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Abstract

Background: Cognitive traits demonstrate significant genetic correlations with many psychiatric
disorders and other health-related traits. Many neuropsychiatric and neurodegenerative disorders are
marked by cognitive deficits. Therefore, genome-wide association studies (GWAS) of general cognitive
ability might suggest potential targets for nootropic drug repurposing. Our previous effort to identify
“druggable genes” (i.e., GWAS-identified genes that produce proteins targeted by known small
molecules) was modestly powered due to the small cognitive GWAS sample available at the time. Since
then, two large cognitive GWAS meta-analyses have reported 148 and 205 genome-wide significant loci,
respectively. Additionally, large-scale gene expression databases, derived from post-mortem human
brain, have recently been made available for GWAS annotation. Here, we 1) reconcile results from these
two cognitive GWAS meta-analyses to further enhance power for locus discovery; 2) employ several
complementary transcriptomic methods to identify genes in these loci with variants that are credibly
associated with cognition; and 3) further annotate the resulting genes to identify “druggable” targets.

Methods: GWAS summary statistics were harmonized and jointly analysed using Multi-Trait Analysis of
GWAS [MTAG], which is optimized for handling sample overlaps. Downstream gene identification was
carried out using MAGMA, S-PrediXcan/S-TissueXcan Transcriptomic Wide Analysis, and eQTL mapping,
as well as more recently developed methods that integrate GWAS and eQTL data via Summary-statistics
Mendelian Randomization [SMR] and linkage methods [HEIDI]. Available brain-specific eQTL databases
included GTEXv7, BrainEAC, CommonMind, ROSMAP, and PsychENCODE. Intersecting credible genes
were then annotated against multiple chemoinformatic databases [DGldb, K;, and a published review on
“druggability”].

Results: Using our meta-analytic data set (N =373,617) we identified 241 independent cognition-
associated loci (29 novel), and 76 genes were identified by 2 or more methods of gene identification. 26
genes were associated with general cognitive ability via SMR, 16 genes via STissueXcan/S-PrediXcan, 47
genes via eQTL mapping, and 68 genes via MAGMA pathway analysis. The use of the HEIDI test
permitted the exclusion of candidate genes that may have been artifactually associated to cognition due
to linkage, rather than direct causal or indirect pleiotropic effects. Actin and chromatin binding gene sets
were identified as novel pathways that could be targeted via drug repurposing. Leveraging on our
various transcriptome and pathway analyses, as well as available chemoinformatic databases, we
identified 16 putative genes that may suggest drug targets with nootropic properties.

Discussion: Results converged on several categories of significant drug targets, including serotonergic
and glutamatergic genes, voltage-gated ion channel genes, carbonic anhydrase genes, and
phosphodiesterase genes. The current results represent the first efforts to apply a multi-method
approach to integrate gene expression and SNP level data to identify credible actionable genes for
general cognitive ability.
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Introduction

One central goal for genome-wide association studies (GWAS) is the identification of potential
targets for clinically useful pharmacologic interventions; drugs whose targets have supporting genetic
evidence of association to the indication are significantly more likely to successfully reach approval than
those without such evidence™. While novel drug targets for major psychiatric illnesses have emerged
from recent large-scale GWAS*”, broad-based cognitive deficits are an enduring and disabling feature
for many patients with severe mental illness that are inadequately addressed by current medications.?.
Similarly, effective cognitive enhancing medications (“nootropics”) are limited for patients with
dementias and other neurodegenerative disorders’. Thus, the genetic study of general cognitive ability
(GCA) holds the potential for identifying novel targets for nootropic medications, that could have
widespread applications'. The genetic architecture of general cognitive ability (GCA) has been examined
with increasingly large sample sizes over the last few years'*™’. Physical health, illness, mortality*®, and
psychiatric traits’® have shown significant genetic correlations with individual differences in GCA.
Dissecting the pleiotropic genetic architectures underlying GCA, educational attainment, and
schizophrenia. We have recently shown that neurodevelopmental pathways and adulthood synaptic
processes are dissociable etiologic mechanisms relating to genetic liability to psychosis®°.

Nevertheless, identifying specific genes functionally linked to GCA, with protein products that
could be targeted by pharmacological agents, remains a core challenge. Using a pathway-based
methodology”“?, we previously reported that several genes encoding T- and L-type calcium channels,
targeted by known pharmaceuticals, were associated with GCA™’; however, that study was relatively
underpowered. Now with much larger GWAS of cognition available™'®, we can more effectively and
reliably identify putative drug targets for further investigation. Contemporaneously, the latest large-
scale brain eQTL databases substantially enhance the assignment of regional GWAS signals to specific
genes that can then be interrogated for druggability”>™°. Further, recent advances in genetic
epidemiology methods (e.g. Mendelian randomization) have enabled identification of potentially
spurious eQTL associations that may be based on linkage rather than meaningful biology. *. Thus, the
convergence of adequately powered samples coupled with cutting-edge statistical and bioinformatics
tools sets the scene for novel genetic and biological mechanisms underlying GCA to be made that might
be amenable to novel therapeutic strategies.

Here, we jointly analysed the two largest GWAS of cognition to date'*°. In doing so, we
harmonized the independent and/or convergent genome-wide signals associated with GCA across these
studies at the levels of: individual variants, broader genomic regions of loci in linkage disequilibrium
(LD), specific protein-coding loci/genes, and functional biological pathways. We also employed novel
analytical methods not previously employed in cognitive GWAS studies to determine the direction of
causality between GWAS hits for GCA and genetically correlated phenotypes. Large brain-based
transcriptomic databases were then utilized to determine the biological underpinnings of the most
credible and actionable cognitive GWAS to identify novel nootropic drug targets.

Methods

Study workflow is detailed in Figure 1. As can be seen, data analyses comprised several stages.
1516 Savage
et al (N =269,867) analysed 9,395,118 single nucleotide polymorphisms (SNPs) for association to
intelligence, and Davies et al. ® (N = 283,531) analysed 12,871,771 SNPs in relation to the somewhat

The core analysis combined summary statistics of the two largest GWAS of cognition to date
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broader general cognition phenotype. The latter set of summary statistics reported by Davies et al. *
was reduced from the original N = 300,486 due to data access limitations. It is important to note that the
two studies had a relatively large degree of sample overlap; while statistical inflation of the combined
results is well-controlled by MTAG, the relative increase in power available is more modest than would
be expected for a meta-analysis of fully independent samples.

1. Loci Discovery: MTAG-GWAS

We meta-analysed both sets of summary statistics using the Multi-Trait Analysis of GWAS
(MTAG>! v1.08). MTAG adjusts for sample overlaps based on LD score regression. It is notable based on
reported sample sizes, that approximately 89% of samples between Davies et al. '° and Savage et al.”> As
part of the MTAG workflow, alleles in both sets of summary statistics were aligned against the 1000
genomes phase 3 version 5a reference panel®. We set filters for sample size N > 10,000, and variations
with minor allele frequency > 0.001. To obtain a single output from MTAG, we set covariance of both
phenotypes to 1 and equivalent heritability across both phenotypes. This would approximate a fixed
effect inverse variance meta-analysis but adjusting for sample overlaps across summary statistics input.
We also carried out FDR Inverse Quantile Transformation analysis to account for potential Winner’s
Curse®. Following MTAG, significant loci were identified as follows: First, independent lead SNPs were
identified using the clumping function in FUMA v1.3.5* with default parameters of R? < 0.1, 250 kb
window based on the 1000 Genomes Project Phase 3 European ancestry LD reference panel*.
Independent loci were then identified by taking SNPs that are within an LD of R? > 0.6 of the lead SNP.
Finally, loci within 250kb of each other were merged into a single locus. GWAS significant threshold was
setto P < 5e — 8, this was also the threshold used by FUMA to identify the lead SNPs with P-values
less than or equal to the GWAS significant threshold. Candidate SNPs in LD with the significant
independent SNP were selected based on the secondary P < 0.05 threshold. The minor allele
frequency threshold for SNPs to be included in annotation and prioritization MAF > 0.01. We applied the
default value of 10 kb for positional mapping of SNPs to genes, or functional consequences.

