

1

2

3

4 Aberrant sorting of hippocampal complex pyramidal cells in Type I Lissencephaly alters
5 topological innervation

6

7 James A. D'Amour^{1,2}, Tyler G. Ekins^{1,3}, Stuti Ghanatra¹, Xiaoqing Yuan¹, and Chris J. McBain^{1*}

8

9 ¹ Program in Developmental Neurobiology, *Eunice Kennedy-Shriver* National Institute of Child
10 Health and Human Development, National Institutes of Health, Bethesda, Maryland, 20892,
11 United States of America

12 ² Postdoctoral Research Associate Training Program, National Institute of General Medical
13 Sciences, Bethesda, Maryland, United States of America

14 ³ Brown University, Department of Neuroscience, Providence, Rhode Island, 02906, United States
15 of America

16

17

18 *Correspondence to: Chris J. McBain

19 E-mail: mcbainc@mail.nih.gov (CJM)

20

21 Author contributions: J.A.D. and C.J.M. designed and conceptualized research; J.A.D., T.G.E.,
22 S.G. and X.Y. performed the research; J.A.D. and T.G.E. analyzed the data; J.A.D. and C.J.M.
23 wrote and edited the paper.

24 **Abstract:**

25 Layering has been a long-appreciated feature of higher order mammalian brain structures but the
26 extent to which it plays an instructive role in synaptic specification remains unknown. Here we
27 examine the formation of synaptic circuitry under cellular heterotopia in hippocampal CA1, using
28 a mouse model of the human neurodevelopmental disorder Type I Lissencephaly. We identify
29 calbindin-expressing principal cells which are mispositioned under cellular heterotopia. Ectopic
30 calbindin-expressing principal cells develop relatively normal morphological features and stunted
31 intrinsic physiological features. Regarding network development, a connectivity preference for
32 cholecystokinin-expressing interneurons to target calbindin expressing principal cells is
33 diminished. Moreover, *in vitro* gamma oscillatory activity is less synchronous across heterotopic
34 bands and mutants are less responsive to pharmacological antagonism of cholecystokinin-
35 containing interneurons. This study will aid not only in our understanding of how cellular networks
36 form but highlight vulnerable cellular circuit motifs that might be generalized across disease states.

37

38 **Introduction:**

39 Cellular heterotopias within brain structures can result from a variety of developmental
40 insults to an organism and represent breaks from the normal laminar appearance of higher order
41 mammalian brain structures [1, 2]. While heterotopias may arise from diverse causes, they share
42 some common phenotypes [3], offering a unique window of study into the development of cellular
43 networks without the positional cue of layer. Particularly devastating heterotopias involve
44 mutations to genes that encode proteins essential to cellular migration and proliferation [4]. Brains
45 from these patients often appear smooth, lacking the infoldings and gyri of healthy human subjects.
46 Broadly, this condition is referred to as lissencephaly, meaning “smooth brain”. One of the most
47 common and first identified genetic causes of Type I lissencephaly is due to mutations in the Lis1
48 gene (PAFAH1B1), which encodes an enzyme essential for nuclear kinesis and microtubule
49 stabilization [4, 5, 6, 7]. Unsurprisingly, mutations to other parts of this migratory pathway also
50 result in lissencephalies and recently infections during embryonic development have received
51 renewed attention for their role in microcephalies, such as mosquito transmitted ZIKA virus (for
52 example DCX, 14-3-3 epsilon, RELN, ARX) [3, 8]. These disorders also produce intra-structure
53 cellular heterotopias which are characterized by mispositioned cell somas and disorganized
54 cellular layering. Clearly, mis-lamination is a shared feature of several human neurodevelopmental
55 disorders that merits deeper investigation.

56 Although rodent brains lack gyri, mice heterozygous for the human mutant Lis1 allele
57 display severe cellular heterotopias in both cortex and hippocampus, developmental defects,
58 hydrocephaly, and enlarged ventricles. These mice also have increased network excitability,
59 lowered seizure threshold, and increased spontaneous mortality rate – features shared with the
60 human condition [9, 10]. In the hippocampus of Lis1 mutants the PCL is often fragmented

61 lengthwise, resulting in multiple PCLs on the deep-superficial axis of the structure, with inter-PCL
62 spaces between. In these mutants, the PCL splits into two distinct bands of excitatory principal
63 cells, a deep and superficial cell layer, although this splitting can be variable and often scattered
64 in appearance.

65 In light of recent studies suggesting specified microcircuitry among deep versus superficial
66 principal cells and local basket cells in wild type CA1, we wondered if the two heterotopic cell
67 layers observed in Lis1 mutants reflected a functional distinction between discrete microcircuitry
68 of the PCL [11, 12, 13, 14]. Recent evidence suggesting a preferential connectivity between
69 principal cells and either parvalbumin (PV) or cholecystokinin (CCK) expressing interneurons,
70 depending on the extrahippocampal projection target, somatic position of the principal cell, or
71 marker expression of the principal cell, suggests an underlying blueprint in the establishment of
72 hippocampal circuitry and connectivity that has been previously underappreciated in what
73 otherwise appears as a monolithic excitatory lamina, the principal cell layer (PCL) [15, 16, 11, 12,
74 13, 14, 17, 18]. To what extent are innate wiring motifs disrupted under heterotopia?

75 Remarkably, in subjects suffering from cellular heterotopias that survive into adulthood
76 cellular networks function surprisingly well and animals are often behaviorally indistinguishable
77 from normal type littermates [19, 20, 21]. In the more thoroughly studied Reeler mouse model,
78 that displays severe cortical and hippocampal mis-lamination, cells in cortex appear to be relatively
79 healthy and are integrated into the local network [22, 23, 24, 25, 20]. Collectively the evidence
80 suggests that the formation of functional synaptic connectivity has some innate resilience to mis-
81 lamination and layers may play little to no role in the guidance and establishment of synaptic
82 connectivity [26, 27, 24, 21]. Furthermore, if there was logic behind the dividing of these
83 heterotopic cell populations in the Lis1^{+/−} mouse it would represent an ideal model to assay the

84 resilience of genetic network formation blueprints to the developmental/local-environment cues of
85 intra-structure position and layering [28, 29, 30]. This might permit us to determine over what
86 relative distances genetic wiring programs are able to locate and synapse on the appropriate
87 postsynaptic targets and shed light on what appears to be intertwined parallel circuitry for
88 information processing in CA1, or identify synaptic connectivity motifs that are more susceptible
89 to heterotopia than others [31, 17]. Ultimately these studies provide key insight into what exactly
90 is the role of layers in higher mammalian brain structures and highlight the proper areas of study
91 for future treatment of cellular heterotopias.

92

93

94

95

96

97

98 **Methods:**

99 *Animal care and breeding:*

100 All experiments were conducted in accordance with animal protocols approved by the National
101 Institutes of Health. *Lis1^{+/fl+}* male mice (provided by the laboratory of Anthony Wynshaw-Boris,
102 Case Western Reserve University) were crossed with *Sox2-cre* females (provided by National
103 Human Genome Research Institute transgenic core, *Tg(Sox2-Cre)1Amc/J*). *Sox2-cre* females
104 display cre-recombinase activity in gamete tissues, allowing us to genotype and select non-
105 conditional *Lis1⁺⁻* mutants without the cre allele in one cross. These mice were bred to wild-type
106 C57BL/6J mice (Jackson Labs stock no. 000664) and used for experiments. Both male and female
107 *Lis1⁺⁻* mice were used for recording and immunohistochemical experiments. Female *Ngn2-*
108 *Cre:RCE* (provided by the laboratory of Rosa Cossart, INSERM Marseille, France) mice were
109 used for cell birth-dating experiments. *Calbindin-cre* mice were obtained from Jackson
110 laboratories (stock no. 028532) and bred to *Ai14* animals from also from Jackson (stock no.
111 007914).

112 *Cellular birth-dating:*

113 Timed pregnancies were established between *Lis1⁺⁻* males and tamoxifen inducible *Ngn2-*
114 *CreERTM:RCE* females. Tamoxifen administration in these pregnant mice induces cre-
115 recombination and subsequent eGFP expression in newly born neurons of developing mouse pups.
116 Pregnant mothers were gavaged with tamoxifen (Sigma no. T5648) in corn oil (200-250 μ L, 20
117 mg/mL) at various embryonic time points spanning days E12-17. Pups were genotyped and grown
118 to P27-32 before perfusion and brain fixation in 4% paraformaldehyde in 0.1 M phosphate buffer
119 for 2-4 hours at room temperature or 12 hours at 4°C. Brains were washed, transferred to 30%
120 sucrose in 1x phosphate buffered saline and stored at 4°C. Sections (50-100 μ m) were cut on a

121 frozen microtome and stained for calbindin protein (described below). Coronal hippocampal
122 sections were confocally imaged under 20x magnification on a Zeiss confocal microscope, tiled,
123 stitched in the Zen Black software package and post-hoc analyzed for colocalization of calbindin
124 staining and eGFP expression using the Imaris analysis package (Imaris 9.3.1, Bitplane).

