest that the presence of Mn under Mg-limited condition is toxic to *B. japonicum* (35).
322 Consistent with the speculation that Mn and Mg can competitively bind to metalloproteins

323 and alter protein function, supplementing *B. japonicum* with either metal enhances activity of
324 Mg-dependent isocitrate dehydrogenase; by contrast, addition of Mn inhibited Mg-dependent
325 isocitrate lyase (35). Additionally, activity of another *B. japonicum* Mg-dependent enzyme,
326 5-aminolevulinic acid (ALA) dehydratase, was 3-fold higher with Mn as co-factor as
327 compared to Mg (35). Despite the limited literature describing mismetallation, these findings
328 suggest that mismetallation of Mg-metalloproteins by Mn can alter enzymatic activity and
329 affect growth, and this may be relevant for *E. faecalis*.

330

331 We speculate that increased Fe levels observed in the *E. faecalis* *mntE* mutant may serve to
332 maintain the intracellular Fe/Mn ratio necessary for cellular processes under Mn stress.

333 Altered metal homeostasis occurs when bacteria are under Mn stress, whereby the
334 accumulation of intracellular Mn is accompanied with changes in Fe and Cu levels, as have
335 been described in multiple bacterial species. Previously we have also shown that increased
336 intracellular Fe is accompanied with increased Cu levels when *E. faecalis* biofilm is grown in
337 iron supplemented media (26). In *S. pneumoniae*, deletion of *mntE* results in increased
338 intracellular Mn and similarly, Fe and Cu intracellular levels are increased (24). Growth of
339 the *S. pneumoniae* *mntE* deletion mutant under Mn stress resulted in upregulation of genes
340 involved in both Fe and Cu uptake (9, 51, 52), and these observations are consistent with the
341 intracellular accumulation of these metals (24). Similarly, in *E. coli*, overexpression of the
342 Mn exporter encoded by *mntS*, or deletion of the Mn exporter encoded by *mntP*, resulted in
343 elevated intracellular Mn (16, 18). However, overexpression of *mntS* resulted in decreased
344 intracellular Fe, due to downregulation of Fur-regulated iron uptake genes (18, 53, 54). In the
345 context of *E. coli*, it was proposed that Mn can substitute for Fe, thus it is likely that Mn-
346 bound Fur is a capable repressor for iron acquisition gene expression. In *S. aureus*, loss of
347 *mntE* expression resulted in elevated intracellular Mn and reduced intracellular Fe (25). It has

348 been suggested that the elevated intracellular Mn drives repression of the *PerR* regulon which
349 limits oxidative stress responses and *Fur*-dependent expression of iron acquisition systems in
350 *S. aureus* (55, 56). Altogether these reports demonstrate that bacteria tightly regulate
351 intracellular Mn/Fe ratios, and altered homeostasis of these transition metals can alter gene
352 transcription and growth. Therefore, it is likely that *E. faecalis* employ similar strategies to
353 regulate intracellular Fe/Mn ratios, and alteration of these ratios can impact global gene
354 transcription. We speculate that inactivation of *mntE* did not greatly impact growth in normal
355 media or oxidative stress tolerance due to the presence of redundant antioxidant enzymes in
356 *E. faecalis*. Future studies should focus on the transcriptional changes including *fur* and *perR*
357 regulon under altered intracellular Fe/Mn ratios due to deletion of *mntE*, and how these genes
358 impact intracellular metal homeostasis.

359

360 To elucidate mechanisms involved in enhancement of iron-augmented *E. faecalis* biofilm
361 formation by an *mntE* mutant, we discovered that glycerol catabolic genes (*glpF2*, *glpO*,
362 *glpK*) were induced in the *mntE::Tn* mutant when grown in iron-supplemented conditions
363 that also drive intracellular iron accumulation. It is unclear how iron might stimulate glycerol
364 catabolism, but we do know that *E. faecalis* has two glycerol catabolic pathway, one which is
365 dependent on ATP-mediated phosphorylation of glycerol by glycerol kinase (GlpK) to yield
366 glycerol-3-phosphate (glycerol-3-P) (57). Here, we propose a model in which upregulation of
367 the glycerol importer (*glpF2*), alpha-glycerophosphate oxidase (*glpO*), and glycerol kinase
368 (*glpK*) is driven by the presence of increased intracellular Fe. Consistent with this idea, an *E.*
369 *faecalis* V583 *fur* deletion mutant is incapable of repressing iron uptake, and when grown in
370 iron supplemented media, displayed significantly increased transcription of glycerol
371 dehydrogenase and glycerol kinase (*glpK*) (58). The relationship between glycerol
372 catabolism and Fe availability is unclear at this time. Since Fe may function as a biocatalyst

373 for oxidation of glycerol (59) and is an important transition metal for microbial growth (60),
374 we speculate that Fe positively impacts glycerol uptake and the increased uptake of glycerol,
375 which in turn are converted to glycerol-3-phosphate (G3P) in glycolysis, drives increased
376 energy production and increased biofilm growth.

377

378 Collectively, these findings suggest that MntE is a Mn exporter. Since MntE is conserved
379 across a number of gram positive and gram negative bacteria, we propose that this Mn efflux
380 system is a common strategy for Mn homeostasis in bacteria. In *E. faecalis*, we establish that
381 efflux of Mn is vital for growth and successful colonization in the gastrointestinal tract (GI),
382 and that the Mn exporter MntE may be a promising target in developing new therapeutics for
383 patients suffering from VRE dominated intestinal microbiota who are more susceptible to
384 nosocomial infections (61-65).

385

386 **Material and methods**

387 **Bacterial Strains and Growth Conditions.** *Enterococcus faecalis* was grown in Brain Heart
388 Infusion broth (BHI) and cultured at 37 °C under static or shaking (200rpm) conditions, as
389 indicated below. Preparation of inocula for biofilm and planktonic assays was performed as
390 previously described (26). Bacterial strains used are listed in **Table 2**. Where appropriate,
391 strains harbouring pMSP3535 plasmids were selected using 100 ug/mL erythromycin (Sigma
392 Aldrich, USA) and induction of gene expression was performed using 5 ug/mL nisin from
393 *Lactococcus lactis* (Sigma Aldrich, USA). BHI was supplied by Becton, Dickinson and
394 Company, Franklin Lakes, NJ. TSB and agar was supplied by Oxoid Inc., Ontario, Canada.
395 Metals were filtered sterilized and supplemented during medium preparation in autoclaved
396 TSBG media. For experiments using ferric chloride only, metal is supplemented in TSBG
397 media and autoclaved together. Magnesium chloride anhydrous ≥98%, copper chloride

398 dihydrate ≥99%, ferric chloride anhydrous ≥99% and heme ≥90% were supplied by Sigma
399 Aldrich, St Louis, MO, USA. Manganese chloride tetrahydrate and zinc chloride were
400 supplied by Merck Millipore, Singapore.

401

402 **Protein homology determination.** *E. faecalis* OG1RF MntE (GenBank: AEA93276.1)
403 amino acid sequence (389 amino acids) was queried against the non-redundant GenBank
404 CDS including *Streptococcus pneumoniae*, *Bacillus subtilis* and *Escherichia coli* taxonomy
405 using the NCBI blastp online tool.

406

407 **General cloning techniques.** Nucleotide sequence of *mntE* is obtained from the *E. faecalis*
408 OG1RF genome via BioCyc (66). The Wizard genome DNA purification kit (Promega Corp.,
409 Madison, WI) was used for isolation of bacterial genomic DNA (gDNA), and Monarch®
410 Plasmid miniprep Kit (New England BioLabs, Ipswich, MA) was used for purification of
411 plasmid for gene expression and construction of complement mutant. The Monarch® DNA
412 Gel Extraction Kit (New England BioLabs, Ipswich, MA) was used to isolate PCR products
413 during PCR. In-Fusion HD Cloning Kit (TaKara Bio, USA) was used for fast, directional
414 cloning of DNA fragments into expression vector. All plasmids used in the study are listed in
415 **Table S2.** T4 DNA ligase and restriction endonucleases were purchased from New England
416 BioLabs (Ipswitch, MA). Colony PCR was performed using Taq DNA polymerase (Thermo
417 Fisher Scientific, Waltham, MA, USA) and PCR of gene of interest for plasmid construction
418 was performed using Phusion DNA polymerase (Thermo Fisher Scientific, Waltham, MA,
419 USA). Ligations were transformed into *E. coli* Dh5 α cells. Plasmids derived in this study
420 were confirmed by sequencing of purified plasmid.

421

422 **Strain construction.** To construct *mntE* complementation plasmid, primers (mntE_F' and
423 mntE_R'; **Table S3**) were designed with BamHI restriction site and SmaI restriction sites
424 flanking the gene of interest, to generate DNA fragments as templates. In-Fusion cloning
425 (Takara Bio USA Inc.) was performed using primers (mntE_F'_Infusion and
426 mntE_R'_Infusion) with at least 15 bp complementary sequence for ligation into the nisin-
427 inducible vector pMSP3535, also digested with the same restriction enzymes.
428 pMSP3535::*mntE* plasmid was generated in *E. coli* Dh5 α , verified by sequencing, and
429 transformed into *E. faecalis* as described previously (37).

430

431 **Biofilm Assay.** Bacterial cultures were normalized as previously described (26), inoculated in
432 TSBG in a 96-well flat bottom transparent microtiter plate (Thermo Scientific, Waltman,
433 MA, USA), and incubated at 37°C under static conditions for 5 days unless specified
434 otherwise. Strains harboring pMSP3535 complementation plasmid was grown in the presence
435 of erythromycin. Adherent biofilm biomass was stained using 0.1% w/v crystal violet
436 (Sigma-Aldrich, St Louis, MO, USA) at 4°C for 30 minutes. The microtiter plate was washed
437 twice with PBS followed by crystal violet solubilization with ethanol:acetone (4:1) for 45
438 minutes at room temperature. Quantification of adherent biofilm biomass was measured by
439 absorbance at OD_{595nm} using a Tecan Infinite 200 PRO spectrophotometer (Tecan Group
440 Ltd., Männedorf, Switzerland).

441

442 **Plate-Assisted Planktonic Growth Assay.** Bacterial cultures were normalized as previously
443 described (26) and further diluted by a dilution factor of 200. Diluted cultures were then
444 inoculated into fresh media at a ratio of 1:25, which is 8 μ L of the inoculum in 200 μ L of
445 media, incubated at 37°C for 18 hours, and absorbance at OD_{600nm} was measured using a

446 Tecan Infinite 200 PRO spectrophotometer (Tecan Group Ltd., Männedorf, Switzerland) at
447 15 minute intervals (with shaking prior to each measurement).