2. Genome-wide characterization

We then carried out phenome-wide genetic correlation analysis using LD-hub® (v1.9.3) to
determine and visualize the relationship between cognition and other psychiatric and physical traits. In
addition, to confirm that our genetic discoveries reflected brain-based biological traits underlying
cognitive performance, a gene property analysis was used to screen gene-expression and localization in
CNS tissue vs. all other biological tissue as implemented in MAGMA?®® utilizing GTEx v7
(http://www.gtexportal.org/home/datasets) tissues.

3. S-PrediXcan/S-TissueXcan Transcriptome-Wide analysis of gene expression

To expand our analysis from SNPs/loci and to identify putative causal genes, several methods
were employed (See Workflow - Figure 1). First, genetically regulated gene expression was imputed for
MTAG meta-analysis using tissue models from GTExv7, which contains 48 different tissue types across
30 general tissue categories. The summary statistics from this meta-analysis were entered into the S-
PrediXcan (Web app 18 Apr 2019) framework (https://cloud.hakyimlab.org/). S-PrediXcan computes
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gene-based associations where genetic effects on phenotypes are mediated through gene expression®’
(see also http://predictdb.org/). Next, we utilized S-TissueXcan to exploit the gene expression-mediated

associations shared across multiple tissues to enhance power for gene identification. We combined all S-
PrediXcan results based on individual tissue types in GTEx v7 using S-TissueXcan. Gene-based p-value is
computed via an omnibus test, which are then Bonferroni corrected. Both S-TissueXcan processing and
post-processing pipelines are available online (http://cloud.hakyimlab.org/). We paid special attention

to S-PrediXcan’s brain tissue annotations in later stages of the analysis, extracting genes that are
significantly associated with cognition after Bonferroni correction for each brain tissue within the GTEX
database to lend post-hoc support for the gene-identification approaches.

4. Summary Statistics Based Mendelian Randomization (SMR and HEIDI)*

As a more conservative approach to transcriptomic-based gene identification, we utilized SMR
(Summary-based Mendelian Randomization) and HEIDI (Heterogeneity in Dependent Instruments)
tests>® (v1.02). SMR uses a Mendelian Randomization (MR) approach where one or multiple SNPs could
be used as instruments to identify gene expression effects on a given trait with estimated SNP-gene
expression and SNP-phenotype effects. At the same time, the HEIDI test identifies SNP-gene expression
effects and SNP-phenotype effects that are correlated with each other through LD rather than
biologically related via pleiotropy or a causal pathway. We prioritized GWAS-identified genes for follow-
up functional studies by including only genes with biologically related expression and phenotype effects
(i.e., excluding genes with Pygp < 0.01). For the SMR analyses, we utilized multiple transcriptomic
reference datasets: (i) GTEx-brain eQTL data with estimated effective sample size (N) of 233, which
includes an eQTL based meta-analysis of 10 brain regions from the GTEx, while correcting for sample
overlap®*?>; (i) Brain-eMeta eQTL data with estimated effective N = 1,194, which includes an eQTL
based meta-analysis of GTEx-brain, CommonMind Consortium, and xQTLServer (ROSMAP) datasets’*;
(iii) the PsychENCODE prefrontal cortex eQTL data (N = 1,866). Two sets of brain-based eQTL were
generated from the PsychENCODE data based on earlier reports: (a) eQTL corrected for 50 Probabilistic
Estimation of Expression Residuals (PEER), where only SNPs with expression association FDR <0.05 were
included?® and (b) eQTL corrected for 100 Hidden Covariates with Prior knowledge (HCP) were included
as covariates. For brain-based eQTL datasets utilized by SMR and HEIDI, only SNPs within 1Mb of each
probe were included as a proxy for cis-acting eQTL (See
https://cnsgenomics.com/software/smr/#0verview). Both SMR and HEIDI p-values were Bonferroni

corrected for multiple testing in 15,302 genes. Due to SMR’s more conservative estimation of p-values,
we also performed Benjamini-Hochberg false discovery rate (FDR) correction for SMR genes, subsequent
to the primary analysis.

5. MAGMA Gene- and Gene Set-based association analysis

MAGMA?®® (v1.07) gene-based association tests were carried out as part of the FUMA pipeline.
The MAGMA gene-based test combines individual SNP p-values in a pre-defined gene region into a
gene-based p-value by calculating the mean chi-square statistics accounting for LD between SNPs and
correcting for gene size. LD between SNPs within the genes is estimated based on the 1000 genomes
phase 3 European ancestry panel. MAGMA competitive pathway analysis was conducted with results
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emerging from earlier MAGMA gene-based, S-PrediXcan/S-TissueXcan, and SMR/HEIDI analyses. Gene
sets that were tested included custom-curated neurodevelopmental and other brain-related gene sets
that had gone through stringent quality control in a study originally designed to interrogate rare variants
in schizophrenia®®. In the latter, pathways with more than 100 genes from Gene Ontology (release 146;
June 22, 2015 release), KEGG (July 1, 2011 release), PANTHER (May 18, 2015 release), REACTOME
(March 23, 2015 release), DECIPHER Developmental Disorder Genotype-Phenotype (DDG2P) database
(April 13, 2015 release) and the Molecular Signatures Database (MSigDB) hallmark processes (version 4,
March 26, 2015 release) were initially included. Additional gene sets were selected based on risk for
schizophrenia and neurodevelopmental disorders, including those reported for schizophrenia rare
variants®” (translational targets of FMRP*>*!, components of the post-synaptic density***, ion channel
proteins, components of the ARC, mGluR5, and NMDAR complexes®’, proteins at cortical inhibitory
synapses*>*, targets of mir-137°°, and genes near schizophrenia common risk loci****
(These include: (1)targets of CHD8**™*%, (2) splice targets of RBFOX**™°, (3) hippocampal gene expression

networks™, (4) neuronal gene lists from the Gene2cognition database

) and autism risk

[http://www.genes2cognition.org]*, as well as (5) loss of function intolerant genes (pLI > 0.9 from the
ExAC v0.3.1 pLI metric), (6) ASD exomes risk genes for FDR < 10% and 30%, and (7) ASD/developmental
disorder de novo genes hit by a LoF or a LoF/missense de novo variant™>>*). Brain-tissue expression gene-
sets included the Brainspan RNA-seq dataset™ and the GTEx v7 dataset’®. We report significant gene
sets that were associated with GCA to identify biological pathways putatively associated with GCA.
Moreover, we use this information to further interrogate genes within these pathways with protein
products that may serve as druggable targets but which failed to attain genomewide significance on
their own. As such, we extracted nominally significant (p<.05) genes within the significant gene sets for
further drug target annotations; this threshold was selected to strike a balance between potential false
positive and false negative associations within gene sets that had already demonstrated association

signal to GCA.
6. Brain-based eQTL mapping

eQTL mapping was carried out as part of the FUMA pipeline. Brain eQTL annotations were
utilized for eQTL mapping. Databases used for eQTL mapping include: (i) BRAINEAC
(http://www.braineac.org). A total of 134 neuropathologically confirmed control individuals of

European descent from UK Brain Expression Consortium were included in the BRAINEAC data. All eQTLs
with nominal p-value < 0.05 were identified in the cerebellar cortex, frontal cortex, hippocampus,
inferior olivary nucleus, occipital cortex, putamen, substantia nigra, temporal cortex, thalamus, and
white matter regions and based on averaged expression across all of them. (ii) GTEX v7: For the purpose
of eQTL mapping analysis, we chose brain tissue expression from GTEX v7 and defined significant eQTLs
as FDR (gene g-value) < 0.05. The gene FDR is pre-calculated by GTEx and every gene-tissue pair has a
defined p-value threshold for eQTLs based on permutation. (iii) xQTLServer
(http://mostafavilab.stat.ubc.ca/xqtl/): Expression of dorsolateral prefrontal cortex from 494 samples.