125 *Immunohistochemistry:*

126 Standard staining procedures were used for most of the experiments and have been described
127 previously [32] but briefly, deeply anesthetized mice were transcardially perfused with 50 mL of
128 4% paraformaldehyde (PFA) in 0.1 M phosphate buffer (pH 7.6). Brains were post-fixed overnight
129 at 4°C, then cryopreserved in 30% sucrose solution. Coronal sections were cut (50 µm) on a frozen
130 microtome. Prior to staining sections are washed in phosphate buffered saline (PBS), blocked and
131 permeabilized with 0.5% triton X-100, 10 % goat serum in PBS for two hours at room temperature
132 while shaking. Primary antibodies are applied overnight at 4°C shaking at the appropriate dilution
133 with PBS containing 1% goat serum and 0.5% triton X-100. The following day sections are
134 washed, and a secondary antibody is applied for one hour at room temperature while shaking at a
135 dilution of 1:1000. For most experiments, a final DAPI staining was also used to show lamina of
136 the hippocampus. Sections are then mounted and cover slipped with Mowiol. Primary antibodies:
137 Calbindin (Millipore polyclonal rabbit, stock no. AB1778, 1:1000; or Swant monoclonal mouse
138 1:1000, stock no. 300); CCK (Frontier Institutes rabbit, stock no. CCK-pro-Rb-Af350, 1:1000).
139 For quantification of inhibitory puncta the procedure was similar with a few adjustments. Coronal
140 sections (50 µm) of dorsal hippocampus were cut, blocked with 10% donkey serum in 0.5% Triton
141 X at room temperature for 2-4 hours. Primary antibodies were applied in phosphate buffered saline
142 with 1% donkey serum and 0.05% triton X-100 at 4°C for 48 hours. Secondary antibodies were
143 left at room temperature for 1-2 hours, before washing and mounting. Primary antibodies:

144 Gephyrin-mouse (Synaptic Systems, CAT no. 147021, 1:1000), Wolfram syndrome 1 (Wfs1)-
145 rabbit (Protein Tech, CAT no. 1558-1-AP, 1:5000), cannabinoid1-receptor (CB1-R)-guinea pig
146 (Frontier Institutes, CAT no. CB1-GF-Af530, 1:5000), parvalbumin (PV)-goat (Swant, CAT no.
147 PVG 214, 1:5000). Calbindin was visualized by using pups from crosses between Lis1 mutants
148 and Calbindin-cre:Ai14. Anti-donkey secondaries: Jackson Immuno Research laboratories Inc., AF
149 405 mouse (715-476-150), AF 488 rabbit (711-545-152), and AF 633 (706-605-148) guinea pig
150 or goat (705-605-147) for visualization of CB1-R- and PV-positive baskets respectively (all
151 1:500). Images were captured on a Zeiss 880 confocal under 63x magnification using Zen Airyscan
152 image processing. Between 25-30 Z-axis images were collected at Z-steps of 0.159 μm . Analysis
153 was performed on a Max-IP from the first seven of these steps, accounting for 1.1 μm of tissue
154 thereby minimizing Z-axis problems.

155 Images were quantified in Imaris 9.3.1 software. Twelve principal cells were selected using the
156 Wfs1 staining – half of which were calbindin positive, and cell somas were traced. Gephyrin
157 puncta (with an approximated size of ~0.25 μm) were automatically detected in the image and
158 excluded if not within 1 μm of a cell soma. In parallel, inhibitory boutons were automatically
159 detected from a pre-synaptic basket cell marker (parvalbumin in one set of experiments, CB1-R in
160 the other). Inhibitory puncta were filtered for proximity to the post-synaptic gephyrin puncta (1
161 μm or less), and further filtered by proximity to a principal cell soma (0.2 μm or less). Remaining
162 inhibitory puncta were counted on the somas of six calbindin positive, and six calbindin negative
163 principal cells. Dividing puncta counts on calbindin cells by those on calbindin-negative cells
164 yielded synaptic innervation bias measurements such that counts from 12 cells are used to generate
165 a single data point. – A value less than one signifies an avoidance of calbindin positive targets and
166 numbers greater than one signifies a preference for calbindin positive targets.

167 *Principal cell reconstructions:*

168 Slices with biocytin filled cells were fixed (4% PFA and stored at 4°C) and processed for
169 visualization using avidin conjugated dye. Slices were resectioned (50-100 μ m) and DAPI stained
170 so cells could be visualized, and their somatic depth could be assessed within the larger
171 hippocampal structure. After staining, slices were imaged, and files were imported to Neurolucida
172 (MBF Bioscience) cell tracing software. Once traced, data sheets were exported for apical dendrite
173 shapes and connectivity profiles for each cell and processed in a custom python script to generate
174 the LRI and ORI measurements later used for morphological clustering.

175 *Slice preparation:*

176 Young adult mice (P20-40) were anesthetized with isoflurane before decapitation. Brains were
177 immediately dissected in dishes of ice-cold dissection ACSF (in mM): 1 CaCl_2 , 5 MgCl_2 , 10
178 glucose, 1.25 $\text{NaH}_2\text{PO}_4 \cdot \text{H}_2\text{O}$, 24 NaHCO_3 , 3.5 KCl , 130 NaCl . ACSF was oxygenated thoroughly
179 for 20mins by bubbling vigorously with 95% O_2 and 5% CO_2 beforehand. For measurement of
180 cell intrinsic properties whole-cell recordings, mono-synaptic inhibition, and disynaptic inhibition
181 experiments coronal slices were cut (350 μ m) using a VT 1200S vibratome from Leica
182 Microsystems. Slices were allowed to recover in an incubation chamber at 35°C in the same
183 solution for 30 minutes. For oscillation experiments, the same extracellular slicing and recording
184 solutions were used, and pipettes contained extracellular solution. Slices were cut horizontally
185 (450 μ m) from more ventral hippocampus, as oscillations were often extremely weak or all
186 together lacking from coronal sections. We verified that similar migratory problems with the late-
187 born calbindin population occurred in ventral hippocampus (Figure 7B). Oscillation experiment
188 slices recovered for 15minutes at 35°C before being transferred to a custom interface incubation
189 chamber.

190 *Whole-cell physiology:*

191 For electrophysiological recordings slices were transferred to an upright Olympus microscope

192 (BX51WI) with a heated chamber (32°C, Warner Inst.) and custom pressurized perfusion system

193 (~2.5 mL/min). Recording ACSF contained the following (in mM): 2.5 CaCl₂, 1.5 MgCl₂, 10

194 glucose, 1.25 NaH₂PO₄ * H₂O, 24 NaHCO₃, 3.5 KCl, 130 NaCl. Electrodes of 4-6 MΩ

195 resistance (borosilicate glass, World Precision Instruments, no. TW150F-3) were prepared on

196 Narishige (PP-830) vertical pipette pullers. Recording were collected using a Multiclamp 700B

197 amplifier (Molecular Devices) with a Bessel filter at 3kHz and Digitized at 20kHz using a Digidata

198 1440A (Molecular Devices). Protocols were designed, executed and analyzed using the pClamp

199 10.4 software package (Molecular Devices). Liquid junction potentials were not corrected for and

200 series resistance compensation was not applied. Series resistance was monitored throughout

201 experiments using a -5mV pulse at the start of each sweep and ranged from 12-32MΩms. Cells

202 were biased to -70mV in current clamp mode, and held at -70, -30, and +10mV in voltage clamp

203 mode depending on the requirements of the experiment. For basic properties and morphological

204 recoveries, electrodes were filled with the following, in (mM): 130 K-glu, 0.6 EGTA, 10 HEPES,

205 2 MgATP, 0.3 NaGTP, 10 KCl. For monosynaptic inhibition experiments, eIPSCs were recorded

206 at -70 mV using electrodes were filled with (in mM): 100 K-glu, 45 KCl, 3 MgCl₂, 2 Na₂ATP, 0.3

207 NaGTP, 10 HEPES, 0.6 EGTA; yielding an E_{cl} of -27 mV. eIPSCs were evoked by local

208 stimulation for 5-10 minutes until a stable baseline was established, then omega-conotoxin GVIA

209 (1 μM) was applied while eIPSCs were monitored for changes in amplitude. Similar experiments

210 were performed washing in omega-agatoxin IVA (250 nM), with QX-314 (2 mM) added to the

211 internal solution. For feedforward I/E experiments electrodes contained (in mM): 135 Cs-

212 MethaneSO₄, 5 NaCl, 4 MgATP, 0.3 NaATP, 10 HEPES, 0.6 EGTA, 5 QX-314 chloride salt,

213 giving an E_{cl} of -69.7 mV. Internal solutions were adjusted for a pH of 7.4 using KOH and an
214 osmolarity of 290 mOsm. Biocytin (2mg/1mL) was added to thawed aliquots before use. For
215 feedforward inhibition experiments, pilot experiments where stimulation was delivered in CA3
216 did not include a wash-in of excitatory blockers as activation of direct monosynaptic inhibition
217 was less likely. For most of the experiments however, stimulation was delivered in the s. radiatum
218 of CA1 and APV (50 μ M) / DNQX (20 μ M) was added to block glutamatergic transmission,
219 permitting us to determine and subsequently subtract the monosynaptic component of the
220 inhibitory response. These data were pooled. Recordings where IPSCs were not reduced by at least
221 30% were excluded.