448

449 **Planktonic Growth Kinetic Assay.** Bacterial cultures were normalized as previously
450 described (26) and inoculated into fresh media at a ratio of 1:1000 in 30 mL of media in 50
451 mL conical tubes. The tubes were incubated with shaking for 8 hours at 200 rpm, 37°C. At
452 indicated time intervals, 100 μ L and 1 mL of culture was removed for colony forming units
453 (CFU) enumeration and optical density measurement, respectively.

454

455 **Macrocolony Assay.** Bacterial cultures were normalized as previously described (67) and
456 spotted onto TSBG agar plate at 5 μ L per spot. Agar plates were supplemented with metals
457 where appropriate and incubated for 120 hours at 37°C. Macrocolonies were excised,
458 vortexed and resuspended in 3 mL PBS, and serially diluted for colony forming unit (CFU)
459 enumeration. 5 μ L of dilution from each well was spotted onto the agar plates and incubated
460 at 37°C overnight for subsequent calculation of CFU/mL.

461

462 **Quantitative Real time PCR (qRT-PCR) and RNA sequencing.** Biofilms were grown in a
463 6-well plate for 24 hours at 37°C under static conditions. Post incubation, spent media was
464 removed and biofilms were suspended in PBS prior being dislodged using cell scraper.
465 Biofilm cultures were centrifuged at 14,000 rpm for 2 minutes at room temperature to remove
466 supernatant. Biofilm cell pellet was incubated with lysozyme from chicken egg white
467 (10mg/ml) (Sigma Aldrich, USA) for 30 minutes at 37°C, and centrifuged at 14,000 rpm for 2
468 minutes at room temperature to remove supernatant prior to cell lysis. RNA extraction was
469 performed in a Purifier® filtered PCR enclosure using the PureLink™ RNA mini kit
470 (Invitrogen, USA) according to the manufacturer's instructions. RNA purification and

471 removal of DNA was performed using TURBO DNA-free™ kit (Thermo Fisher, USA) and
472 Agencourt® RNAClean® XP Kit (Beckman Coulter, USA). Measurement of RNA yield and
473 quality was performed using Qubit® RNA HS assay kit (Thermo Fisher, USA) and RNA
474 ScreenTape System and 2200 TapeStation (Agilent, USA). Synthesis of cDNA was
475 performed using SuperScript III First-strand (Invitrogen, USA). Quantitative real-time PCR
476 using cDNA was performed using KAPA SYBR fast qPCR master mix kit (Sigma Aldrich,
477 USA) and Applied Biosystems StepOne Plus Real-Time PCR system. The expression of
478 *ebpC*, *ebpR*, *mntE* and *gyrA* were measured using primer pairs listed in **Table 3**. For each
479 primer set, a standard curve was established using genomic DNA from *E. faecalis* OG1RF.
480 Normalized amount of cDNA were used to determine relative fold change in gene expression
481 as compared to *E. faecalis* OG1RF biofilm grown in TSBG. For RNA sequencing, ribosomal
482 RNA depletion was performed after RNA purification using Ribo-Zero™ rRNA removal kit
483 (Illumina, USA). cDNA library synthesis was performed using NEBNext RNA First-strand
484 and NEBNext Ultra directional RNA Second-strand synthesis module (New England BioLab,
485 US). Transcriptome library preparation was performed using 300bp paired end illumina
486 sequencing.

487
488 **Mouse Gastrointestinal Tract (GI) Colonization Model.** Six week old male C57BL/6NTac
489 mice were administered ampicillin (VWR, USA) in their drinking water (1 g/L) for 5 days as
490 previously described (62, 68). Mice were then given one day of recovery from antibiotic
491 treatment prior to administration of approximately $1-5 \times 10^8$ CFU/ml *E. faecalis* (OD_{600nm}
492 0.5) in the drinking water for 3 days as previously described (69). Before and after infection,
493 mice were monitored for signs of disease and weight loss. All animal experiments were
494 approved and performed in compliance with the Nanyang Technological University
495 Institutional Animal Care and Use Committee (IACUC). At the indicated timepoints, the

496 small intestine, colon, and cecum were harvested. Tissue samples were homogenised in PBS,
497 serial diluted in PBS, and spot-plated on BHI agar with 10 mg/L colistin, 10 mg/L nalidixic
498 acid, 100 mg/L rifampicin, 25 mg/L fusidic acid for CFU enumeration. All antibiotics were
499 obtained from Sigma Aldrich, USA.

500

501 **Statistical analyses.** Data from multiple experiments were pooled, and appropriate statistical
502 tests applied, as indicated in the respective figure legends. Statistical analyses were
503 performed with GraphPad Prism 6 software (GraphPad Software, San Diego, CA). An
504 adjusted P value of <0.05 was considered statistically significant.

505

506 **Supplementary methods** are provided for supplementary experiments.

507

508 **Statement of Contribution**

509 L.N.L and K.A.K conceived of and designed the study, analyzed the data, and wrote the
510 manuscript. L.N.L performed all of the experiments. J.J.W assisted with animal experiments
511 and K.K.L.C analyzed the RNA sequencing data. All authors edited and approved the final
512 manuscript.

513

514 **Acknowledgments**

515 We are grateful to Jenny Dale and Gary Dunny for supplying us with *E. faecalis* OG1RF
516 transposon mutants used in this study. We are also thankful to Jose Lemos for critical review
517 of this manuscript. This work was supported by the National Research Foundation and
518 Ministry of Education Singapore under its Research Centre of Excellence Programme and by
519 the Ministry of Education Singapore under its Tier 2 programme (MOE2014-T2-2-124).

520

521 **References**

522

- 523 1. Juttukonda LJ, Skaar EP. 2015. Manganese homeostasis and utilization in pathogenic bacteria. Mol Microbiol 97:216-28.
- 524 2. Papp-Wallace KM, Maguire ME. 2006. Manganese transport and the role of manganese in virulence. Annu Rev Microbiol 60:187-209.
- 525 3. Kelliher JL, Kehl-Fie TE. 2016. Competition for Manganese at the Host-Pathogen Interface. Prog Mol Biol Transl Sci 142:1-25.
- 526 4. Lopez CA, Skaar EP. The Impact of Dietary Transition Metals on Host-Bacterial Interactions.
- 527 5. Lisher JP, Giedroc DP. 2013. Manganese acquisition and homeostasis at the host-pathogen interface. Front Cell Infect Microbiol 3:91.
- 528 6. Morey JR, McDevitt CA, Kehl-Fie TE. 2015. Host-imposed manganese starvation of invading pathogens: two routes to the same destination. Biometals : an international journal on the role of metal ions in biology, biochemistry, and medicine 28:509-519.
- 529 7. Colomer-Winter C, Flores-Mireles AL, Baker SP, Frank KL, Lynch AJL, Hultgren SJ, Kitten T, Lemos JA. 2018. Manganese acquisition is essential for virulence of *Enterococcus faecalis*. PLOS Pathogens 14:e1007102.
- 530 8. Zeinert R, Martinez E, Schmitz J, Senn K, Usman B, Anantharaman V, Aravind L, Waters LS. 2018. Structure-function analysis of manganese exporter proteins across bacteria. J Bio Chem 293(15):5715-5730.
- 531 9. Rosch JW, Gao G, Ridout G, Wang YD, Tuomanen EI. 2009. Role of the manganese efflux system mntE for signalling and pathogenesis in *Streptococcus pneumoniae*. Mol Microbiol 72:12-25.
- 532 10. Turner AG, Ong C-IY, Gillen CM, Davies MR, West NP, McEwan AG, Walker MJ. 2015. Manganese Homeostasis in Group A *Streptococcus* Is Critical for Resistance to Oxidative Stress and Virulence. mBio 6:e00278-15.
- 533 11. Turner AGA-Ohoo, Djoko KY, Ong CY, Barnett TC, Walker MJ, McEwan AGA-Ohoo. 2019. Group A *Streptococcus* co-ordinates manganese import and iron efflux in response to hydrogen peroxide stress. Biochem J 476(3):595-611.
- 534 12. Xu J, Zheng C, Cao M, Zeng T, Zhao X, Shi G, Chen H, Bei W. 2017. The manganese efflux system MntE contributes to the virulence of *Streptococcus suis* serotype 2. Microb Pathog 110:23-30.
- 535 13. Li C, Tao J Fau - Mao D, Mao D Fau - He C, He C. 2011. A novel manganese efflux system, YebN, is required for virulence by *Xanthomonas oryzae* pv. *oryzae*. PLoS One 6(7):e21983.
- 536 14. Sun H, Xu G Fau - Zhan H, Zhan H Fau - Chen H, Chen H Fau - Sun Z, Sun Z Fau - Tian B, Tian B Fau - Hua Y, Hua Y. 2010. Identification and evaluation of the role of the manganese efflux protein in *Deinococcus radiodurans*. BMC Microbiol 10:319.
- 537 15. Cubillas C, Vinuesa P Fau - Tabche ML, Tabche MI Fau - Davalos A, Davalos A Fau - Vazquez A, Vazquez A Fau - Hernandez-Lucas I, Hernandez-Lucas I Fau - Romero D, Romero D Fau - Garcia-de los Santos A, Garcia-de los Santos A. 2014. The cation diffusion facilitator protein EmfA of *Rhizobium etli* belongs to a novel subfamily of Mn(2+)/Fe(2+) transporters conserved in alpha-proteobacteria. Metallomics 6(10):1808-15.
- 538 16. Waters LS, Sandoval M, Storz G. 2011. The *Escherichia coli* MntR miniregulon includes genes encoding a small protein and an efflux pump required for manganese homeostasis. J Bacteriol 193:5887-97.
- 539 17. Veyrier FJ, Boneca IG, Cellier MF, Taha M-K. 2011. A Novel Metal Transporter Mediating Manganese Export (MntX) Regulates the Mn to Fe Intracellular Ratio and *Neisseria meningitidis* Virulence. PLOS Pathogens 7:e1002261.

568 18. Martin JE, Waters LS, Storz G, Imlay JA. 2015. The *Escherichia coli* small protein MntS and
569 exporter MntP optimize the intracellular concentration of manganese. *PLoS Genet*
570 11:e1004977.