(iv) Brain expression from 467 Caucasian samples available at the CommonMind Consortium
(https://www.synapse.org//#!Synapse:syn5585484). Publicly available eQTLs from CMC are binned by
FDR into four groups: <0.2, <0.1, <0.05 and <0.01.
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Finally, we mapped several novel forms of molecular quantitative trait loci (QTL). These novel
QTLs include expression variation, splicing, and translation using post-mortem prefrontal cortex tissue
data from the PsychENCODE/BrainGVEX project. In these samples, gene transcription and translation
activities were assayed by RNA-sequencing (N=416) and ribosome profiling (N=192); Annotation data
was available for novel QTLs with SNPs at Pyrac < 1 x 107°: (i) gene expression variation QTL (evQTL)
analysis tests for genetic loci that influence variance of expression level, using Bartlett’s test™ on the
RNA-seq data; (ii) splicing QTL (sQTL) analysis captures the effects of genetic variations on RNA splicing,
using leafcutter’® on RNA-seq data (iii) ribosome occupancy QTL (rQTL) analysis identifies genetic
variations that influence translation-related ribosome occupancy using Ribo-seq data; prior reports
suggest that differences between transcription and translation QTLs may yield novel biological insights
beyond standard eQTLs alone®”%. We focused on the cis-QTL by testing SNPs within 1 Mb of genes for
the three molecular phenotypes. Significant QTL association was defined by FDR p value < 0.05. For this
analysis, we carried out mean-variance QTL mapping, using on the double generalized linear model

approach discussed in detail elsewhere®>>°

. In prior simulations, mean-variance approach to QTL
mapping and associated permutation procedures have shown to be robust in reliably identifying QTL in
face of variance heterogeneity. For comparison purposes, we also performed standard eQTL mapping on

this dataset.
7. “Druggable” Gene Annotations

We identified a set of “druggable” gene targets derived from the Drug-Gene Interaction
database (DGldb v.2), Psychoactive Drug Screening Database K;DB, and a recent review on
“druggability”®
targets and is annotated into 3 Tiers based on “druggability” levels: (i) Tier 1 gene targets are those

. The “Druggable genome” as previously identified by Finan et al.,*® includes 4,465 gene

derived from FDA-approved compounds, or from compounds that are presently studied in clinical trials;
(ii) Tier 2 gene targets include genes with high sequence similarity to Tier 1 proteins, or those that are
targeted by small drug-like molecules; (iii) Tier 3 gene targets code for secreted and extracellular
proteins, which also belong to “druggable” gene families. DGIdb v.2 integrates drug-gene interactions
from 15 databases, including DrugBank and ChEMBL. The data is directly available as drug-gene pairs;
the K;DB provides K; values for drug/target pairs and is particularly relevant for psychoactive drugs. Using
filtering criterion previously reported by Gaspar and Breen™ (K\DB: “With non-empty K; field”, “Only
Human”, “K; not superior or inferior to a value”, “With molecule name”, “With gene-name”, “Unique
pairs”, “With range pK; > 2”; DGldb: “Number of unique gene-sets > 2”), we identified and updated 2,567
potential gene targets from the chemoinformatic databases. For further gene-target annotations, we
took the intersection between genes extracted from the chemoinformatic database, and those reported
in Finan et al.,%. This resulted in 1,876 genes for further annotations. At the final stage of the analysis
we annotated high confidence genes using the Broad Institute Connectivity Map, Drug Re-purposing
Database® which provides more in-depth details such as drug names, mechanism of action, and drug
indications.

Results

1. Loci Discovery: MTAG-GWAS
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We carried out MTAG meta-analysis® on the two largest GWAS of cognition. Median value of Z-
scores in Savage et al.’ was -0.001, mean )(2 = 1.688, and genomic inflation was A;- = 1.456; 13,173
SNPs passed genome-wide significant thresholds (p < 5 x 1078) and the LD-score regression (LDSC)***
intercept was 1.051. Median value of Z-scores in Davies et al.'® was 0.0, mean y? = 1.455, and genomic
inflation was A5 = 1.307; 11,244 SNPs passed genome-wide significant thresholds, and the LDSC-
intercept was 1.038. A total of 8,990,900 SNPs was present in both sets of summary statistics were
extracted for use in the MTAG meta-analysis. Since both sets of GWAS summary statistics indexed GCA,
we constrained MTAG analysis to give a single output; heritability and genetic covariance for
phenotypes in either set of summary statistics was set to be the same. A grid search for maximum
potential for false discovery using MTAG revealed very low probability of false positives (max;g, =
4.51 x 10™7). The resulting mean chi-square values were as follows: mean )(fa,,age =1.624, mean
)(f)am-es = 1.544, and mean yZ;4; = 1.783. The average projected GWAS equivalent sample size
increase after MTAG analysis for Savage et al.’ was Nggyqg. = 338,737 and for Davies et al.”’
Npavies = 408,498, (approximate estimated sample size ~ 373,617) which shows substantial power
improvement.

Clumping procedures were carried out on 8,990,900 SNPs (See Methods). SNPs were extracted
based on R? > 0.6 within each independent LD-block; we identified SNPs within 250kb of each other as
an independent locus. These loci definitions were merged with previously reported loci by Savage et al."
and Davies et al.'®. A total of 304 genomic loci were identified as potentially associated with GCA using
this method. Of these, 241 loci were GWAS significant for the MTAG analysis (Figure 2), while 214 loci
and 124 loci were GWAS significant for Savage et al.” .18
that 17 loci were not significant in any sets of summary statistics, likely due to the sample size reduction

, and Davies et al.”” respectively. It should be noted
in the Davies et al.'®. We also note that 38 loci reported as significant in Savage et al."> and 8 loci in
Davies et al.'® were no longer significant in the MTAG analysis (Supplementary Table 2; Figure 2).
Winner’s curse analysis suggested that these loci were likely false positives in the original studies
(Supplementary Table 3). A total of 39 of these were novel and not found in the input GWAS. We then
1729 and found that of
the 39 loci, 8 loci were also reported by Hill et al. *’, 1 locus was reported by Lam et al. ?° and 1 locus was
reported by both of these studies.

looked up reports that have used multi-trait strategies to enhance power for GCA

2. Genome-wide characterization

Genetic correlations were conducted between GCA and 855 phenotypes from LD-hub® and UK
Biobank. MTAG summary statistics were merged and aligned with HapMap3 SNPs without the MHC
region for genetic correlation analysis (1,190,946 SNPs remained). The reduced set of SNPs had a
median Z-score of -0.001, mean y? = 2.120, LDSC-intercept = 1.067 and h? = 0.139. Of these, 297
phenotypes showed significant genetic correlation with cognition at Pgop ferroni < 0.05. Consistent with

prior reports®®1764

, traits genetically correlated with GCA, included education, reproduction, longevity,
personality, smoking behavior, anthropometric, brain volume, psychiatric, dementias, lung function,

sleep, glycemic, autoimmune, cardio-metabolic, cancer and several ICD-10 medical phenotypes. Several
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novel traits that have not been previously reported to be genetically correlated with GCA are displayed
in Figure 3. Full results are reported in Supplementary Table 4.

SprediXcan/S-TissueXcan, SMR &HEIDI, MAGMA Gene Set Analysis and Brain-based eQTL mapping
3. SprediXcan/S-TissueXcan

As described (Figure 1), we conducted a variety of complementary transcriptomics analyses, in
order to convert SNP/locus results into directional, biologically interpretable, gene effects on GCA. S-
TissueXcan®’ analysis carried out in all 48 GTEXv7 tissues yielded 444 significant genes after Bonferroni
correction (Supplementary Table 5). Of these, 194 genes were significant in one or more S-PrediXcan
brain tissue annotations (Supplementary Table 6).

4. SMR &HEIDI

Using SMR, we were able to identify 166 genes that were genome-wide significant, where gene
expression levels were contributing to variance of GCA (Supplementary Table 7). As discussed
previously, SMR analysis tended to be more conservative than other gene identification
methodologies®’, hence we computed using the Benjamini and Hochberg method, FDR corrected p-
values for nominally significant genes (Pgyr < 0.05) The second approach yielded 1212 genes for follow
up in the later gene annotation (Supplementary Table 8). Importantly, there were 412 genes associated
with linkage Pyrp; < 0.01 and these were excluded from subsequent “druggability” analysis.