222 *Extracellular field potentials:*

223 For LFP recordings, slices were transferred onto an interface chamber with two manipulator-
224 controlled electrodes positioned under 25x visual guidance. Carbachol (20 μ M) was applied to
225 induce slice oscillations. Recordings were made at 10kHz, low and high pass filtered (8 and 100
226 Hz, respectively) and mean subtracted. Cross correlation was the max real value resulting from the
227 inverse fast-fourier transformation of F_1 and F_2 ; where F_1 = fft(signal sample from channel 1), and
228 F_2 is likewise for channel 2, after a flip operation. Cross correlation summary values are the max
229 cross-correlation value in the resulting vector C. The temporal shift between the two signals is the
230 X-coordinate (in milliseconds), corresponding to this cross-correlation peak. Experiments were
231 processed such that channel-1 and channel-2 always corresponded to the same side of the principal
232 cell layer (deep vs superficial).

233 *Data analysis:*

234 Initial data exploration and analysis was performed in custom Python scripts. For further plotting
235 and statistical analysis Graphpad Prism was used for physiological data. For soma positioning

236 measurements and gephyrin puncta quantification, Microsoft excel sheets were used. K-means
237 clustering was performed in Python using the Scikit learn clustering and decomposition packages.
238 Both clustering routines were supervised (Figure 3 and 4), in that they expected K-means n = 2.
239 For morphological clustering this was to replicate prior work and aid in identification of calbindin
240 positive and negative principal cells. For physiological properties, we wished to ask if the two
241 morphological populations might be reflected in our physiology data.

242 *Statistics:*

243 P values represent Welch's t-tests for comparisons of two independent samples, unless otherwise
244 noted. Student's paired t-tests were used for intra-sample (like inhibitory puncta) and pre-post
245 wash comparisons. R values represent Pearson's cross-correlation unless otherwise noted.
246 Quantification and error bars are standard error of the mean.

247

248 **Results:**

249 **Heterotopic banding of the principal cell layer in Lis1 mutant mice.**

250 Non-conditional heterozygous $Lis1^{+/-}$ mice were generated by breeding a $Lis1^{+/fl+}$ line to
251 Sox2-cre animals. Lis mutants were often noticeably smaller than litter mates. Some animals
252 displayed severe macroscopic brain abnormalities, including enlarged ventricles, hydrocephaly,
253 intracranial bleeding, and spontaneous death. $Lis1^{+/-}$ mutant mice that survived to 3-5 weeks of age
254 were used for experiments and subsequent breeding. In coronal sections from dorsal hippocampus
255 $Lis1$ mutants displayed heterotopic banding of the principal cell layer (Figure 1A). Banding varied
256 in severity, cell soma density, and septal-temporal extent. Most animals displayed the strongest
257 banding in area CA1, with fewer mice showing multiple PCLs past region CA2. Region CA3
258 rarely appeared banded, but instead scattered and uncompacted. Mice occasionally had three

259 distinct layers or clustered islands of cells, but most typically two prominent PCLs could be seen
260 (Figure 1A, *right* vs *left*). Deeper bands were typically situated in what would be s. oriens-alveus
261 in a non-mutant animal. In measuring from the border of the alveus and the cortex radially (toward
262 radiatum, known as the radial axis of CA1), the entirety of normal WT PCLs were located between
263 ~175 – 300 μ m. In Lis1 heterozygous mutants, superficial bands were positioned between ~ 250
264 – 320 μ m and deeper heterotopic bands (positioned closer to the alveus) were between ~ 100 –
265 190 μ m. Of the two bands, the superficial tended to be more densely populated and closer to the
266 normal positioning of the PCL in normal type mice (Figure 1 A and B). We next considered
267 whether these heterotopic bands were splitting randomly, or if the banding represented distinct cell
268 populations.

269 **Calbindin expressing principal cells preferentially position in the deeper heterotopic band of**
270 **CA1 in Lis1 mutants.**

271 In order to better understand the banding process in heterozygous Lis1 mutants,
272 immunohistochemistry experiments were carried out for principal cell markers and quantified by
273 normalized expression levels in each heterotopic band (n antibody stained cells / n dapi cells in
274 same region of interest). In addition to marking a subpopulation of GABAergic cells, Calbindin is
275 expressed in superficial principal cells in several species [13]. Consistent with these reports, our
276 Lis1 normal type litter mates show calbindin-expression among superficial principal cells of CA1
277 (Figure 1B, *left*). These cells are tightly packed, forming one-three rows of somas on the s.
278 radiatum adjacent (superficial) side of the PCL. Conversely, calbindin staining in Lis1^{+/−} mice
279 showed a strong bias for calbindin-expressing principal cells to occupy the deeper heterotopic
280 principal cell layer (Figure 1B, *right*). Figure 1D shows a normalized histogram of identified
281 calbindin-positive cell soma positions in Lis1 mutants and litter mate controls. For quantification

282 and comparison purposes, the single wild type PCL is divided in half radially and analyzed as
283 separate deep and superficial bands (Figure 1E; Distal CA1 Wt: deep $8.9 \pm 2.8\%$; superficial 25.1
284 $\pm 1.3\%$; Lis: deep $18.0 \pm 2.8\%$; superficial $4.4 \pm 1.0\%$, $n = 12$ Wt and 12 Lis $1^{+/-}$ slices respectively
285 from 6 animals). This finding was not a general feature of having the Lis1 mutant allele, as in
286 animals with less severe banding (or in the same slices nearer CA2) but still carrying the mutant
287 Lis allele, the PCL displayed relatively normal, superficial calbindin soma positioning (Figure 1F;
288 Proximal CA1 Wt: deep $16.3 \pm 2.3\%$; superficial $30.0 \pm 2.0\%$; Lis: deep $12.1 \pm 2.3\%$; superficial
289 $19.0 \pm 2.4\%$, $n = 12$ and 11 , respectively). Given that principal cells are generated near what
290 becomes the alveus and migrate radially during embryonic development in a deep to superficial
291 manner [33, 23, 34], the calbindin staining pattern suggested a late born population undergoing
292 migratory failure in the Lis $1^{+/-}$ mouse.

293 **Embryonic development of the calbindin expressing principal cells.**

294 Superficial principal cells in normal mice arise near the end of gestation (Emb days 16-17)
295 [33, 23, 13]. Our initial data suggests that the heterotopic banding in Lis $1^{+/-}$ mice may arise from
296 a migratory stalling event, where later born superficial-preferring cells were unable to overcome a
297 migratory burden and instead form a new deep heterotopic layer. In order to test this hypothesis
298 and ensure that a novel population of deeply positioned principal cells was not adopting calbindin
299 expression in Lis $1^{+/-}$ mice, cellular birth-dating experiments were performed.

300 In timed pregnancy experiments using Lis1 mutants crossed to Ngn2-cre:RCE mice,
301 tamoxifen administration induces cre-recombination and subsequent eGFP expression in newly
302 born neurons of developing mouse pups. Pregnant mothers were gavaged at various embryonic
303 time points spanning days E12-17. After pups were born, they were perfused and fixed at ~P30 for
304 calbindin staining, and subsequent quantification of the percentage of eGFP expressing neurons

305 from any time point that were co-stained for calbindin (Figure 2A-C). Approximately 10% of cells
306 born on E12-E13 expressed calbindin at P30 (Figure 2D; Wt: $9 \pm 3\%$; Lis: $12 \pm 3\%$, n = 95 cells
307 and 168 labelled cells analyzed from 5 animals, respectively) in both Lis1 normal type littermates
308 and mutants. Cells born E14-E15 co-stained for calbindin $42 \pm 9\%$ of the time for wild type and
309 $52 \pm 8\%$ (n = 221 and n = 128, from 10 animals) for Lis1 mutants and cells born E16-E17 co-
310 stained for calbindin $54 \pm 7\%$ of the time for wild type and $71 \pm 9\%$ for Lis1 mutants (n = 48 and
311 20 RCE labelled cells from 11 animals). While the timing of calbindin cell birthdates remained
312 similar to littermate controls in $Lis1^{+/-}$ animals in that calbindin cells arise late in embryonic
313 development (Figure 2D), positioning of these cells differed substantially. Later born cells
314 positioned more superficially in normal type littermates (smaller PCL depth measurements), while
315 they positioned more deeply in mutant mice (Figure 2E and F, E represents counts from single
316 experiments data are averages and summarized in F). These results suggest that deeply positioned
317 calbindin expressing cells in the Lis1 mutant are the same late-born cell population that are now
318 ectopically positioned in the deeper heterotopic band.