571 19. Anton A, Große C, Reißmann J, Pribyl T, Nies DH. 1999. CzcD Is a Heavy Metal Ion Transporter
572 Involved in Regulation of Heavy Metal Resistance in *Ralstonia* sp. Strain CH34. *J Bacteriol*
573 181:6876-6881.

574 20. Kambe T, Yamaguchi-Iwai Y, Sasaki R, Nagao M. 2004. Overview of mammalian zinc
575 transporters. *Cell Mol Life Sci* 61:49-68.

576 21. Nies DH. 2003. Efflux-mediated heavy metal resistance in prokaryotes. *FEMS Microbiol Rev*
577 27:313-39.

578 22. Grass G, Otto M, Fricke B, Haney CJ, Rensing C, Nies DH, Munkelt D. 2005. FieF (YiiP) from
579 *Escherichia coli* mediates decreased cellular accumulation of iron and relieves iron stress. *Arch*
580 *Microbiol* 183:9-18.

581 23. Moore CM, Helmann JD. 2005. Metal ion homeostasis in *Bacillus subtilis*. *Curr Opin Microbiol*
582 8:188-95.

583 24. Martin JE, Lisher JP, Winkler ME, Giedroc DP. 2017. Perturbation of manganese metabolism
584 disrupts cell division in *Streptococcus pneumoniae*. *Molecular microbiology* 104:334-348.

585 25. Grunenwald CM, Choby JA-O, Juttukonda LJ, Beavers WN, Weiss A, Torres VJ, Skaar EP.
586 Manganese Detoxification by MntE Is Critical for Resistance to Oxidative Stress and Virulence
587 of *Staphylococcus aureus*. LID - e02915-18 [pii] LID - 10.1128/mBio.02915-18 [doi].

588 26. Keogh D, Lam LN, Doyle LE, Matysik A, Pavagadhi S, Umashankar S, Low PM, Dale JL, Song Y,
589 Ng SP, Boothroyd CB, Dunny GM, Swarup S, Williams RBH, Marsili E, Kline KA. 2018.
590 Extracellular Electron Transfer Powers *Enterococcus faecalis* Biofilm Metabolism. *mBio* 9.

591 27. Vebo HC, Snipen L, Nes IF, Brede DA. 2009. The transcriptome of the nosocomial pathogen
592 *Enterococcus faecalis* V583 reveals adaptive responses to growth in blood. *PLoS ONE* 4:e7660.

593 28. Lopez G, Latorre M, Reyes-Jara A, Cambiazo V, Gonzalez M. 2012. Transcriptomic response of
594 *Enterococcus faecalis* to iron excess. *Biometals* 25:737-47.

595 29. Abrantes MC, Lopes Mde F, Kok J. 2011. Impact of manganese, copper and zinc ions on the
596 transcriptome of the nosocomial pathogen *Enterococcus faecalis* V583. *PLoS One* 6:e26519.

597 30. Kolaj-Robin O, Russell D, Hayes KA, Pembroke JT, Soulimane T. 2015. Cation Diffusion
598 Facilitator family: Structure and function. *FEBS Lett* 589:1283-95.

599 31. Huang X, Shin JH, Pinochet-Barros A, Su TT, Helmann JD. 2017. *Bacillus subtilis* MntR
600 coordinates the transcriptional regulation of manganese uptake and efflux systems. *Mol*
601 *Microbiol* 103:253-268.

602 32. Zogzas CE, Aschner M, Mukhopadhyay S. 2016. Structural Elements in the Transmembrane
603 and Cytoplasmic Domains of the Metal Transporter SLC30A10 Are Required for Its Manganese
604 Efflux Activity. *The Journal of biological chemistry* 291:15940-15957.

605 33. Mäser P, Thomine S Fau - Schroeder JI, Schroeder JI Fau - Ward JM, Ward Jm Fau - Hirschi K,
606 Hirschi K Fau - Sze H, Sze H Fau - Talke IN, Talke In Fau - Amtmann A, Amtmann A Fau -
607 Maathuis FJ, Maathuis Fj Fau - Sanders D, Sanders D Fau - Harper JF, Harper Jf Fau - Tchieu J,
608 Tchieu J Fau - Gribskov M, Gribskov M Fau - Persans MW, Persans Mw Fau - Salt DE, Salt De
609 Fau - Kim SA, Kim Sa Fau - Guerinot ML, Guerinot ML. 2001. Phylogenetic relationships within
610 cation transporter families of *Arabidopsis*. *Plant Physiol* 126(4):1646-1667.

611 34. Montanini B, Blaudez D Fau - Jeandroz S, Jeandroz S Fau - Sanders D, Sanders D Fau - Chalot
612 M, Chalot M. 2007. Phylogenetic and functional analysis of the Cation Diffusion Facilitator
613 (CDF) family: improved signature and prediction of substrate specificity. *BMC Genomics* 8:107.

614 35. Hohle TH, O'Brian MR. 2014. Magnesium-dependent processes are targets of bacterial
615 manganese toxicity. *Molecular microbiology* 93:736-747.

616 36. Nallapareddy SR, Singh KV, Sillanpaa J, Garsin DA, Hook M, Erlandsen SL, Murray BE. 2006.
617 Endocarditis and biofilm-associated pili of *Enterococcus faecalis*. *J Clin Invest* 116:2799-807.

618 37. Nielsen HV, Guiton PS, Kline KA, Port GC, Pinkner JS, Neiers F, Normark S, Henriques-Normark
619 B, Caparon MG, Hultgren SJ. 2012. The Metal Ion-Dependent Adhesion Site Motif of the
620 Enterococcus faecalis EbpA Pilin Mediates Pilus Function in Catheter-Associated Urinary Tract
621 Infection. *mBio* 3:e00177-12.

622 38. Lam LN, Wong JJ, Matysik A, Paxman JJ, Chong KKL, Low PM, Chua ZS, Heras B, Marsili E, Kline
623 KA. 2019. Sortase-assembled pili promote extracellular electron transfer and iron acquisition
624 in Enterococcus faecalis biofilm. *bioRxiv* doi:10.1101/601666:601666.

625 39. Li C, Tao J, Mao D, He C. 2011. A Novel Manganese Efflux System, YebN, Is Required for
626 Virulence by *Xanthomonas oryzae* pv. *oryzae*. *PLOS ONE* 6:e21983.

627 40. Groisman EA, Hollands K Fau - Kriner MA, Kriner Ma Fau - Lee E-J, Lee Ej Fau - Park S-Y, Park
628 Sy Fau - Pontes MH, Pontes MH. 2014. Bacterial Mg²⁺ homeostasis, transport, and virulence. *Annu Rev Genetics* 47:625-646.

629 41. Turner AG, Ong CL, Gillen CM, Davies MR, West NP, McEwan AG, Walker MJ. 2015. Manganese
630 homeostasis in group A Streptococcus is critical for resistance to oxidative stress and
631 virulence. *mBio* 6(2):e00278-15.

632 42. Jakubovics NS, Valentine RA. 2009. A new direction for manganese homeostasis in bacteria:
633 identification of a novel efflux system in *Streptococcus pneumoniae*. *Mol Microbiol* 72(1):1-4.

634 43. Grunenwald CM, Choby JA-O, Juttukonda LJ, Beavers WN, Weiss A, Torres VJ, Skaar EP. 2019.
635 Manganese Detoxification by MntE Is Critical for Resistance to Oxidative Stress and Virulence
636 of *Staphylococcus aureus*. LID - e02915-18 LID - 10.1128/mBio.02915-18 [doi]. *mBio*
637 10(1):e02915-18.

638 44. Sillanpaa J, Chang C S, Singh KV, Montealegre MC NS, Harvey BR, Ton-That H, Murray BE. 2013.
639 Contribution of individual Ebp Pilus subunits of *Enterococcus faecalis* OG1RF to pilus
640 biogenesis, biofilm formation and urinary tract infection. *PLoS One* 8(7):e68813.

641 45. Singh KV, Nallapareddy Sr Fau - Murray BE, Murray BE. 2007. Importance of the ebp
642 (endocarditis- and biofilm-associated pilus) locus in the pathogenesis of *Enterococcus faecalis*
643 ascending urinary tract infection. *J Infect Dis* 195(11):1671-7.

644 46. Afonina I, Lim XN, Tan R, Kline KA-O. 2018. Planktonic Interference and Biofilm Alliance
645 between Aggregation Substance and Endocarditis- and Biofilm-Associated Pili in *Enterococcus*
646 *faecalis*. LID - e00361-18 LID - 10.1128/JB.00361-18 [doi]. *J Bacteriol* 200(24):e00361-18.

647 47. Banla LI, Pickrum AM, Hayward M, Kristich CJ, Salzman NA-O. 2019. Sortase-Dependent
648 Proteins Promote Gastrointestinal Colonization by Enterococci. LID - e00853-18 [pii] LID -
649 10.1128/IAI.00853-18 [doi]. *Infect Immun* 87(5):e00853-18.

650 48. Nikaido H. 2003. Molecular basis of bacterial outer membrane permeability revisited.
651 *Microbiol Mol Biol Rev* 67:593-656.

652 49. Groisman EA, Hollands K, Kriner MA, Lee E-J, Park S-Y, Pontes MH. 2013. Bacterial Mg²⁺
653 homeostasis, transport, and virulence. *Annual review of genetics* 47:625-646.

654 50. Pi H, Wendel BM, Helmann JD. 2020. Dysregulation of magnesium transport protects *Bacillus*
655 *subtilis* against manganese and cobalt intoxication. *Journal of Bacteriology*
656 doi:10.1128/JB.00711-19:JB.00711-19.

657 51. Magnani D, Solioz M. 2005. Copper chaperone cycling and degradation in the regulation of
658 the cop operon of *Enterococcus hirae*. *Biometals* 18:407-12.

659 52. Solioz M, Stoyanov JV. 2003. Copper homeostasis in *Enterococcus hirae*. *FEMS Microbiol Rev*
660 27:183-95.

661 53. Troxell B, Hassan HM. 2013. Transcriptional regulation by Ferric Uptake Regulator (Fur) in
662 pathogenic bacteria. *Front Cell Infect Microbiol* 3:59.

663 54. Seo SW, Kim D, Latif H, O'Brien EJ, Szubin R, Palsson BO. 2014. Deciphering Fur transcriptional
664 regulatory network highlights its complex role beyond iron metabolism in *Escherichia coli*.
665 *Nature communications* 5:4910-4910.