5. MAGMA Gene Set Analysis

MAGMA gene-based analysis revealed that 652 of 18,730 genes were significantly associated
with GCA after Bonferroni correction (Supplementary Table 14). MAGMA pathway analyses were carried
out using gene-based effect sizes from MAGMA gene-based analysis, SMR analysis (only using
PsychENCODE results), and S-TissueXcan analysis. MAGMA significant pathways after Bonferroni
correction are reported in Supplementary Table 15. Additionally, we annotated all genes within each
significant MAGMA significant gene sets, with p-values from the other earlier gene identification
approaches described above. Of 54 gene sets identified as significantly (following Bonferroni correction)
associated with GCA, 49 included Tier 1 “druggable” gene targets (Supplementary Table 15; Table 2).

A total of 449 genes were identified as part of significant MAGMA pathways. As shown in Table
2, several gene sets were identified to be significantly associated with GCA, based on the lists of
significant genes derived from MAGMA, SMR, or S-TissueXcan. Not surprisingly, gene sets that have
been associated with neuropsychiatric disorders such as schizophrenia and ASD were highly significant,
consistent with significant genetic correlations between GCA and these disorders. Relatedly, gene sets
related to neurodevelopmental processes implicated in schizophrenia and ASD, including the CHDS,
FMRP, and RBFOX pathways, were also implicated in GCA®>. Consistent with prior reports, a series of
neuronal and dendritic development, differentiation, and regulation gene sets were associated with
GCA".
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There were also several classes of gene sets emerging from our data that are novel with respect
to GCA; notably, these results emerged in the context of the SMR and S-TissueXcan results,
demonstrating the value of leveraging multiple approaches to post-GWAS gene identification. First,
genes responsible for cellular response to small molecules such as sugars and cytokines appear to be
implicated. Cell signal transductions mediated by small monomeric GTPases also appear to be relevant
for GCA. In addition, genes sets underpinning cell structure and binding mechanisms, including
adhesion, protein complexes, acting and chromatin binding were identified. It should be noted that gene
sets representing methylation processes, DNA complex, and nucleosomes, while significantly associated
with GCA, do not contain any genes that are targeted by known drugs, based upon our “druggability”
criteria described in the Methods section above.

6. Brain-based eQTL mapping

eQTL mapping for gene expression across brain tissue indexed by the FUMA?® pipeline revealed
421 significantly expressed genes within GWAS significant regions (FDR corrected p-values;
Supplementary Table 9). Additional mean variance QTL mapping of prefrontal cortex eQTL with GCA
SNPs identified 638 genes with splicing activity, 42 genes implicated in ribosomal occupancy, 119 genes
with expression variation levels, and 592 genes with eQTL (Supplementary Tables 10-13).

7. Identifying Drug-Gene Targets for Nootropic Re-purposing

A total of 2,017 genes (See Figure 1) were identified via one or more methods discussed in the
previous sections. At this stage, we also merged additional post-hoc SMR analysis using FDR correction
of p-values (N genes = 695), and the S-PrediXcan brain tissue eQTL analysis (N genes = 166) for further
annotation. Filtering on the 1,876 “druggable” genes identified in the earlier step, genes with
Pygipr > 0.01, and genes that were identified by two or more gene-identification approaches, 91 genes
were identified. We further annotated these genes with information from the Broad Institute CMAP
Drug Repurposing Database®, drug indications for “Oncology” were filtered out mainly for drug delivery
concerns; 76 “high-confidence” genes remained (Figure 4). These were annotated with eQTL directions
(i.e., up- or down-regulation associated with higher GCA) for each gene. eQTL directions were obtained
from earlier analysis, including brain-eQTLs from S-PrediXcan, SMR, PsychENCODE eQTL, RNA-seq
Ribosomal and Splicing eQTL mapping, and overall S-TissueXcan GTEX eQTL analysis. Effect sizes that
indicated up-regulation of the gene was denoted as “I*” and those that were down-regulated were
denoted as “J.” (Supplementary Table 17). We predicted the “mechanism of action” from the overall
eQTL direction if each gene might require either an “Agonist” or “Antagonist” to enhance GCA. This is
achieved by taking the sum of eQTL directions across tissues (See Supplementary Table 17). If overall
eQTL indicates up-regulation, it would be more likely require an agonist and vice-versa. We eliminated
”Ambiguous” gene-targets which have an equal number of tissues that show up- and down-regulated
gene expression.

CMAP Drug Re-purposing annotations which include drug names, mechanism of action (MOA),
as well as drug indications were merged with the “high” confidence genes (Supplementary Table 18).
We further filtered the high confidence genes based on the predicted and actual MOA. We were able to
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identify potential drugs related to the matched MOA, and their indications with various types of physical
or psychiatric conditions are listed in Table 3. Notably, the relationship between some of the drug MOA
and gene targets do not always appear to be direct. For example, adrenergic receptor agonists can
indirectly activate calcium channels of which CACNA2D?2 is a constituent.

Discussion

Here we report the largest meta-analysis of GCA using MTAG that adjusted for
overlapping samples in the two largest GWAS of cognitive function yet. At an estimated sample size of
approximately 373,617individuals, we identified 241 significant genetic loci, of which 39 are novel to the
input GWASs, and 29 of these were not reported to be associated with GCA previously. The results are
not surprising, in that the original sample overlap between the two reported GWAS were sufficiently
large (89%). Consistent with earlier reports of GCA, gene property analysis revealed significant tissue
expression overrepresented in GTEX v7/Brainspan brain related tissue compared with expression in
other types of tissue. It is notable that some of these genes appear to be significantly expressed during
the prenatal state, indicating a potential neurodevelopmental impact of genes that are associated with
GCA. In the current study, we focused on identifying genes associated with GCA that could be
“actionable” in terms of identifying pharmacological agents that could be re-purposed for nootropic
utilization based on GWAS. We have earlier used a similar approach using MAGMA pathway analysis
against drug-based pathway annotations on a smaller GWAS of GCA™®, where we reported several T and
L-type calcium channels as potential targets for nootropic agents. Here, we were able to leverage
several novel developments: an expanded genome-wide analysis of GCA; newly available brain eQTL
data and complementary transcriptomic methodologies, enabling estimation of directionality (i.e., up-
vs. down-regulation of expression) of gene effects on cognition. Notably, our study is the first cognitive
GWHAS to employ HEIDI, an approach that allows pleiotropy (either vertical or horizontal) to be
differentiated from linkage (A single variant is associated with the trait and with gene expression
because it is linked by LD to a second variant. However, whilst the first variant is causally linked with the
trait, the second variant is causally linked with gene expression). HEIDI tests against the null hypothesis
that a single causal variant affects both gene expression and trait variation, and so HEIDI-significant
genes are less likely to be causal and require closer inspection and further biological experiments to
unravel any true functional effects of the genes. Therefore, we have filtered gene results based on a
nominal threshold of Pygp; < 0.01. Additionally, several novel classes of gene sets, such as cell
binding, cell metabolism, and cell structure not previously reported as associated with GCA, created an
additional pool of genes available for further “druggability” investigation.