319 **Calbindin-expressing principal cells retain a complex apical morphology**

320 Previous studies have documented variation in CA1 principal cell morphology, particularly
321 in comparing basal and apical dendritic trees [35, 11, 36]. These morphological features can be
322 reliably used to differentiate excitatory neuron subtypes. In particular, calbindin-expressing
323 principal cells have more complex apical dendritic trees (more branching), than calbindin-negative
324 counterparts [36]. This has enabled offline characterization of excitatory cell group through K-
325 means clustering of morphological features after cellular reconstructions. A prior study using this
326 approach suggested that clustering was greater than 90% accurate as verified by mRNA and in-
327 situ hybridization approaches but comes with the drawback that every recording must be

328 histologically processed, virtually reconstructed, and analyzed [36]. Additionally, there is a
329 minimal threshold for the amount of dendritic tree that must be recovered and drawn for clustering
330 to be accurate.

331 In our 63 best recovered principal cells morphologies from physiological recording
332 experiments ($n = 32$ wild type, $n = 31$ $Lis1^{+/-}$) we implemented a k-means clustering algorithm
333 based on dendritic branch connectivity and lengths, as done previously [36]. The clustering results
334 from $Lis1$ mutant and normal type litter mate cellular morphologies are shown in Figure 3A and
335 B. The same process was applied to mutant and normal cells, but these groups were processed
336 independently by a supervised k-means algorithm that expected two groups, corresponding to
337 complex and simple morphologies. The data show that relatively simple and complex cell
338 morphologies persist in the $Lis1$ mutant, in approximately the same proportions to normal type
339 mice, with nearly overlapping cluster centers (complex cells, Wt: [-0.1, 0.8], $Lis1$: [-0.4, 0.9];
340 simple cells, Wt: [-1.8, -1.3], $Lis1$: [-1.7, -1.2]). A visual comparison of some of the more
341 obviously simple and complex cellular recoveries suggests the sorting has been successful (Figure
342 3A & C, note deeply positioned complex cells in $Lis1$ mutant). Grouping cells by the assigned
343 shape cluster and plotting the associated PCL depth measurements (from the border between the
344 first PCL and the radiatum) gives further support to the sorting results, as complex cells were
345 located superficial to simple cells in normal type controls and scattered but generally deeper than
346 simple cells in $Lis1$ mutants, in agreement with our calbindin staining experiment (Figure 3D PCL
347 depth, Wt complex: $35 \pm 8.0 \mu\text{m}$, simple: $50.2 \pm 6.3 \mu\text{m}$, $n = 13$ and 11; $Lis1$, complex: 127 ± 23.4
348 μm , simple: $94.6 \pm 12.3 \mu\text{m}$, $n = 8$ and 13). Additionally, we observed that complex cells in both
349 mutant and non-mutant animals tended to have their first prominent apical branch bifurcation
350 points sooner than simple cells (Figure 3E). This suggests that the complex apical branch

351 morphology can still be used to identify putative calbindin-expressing principal cells in Lis1
352 mutants. More traditional morphological analyses such as sholl intersections fail to show clear
353 differences between complex and simple cell types when they are pre-sorted by K-means label,
354 highlighting the usefulness of analyzing branching patterns with this approach (Figure 3F-H, note
355 that sholl intersections represent apical dendritic trees only and do not include basal dendrites).

356 Importantly, sholl analysis of complex cells from Lis1 mutants and complex cells from
357 control litter mates revealed a reduction in branch intersections in Lis1 complex cells (Figure 3H).

358 While non-mutant complex cells typically have peak sholl intersections of 8-11 around 200 μm
359 from the soma, Lis1 mutant complex cells have fewer peak intersections (~7), closer to the soma
360 (~125 μm) (Wt n = 10 complex and 14 simple; Lis n = 10 complex and 12 simple). While relatively
361 speaking, the complex and simple subtypes persist in the Lis1 mutant, there has been an effect of
362 the mutation, either direct or indirect, in stunting general morphological development.

363 **Lis 1 mutants display disrupted physiological properties**

364 From the whole-cell recordings that were used for morphological reconstructions in Figure
365 3 a battery of intrinsic physiological properties were analyzed in two ways. Several of these
366 properties are shown in Figure 4. Each property was plotted against the PCL depth of the soma
367 (somatic depth from the radial side of the PCL) from which the recording was made (Figure 4A).
368 The same data were also sorted into putative calbindin-positive and calbindin-negative cell types
369 as predicted by either complex or simple morphologies (Figure 3B & 4B). Resting membrane
370 potential displayed a pearson r value of 0.44 for correlation with position in normal type litter
371 mates, and a r-value of 0.07 in Lis1 mutant mice (Wt: n = 23, Lis: n = 23). Sag index correlated
372 with position at an r-value of 0.5 in normal mice and an r-value of 0.05 in Lis mutants (Wt: n =

373 24, Lis: n = 26). Input resistance and depth in normal type mice had a correlation value of $r = 0.2$,
374 while in Lis mice $r = -0.1$ (Wt: n = 23, Lis: n = 26).

375 In sorting recorded data by putative cell type, we noted that many of the positional
376 differences observed in Figure 4A persisted or at least trended toward significant in normal type
377 littermates (complex cells are filled circles, open are simple; Resting membrane potential: Wt
378 mean complex -63.3 ± 1.2 mV, simple -60.3 ± 1.2 mV, $p=0.09$ n = 11 and 12; Sag index: mean
379 complex 0.75 ± 0.02 , simple 0.79 ± 0.02 , $p=0.25$ n = 12 and 12; Input resistance: complex 120.4
380 ± 6.8 M Ω , simple 149.3 ± 14.11 M Ω , $p=0.08$ n = 11 and 12). Some of these differences in sub-
381 types were still detectable in Lis1 mutants, but differences between sub-types for most properties
382 seemed substantially reduced from normal mice (RMP: mean complex -61.2 ± 2.1 mV, simple -
383 61.1 ± 1.5 mV, $p=0.96$ n = 10 and 13; Sag index: mean complex 0.78 ± 0.02 , simple 0.81 ± 0.01 ,
384 $p=0.09$ n = 13 and 13; R input: mean complex 171.9 ± 13.2 M Ω , simple 123.3 ± 13.02 M Ω , $p=0.29$
385 n = 13 and 13).

386 We wondered if there were physiological subtypes of principal cells and how those
387 subtypes might correspond to our previously identified morphological subtypes. Principal
388 component analysis and subsequent K-means clustering was carried out on the physiological data
389 (Figure 4C and D, resting membrane potential, sag index, input resistance, spike amplitude,
390 adaptation ratio, firing frequency at 2x threshold, spike threshold, and after hyperpolarization
391 amplitude were used for physiological clustering). We then scored where morphologically
392 identified cells fell in the physiological clusters. Out of eight morphologically complex cells, six
393 were found in physiological cluster 0 and the remaining two in physiological cluster 1. Of eleven
394 morphologically simple cells, eight were located in physiological cluster 1 and the remaining three
395 in cluster 0, suggesting that these physiological clusters roughly correspond to the two

396 morphological subtypes identified in Figure 3 for normal type littermates (Figure 4C). The same
397 analysis in Lis1 mutants yielded uneven cluster counts, and no clear relationship between
398 physiological cluster and morphological cluster (Figure 4D).

399 **Basket cell – principal cell innervation biases are differentially affected in the Lis1 mutant**
400 **hippocampus.**

401 Having gained insight into how the heterozygous Lis1 mutation impacts the development
402 of principal cell properties of positioning, embryonic birthdate, morphology and intrinsic
403 physiology, we next wondered how ectopic calbindin cells were integrated into the local synaptic
404 network of CA1. Prior studies have suggested a preferential and complementary innervation bias
405 among two types of local basket cells found in the CA1 subfield – parvalbumin-containing (PV)
406 and a subset of cholecystokinin-containing (CCK) inhibitory interneurons. PV-expressing basket
407 cells preferentially innervate deeply situated calbindin negative principal cells, while CCK-
408 expressing interneurons have a similar bias, but for superficial calbindin positive principal cells
409 [11, 14, 17]. We wondered if these innervation patterns were present in the Lis1 mouse despite
410 ectopic cellular layering, which might shed light on how positioning and layering effect synaptic
411 network development of brain structures.

412 To begin to assay this network feature in our Lis1 mutants we first asked where these two
413 types of basket interneuron somas were positioning in mutant mice. Immunohistochemical staining
414 experiments were performed using antibodies against PV and CCK (Figure 5A and B). The soma
415 of stained interneuron classes are plotted in binned and normalized histograms in Figure 5B, left
416 and right for PV and CCK, respectively (filled bars for controls dashed bars for mutants). Vertical
417 dotted lines show the approximate location of the wild type principal cell layer. Note that for this
418 figure, somatic position is measured from the alveus/cortical border toward the s. radiatum across

419 the entire radial depth of CA1, as opposed to how it is measured when examining principal cell
420 layer depth (compare with Figure 3F & 4A). As these interneurons often position on the edges of,
421 or outside of the PCL this measure is more appropriate when assessing the overall radial structure
422 of CA1. Our data indicate that both PV- and CCK-containing cell types have undergone superficial
423 radial shifts, that is, the cell bodies have moved towards the s. radiatum. Notably, this is opposite
424 the direction in which calbindin positive principal cells are shifted in Lis1 mutants (Figure 1 & 2).
425 Overall PV-containing somatic shifts appear less severe than CCK-containing shifts, but in both
426 cases a few drastically shifted somas were observed (right tail of dashed histograms).