667 55. Horsburgh MJ, Clements MO, Crossley H, Ingham E, Foster SJ. 2001. PerR controls oxidative
668 stress resistance and iron storage proteins and is required for virulence in *Staphylococcus*
669 *aureus*. *Infect Immun* 69:3744-54.

670 56. Horsburgh MJ, Wharton SJ, Cox AG, Ingham E, Peacock S, Foster SJ. 2002. MntR modulates
671 expression of the PerR regulon and superoxide resistance in *Staphylococcus aureus* through
672 control of manganese uptake. *Mol Microbiol* 44:1269-86.

673 57. Bizzini A, Zhao C, Budin-Verneuil A, Sauvageot N, Giard J-C, Auffray Y, Hartke A. 2010. Glycerol
674 is metabolized in a complex and strain-dependent manner in *Enterococcus faecalis*. *Journal of*
675 *bacteriology* 192:779-785.

676 58. Latorre M, Quenti D, Travisany D, Singh KV, Murray BE, Maass A, Cambiazo V. 2018. The Role
677 of Fur in the Transcriptional and Iron Homeostatic Response of *Enterococcus faecalis*. *Front*
678 *Microbiol* 9:1580.

679 59. Crotti C, Farnetti E. 2015. Selective oxidation of glycerol catalyzed by iron complexes. *Journal*
680 *of Molecular Catalysis A: Chemical* 396:353-359.

681 60. Zughaiher SM, Cornelis P. 2018. Editorial: Role of Iron in Bacterial Pathogenesis. *Frontiers in*
682 *cellular and infection microbiology* 8:344-344.

683 61. Taur Y, Xavier JB, Lipuma L, Ubeda C, Goldberg J, Gobourne A, Lee YJ, Dubin KA, Socci ND, Viale
684 A, Perales MA, Jenq RR, van den Brink MR, Pamer EG. 2012. Intestinal domination and the risk
685 of bacteremia in patients undergoing allogeneic hematopoietic stem cell transplantation. *Clin*
686 *Infect Dis* 55:905-14.

687 62. Ubeda C, Taur Y, Jenq RR, Equinda MJ, Son T, Samstein M, Viale A, Socci ND, van den Brink
688 MR, Kamboj M, Pamer EG. 2010. Vancomycin-resistant *Enterococcus* domination of intestinal
689 microbiota is enabled by antibiotic treatment in mice and precedes bloodstream invasion in
690 humans. *J Clin Invest* 120:4332-41.

691 63. Donskey CJ, Chowdhry TK, Hecker MT, Hoyen CK, Hanrahan JA, Hujer AM, Hutton-Thomas RA,
692 Whalen CC, Bonomo RA, Rice LB. 2000. Effect of antibiotic therapy on the density of
693 vancomycin-resistant enterococci in the stool of colonized patients. *N Engl J Med* 343:1925-
694 32.

695 64. Axelrad JE, Lebwohl B, Cuaresma E, Cadwell K, Green PHR, Freedberg DE. 2018. Gut
696 colonization with vancomycin-resistant *Enterococcus* and risk for subsequent enteric
697 infection. *Gut Pathogens* 10:28.

698 65. Dubin K, Pamer EG. 2014. Enterococci and their interactions with the intestinal microbiome.
699 *Microbiology spectrum* 5:10.1128/microbiolspec.BAD-0014-2016.

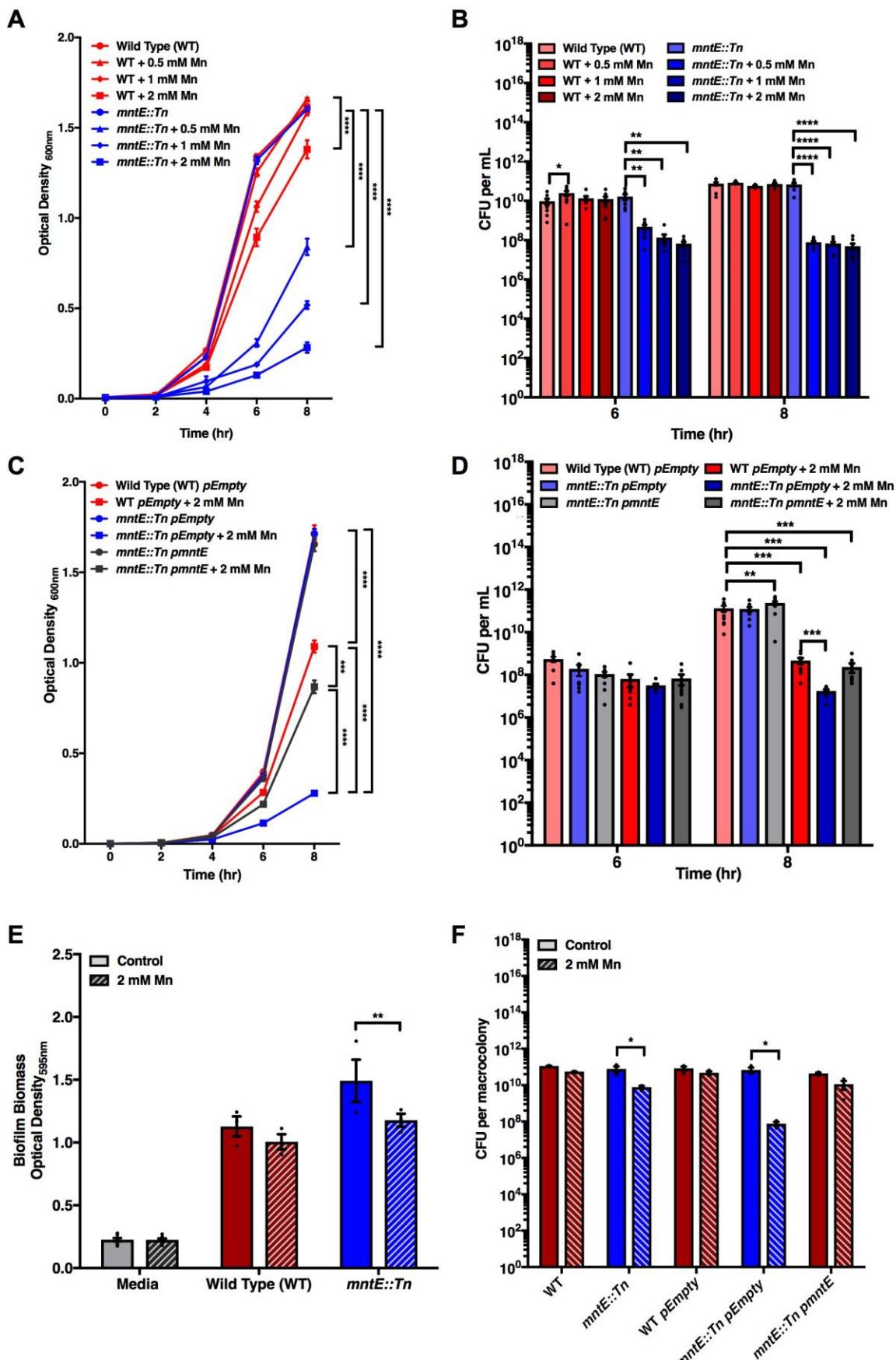
700 66. Karp PD, Billington R, Caspi R, Fulcher CA, Latendresse M, Kothari A, Keseler IM,
701 Krummenacker M, Midford PE, Ong Q, Ong WK, Paley SM, Subhraveti P. 2017. The BioCyc
702 collection of microbial genomes and metabolic pathways. *Brief Bioinform*
703 doi:10.1093/bib/bbx085.

704 67. Keogh D, Tay WH, Ho YY, Dale JL, Chen S, Umashankar S, Williams RBH, Chen SL, Dunny GM,
705 Kline KA. 2016. Enterococcal Metabolite Cues Facilitate Interspecies Niche Modulation and
706 Polymicrobial Infection. *Cell Host Microbe* 20:493-503.

707 68. Caballero S, Kim S, Carter RA, Leiner IM, Susac B, Miller L, Kim GJ, Ling L, Pamer EG. 2017.
708 Cooperating Commensals Restore Colonization Resistance to Vancomycin-Resistant
709 *Enterococcus faecium*. *Cell Host Microbe* 21:592-602.e4.

710 69. Banla IL, Kommineni S, Hayward M, Rodrigues M, Palmer KL, Salzman NH, Kristich CJ. 2017.
711 Modulators of *Enterococcus faecalis* Cell Envelope Integrity and Antimicrobial Resistance
712 Influence Stable Colonization of the Mammalian Gastrointestinal Tract. *Infection and*
713 *immunity* 86:e00381-17.

714 70. Dunny Gm Fau - Brown BL, Brown BI Fau - Clewell DB, Clewell DB. 1978. Induced cell
715 aggregation and mating in *Streptococcus faecalis*: evidence for a bacterial sex pheromone.
716 *Proc Natl Acad Sci U S A* 75(7):3479-3483.


717 71. Kristich CJ, Nguyen VT, Le T, Barnes AM, Grindle S, Dunny GM. 2008. Development and use of
718 an efficient system for random mariner transposon mutagenesis to identify novel genetic
719 determinants of biofilm formation in the core *Enterococcus faecalis* genome. *Appl Environ
720 Microbiol* 74:3377-86.

721 72. Dale JL, Beckman KB, Willett JLE, Nilson JL, Palani NP, Baller JA, Hauge A, Gohl DM, Erickson R,
722 Manias DA, Sadowsky MJ, Dunny GM. 2018. Comprehensive Functional Analysis of the
723 *Enterococcus faecalis* Core Genome Using an Ordered, Sequence-Defined Collection of
724 Insertional Mutations in Strain OG1RF. *mSystems* 3.

725 73. Afonina I, Lim XN, Tan R, Kline KA. 2018. Planktonic Interference and Biofilm Alliance between
726 Aggregation Substance and Endocarditis- and Biofilm-Associated Pili in *Enterococcus faecalis*.
727 *J Bacteriol* 200.

728 74. Bourgogne A, Singh KV, Fox KA, Pflughoef KJ, Murray BE, Garsin DA. 2007. EbpR is important
729 for biofilm formation by activating expression of the endocarditis and biofilm-associated pilus
730 operon (ebpABC) of *Enterococcus faecalis* OG1RF. *J Bacteriol* 189:6490-3.