The most crucial stage of the current report involved the identification of genes that are
potential drug targets. Using filtering methods that were detailed earlier, the 76 potentially “druggable”
genes were selected for further annotation. Of these, 16 genes were identified as “most likely
druggable” based their predicted function from eQTL results and the CMAP Drug Re-purposing
database®. These selected genes could be further classified into broad gene classes i) Serotonergic
genes ii) Carbonic Anhydrase iii) Phosphodiesterase iv) lon channel v) Glutamatergic/GABA-ergic and vi)
Others (See Table 4). Here, we provide further review of the genes/gene classes associated with GCA
that could be targeted to improve nootropic function.
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Serotonergic Genes

The most novel and intriguing finding of the present study is the identification of several
serotonergic genes as relevant to cognitive function. These genes were not identified under genome-
wide significant peaks, but rather emerged using our gene-set annotation strategy; therefore, some
caution in interpretation should be exercised. Nevertheless, serotonergic mechanisms in cognition have
support from several prior lines of research. For example, reduced serotonin may be linked to cognitive
disturbances and certain conditions such as Alzheimer’s disease and mood disorder, and stimulating
serotonin activity in depression may be beneficial to cognition independent of general relief of

depressive symptoms®°#

. However, antidepressants typically inhibit the serotonin transporter, while
the present results suggest that enhancing its function may have pro-cognitive effects. Perhaps more
readily interpretable, results of the present study show generally that upregulation of HTR1D and
downregulation of HTR5A are associated with enhanced cognitive function. One popular antidepressant,
Vortioxetine, is a 5-HT1D agonist and demonstrates some evidence of pro-cognitive efficacy®. The
triptans, a class of 5-HT1D agonists used for the treatment of migraine, have also demonstrated initial
efficacy in rescuing migraine-induced cognitive deficits’’. At the same time, antagonizing the 5-HTs,
receptor has showed cognitive enhancement in a ketamine-based rat model of cognitive dysfunction
and negative symptoms of schizophrenia’" While ergot-derived migraine treatments with action at 5-
HTSA have not shown evidence of cognitive benefit’?, these agents tend to have complex actions at

multiple serotonin (and other neurotransmitter) receptors.
Carbonic Anhydrase Genes

The current study is the first to report evidence that carbonic anhydrase genes may be
implicated in cognitive function. Carbonic anhydrase activity within the hippocampal neurons modulates
GABA-ergic functions, altering sensitivity of the gating function for signal transfer through the
hippocampal network”>. Modifying the function of carbonic anhydrase in animal models improved
learning abilities, and possible perception, processing and storing of temporally associated signals’”.
Some early reports have also speculated the role of zinc homeostasis being related to cognitive

impairment in Alzheimer’s disease’™"’

. While results of the present study suggest that inhibition of
carbonic anhydrase activity may enhance cognition, pharmacologic evidence to date has supported the
opposite conclusion. Specifically, carbonic anhydrase activation has shown enhancement in synaptic
efficacy, spatial learning, memory, as well as object recognition in rodents’*’%; in humans, topiramate, a
carbonic anhydrase inhibitor has been associated with cognitive deterioration’®. One mechanism by
which carbonic anhydrase inhibition might improve cognitive function is in the context of amyloid

pathology, which may be dependent on carbonic anhydrase activity.
Phosphodiesterase Genes

Phosphodieterases (PDEs) catalyze the only known reaction terminating cyclic nucleotide
signals, as such, they are crucial regulators of physiological and pathophysiological mechanisms that
underlie these processes. Here, we report that a class of PDE-4s, PDE4D and PDE4C demonstrate
association with cognitive function. PDE4s are expressed in the cerebral cortex, hippocampus,
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hypothalamus, striatum, dopaminergic neurons within the substantia nigra, and astrocytes®*®.

Inhibiting PDE4 increases the phosphorylation of CREB and hippocampal neurogenesis propagating
antidepressant mimicking and memory-enhancing properties®*®*.Previously reported evidence
implicated PDE4s, in particular, PDE4D, in possessing pro-cognitive and neuro-protective properties

84,85

after the infusion of Rolipram™ . The development of therapeutic indications for Alzheimer’s Disease,

Huntington’s disease, schizophrenia, depression and cognitive enhancement continues to be the subject

h®#’, Extensive discussion of PDE4D, previously discovered by large scale educational

of ongoing researc
attainment GWAS, is reported elsewhere®. In the present study, improved eQTL mapping supports the
nootropic function of inhibiting PDE4D. The role of PDE4C appear to be less understood. Earlier reports
indicate that though PDE4C is expressed in the brain, limited to the cortex, thalamic nuclei and
cerebellum®. No evidence currently exists to show if activating PDE4C plays a conclusive role in rescuing

cognitive deficits®.
Glutamatergic Genes

The role of excitatory glutamatergic and inhibitory GABA-ergic neurons are well researched in

%991 Glutamate mediates fast synaptic

their relationship to cognitive function and presence in the brain
transmission and plays a key role in long term potentiation®, synaptic plasticity, learning and memory,
and other cognitive functions®. Extended glutamate stimulation can be damaging to neurons and give
rise to excitotoxicity, regarded as a precursor mechanism to several neurodegenerative disorders® .
Indirect modulation of the glutamatergic system via positive allosteric modulators of AMPAR have
shown nootropic properties in laboratory animals and human patients®*%. Direct modulation of
glutamatergic pathway via antagonists, co-agonizing the glycine site, potentiatiating the activity of
agonists via polyamines, neurosteroids, and histamines for purpose of cognitive enhancement has also
been explored'®.

Here, we identified AMPA4 agonists as potential cognitive enhancement agents. Within the
CMAP Drug Re-purposing database®, we identified Piracetam, a known nootropic as an acetylcholine
agonist that appear to have shown evidence for improving cognitive function'® via complex
glutamatergic and calcium signalling pathways'®. A counterintuitive result was that down regulation of
eQTL for GRIN2A was related to higher cognitive function. However, it appears that there has been
discussion of how low dose antagonism of glutamatergic receptors (N-methyl-D-aspartate: NMDA-R)
might increase excitatory effects of glutamate neurons'®. Supporting evidence for the precognitive
effects of NMDAR antagonists like memantine has also been reported in animal models and humans'®.
Based on existing evidence, we also show that the GRIN2A gene might also be indirectly targeted by
norepinephrine transporter inhibitors, serotonin-norepinephrine reuptake inhibitors, and calcium

channel blockers (Table 4).
Voltage-gated lon Channel Genes

Voltage-gated ion channels have originally been studied with respect to etiologies of excitability
disorders of the heart and muscles. Nevertheless, there is currently emerging evidence for the role of
calcium, sodium and potassium channels in the etiopathologies of neuropsychiatric disorders'®.
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Ostensibly, these neuropsychiatric disorders and accompanying cognitive function deficits could be
197 Voltage-gated
calcium channels increase periplasmic calcium concentrations, which triggers a downstream cascade of

rescued by therapeutics aimed at targeting the underlying putative channelopathies

proteins involving ion channel function, vesicle docking and small molecule transport'®®. Calcium

109-116

trafficking and signalling play a crucial role in cognitive function . There is also evidence to suggest

that voltage gated calcium channels are necessary for the function of dopaminergic neurons on

mesolimbic and mesocortical regions*’**®

. Prior reports have suggested that blocking L-type calcium
channels could be a viable strategy for Alzheimer’s disease but noted the paradoxical effect that these

channels also promotes synaptic plasticity and spatial memory**®.

Here, we identify upregulation of CACNA2D2 and CACNG3 genes associated with cognitive
function. Though calcium channel genes have been identified previously in both cognitive function and
neuropsychiatric disease GWASs, work in identifying reliable compounds for calcium activation is
relatively nascent. Existing drugs targeting calcium channel receptors are mainly antagonists There is
evidence to suggest that indirect activation of calcium channel genes via activating sarco-/ER Ca2+
ATPase 2 (SERCA) appear to be neuroprotective and enhance cognition and memory in Alzheimer’s
mouse model'?°. SERCA resides in the endoplasmic reticulum and its dysregulation is thought to affect
cognitive function in Darier’s disease, schizophrenia, Alzheimer’s disease, and cerebral ischemia®®!. In
the current report, adrenergic receptor agonists could also potentially play a role in activating calcium

channel genes highlighted.

Additional to calcium channels, current results also point to the potential role of the chloride
voltage channel gene CLCNZ as a potential gene target for cognitive enhancement. CLCNZ2 plays a crucial

role in background conductance, removing excess Cl- ions within pyramidal cells in the hippocampus,

122 | oss-of-function mutations in CLCN2 are

associated with leukoencephalopathy'?, and, controversially, with epilepsy™>***>; therefore, it is

and regulates excitability in GABAergic interneurons

plausible that activation of CLCN2 might serve to enhance cognitive function. By contrast, gain of
function mutations*® are associated with primary aldosteronism and subsequent hypertension, without
cognitive impairment. The only drug with such a function identified by CMAP search was
lubiprostone®, which is utilized for constipation and has unknown activity in the CNS.