427 To begin to probe synaptic network development under heterotopia we performed high
428 magnification immunohistological staining experiments with four simultaneously visualized
429 channels (Figure 5C - F). This permitted the identification of inhibitory synapses on the somas of
430 calbindin-positive and calbindin-negative principal cells (Figure 5C, *left* and *right* panels,
431 respectively) in normal and Lis1 mutant littermates (5C vs E and 5D vs F, for PV and CB1R
432 respectively). First, putative inhibitory boutons are automatically identified in the corresponding
433 stain (Pv or CB1-R, top panels, blue staining). These putative pre-synaptically localized boutons
434 are then filtered by proximity to a postsynaptic inhibitory synapse marker, gephyrin – yielding
435 ‘true’ inhibitory puncta (synthetic spheres in bottom panels, gephyrin staining not shown). These
436 puncta are then counted if they are within 0.2 μ m or less of a principal cell soma – which are
437 demarcated by the WFS1 antibody (green). Six calbindin positive and six calbindin negative
438 principal cells in CA1 of mutants and non-mutant littermates are used for each image, yielding a
439 single data point. The counts on calbindin-positive somas are divided by counts on calbindin-
440 negative somas yielding a bias ratio (no. of Calb⁺ PCs / no. of Calb⁻ PCs). Numbers greater than
441 one indicate a preference for calbindin-expressing principal cells.

442 PV-expressing basket cells preferentially innervated calbindin-negative principal cells in
443 both mutant and non-mutant mice (Figure 5G; PV-calbindin preferences: 0.74 ± 0.05 , 0.63 ± 0.11
444 for normal type and mutant respectively, $p = 0.55$, each point represents 12 cells from a slice, $n =$
445 3 pair of littermates from 3 litters). In experiments where the PV channel stain was replaced with
446 a Cb1-R antibody, known to selectively stain presynaptic terminals of CCK-expressing basket
447 cells, we noted a preferential innervation of calbindin-expressing post-synaptic targets in normal
448 type that was absent from the Lis1 mutant mouse (Figure 5H; CB1-R-calbindin preferences: 1.32
449 ± 0.04 , 1.02 ± 0.09 for normal type and mutant respectively, $p = 0.02$). Which suggested that at
450 least from an immunohistological level, CCK-expressing basket targeting onto ectopic calbindin
451 positive principal cells was disrupted.

452 **Monosynaptic CCK-mediated inhibition onto calbindin-positive principal cells is disrupted**
453 **in CA1 of the Lis1 mutant.**

454 In order to better understand the role of CCK-expressing inhibitory cell networks in the
455 face of pyramidal cell heterotopia and to further the observations shown in Figure 5 at a functional
456 level, whole-cell recordings were made from principal cells in CA1 in the presence of excitatory
457 synaptic transmission blockers (APV 50 μ M and DNQX 10 μ M). Monosynaptic inhibitory events
458 were evoked using a stimulation electrode placed locally in the PCL of CA1, and omega-conotoxin
459 (1 μ M) was applied to selectively inhibit vesicle release from CCK-expressing interneurons
460 (Figure 6) [37]. Example traces from four groups are shown in Figure 6C, from left to right, Wt
461 complex, Wt simple, Lis1^{+/−} complex, Lis1^{+/−} simple. Baseline events are in black, and post wash-
462 in data are in gray. In littermate controls, conotoxin reduced monosynaptically evoked IPSCs to
463 52.5 ± 3.9 % of baseline amplitudes in complex cells, while events in simple cells were reduced
464 to 75.6 ± 8.3 % of baseline amplitudes, consistent with our observation that complex cells are

465 preferentially targeted by CCK-containing interneurons (Figure 6D (*left*), $p = 0.03$, $n = 8$ Wt and
466 8 Lis1^{+/−} cells). In Lis1 mutant mice this differential CCK-containing inhibitory input was not
467 detected, as conotoxin reduced eIPSCs to 48.2 ± 16.4 % of baseline and 60.2 ± 7.8 %, for complex
468 and simple cell subtypes respectively (Figure 6D (*right*), $p = 0.53$ $n = 13$ and 5).

469 We next repeated this experiment using an antagonist known to inhibit release from
470 parvalbumin-expressing interneurons, omega-agatoxin IVA (250nM). Example traces for the four
471 subtypes before and after agatoxin application are shown in Figure 6E (wash-in data in gray). In
472 control mice, agatoxin reduced monosynaptically evoked eIPSCs to 42.01 ± 6.2 % of baseline in
473 complex cells, events in simple cells were reduced to 9.5 ± 0.7 % of baseline amplitudes, signifying
474 that events in simple cells were more dependent on PV-expressing basket cell input (Figure 6F
475 (*left*), $p = 0.003$, $n = 4$ complex and 6 simple cells). In Lis1 mutant mice agatoxin reduced eIPSCs
476 to 48.9 ± 9.9 % of baseline and 14.2 ± 3 %, for complex and simple cell subtypes respectively
477 (Figure 6F (*right*), $n = 3$ and 7, $p = 0.06$).

478 Having probed monosynaptic inhibitory circuitry onto putative calbindin-positive and -
479 negative cells, we next examined feedforward disynaptic inhibition onto CA1 principal cells in
480 normal and Lis1 mutant mice. Superficial cells have been previously shown to exhibit a
481 comparatively higher level of excitatory drive during feedforward circuit activation (large EPSCs
482 per unit of IPSC, [14]). Cells were voltage clamped at -70mV and +10mV to measure the Schaffer
483 collateral-mediated monosynaptic excitatory and disynaptic inhibitory drive (Figure 6G).
484 Excitatory transmission was subsequently blocked (APV 50 μ M and DNQX 20 μ M), to allow the
485 subsequent isolation of the disynaptic feedforward inhibitory drive from the total inhibitory
486 component. Inhibition:excitation (IE) ratios were positively correlated with somatic depth in the
487 PCL for normal-type littermates, but not Lis1 mutants (Figure 6H; Wt $r = 0.4$, Lis $r = 0.05$). When

488 recorded cells were sorted by complex and simple morphologies complex cells had lower IE ratios
489 in both normal and Lis 1 mutant mice (Figure 6I, Wt complex 3.15 ± 0.39 , simple 5.7 ± 0.95 , $p =$
490 0.02 $n = 23$ complex and 23 simple; Lis1 complex 3.02 ± 0.49 , simple 5.03 ± 0.76 , $p = 0.03$ $n =$
491 21 complex and 17 simple cells). While their resulting ratios were predictive of sub-type, neither
492 EPSC or IPSCs alone were significantly associated with depth or cell subtype (data not shown).
493 EPSCs displayed depth correlations of $r = 0.16$ and $r = 0.07$ for normal-type and Lis1 experiments,
494 respectively. Neither excitatory nor inhibitory events differed significantly between principal cell
495 shapes. IPSCs had a somatic depth correlation value of 0.2 non-mutant littermates and 0.01 for
496 mutants.

497 **Lis1^{+/-} mice display robust extracellular oscillations but are less synchronous across**
498 **heterotopia.**

499 Using extracellular oscillations measured in vitro we next sought to assay alterations in
500 network level function resulting from the cellular heterotopia present in our Lis1 mutants. Both
501 normal-type and Lis1 mutant slices were capable of producing robust gamma oscillatory activity
502 (ranging from 18-50Hz), in response to application of 20 uM carbachol (Figure 7) [38, 39, 40].
503 Slices from Lis1 mutants produced slightly higher frequency gamma oscillations than non-mutants
504 (Wt 24.9 ± 1.7 Hz, Lis1^{+/} 31 ± 1.1 Hz, $p = 0.005$ $n = 20$ and 14, respectively) (Figure 7B-D).
505 Subsequent addition of the synthetic CB1R agonist, WIN-55,212-2 (WIN) (2 uM), did not alter
506 the peak frequency of the oscillations in normal type nor mutant recordings (Figure 7D) but caused
507 a significant decrease in peak power in normal type recordings (Figure 7E), but not in Lis1^{+/} mice
508 suggesting that CCK-networks in mutants are less involved in gamma oscillation generation than
509 in normal-type littermates (Wt +WIN 0.93 ± 0.03 vs CCh alone $p = 0.03$, Lis1^{+/} +WIN 1.02 ± 0.04
510 vs CCh alone $p = 0.69$; $n = 20$ and 14 non-mutant and mutant respectively).