731

733 **Figure 1. MntE is essential for planktonic and biofilm growth. (A-D)** Optical density
734 measurement of planktonic growth in Mn supplemented media over the course of 8 hrs (A,C)
735 and the corresponding CFU enumeration at 6 hrs and 8 hrs time (B,D). For optical density
736 measurement, statistical analysis was performed at the 8 hr time point using one-way
737 ANOVA with Bonferroni multiple comparison test. For CFU enumerated, statistical analysis
738 was performed using two-way ANOVA with Bonferroni multiple comparison test. Data
739 points represent $n = 3$ experiments, with three independent biological replicates averaged in
740 each experiment. (E) *E. faecalis* biofilm biomass quantification grown for 120 hours using
741 crystal violet staining. (F) CFU enumeration of macrocolony biofilms. For both biofilm
742 biomass quantification and macrocolony enumeration, statistical analysis was performed
743 using two-way ANOVA with Bonferroni multiple comparison test. Data points represent at
744 least $n = 3$ experiments, with three independent biological replicates averaged in each
745 experiment. Error bar represents standard error of the mean (SEM).

746

747

748

749

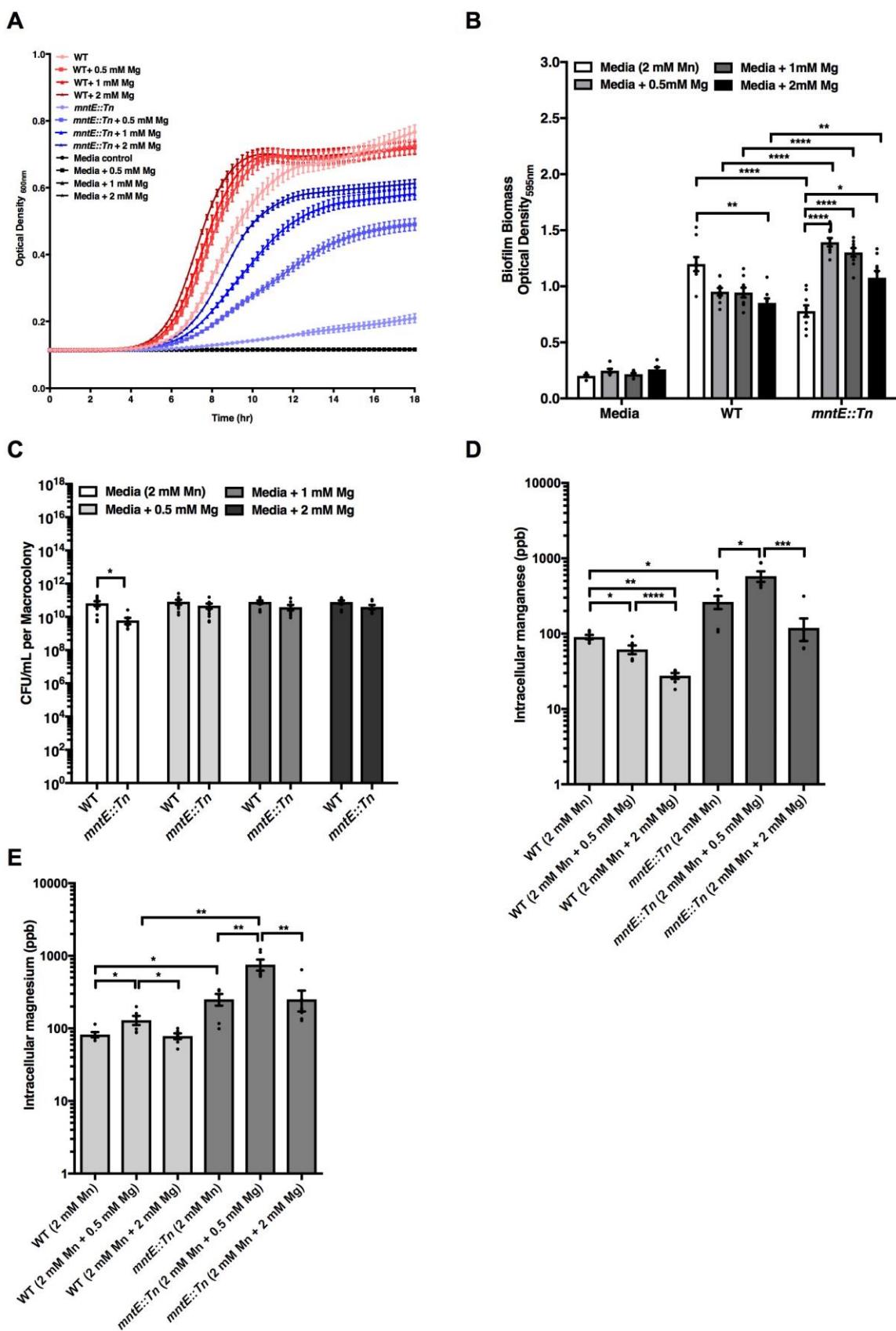
750

751

752

753

754



755

756 **Figure 2. Intracellular manganese, iron, and magnesium content in *E. faecalis* biofilm.**

757 ICP-MS analysis of intracellular metals of (A) 24hr biofilms grown in control media, (B) 2
758 mM Mn supplemented media and (C) 2 mM Fe supplemented media. Data points represent
759 nine independent biological replicates assessed in $n = 3$ experiments. Statistical analysis was
760 performed using two-way ANOVA with Bonferroni multiple comparison test. Error bar
761 represents SEM.

762

764 **Figure 3. Magnesium supplementation rescue manganese mediated growth inhibition.**

765 **(A)** Planktonic growth kinetics. Data points represent $n = 3$ experiments, with three

766 independent biological replicates averaged in each experiment. **(B)** *E. faecalis* biofilm

767 biomass quantification grown for 120 hours using crystal violet staining. **(C)** CFU

768 enumeration of macrocolony biofilms. For both biofilm biomass quantification and

769 macrocolony enumeration, data points represent nine independent biological replicates

770 assessed in $n = 3$ experiments. For both biofilm biomass quantification and macrocolony

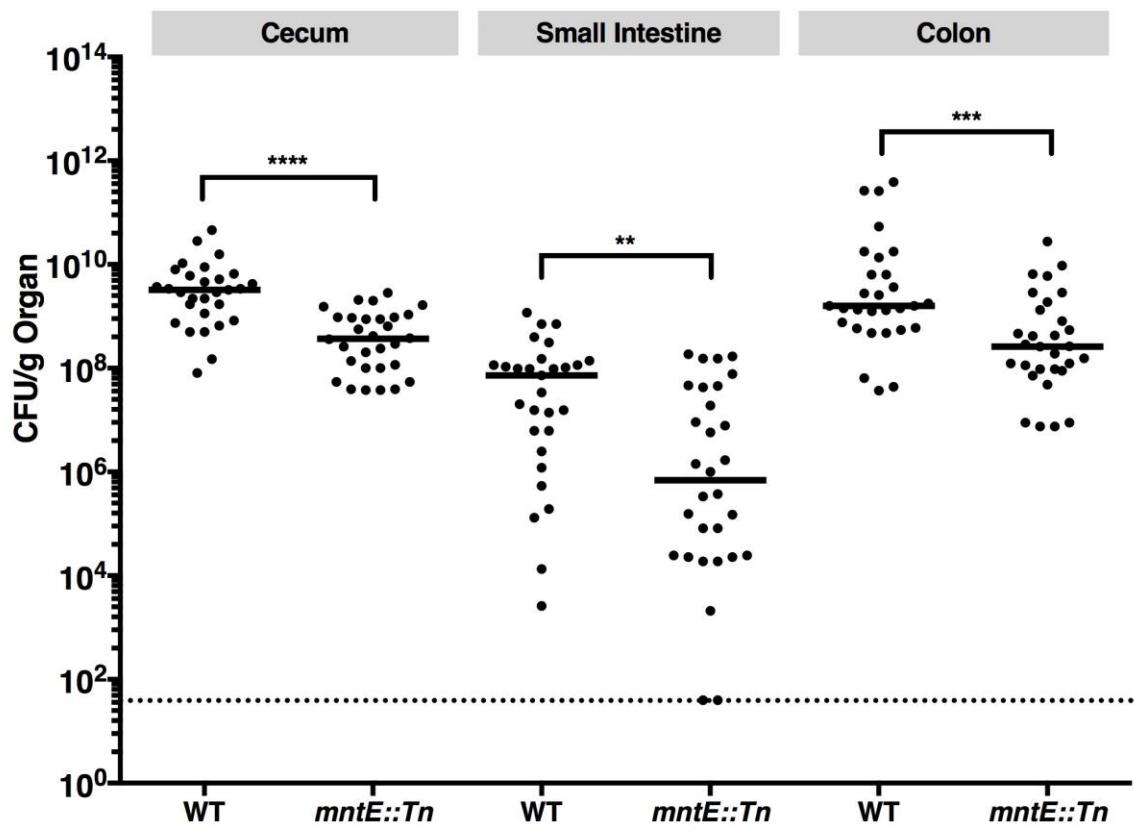
771 CFU enumeration, statistical analysis was performed using unpaired t-test with Welch's

772 correction and two-way ANOVA with Bonferroni multiple comparison test respectively. **(D)**

773 ICP-MS analysis of intracellular manganese, **(E)** ICP-MS analysis of intracellular

774 magnesium. For ICP-MS analysis of intracellular manganese and magnesium, data points

775 represent six independent biological replicates assessed in $n = 2$ experiments. Statistical


776 analysis was performed using one-way ANOVA with Bonferroni multiple comparison test.

777 Error bar represents SEM.

778

779 **Figure 4. *mntE* expression is induced in *E. faecalis* biofilm upon manganese**
780 **supplementation.** qRT-PCR of *E. faecalis* OG1RF biofilm grown in 2 mM manganese. Data
781 points represents $n = 2$ experiments, with three independent biological replicates averaged in
782 each experiment. Statistical analysis is performed using one-way ANOVA with Fisher LSD
783 test. Error bar represents SEM.

784 **Figure 5. MntE is required for colonization in mouse gastrointestinal tract.** Bacterial
785 CFU in GI tissues. Data points represent CFU recovered from each mouse (for WT $n = 30$;
786 for *mntE::Tn* mutant $n = 30$) collected in three independent experiments. Statistical
787 significance was determined by Mann-Whitney test. Black line indicates the median. Dotted
788 line indicates limitation of detection at CFU of 40.