Other Genes

Several genes do not fall into clear categories but nonetheless are crucial in the context of
cognitive function, l.e., DPP4, THRB, PSMA5, DHODH?2. While little is known about potential cognitive
functions of DHODH or PSMAS5, we examine DPP4 and THRB below.

Dipeptidyl Peptidase 4

Dipeptidyl peptidase IV (DPP-IV) is a serine protease is known to inactivate glucagon-like
peptide-1 (GLP-1), pituitary adenylate cyclase-activating polypeptide (PACAP) and glucose-dependent
insulinotropic peptide (GIP), which gives rise to pancreatic insulin secretion. Inhibition of DPP-IV enzyme
activity via the gliptin class of medications has thus been widely utilized as a treatment option for

128

. . . . . 129 .
diabetes™*". However, aside from glucose control, animal studies have shown pro-neurogenic™*”, anti-
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inflammatory™*® and neuroplasticity*** properties. DPP-4 inhibitors appear to improve glucose control
and protect against worsening in cognitive functioning in older patients with type 2 diabetes™?, and in
some cases improve cognitive function™>>. Benefits of DPP-4 inhibition in the post-stroke recovery phase
and long-term clinical outcome had also been extensively discussed'*. Reports have also shown that
linagliptin possess neuroprotective properties attributed to elevated levels of incretins in the brain®**,
while sitagliptin appear to regulate synaptic plasticity in AD mice via activating GLP-1 and BDNF-Trkb
signaling'®. Data from the current report suggest that downregulation of DPP4 in is associated with
better cognitive function, and therefore DPP4 inhibitors have been identified as potential drug
repurposing candidates for pro-cognitive investigation.

Thyroid Hormone Receptor Beta

Thyroid hormones (TH) has a vital function in neurodevelopment and its receptors known to

136-138
. In adults,

regulate neurogenesis in the hippocampus, hypothalamus and subventricular zone
hypothyroidism is related to depressive-like symptomatology, dementia, memory impairment, and
139 140 and/or

catecholaminergic'** pathways. Treatment of hypothyroidism improved cognitive performance in a
143

psychomotor deficits ™. These syndromes are thought to be mediated through serotonergic

mouse model of Alzheimer’s disease’** and patients'*. Evidence for thyroid hormones implicating
learning and memory through synaptic plasticity, neuronal cell differentiation and maturation had also
been presented’**. These evidences converge with the data presented in the current study showing that
activating the thyroid hormone beta receptor would potentially yield nootropic effects.

The results here have generated leads for further investigation into potential drug functions and
how they might provide nootropic function. There are also limitations to the evidence that we report.
First, though the evidence reported comprises the largest and most well-powered MTAG analysis of
cognitive function, there continues to be potential to expand sample size to increase power. The modest
increase in novel loci reported in the current study could be accounted for by substantial sample overlap
in the earlier GWAS reports. Second, identifying eQTL for a particular phenotype is challenging— as with
most summary statistics approaches, it is not always possible to directly ascertain that eQTL is
necessarily leading to variation in the phenotype™’. As case in point, S-TissueXcan was used as one of
the indicators of gene expression direction. Results of S-TissueXcan are powerful in that they index
overall potential of expression of the gene investigated but remains a noisy indicator for expression
direction. Nevertheless, due to the modest sample sizes available in the annotation databases, our
strategy is reasonable at this stage of advancement of biology. Direct experimentation is required to
rule out potential extraneous factors that might be pleiotropic to both phenotypic variation and eQTL
effects. Third, the issue of LD within GWAS loci has been remained complex146, since there are often
many genes that reside in some of the genomic regions.

Here, we attempted to identify functionally relevant genes by examining the convergence across
a range of complementary methodologies in order to overcome some of the limitations noted above. In
addition, we used the HEIDI test to explicitly exclude genes marked by linkage that might be inaccurately
labelled as “causal.” Nevertheless, the challenge of regions of large LD and genes should be addressed in
future studies, perhaps incorporating recently developed methods for examining three-dimensional
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properties of the genome*’. Though we have focused the discussion of results explicitly on identifying
potential targets for nootropic purposes, the converse could also be relevant— where there might be
commonly administered drugs that appear to result in cognitive deficits e.g. topiramate'*?,
gabapentin'*®, and vinorelbine*™.

We also observed several counter-intuitive findings with respect to directionality of effects; for
example, with respect to carbonic anhydrase inhibition. It is plausible that many molecular functions in
the brain observe either a U-shape or inverted U-shape curve, such that effects of up- or down-
regulation are not strictly linear. Moreover, the results reported here are with reference to MTAG
conducted in the general population and might appear to be counterintuitive if interpreted with respect
to a disease population. For instance, calcium channel blockers might rescue cognitive impairments in
schizophrenia, but blocking calcium channel function in the general population could be detrimental to
synaptic function. Or enhancing prothrombin in the general population might offer nootropic effects
through microtubule function but would potentially increase neurofibrillary tangles in Alzheimer’s
disease. At the same time, our GWAS cohorts included older adults, and some findings may be a
function of cryptic pathologic processes occurring in these apparently normal subjects. Further work is
necessary to replicate evidence reported here into disease populations, along with more precise data on
biological mechanisms underlying cognitive function to ensure that compounds identified as nootropic
in a population is indeed applicable in certain other disease contexts.

Conclusions

We performed the largest MTAG analysis for GCA. Aside from identifying 29 fully novel loci in
the current study, the effort has included the most well powered cognitive MTAG analysis for identifying
genes that are “druggable” and potential drugs that could be repurposed for nootropic utilization. Gene
set analysis identified known neurodevelopmental and synaptic related pathways, but also novel cell
structure and binding pathways that appeared to subserve known “druggable” genes. Utilizing multiple
chemoinformatic and drug repurposing databases, along with eQTL and GWAS data, we identified
Serotoninergic, Carbonic Anhydrases, Voltage-gated lon channels, Glutamatergic/GABA-ergic, and
Phosphodiesterase gene classes contribute to GCA, along with miscellaneous genes such as Diphenyl-
Peptidase 4, and others. Our efforts show that within these pathways, specific gene classes coding for
cellular components and functions could be targeted for nootropic purposes. Further work is necessary
to confirm the role of these genes and receptors, to specify their biological mechanisms influencing
cognition, and to consider potential CNS effects (including blood-brain barriers permeability) of the
putative nootropic compounds nominated by this approach.
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Figure Captions
Figure 1 | Workflow for GWAS, Gene Identification Approaches, and Drug Database Annotations
Figure 2 | GWAS association plots for Cognitive MTAG

A. QQ-plot B. SNP annotation plot C. MAGMA gene property analysis for overall GTEXv7 D. MAGMA
gene property analysis using BrainSpan E. Venn Diagram showing loci overlap

Figure 3 | Genetic Correlations for UK Biobank ICD-10 and Medication phenotypes

Error bars denote standard errors. Yellow bars denote medication phenotypes. Blue bars denote ICD-
10 phenotypes.