511 In an additional series of experiments, a second electrode was placed in the same radial
512 axis as the first approximately 150 um deeper, so that in normal type slices one electrode targeted
513 the radiatum side of the PCL while the other targeted the oriens side (Figure 8A). In the Lis1 mouse
514 slices electrodes were placed in different heterotopic bands but still in the same radial axis. This
515 allowed for analysis of the correlation and synchronicity of oscillations across the normal and
516 heterotopic layers of CA1 (Figure 8). Examples of simultaneous one second recordings are shown
517 for the oriens (*top*) and radiatum (*bottom*) side electrodes in Figure 8B (Wt on *left*, Lis1^{+/−} on *right*).
518 Dashed vertical lines show peak alignment for each example. Associated cross-correlation plots
519 between these electrodes are displayed in Figure 8C (Wt *left*, Lis1 *right*); note the +0.7 ms peak in
520 offset in the wild-type experiment, and -2.7 ms peak offset in the Lis1 example. Normal-type and
521 Lis1 mutant slices were capable of producing correlated oscillatory activity (Figure 8D; Wt 394.6
522 \pm 80.0, Lis1^{+/−} 394.2 \pm 60.8, $p = 0.99$ $n = 20$ and 14). However, examining the time-shifts obtained
523 from cross correlation analysis (how far one signal is peak shifted from another in time) we noted
524 that Lis1^{+/−} mice displayed significantly less temporally correlated oscillations between the two
525 electrodes (Figure 8E; Wt: $+1.01 \pm 0.8$ ms, Lis1^{+/−}: -1.8 ± 0.79 , $p = 0.02$ $n = 20$ and 14) suggesting
526 that while both heterotopic bands participate in the ongoing oscillation, their separation in
527 anatomical space or deficits in basket cell network connectivity erodes the correlated activity
528 between the bands. Application of the CB1R agonist WIN-55 produced modest decreases in non-
529 mutant cross-correlation values but not in the Lis1 mutants (Wt: $+ WIN 333.9 \pm 71.9$, vs baseline
530 $p = 0.04$ $n = 20$; Lis1^{+/−}: $+ WIN 427.2 \pm 84.13$, vs baseline $p = 0.43$ $n = 14$) suggesting a diminished
531 role for CCK-containing interneuron networks in the Lis1 mouse. WIN 55 application did not have
532 a significant impact on the time-shift between deep and superficial channels in either genetic

533 background (Wt: + WIN 0.68 ± 0.52 ms, vs baseline $p = 0.62$, $Lis1^{+/-}$: + WIN -0.41 ± 1.23 ms, vs
534 baseline $p = 0.21$).

535

536 **Discussion:**

537 Cellular heterotopias arising from various genetic and environmental factors carry with
538 them a poor prognosis for the affected individual, including severe mental disability, increased
539 seizure risk, and shortened life span [41]. The degree to which these effects are a direct result of
540 the heterotopia itself (a lack of layers) or related to the role of the mutated genes in other processes
541 remains unclear. That is to say, it is unknown to what extent any of the disease phenotypes
542 associated with Lissencephaly are the result of disrupted layering and cellular misposition during
543 embryonic development.

544 In the present work we first investigate the heterotopic banding observed in area CA1 of
545 the $Lis1$ mutant mouse in order to determine if there is a pattern to the splitting of these excitatory
546 cell populations. To this end we demonstrate that calbindin expressing principal cells are
547 preferentially affected by cellular heterotopia in CA1, where they are proportionately relegated to
548 the deeper cellular layer – opposite of their normal superficial positioning in the PCL (Figure 1).
549 After confirming that these cells are the same embryonically derived population (Figure 2), namely
550 late-born calbindin expressing, we asked to what degree their intrinsic development reflected the
551 differences between calbindin-positive and calbindin-negative PC subtypes in normal type
552 animals, and if relative differences between the two population were preserved (Figure 3 and 4).
553 While there was an effect of stunted arborization in comparison to normal type calbindin cells,
554 $Lis1$ calbindin cells retained their complex morphology relative to with-in animal non-calbindin
555 expressing principal cells. Intrinsic physiological properties appear more disrupted in $Lis1$

556 calbindin expressing principal cells, however several properties showed greater differences or
557 trended toward significant differences when separated by putative calbindin expression, as
558 opposed to somatic positioning – suggesting again that subtype was a stronger influence than
559 layering in the determination of these properties. It is unclear if the intrinsic physiological
560 differences between calbindin positive PCs in normal and Lis1 mutants reflected other roles of the
561 Lis1 protein directly, compensatory changes of ectopic cells, or are the result of cellular
562 development in an ectopic position – though the first two seem more likely given findings from
563 other mis-lamination models [26, 19, 21], though insufficient circuit integration and activity is
564 known to alter interneuron development in cortex [42].

565 We next turned our attention to the integration of these ectopic calbindin expressing
566 principal cells into the CA1 basket cell network. Staining experiments suggest that CCK
567 expressing basket cell synapses were specifically altered to a greater extent than PV networks onto
568 calbindin principal cell targets (Figure 5). This finding was confirmed by monosynaptic inhibition
569 experiments that showed reduced sensitivity of ectopic calbindin expressing principal cells to a
570 CCK cell antagonist, omega-conotoxin (Figure 6, left). Conversely, PV cell networks seemed
571 substantially more resilient, which is not so surprising given that these cells occupy deeper
572 positions within CA1, and their preferred synaptic targets are not substantially mispositioned under
573 the cellular heterotopia present in Lis1 (Figure 5A and B) [11].

574 Disynaptic inhibition experiments support the notion of PV networks being more robust
575 under cellular heterotopia (Fig 6, *right*). Feed-forward inhibition is much stronger onto PV baskets
576 than their CCK expressing counterparts, making this largely a test of PV network connectivity
577 [43]. Additionally, depolarization to +10 mV (as done in the experiment) drives depolarization-
578 induced suppression of inhibition in CCK-basket cells, largely removing them from this assay [44,

579 45, 46]. In sorting these experiments by principal cell sub-type, we observed that ectopic calbindin
580 expressing principal cells retained their relatively high excitability (low I/E ratios), suggesting that
581 parvalbumin cells did not start to inappropriately target deeply positioned, ectopic calbindin PCs.

582 Groups working in a related model of cellular heterotopia, the Reeler mouse which has
583 severely disorganized cortical and hippocampal principal cell layering, previously reported that
584 excitatory and inhibitory cells are produced in approximately the correct proportions, that ectopic
585 cells retain expression of their correct markers, morphology of cell types is generally conserved,
586 and their intrinsic physiological properties are largely unperturbed on a network level [22, 23, 47,
587 21]. Despite differing genetic causes, the present study supports these findings that brain
588 development is surprisingly robust despite mis-lamination. An interesting caveat, however, is that
589 in the present work, and studies of other cellular heterotopias, morphological development and
590 orientation of principal cell dendrites appear stunted and meandering (Figure 3) [27, 34]. In the
591 Reeler mouse synaptic network development was also remarkably intact, as thalamocortical and
592 intracortical connectivity, cellular tuning properties to stimuli, and even animal behavior seem
593 only minorly altered if at all [26, 19, 20, 21]. From a broad perspective, this is in agreement with
594 the present work in the Lis1 hippocampus, as feed-forward properties onto PC subtypes retain their
595 relative excitabilities, and Lis1 slices retain their ability to generate gamma oscillations (Figure 7).

596 Interestingly, we observed higher peak oscillation frequency in Lis1 mutant experiments
597 than normal type (Figure 7D). One possible interpretation of this result is that CCK-expressing
598 interneuron networks tends to prefer lower frequency gamma, and when disrupted in Lis1 mutants
599 networks become more dependent on alternative faster oscillation mechanisms such as greater
600 reliance on parvalbumin cell networks. These results may reflect biological differences in
601 hyperexcitability that predispose these mice and human patients to seizures. In the power domain,

602 measurements are sensitive to differences in electrode placement between experiments, as this
603 cannot be ruled out particularly as the cell layer positioning is unruly in $\text{Lis1}^{+/-}$ mice, power data
604 from these recordings was normalized and only compared within experiment to wash-in values
605 (Figure 7E). Non-mutant slices showed power decreases in the presence of the cannabinoid
606 receptor agonist WIN-55, while Lis1 mutant slices were non-responsive to this compound. These
607 data add to our immunohistochemistry and monosynaptic physiology experiments in suggesting
608 deficits in the CCK-basket cell networks of CA1 under heterotopia as Lis1 slices are largely not
609 affected by WIN-55 application.

610 Comparing recordings from two electrodes in Figure 8 revealed that cross correlation
611 values were relatively similar between normal type and mutant mice, but time-shifts or
612 synchronicity between channels were significantly different (Figure 8E). It seems likely that timing
613 differences in gamma-oscillations arise from the physical separation of current sinks and sources
614 under $\text{Lis1}^{+/-}$ heterotopia, and not as a result of the CCK-innervation deficit described above, as
615 these measures were largely unchanged by WIN-55 application in normal-type mice, however that
616 possibility cannot be ruled out [48, 49]. It is worth noting that the time-shifts under baseline
617 conditions in the mutants are opposite in direction than that of non-mutants. In that respect, they
618 roughly mirror the physical inversion of PCL lamina under $\text{Lis1}^{+/-}$ cellular heterotopia.