789
790

791

792

793

794

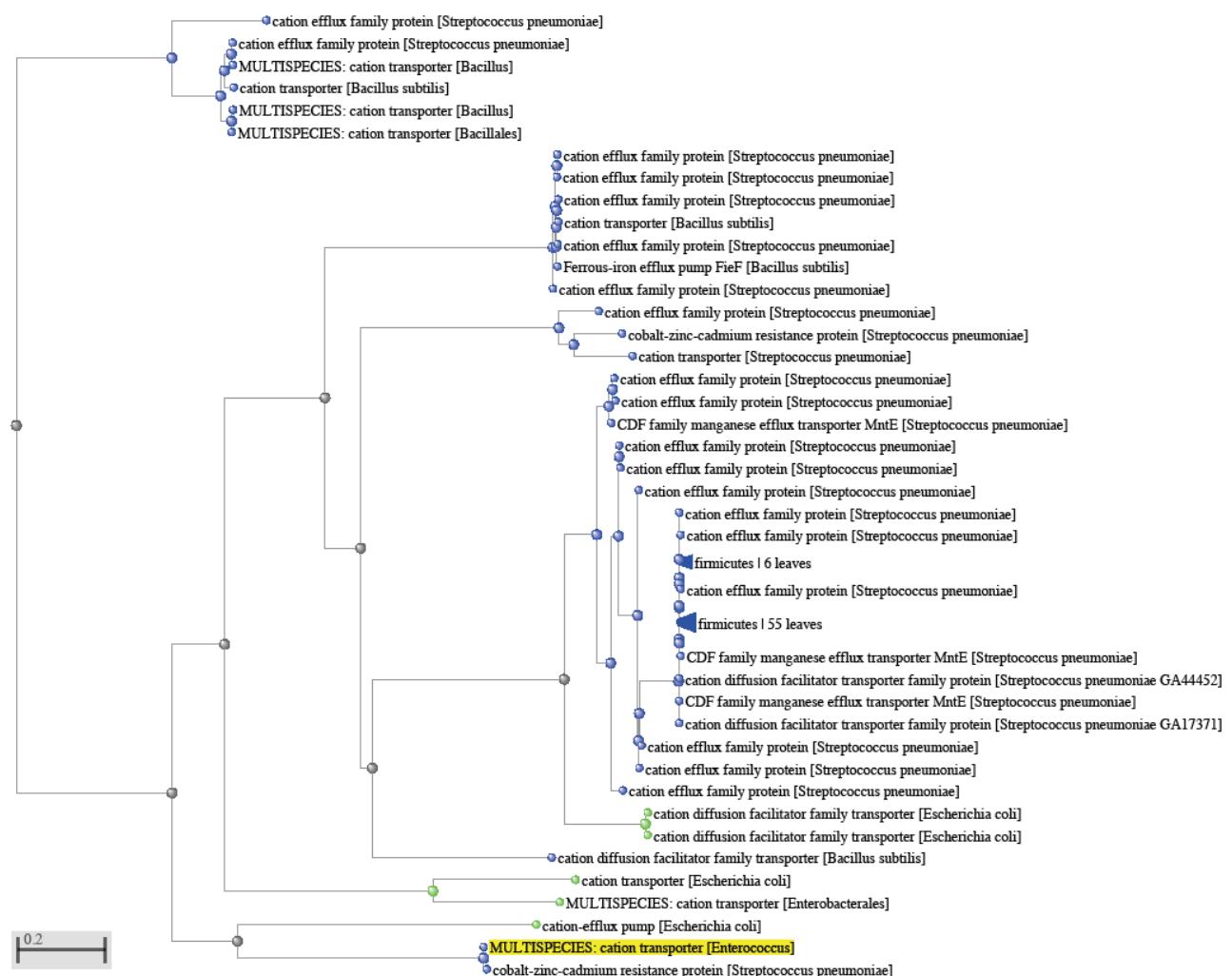
795

796 **Supplementary Materials & Methods**

797 **Oxidant Stress Challenge.** Bacterial cultures were normalized to OD 0.7 as previously
798 described (67), and added at 1:25 ratio to media. Supplementation of menadione or hydrogen
799 peroxide stimulate oxidative stress. Bacterial cultures were allowed to grow for 2 h at 37°C
800 static condition prior to CFU enumeration.

801

802 **Hydrogen Peroxide Quantification.** Overnight bacterial cultures were normalized to OD 0.7
803 as previously described (67), diluted 1:25 in fresh media, and grown for 2 h at 37°C without
804 shaking. After incubation, hydrogen peroxide quantification was performed using ROS-
805 Glo™ H2O2 Assay (Promega, USA) according to manufacturer's instructions.


806

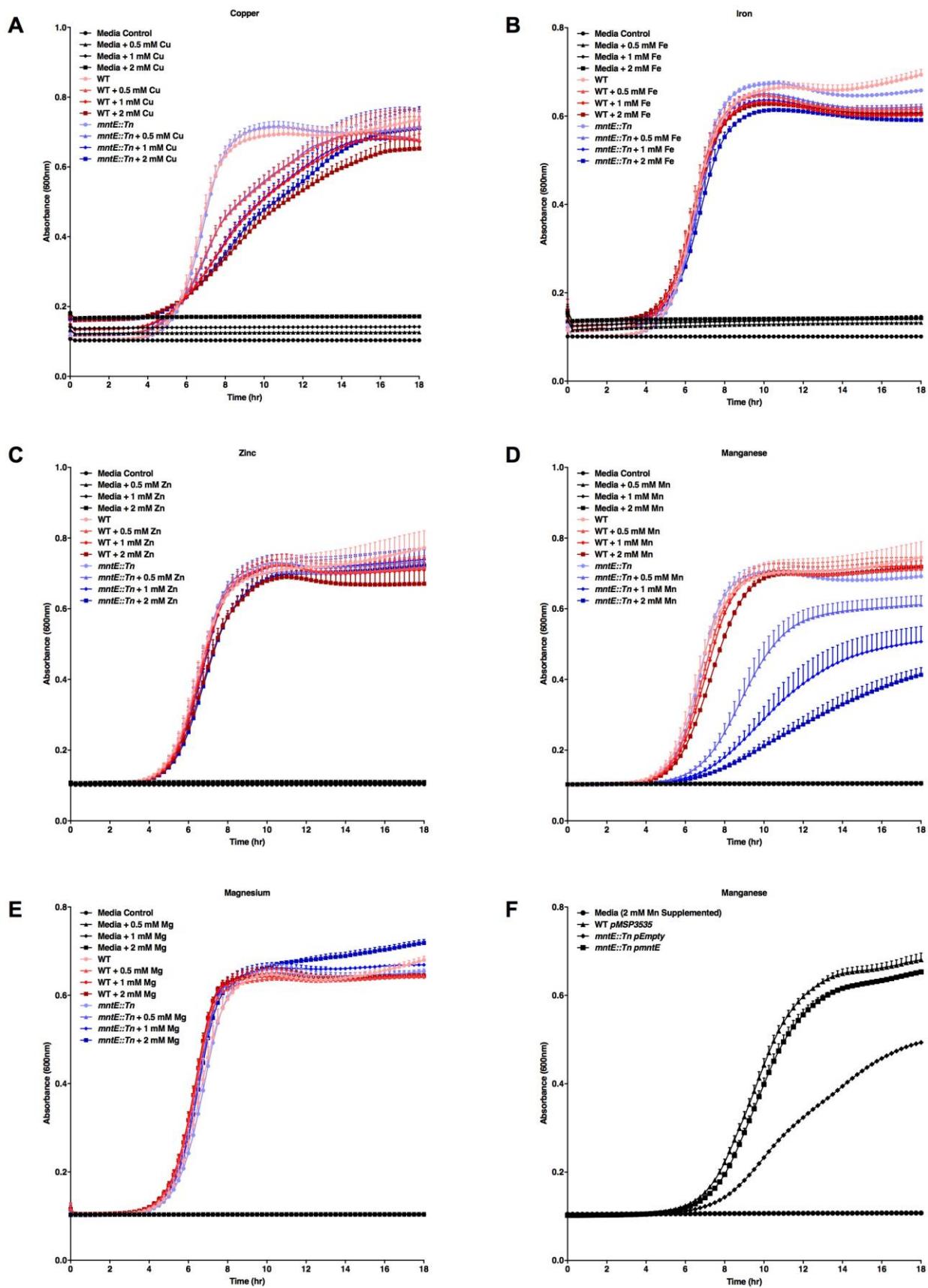
807 **Inductively Coupled Plasma Mass Spectrometry (ICP-MS).** Biofilms are cultured under
808 static condition at 37°C for 24 hrs. After incubation, biofilms are scraped, resuspended in
809 1mL PBS and normalized to OD 1. Normalized biofilms are pelleted at 14,000 rpm for 2
810 minutes, and supernatant was discarded. Preparation of cell pellets for ICP-MS was
811 performed as previously described (26) with minor modifications. Cell pellets are suspended
812 in 300 uL of lysozyme from chicken egg white (20 mg/ml) (Sigma Aldrich, USA)
813 (20mg/mL) for 30 minutes at 37°C, washed with 1 mL PBS and pelleted. At a ratio of 2:1,
814 70% nitric acid (Sigma Aldrich, USA) and 30% hydrogen peroxide (Sigma Aldrich, USA)
815 was added to normalized lysozyme treated biofilm cells and left under room temperature for
816 3 days to allow complete digestion. The digested samples were diluted with 3.4 mL LC-MS
817 grade water and filtered using 0.2 um membrane, prior to analysis using ICP-MS. Analysis of

818 trace metals in samples were performed using ICP-MS model Elan-DRCe, Meinhard
819 Nebulizer model TR-30-C3 (Perkin Elmer; Model: N8122006 (Elan Standard Torch)).