Figure 4 | Venn Diagram of “High Confidence” Genes and Gene Identification Approaches

Genes highlighted in blue were deemed as most likely having gene targets that were suitable for
nootropic re-purposing

Table Captions
Table 1 | Methodological Overview and Analytical Approaches
Table 2a | MAGMA Gene Sets Associated with Cognitive Function
Table 2b | SMR Gene Sets Associated with Cognitive Function
Table 2¢ | S-TissueXcan Gene Sets Associated with Cognitive Function
Table 3 | Prioritized Gene for Nootropic Re-purposing

Note: MOA: Mechanism of Action. Predicted Nootropic Function was obtained from gene expression
association with general cognitive ability. MOA, Drug names and Drug Indications were annotated via
Broad Institute Connectivity MAP: Drug Re-Purposing hub.
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Table 1. Methodological Overview and Analytic Approaches

Analysis | Methodology Software/Algorithm/Pipeline
1 Loci discovery
- Leverage on existing cognitive summary statistics from Davies Multi-Trait Analysis of GWAS
etal, 2018 and Savage etal., 2018. (MTAG).
- Meta-analysis of summary statistics adjusting for sample
overlaps. FUMA - Clumping approach for
- Harmonized independent significant loci of meta-analysis and independent significant SNPs. Merge
earlier input summary statistics. independent loci identified by FUMA
based on physical distance threshold
of 250kb.
- Check for potential Winner’s Curse effect on non-significant loci
after meta-analysis. FIQT
2a Genetic Correlation - Ldhub/UKBB
LDSC/LD-hub/Oxford BIG.
- Perform LD score regression on meta-analyzed summary
statistics on traits curated in LD-hub and Oxford BIG.
2b MAGMA gene property analysis - eQTL screen
- Gene property analysis of top results is conducted to FUMA - MAGMA gene property
demonstrate if certain tissue types are over-represented in the analysis
top GWAS results. As cognitive function is mainly a brain trait we
expected to observe brain tissue being overrepresented.
3 S-Predixcan and S-TissueXcan
Genome-wide SNP-based p-values and eQTL expression effects SPredixcan/SMultixcan approaches
could be combined at the summary statistics level, to identify were applied across all GTEX tissue
potential functional genes. The entire GTEX database could be
leveraged to yield a list of functional expressed genes associated
with cognitive function.
4 Summary Statistics Mendelian Randomization
Targeted identification of brain expressed genes associated with | SMR/HEIDI v1.02
cognitive function could be carried out using a mendelian
randomization approach using genome-wide SNP effects as
instruments, leveraging on known SNP-gene expression effects
in brain tissue to estimate functional effects of gene expression
on cognitive function.
5 MAGMA gene-based and pathway identification
Using genome-wide LD, pooled effect sizes, gene level p-values MAGMA gene-identification. This
could be identified using physical start-end annotations. Naive was part of the FUMA gene-
gene identification using SNP-based p-values could be carried identification pipeline.
out. Using gene lists obtained from earlier gene-based analysis
such as MAGMA, SMultixcan, SPredixcan, and SMR/HEIDI MAGMA pathway analysis
analysis, we were able to include genes in pathway based
analysis using MAGMA with curated gene sets. Within significant | Neuro gene-set annotations from
pathways, we extracted nominally significant genes for further Singh etal.,, 2016
evaluation.
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Table 1 (cont’d). Methodological Overview and Analytic Approaches

Analysis | Methodology Software/Algorithm/Pipeline

6 Brain Expression eQTL mapping
Based on regions harboring significant SNPs, eQTL mapping FUMA: eQTL mapping based on brain
could be carried out. Brain tissue gene expression within these tissue expression within GTEX,
regions could be mapped. Genes are identified based on BrainEAC, CMC, PsychEncode,
significant gene-expression p-values. xQTLServer.
- Using the postmortem pre-frontal cortex tissue data of Leafcutter

PsychENCODE/ BrainGVEX project, gene transcription and
translation activities were assayed by RNA-sequencing (n=416)
and Ribosome Profiling (n=192).

- Four molecular phenotypes were used to further annotate vQTL Colocalization
results of cognitive GWAS (i) expression variant QTL (ii) Partitioned Heritability Analysis
ribosome occupancy QTL (iii) expression QTL (iv) splicing QTL

7 ‘Druggable’ Gene Annotations
- Drug gene-target annotations are curated from Drug gene-targets curated from
chemoinformatic databases. These genes have been previously Finan etal,, 2017, DGIdb v.2, KiDB
identified to be functional, and can be quickly repurposed for 1,876 genes that were ‘druggable’
pharmacological investigation. We carefully curated only the after filtering

overlapping drug targets across the indicated databases for
further annotations.

CMAP-DR
Broad Institute Connectivity Map - Drug Repurposing
annotations

In addition to the drug-gene databases indicated above, we
filtered gene lists obtained from various approaches identified
above using the CMAP-DR database for disease indications, as
well as if the drugs were antagonists or agonists.
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Table 2a. MAGMA Gene Sets Associated with Cognitive Function

Gene Sets  Gene Set P Gene Set Categories
. brain_enriched_gtex | 4.86E-20 Gene expression in the Brain
cerebellum_expressed_brainspan | 2.81E-09 Gene expression in the Brain
constrained_genes 0 10 | 6.14E-12 Functional Genes /including brain
constrained_genes_pll 90 | 4.04E-15 Functional Genes /including brain
constrained_top_3 | 2.45E-06 Functional Genes /including brain
cortex_expressed_brainspan | 9.53E-08 Gene expression in the Brain
cotney_2015_hNSC_Chd8 prom | 1.22E-13 Neurodevelopmental
cotney_2015_hNSC+human_brain_Chd8_prom | 8.61E-10 Neurodevelopmental
cotney 2015 hNSC+human+mouse_Chd8 prom | 1.60E-08 Neurodevelopmental
cotney_2015_human_brain_Chd8_prom | 5.53E-08 Neurodevelopmental
darnell_2011_fmrp_targets | 2.84E-09 Neurodevelopmental
ddg2p_dominant_lof brain | 3.28E-07 Functional Genes /including brain
ddg2p_dominant_mis_all_brain | 1.25E-08 Functional Genes /including brain
GOBP:central_nervous_system_neuron_differentiation | 1.21E-05 Neuronal/Dendritic
regulation/development
GOBP:positive_regulation_of_cell_development | 1.67E-05 Neuronal/Dendritic
regulation/development
GOBP:positive_regulation_of nervous_system_development | 9.15E-07 Neuronal/Dendritic
regulation/development
GOBP:positive_regulation_of_neurogenesis | 1.29E-05 Neuronal/Dendritic
regulation/development
GOBP:regulation_of cell_development | 9.09E-07 Neuronal/Dendritic
regulation/development
GOBP:regulation_of_nervous_system_development | 1.35E-09 Neuronal/Dendritic
regulation/development
GOBP:regulation_of_neurogenesis | 7.29E-09 Neuronal/Dendritic
regulation/development
GOBP:regulation_of_neuron_differentiation | 3.99E-07 Neuronal/Dendritic
regulation/development
GOBP:regulation_of _neuron_projection_development | 1.61E-05 Neuronal/Dendritic
regulation/development
GOCC:dendrite | 4.17E-07 Neuronal/Dendritic
regulation/development
GOCC:dendritic_spine | 9.58E-06 Neuronal/Dendritic
regulation/development
GOCC:neuron_projection | 8.33E-08 Neuronal/Dendritic
regulation/development
GOCC:neuron_spine | 2.47E-06 Neuronal/Dendritic
regulation/development
GOCC:somatodendritic_compartment | 1.10E-05 Neuronal/Dendritic
regulation/development
sanders_2015_asd_lofmis3_genes | 2.69E-05 Neuropsychiatric Disorders
scz_gwas_genes 2 p le 04 | 6.22E-27 Neuropsychiatric Disorders
scz_gwas_genes_2 p 5e 08 | 1.66E-14 Neuropsychiatric Disorders
scz_gwas_genes_ 5 p_le 04 | 2.33E-34 Neuropsychiatric Disorders
scz_gwas_genes_5_p_5e 08 | 1.41E-15 Neuropsychiatric Disorders
scz_gwas_genes_all_p_le 04 | 1.43E-70 Neuropsychiatric Disorders
scz_gwas_genes_oall_p_5e_08 | 2.43E-49 Neuropsychiatric Disorders
sugathan_2014 chd8 binding | 5.78E-06 Neurodevelopmental
weynvanhentenryck 2014 _rbfox_clip | 1.51E-06 Neurodevelopmental
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Table 2b. SMR Gene Sets Associated with Cognitive Function