619 Collectively, these findings bolster the notion that layers are in large part an
620 epiphenomenon of neurogenesis, as has been hypothesized previously. Importantly, layer
621 terminology has a correlated genetic component in normal type mice as it is likely to capture a
622 related embryonic pool of neurons. Therefore, when traditional studies refer to cellular layer, they
623 are using it as a proxy for cellular genetic subtype, which is no longer the case in heterotopias [26,
624 27, 24]. In agreement with this line of reasoning, decades of work on synapse development are

625 increasingly bolstering the “hand-shake hypothesis” – where in molecular cues present on the
626 surface of both putative synaptic partners confirm or reject synapse formation to aid in the
627 establishment of appropriate and canonical circuitry over several scales of axon pathfinding [50,
628 51, 28, 29]. The degree to which these genetic network wiring mechanisms are modified in
629 activity-dependent fashion afterward remains an area of active study [42, 52, 30]. Importantly, the
630 present study does identify a crucial network motif, CCK targeting of calbindin positive principal
631 cells, that is disrupted in ectopic calbindin PCs in the $Lis1^{+/-}$ mouse. Further work will be needed
632 to determine if this is a genetically specified connection preference for calbindin expressing
633 principal cells, and why it might exhibit positional dependence.

634 It might not be so surprising to find specific defects in CCK-expressing synaptic
635 connections as opposed to PV circuitry. CCK and PV expressing interneurons arise from different
636 progenitor pools, in the caudal ganglionic eminence (CGE) and medial ganglionic eminence
637 (MGE), respectively [53, 54]. Additionally, CGE interneurons are developmentally lagged relative
638 to MGE pools, as MGE cells are born first [55]. Notably, later born basket cell populations (CCK
639 basket cells), appear to be biased towards innervation of late born principal cell populations
640 (superficial, calbindin expressing) in non-mutant animals. In fact, prior work has demonstrated
641 that basket CGE derived populations wait until the first post-natal week to form synapses on
642 principal cell somas in the PCL [56]. This network motif may represent a lopsided obstacle in the
643 establishment of CA1 circuitry, as few if any of their putative synaptic targets remain on the
644 radiatum adjacent side of the PCL under this form of cellular heterotopia [57]. As CCK cell somas
645 reside largely on the border between the PCL and the radiatum, in the $Lis1$ hippocampus these
646 basket cells are tasked with sending axons through the denser superficial PCL and passing through
647 the inter-PCL space before finding their appropriate synaptic targets in the deeper heterotopic

648 band. It remains to be seen whether this CCK specific defect is generalized to area CA1 in other
649 cellular heterotopias, or Lis1 specific, but it may suggest natural limits to the handshake hypothesis
650 – after all if you are never introduced, you cannot shake hands.

651

652

653

654

655

656

657

658 **Acknowledgements:**

659 J. D'Amour is supported by the National Institutes of General Medical Sciences (NIGMS)
660 Postdoctoral Research Associate (PRAT) fellowship, award number Fi2 GM123992. C. McBain is
661 supported by the Eunice Kennedy Shriver National Institute of Child Health and Human
662 Development. The authors acknowledge with gratitude S. Hunt and D. Abebe for their assistance
663 in tissue processing and animal management, M. Craig for help with analysis of oscillation
664 experiments and K. Pelkey, R. Chittajallu, T. Petros, S. Lee, W. Lu. for feedback, comments,
665 suggestions, and discussions during lab meetings. Finally, we are thankful to Dr. Wynshaw-Boris
666 and his lab for providing the heterozygous floxed Lis1 mouse used to rederive the full het animal
667 used here.

668

669 **Statement of competing interests:**

670 The authors declare no competing interests with this manuscript.

671 **References:**

672 1. Anusha DR. Lissencephaly: A Review with a Rare Case Report. Interntl Jour Sci Res.
673 2014; 3: 2319-7064.

674

675 2. Di Donato N, Chiari S, Mirzaa GM, Aldinger K, Parrini E, Olds C, Barkovich AJ,
676 Guerrini R, Dobyns WB. Lissencephaly: Expanded imaging and clinical classification.
677 Am J Med Genet A. 2017; Jun;173(6):1473-1488. doi: 10.1002/ajmg.a.38245.

678

679 3. Kato M, Dobyns WB. Lissencephaly and the molecular basis of neuronal migration.
680 Human Molecular Genetics. 2003; 12: R89–R96.

681

682 4. Hirotsune S, Fleck M, Gambello M, Bix GJ, Chen A, Clark GD, et al. Graded reduction
683 of Pafah1b1 (Lis1) activity results in neuronal migration defects and early embryonic
684 lethality. Nat Genet. 1998; 19: 333–339. doi:10.1038/1221.

685

686 5. Dobyns WB, Das S. PAFAH1B1-associated Lissencephaly/subcortical band heterotopia.
687 Gene Reviews. 2009; Available from: <https://www.ncbi.nlm.nih.gov/books/NBK5189/>

688

689 6. McManus MF, Nasrallah IM, Pancoast MM, Wynshaw-Boris A, Golden JA. Lis1 is
690 necessary for normal non-radial migration of inhibitory interneurons. Am J Pathol. 2004;
691 165(3):775-84. doi: 10.1016/S0002-9440(10)63340-8.

692

693 7. Wynshaw-Boris, A. Lissencephaly and LIS1: insights into the molecular mechanisms of
694 neuronal migration and development. Clinical Genetics. 2007; 72: 296-304.
695 doi:[10.1111/j.1399-0004.2007.00888.x](https://doi.org/10.1111/j.1399-0004.2007.00888.x)

696

697 8. Rice ME, Galang RR, Roth NM, Ellington SR, Moore CA, Valencia-Prado, et al. Vital
698 Signs: Zika-Associated Birth Defects and Neurodevelopmental Abnormalities Possibly
699 Associated with Congenital Zika Virus Infection — U.S. Territories and Freely
700 Associated States. MMWR Morb Mortal Wkly Rep. 2018; 67:858-867. doi:
701 <http://dx.doi.org/10.15585/mmwr.mm6731e1>.

702

703 9. Fleck MW, Hirotsune S, Gambello MJ, Phillips-Tansey E, Suares G, Mervis RF,
704 Wynshaw-Boris A, McBain CJ. Hippocampal abnormalities and enhanced excitability in
705 a murine model of human lissencephaly. J Neurosci. 2000; 20(7):2439-50. doi:
706 10.1523/JNEUROSCI.20-07-02439.2000.

707

708 10. Hunt RF, Dinday MT, Hindle-Katel W, Baraban SC. Lis1 deficiency promotes
709 dysfunctional synaptic integration of granule cells generated in the developing and adult
710 dentate gyrus. J Neurosci. 2012; 32(37):12862-75. doi: 10.1523/JNEUROSCI.1286-
711 12.2012.

712

713 11. Lee SH, Marchionni I, Bezaire M, Varga C, Danielson N, Lovett-Barron M, Losonczy A,
714 Soltesz I. Parvalbumin-positive basket cells differentiate among hippocampal pyramidal
715 cells. Neuron. 2014;82(5): 1129-44. doi: 10.1016/j.neuron.2014.03.034.

716
717 12. Nielsen JV, Blom JB, Noraberg J, Jensen NA. Zbtb20-induced CA1 pyramidal neuron
718 development and area enlargement in the cerebral midline cortex of mice. *Cerebral*
719 *Cortex*. 2010; 20(8):1904–14. <https://doi.org/10.1093/cercor/bhp261>.

720
721 13. Slomianka L, Amrein I, Knuesel I, Sørensen JC, Wolfer DP. Hippocampal pyramidal
722 cells: the reemergence of cortical lamination. *Brain Struct Funct*. 2011; 216(4):301–17.
723 doi: 10.1007/s00429-011-0322-0.

724
725 14. Valero M, Cid E, Averkin RG, Aguilar J, Sanchez-Aguilera A, Viney TJ, Gomez-
726 Dominguez D, Bellistri E, de la Prida LM. Determinants of different deep and superficial
727 CA1 pyramidal cell dynamics during sharp-wave ripples. *Nat Neurosci*. 2015;
728 18(9):1281–1290. doi: 10.1038/nn.4074.

729
730 15. DeFelipe J. Types of neurons, synaptic connections and chemical characteristics of cells
731 immunoreactive for calbindin-D28k, parvalbumin and calretinin in the neocortex. *J. of*
732 *Neuroanat*. 1997; 14(1):1–19. doi: 10.1016/S0891-0618(97)10013-8.

733
734 16. Deguchi Y, Donato F, Galimberti I, Cabuy E, Caroni P. Temporally matched
735 subpopulations of selectively interconnected principal neurons in the hippocampus. *Nat*
736 *Neurosci*. 2011; 14, 495–504. doi:10.1038/nn.2768.

737
738 17. Valero M, de la Prida LM. The hippocampus in depth: a sublayer-specific perspective of
739 entorhinal–hippocampal function. *Curr. Opinion Neurobiol*. 2018; 52:107–114. doi:
740 10.1016/j.conb.2018.04.013.

741
742 18. Varga C, Lee SY, Soltesz I. Target-selective GABAergic control of entorhinal cortex
743 output. *Nat Neurosci*. 2010; 13(7):822–4. doi: 10.1038/nn.2570.

744
745 19. Salinger, W. L., Ladrow, P., & Wheeler, C. Behavioral phenotype of the reeler mutant
746 mouse: Effects of Reelin gene dosage and social isolation. *Behavioral Neuroscience*. 2003;
747 117(6), 1257–1275. <https://doi.org/10.1037/0735-7044.117.6.1257>.