820

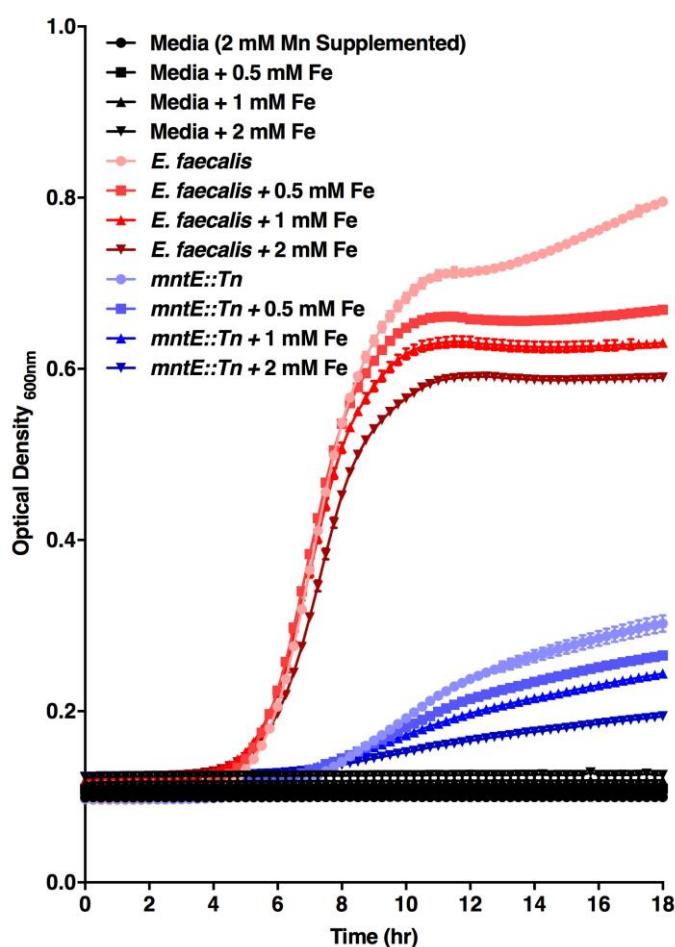
821 **Supplementary Figure Legends**

825


826

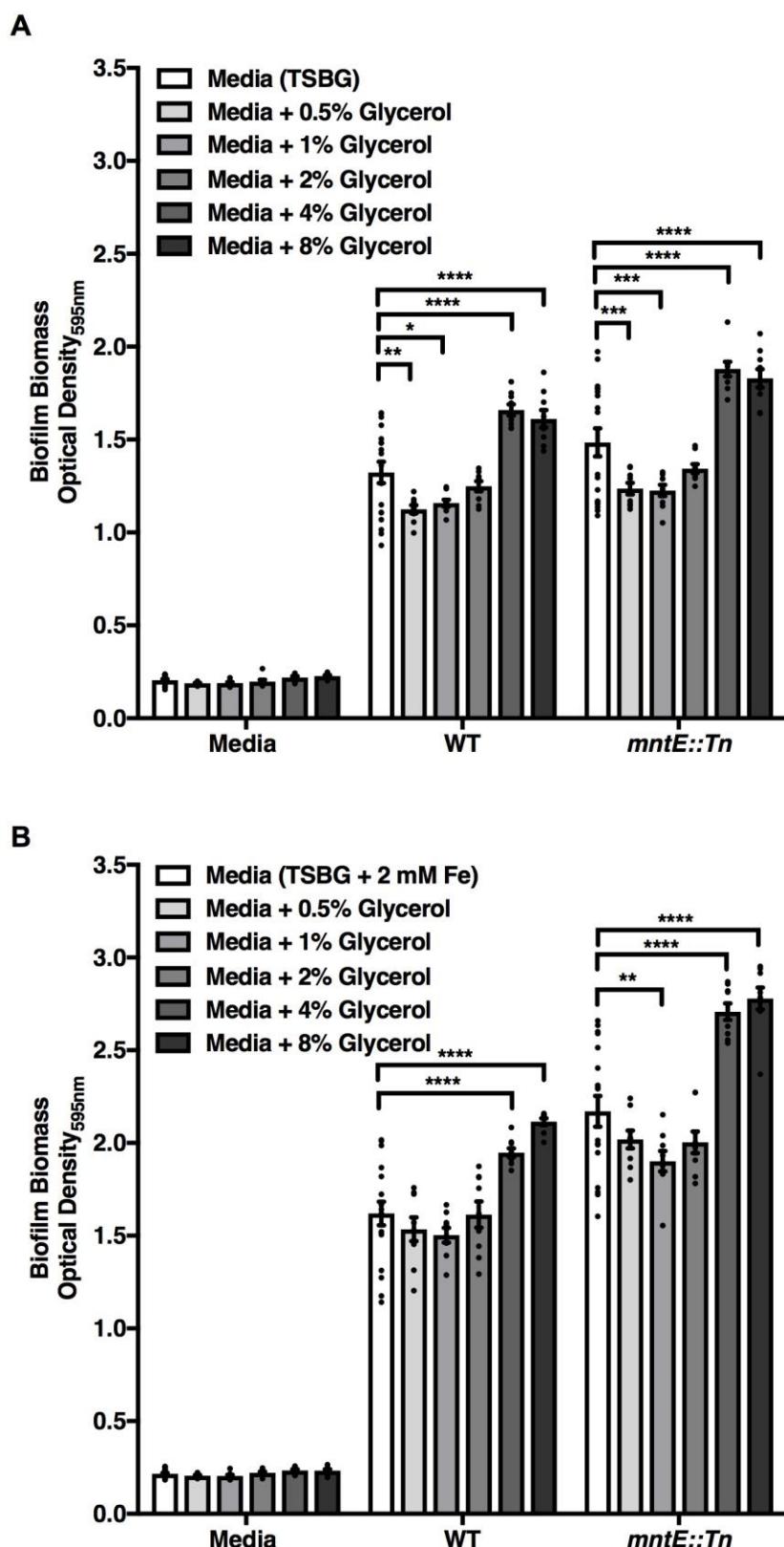
PWL87386.1 [E. coli] CUB54833.1 [B. subtilis] WP_050148316.1 [S. pneumoniae] WP_002386999.1 [E. faecalis]	1 MTDFLIRKFIKDRNN----RESYIISIAGIVCNILISISKPIVGVITNSVSITADAANNLSDASSIVTIAGAKIAS 1 -MDTL-----SN-KEADK----GAIVSILAYIPLSSMRKIIISYITLSSALRAGLNLLTIDIGASLALIIGKLISR 1 MRQSI-----SNLKLAER----GAIISISTYLISAAKDAAGHLHSSSLVADGFNNWSVLDGIVNVALIGIRMA 1 MIQALLQRYEKKIERRKLEKRTAFAFGAGRIGLVSNLFLFVSKFMIGLSSGSVSIMADAINSLSDTISSVLTLVGFYIAG	75 64 66 80
PWL87386.1 [E. coli] CUB54833.1 [B. subtilis] WP_050148316.1 [S. pneumoniae] WP_002386999.1 [E. faecalis]	76 KPVDEDHPFGHGRAEYISAMIVSFFIMGPFELAKSSIVKIFPNPDEVFSVPSLIVLIVLAIPIVWLNLSPYNNKLYKTKGN 65 KRPDPDHPYGHSGRACIASLVAISFMATIVGQAFNQVLAAWVALFSVAIMYCVYLYTTRKIACTR 67 QFADKDRHFGWHKIDELASLTSITIMFYFVFDVLRLDTIQKLSREETVDPILGATLGIISAAIMFYVLYNTRLSKKSNS 81 KPADEKHPYGHFERFYISGMLVSLVITFIGEFLTTSDRILHPESIKVTPILFAVLASIGIKIWQGLFYKKVSAKIDS	155 144 146 160
PWL87386.1 [E. coli] CUB54833.1 [B. subtilis] WP_050148316.1 [S. pneumoniae] WP_002386999.1 [E. faecalis]	156 QNMKATMDQSLNDCCATGATIISLVLVAASFTKIVGIVLIVLIVLAIPIVWLNLSPYNNKLYKTKGN 145 KSLAAAKRNLSDAVLISIGTVVGLVGSQFQMPILDPIIAALIVGLIICKTAWIEFVEASHMILTDG-DPDRMEYADATEA 147 KALKAAAKINLSDAVLTSLGATIAIALLASSNYPVIVDVLVIAIIITFFILKTYDIFISSFSLSDGF-DDRRLDGYQKAIM 161 QALVASAKDSFNDVVTITLAVLISAFIEGVTGLRIGYIGIFLIAAYIIVYGLQIREFINELMGMRPSQTEIDEMKNVLSK	235 223 225 240
PWL87386.1 [E. coli] CUB54833.1 [B. subtilis] WP_050148316.1 [S. pneumoniae] WP_002386999.1 [E. faecalis]	236 EYYIVGVHDLYDGPGKTTIVSAHAEVPADRNIMEIHDVIVNVERRISKEELKI-AIC-IHMDFIVNNDDEVSK--YRNMV 224 IGGVENIVDIPARMG-NQTYVDTIIEVADMVGESICITDNEAMLRKRGFYHARIHVEP--MEKEPIMT----- 226 IPKISKVKSRQRGTYG-SNIYLDTLEMPNPDLSVFSHEIAIDQVESMLERERPDVFTDVBIEFAPPIPEDEILDnnyVKKLL 241 METIVGVHDLIILHNYGSPQTFAVSHIEIDDRWDLNKAHQTIIDAEAKFKEELDV-NLVCHIDFVNLYDPTQQF--VHQT 312 293 304 317	312 293 304 317
PWL87386.1 [E. coli] CUB54833.1 [B. subtilis] WP_050148316.1 [S. pneumoniae] WP_002386999.1 [E. faecalis]	313 A--EIII--NYSSDFSFHDPRMVK--GPSPHTNLLIFDLVTPINCKEQPSLIVKNLRKA--VREKDENLFIVV----- 305 MrEQLIDQgNQLEELLTTDFVYIIRqdGEQMDKEAYKTKREELNSAIRDQITSIQSQTkIICYELDGIIHTSIIwrxrhewq 318 --KKIIR--SFDAKSILVHDIRLVT--HGEEPKILFDLVLPTEKSLSEFELGVEIQRQ--VYEKIGRYKVEI-----	375 384 380
PWL87386.1 [E. coli] CUB54833.1 [B. subtilis] WP_050148316.1 [S. pneumoniae] WP_002386999.1 [E. faecalis]	376 -TVEHSYLK 384 ----- 385 nIFHQETK 394 381 -TDFHTYLLQ 389	375 ----- 384 389

*Red indicate highly conserved aa, blue indicate less conserved aa and grey/dash indicates no conservation. *E. faecalis* putative TM domains are underlined and asterisks indicate putative DxxxD regions.