Gene Sets  Gene Set P Gene Set Categories
GOBP:regulation_of _binding | 8.54E-06 Cell binding
REACTOME:Signaling_by_Rho_GTPases | 2.28E-06 Cell metabolism
GOBP:small_GTPase_mediated_signal_transduction | 2.13E-05 Cell metabolism
REACTOME:Signaling_by_Rho_GTPases | 3.05E-07 Cell metabolism
GOBP:nucleosome_organization | 5.92E-06 Cell structure
GOBP:protein-DNA_complex_assembly | 1.81E-06 Cell structure
GOBP:protein-DNA_complex_subunit_organization | 2.17E-07 Cell structure
GOBP:cell-substrate_adhesion | 5.06E-06 Cell structure
GOBP:response_to_glucose | 4.80E-06 Interaction with small molecules
GOBP:response_to_hexose | 3.73E-06 Interaction with small molecules
GOBP:response_to_monosaccharide | 8.65E-06 Interaction with small molecules
GOBP:macromolecule_methylation | 4.62E-08 Methylation
GOBP:methylation | 3.29E-07 Methylation
REACTOME:lon_channel_transport | 1.00E-05 Neuronal/Dendritic
regulation/development

Table 2¢. S-TissueXcan Gene Sets Associated with Cognitive Function

Gene Sets  Gene Set P Gene Set Categories
GOMF:actin_binding | 6.44E-06 Cell binding
GOMF:chromatin_binding | 4.52E-06 Cell binding
GOBP:cellular_macromolecular_complex_assembly | 1.71E-07 Cell structure
GOBP:cellular_protein_complex_assembly | 1.68E-07 Cell structure
GOBP:cellular_response_to_interferon-gamma | 2.67E-06 Interaction with small
molecules
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Table 3. Prioritized Genes for Nootropic Drug Re-purposing

Gene ID Gene Name Predicted Nootropic Drug Name(s) MOA Drug Indications
Function
CAl Carbonic anhydrase 1 Antagonist acetazolamide ¢ carbonic anhydrase inhibitor congestive heart failure
benzthiazide ug]ufamgfe receptor antagom’s[_‘ duodenal ulcer disease
brinzolamide e kainate receptor antagonist dyspepsia
chlorthalidone o chloride channel blocker edema
diclofenamide o chloride reabsorption inhibitor epilepsy
dorzolamide o dopamine receptor antagonist glaucoma
ethoxzolamide o sodium channel blocker hypertension
met.hazolamlde o T-type calcium channel blocker migraine headacl.le
topiramate e sodium/potassium/chloride transporter ocular hypertension
trichlormethiazide inhibitor acute glomerulonephritis (AGN)
methyclothiazide . . anxiety
levosulpiride * VItar'nm K antagonist asthma
. . e calcium channel blocker P
zonisamide celiac disease
bendroflumethiazide chronic renal failure
hydroflumethiazide chronic stable angina
coumarin coronary artery disease (CAD)
amlodipine hepatic cirrhosis
irritable bowel syndrome
nephrotic syndrome
premature ejaculation (PE)
psychosis
schizophrenia
seizures
ulcerative colitis
vertigo
CA13 Carbonic anhydrase 13 Antagonist ethoxzolamide ¢ carbonic anhydrase inhibitor glaucoma
zonisamide e sodium channel blocker duodenal ulcer disease
o T-type calcium channel blocker epilepsy
CACNA2D2* | Calcium voltage-gated channel Agonist gabapentin-enacarbil adrenergic receptor agonist restless leg syndrome
auxiliary subunit alpha2delta 2 postherpetic neuralgia
CACNG3 Calcium voltage-gated channel Agonist gabapentin-enacarbil adrenergic receptor agonist restless leg syndrome
auxiliary subunit gamma3 postherpetic neuralgia
CLCN2 Chloride voltage-gated channel 2 Agonist lubiprostone chloride channel activator Constipation
Irritable bowel syndrome
DHODH Dihydroorotate dehydrogenase Antagonist leflunomide e dihydroorotate dehydrogenase multiple sclerosis
(quinone) atovaquone inhibitor rheumatoid arthritis
teriflunomide e mitochondrial electron transport pneumonia

inhibitor
® PDGFR tyrosine kinase receptor inhibitor
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Table 3. Prioritized Genes for Nootropic Drug Re-purposing (cont’d)

Gene ID Gene Name Predicted Nootropic Drug Name(s) MOA Drug Indications
Function
DPP4* Dipeptidyl peptidase 4 Antagonist alogliptin edipeptidyl peptidase inhibitor diabetes mellitus
anagliptin e HMGCR inhibitor stroke
linagliptin cholesterol reduction
saxagliptin
sitagliptin
teneligliptin
trelagliptin
vildagliptin
atorvastatin
GRIA4 Glutamate ionotropic receptor Agonist piracetam Acetylcholine agonist senile dementia
AMPA type subunit 4
GRIN2A Glutamate ionotropic receptor Antagonist acamprosate eglutamate receptor antagonist abstinence from alcohol
NMDA type subunit 2A amantadine .norepjnephrine transporter inhibitor Alzheimer's disease
felbamate eserotonin-norepinephrine reuptake epilepsy
halothane inhibitor (SNRI) general anaesthetic
memantine e calcium channel blocker influenza A virus infection
atomoxetine Parkinson's Disease
milnacipran restless leg syndrome
gabapentin senile dementia
virus herpes simplex (HSV)
attention-deficit/hyperactivity disorder
(ADHD)
fibromyalgia
seizures
pain from shingles
HTR1D 5-hydroxytryptamine receptor 1D | Agonist serotonin eserotonin receptor agonist bipolar disorder
almotriptan eadrenergic receptor agonist depression
dihydroergotamine edopamine receptor agonist migraine headache
eletriptan egrowth factor receptor activator schizophrenia
frovatriptan sleeplessness
naratriptan acromegaly
rizatriptan hyperprolactinemia
sumatriptan nasal congestion
zolmitriptan Parkinson's Disease
aripiprazole restless leg syndrome
oxymetazoline
bromocriptine
cabergoline
lisuride
pramipexole
ropinirole
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Table 3. Prioritized Genes for Nootropic Drug Re-purposing (cont’d)

Gene ID Gene Name Predicted Nootropic Drug Name(s) MOA Drug Indications
Function
HTR5A 5-hydroxytryptamine receptor 5A | Antagonist ergotamine eserotonin receptor antagonist bipolar disorder
yohimbine eadrenergic receptor antagonist bradycardia
asenapine edopamine receptor antagonist cardiac arrythmia
clozapine eserotonin receptor agonist* depression
loxapine headache
olanzapine hypertension
vortioxetine migraine headache
ketanserin schizophrenia
methysergide
SLC6A4 Solute carrier family 6 member 4 Agonist Vortioxetine eserotonin receptor agonist depression
dopamine edopamine receptor agonist acute pain
dextromethorphan eglutamate receptor antagonist cough suppressant
tapentadol eopioid receptor agonist headache
esigma receptor agonist muscle pain
tremors
ventricular arrhythmias
PDE4C* Phosphodiesterase 4C Agonist ketotifen ephosphodiesterase inhibitor itching
e histamine receptor agonist
e leukotriene receptor antagonist
PDE4D Phosphodiesterase 4D Antagonist aminophylline ephosphodiesterase inhibitor asthma
doxofylline eadenosine receptor antagonist bronchitis
caffeine e histamine receptor agonist chronic obstructive pulmonary disease
dyphyllin e leukotriene receptor antagonist claudication
!(eto?ifen eplatelet aggregation inhibitor coronary artery disease (CAD)
ibudilast e prostanoid receptor agonist drowsiness
apremilast emphysema
dipyridamole fatigue
pentoxifylline hypertension
roflumilast itching
iloprost peripheral artery disease (PAD)
psoriasis
psoriatic arthritis
pulmonary arterial hypertension (PAH)
stroke
PSMA5* Proteasome subunit alpha 5 Antagonist bortezomib eproteasome inhibitor multiple myeloma
carfilzomib o NFKB pathway inhibitor mantle cell lymphoma (MCL)
THRB* Thyroid hormone receptor beta Agonist levothyroxine ethyroid hormone receptor beta myxedema coma
liothyronine hypothyroidism
tiratricol Refetoff syndrome
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