827

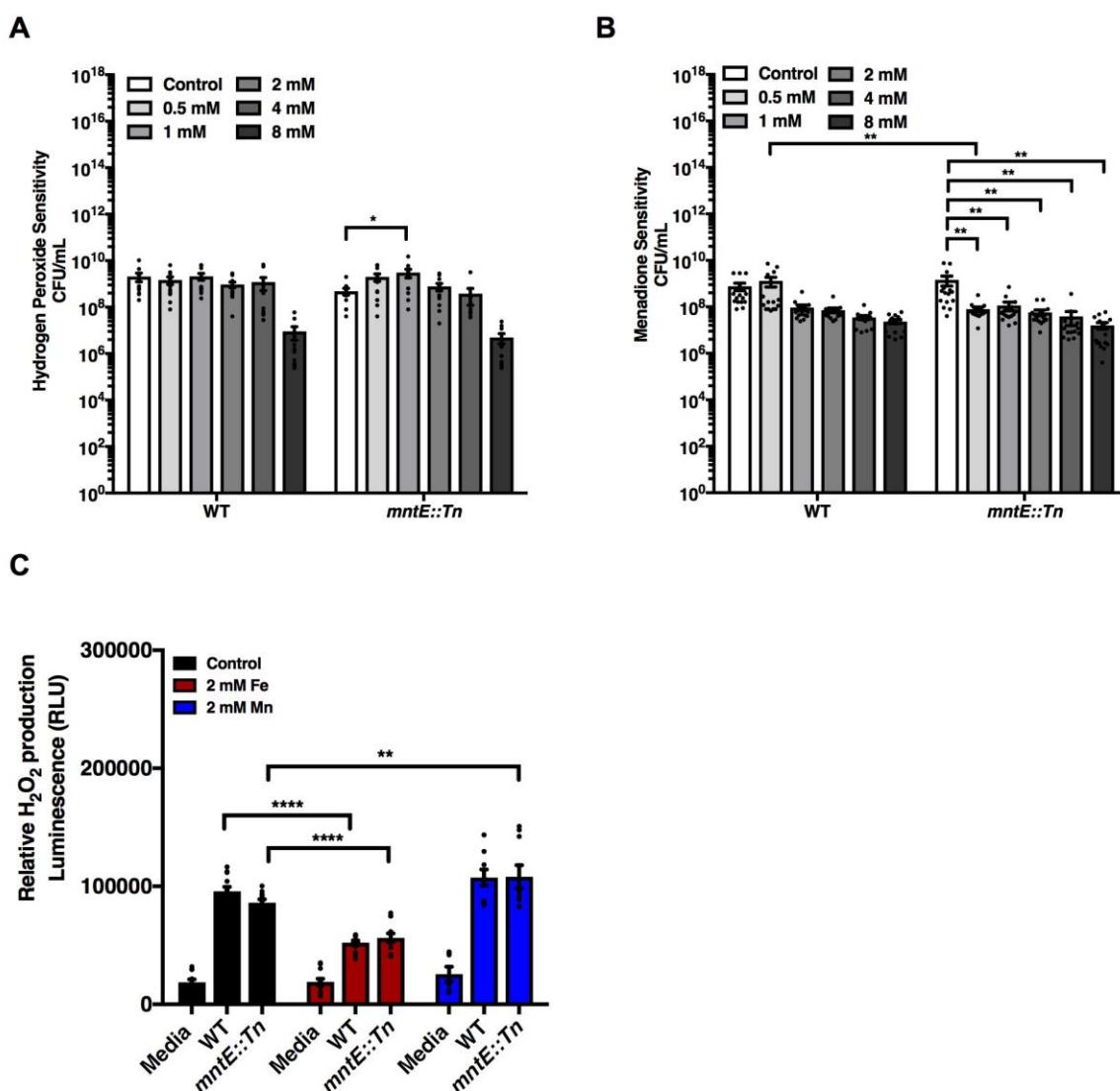
828 **Figure S2. Sequence conservation of *E. faecalis* MntE**

830 **Figure S3. Cation sensitivity of MntE insertional deletion mutant.** Planktonic growth of
831 *E. faecalis* in TSBG and TSBG supplemented with increasing (A) copper, (B) iron, (C) zinc,
832 (D) manganese, (E) magnesium and (F) manganese (complemented strain). Data points
833 represent n =3 experiments, with three independent biological replicates averaged in each
834 experiment.


835

836

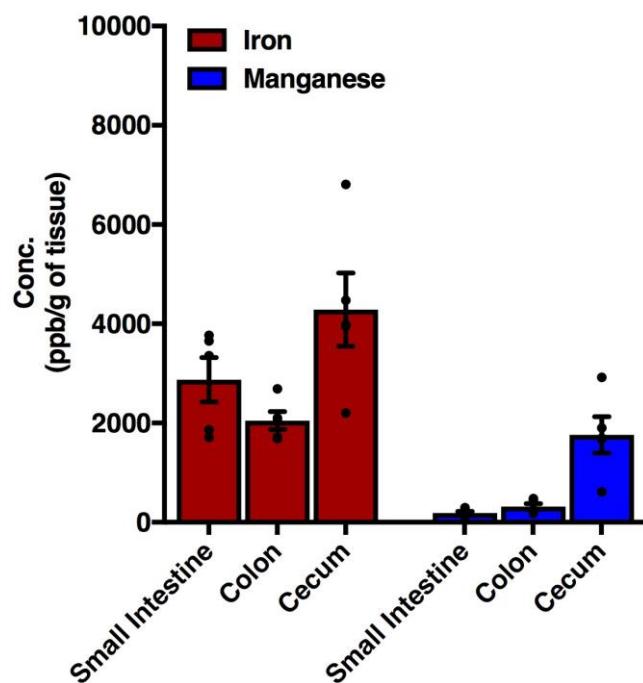
837 **Figure S4. Fe supplementation does not alleviate Mn-mediated growth inhibition.**
838 Planktonic growth of *E. faecalis* in 2 mM Mn supplemented media with increasing iron
839 concentration. Data points represent three independent biological replicates.


840

841

842 **Figure S5. Glycerol supplementation promotes biofilm growth.** Adherence biofilm
843 biomass quantification of 120 hrs *E. faecalis* biofilm grown under glycerol supplementation

844 in both (A) TSBG and (B) TSBG 2 mM Fe supplemented media. Data points represent at
845 least six independent biological replicates assessed in at least $n = 2$ experiments. Statistical
846 analysis was performed using two-way ANOVA with Bonferroni multiple comparison test.
847 Error bar represents SEM.



848

849 **Figure S6. Absence of MntE does not impact oxidative stress tolerance and hydrogen**
850 **peroxide production.** CFU enumeration 2 hrs post exposure to (A) hydrogen peroxide and
851 (B) menadione, and (C) hydrogen peroxide quantification based on arbitrary luminescence
852 readings. Data points represent at least twelve independent biological replicates assessed in at

853 least n = 4 experiments. Statistical analysis was performed using two-way ANOVA with
854 Bonferroni multiple comparison test. Error bar represents SEM.

855

856

857 **Figure S7. Iron and manganese abundance in mouse GI.** ICP-MS analysis of iron and
858 manganese levels from harvested GI tissues. Data points represent tissues harvested from five
859 mice in one experiment.

860

861

862

863

864

865 **Supplementary Table S1. Global transcriptional changes in *mntE*::Tn grown in Fe**

866 **supplemented media compared with wild type.**

<i>Gene Locus</i>	<i>Gene Name</i>	<i>Proposed Function</i>	<i>Log₂FC Expression</i>
<i>OGIRF_11590</i> (<i>OGIRF_RS08155</i> *)	glycerol transporter (<i>glpF2</i>)	Glycerol import	1.386
<i>OGIRF_11591</i> (<i>OGIRF_RS08160</i> *)	alpha-glycerophosphate oxidase (<i>glpO</i>)	Conversion of L-alpha-glycerol-3-P to dihydroxyacetone-P	1.495
<i>OGIRF_11592</i> (<i>OGIRF_RS08165</i> *)	glycerol kinase (<i>glpK</i>)	Conversion of glycerol to L-alpha-glycerol-3-P	1.906

867

868 All genes that were differentially regulated, with p-value of less than 0.05 and false discovery
869 rate (FDR) of less than 0.05 were included. * indicate updated gene locus number.

870

871

872 **Supplementary Table 2. Strains and plasmids used in this study.**

	Strain name	Relevant characteristics	Plasmid made	References
<i>E. faecalis</i> laboratory strain	<i>E. faecalis</i> OG1RF wild type	Laboratory strain, Rif ^R , Fus ^R	-	(70)
<i>E. faecalis</i> transposon mutants	OG1RF <i>mntE</i> ::Tn	Rif ^R , Fus ^R , Cm ^R (Insertional position 5' – 3': 617998)	-	(71, 72)
<i>E. faecalis</i> strains with empty vector	<i>E. faecalis</i> OG1RF wild type	Rif ^R , Fus ^R , Erm ^R	-	(26)
<i>E. faecalis</i> complement strain	OG1RF <i>mntE</i> ::Tn	Rif ^R , Fus ^R , Erm ^R	-	This study
	OG1RF <i>mntE</i> ::Tn	Complement mutation; Rif ^R , Fus ^R , Erm ^R	pMSP3535:: <i>mntE</i>	This study

873

874

875

876

877 **Supplementary Table 3. Primers used in this study.**

	Primer name	Primer sequence (5' → 3')	Restriction sites^a	References
Primers used to generate complement plasmid	mntE_F'	<u>GGATCC</u> ATGATTCAAGCATTGC	BamHI	This study
	mntE_R'	<u>CCCGGG</u> TTATTGTAACAAGTACGT AT	SmaI	This study
	mntE_F'_Infusion	GAATTCTGCAG <u>CCGGGG</u> TAAAA TGATTCAAGCATTGCTTCA	SmaI	This study
	mntE_R'_Infusion	GACTCTGCAT <u>GGATCCCC</u> CTTTAT TGTAAACAAGTACGTATG	BamHI	This study
	gyrA_F'	TGTTCGTCGGGATGTGAGTG		(73, 74)
	gyrA_R'	GGTACGCCTTTTCGATGGC		(73, 74)
Primers used in qRT-PCR	ebpC_F'	CGGTCA <u>ACCGACGAC</u> CAAA		(73)
	ebpC_R'	TGTCACATGCCATCGACTT		(73)
	mntE_F'	ACAGCATT <u>CGGTGCTTT</u> GC		This study
	mntE_R'	ACACTAC <u>CTGAAAGCAAG</u> CCA		This study

878 ^a Restriction sites are underlined in the primer sequence.

879

880

881

882