748
749 20. Wagener RJ, Dávid C, Zhao S, Haas CA, Staiger JF. The somatosensory cortex of reeler
750 mutant mice shows absent layering but intact formation and behavioral activation of
751 columnar somatotopic maps. *J Neurosci*. 2010;30(46):15700–9. doi:
752 10.1523/JNEUROSCI.3707-10.2010.

753
754 21. Wagener RJ, Witte M, Guy J, Mingo-Moreno N, Kügler S, Staiger JF. Thalamocortical
755 connections drive intracortical activation of functional columns in the mislaminated
756 Reeler somatosensory cortex. *Cereb Cortex*. 2016; 26(2):820–37. doi:
757 10.1093/cercor/bhv257.

758
759 22. Boyle MP, Bernard A, Thompson CL, Ng L, Boe A, Mortrud M, Hawrylycz M., Jones
760 AR, Hevner RF, Lein ES. Cell-type-specific consequences of reelin deficiency in the

761 mouse neocortex, hippocampus, and amygdala. *J. Comp. Neurol.* 2011; 519: 2061-2089.
762 doi:[10.1002/cne.22655](https://doi.org/10.1002/cne.22655).

763

764 23. Caviness VS Jr. and Sidman RL. Retrohippocampal, hippocampal and related structures
765 of the forebrain in the reeler mutant mouse. *J. Comp. Neurol.* 1973; 147: 235-253.
766 doi:[10.1002/cne.901470206](https://doi.org/10.1002/cne.901470206).

767

768 24. Guy J, Staiger JF. The Functioning of a Cortex without Layers. *Front Neuroanat.* 2017;
769 11:54. doi: 10.3389/fnana.2017.00054.

770

771 25. Polleux F, Dehay C, Kennedy H. Neurogenesis and commitment of corticospinal neurons
772 in reeler. *J Neurosci.* 1998;18(23):9910-23. doi: 10.1523/JNEUROSCI.18-23-
773 09910.1998.

774

775 26. Caviness VS Jr, Rakic P. Mechanisms of cortical development: A view from mutations in
776 mice. *Ann. Rev. of Neurosci.* 1978; 1: 297-326.

777

778 27. Guy J, Wagener RJ, Möck M, Staiger JF. Persistence of functional sensory maps in the
779 absence of cortical layers in the somatosensory cortex of reeler mice. *Cereb Cortex.*
780 2015; 25(9):2517-28. doi: 10.1093/cercor/bhu052.

781

782 28. Harris KD, Shepherd GM. The neocortical circuit: themes and variations. *Nat Neurosci.*
783 2015; 18(2):170-81. doi: 10.1038/nn.3917.

784

785 29. Margeta MA, Shen K. Molecular mechanisms of synaptic specificity. *Mol Cell Neurosci.*
786 2010; 43(3):261-7. doi: 10.1016/j.mcn.2009.11.009.

787

788 30. Sur M, Rubenstein JLR. Patterning and plasticity of the cerebral cortex. *Science.* 2005;
789 310(5749):805-10. Doi: 10.1126/science.1112070.

790

791 31. Soltesz I, Losonczy A. CA1 pyramidal cell diversity enabling parallel information
792 processing in the hippocampus. *Nat Neurosci.* 2018; 21(4):484-493. doi:
793 10.1038/s41593-018-0118-0.

794

795 32. Chittajallu R, Craig MT, McFarland A, Yuan X, Gerfen S, Tricoire L, et al. Dual origins
796 of functionally distinct O-LM interneurons revealed by differential 5-HT(3A)R
797 expression. *Nat Neurosci.* 2013; 16(11):1598-607. doi: 10.1038/nn.3538.

798

799 33. Angevine JB Jr. Time of neuron origin in the hippocampal region. An autoradiographic
800 study in the mouse. *Experimental Neurology*, Suppl. 1965; 2:1-70.

801

802 34. Stanfield BB, Cowan WM. The morphology of the hippocampus and dentate gyrus in
803 normal and reeler mice. *J. Comp. Neurol.* 1979; 185: 393-422.
804 doi:[10.1002/cne.901850302](https://doi.org/10.1002/cne.901850302)

805

806 35. Bannister NJ and Larkman AU. Dendritic morphology of CA1 pyramidal neurones from
807 the rat hippocampus: I. Branching patterns. *J. Comp. Neurol.* 1995; 360: 150-160.
808 doi:[10.1002/cne.903600111](https://doi.org/10.1002/cne.903600111)

809

810 36. Li Y, Xu J, Liu Y, Zhu J, Liu N, Zeng W, et al. A distinct entorhinal cortex to
811 hippocampal CA1 direct circuit for olfactory associative learning. *Nat Neurosci.* 2017;
812 20: 559-570. doi:10.1038/nn.4517.

813

814 37. Wilson RI, Kunos G, Nicoll R. Presynaptic specificity of endocannabinoid signaling in
815 the hippocampus. *Neuron.* 2001; 31(3): 453-462. Doi: 10.1016/S0896-6273(01)00372-5.

816

817 38. Buhl, E.H., Tamás, G. and Fisahn, A. Cholinergic activation and tonic excitation induce
818 persistent gamma oscillations in mouse somatosensory cortex *in vitro*. *The Journal of*
819 *Physiology.* 1998; 513: 117-126. doi:[10.1111/j.1469-7793.1998.117by.x](https://doi.org/10.1111/j.1469-7793.1998.117by.x)

820

821 39. Fellous JM, Sejnowski TJ. Cholinergic induction of oscillations in the hippocampal slice
822 in the slow (0.5-2 Hz), theta (5-12 Hz), and gamma (35-70 Hz) bands. *Hippocampus.*
823 2000; 10: 187-197. doi:[10.1002/\(SICI\)1098-1063\(2000\)10:2<187::AID-HIPO8>3.0.CO;2-M](https://doi.org/10.1002/(SICI)1098-1063(2000)10:2<187::AID-HIPO8>3.0.CO;2-M)

824

825

826 40. Fisahn A, Pike F, Buhl E. Paulsen O. Cholinergic induction of network oscillations at
827 40 Hz in the hippocampus *in vitro*. *Nature.* 1998; 394: 186-189. doi:10.1038/28179

828

829 41. De Wit MC, De Rijk-Van Andel J, Halley DJ, Poddighe PJ, Arts WFM, De Coo IF,
830 Mancini GM. Long-term follow-up of type 1 lissencephaly: survival is related to
831 neuroimaging abnormalities. *Developmental Medicine & Child Neurology.* 2011; 53:
832 417-421. doi:[10.1111/j.1469-8749.2011.03937.x](https://doi.org/10.1111/j.1469-8749.2011.03937.x)

833

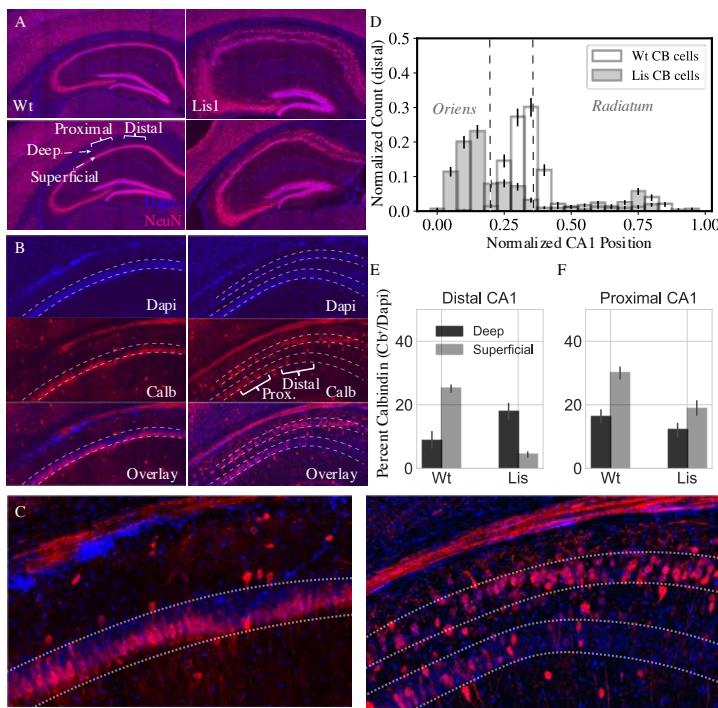
834 42. De Marco García NV, Karayannis T, Fishell G. Neuronal activity is required for the
835 development of specific cortical interneuron subtypes. *Nature.* 2011; 472(7343):351-5.
836 doi: 10.1038/nature09865.

837

838 43. Glickfeld LL, Scanziani M. Distinct timing in the activity of cannabinoid-sensitive and
839 cannabinoid-insensitive basket cells. *Nat Neurosci.* 2006; 9(6):807-15. doi:
840 10.1038/nn1688.

841

842 44. Freund TF, Katona I. Perisomatic inhibition. *Neuron.* 2007; 56: 33-42.
843 https://doi.org/10.1016/j.neuron.2007.09.012.

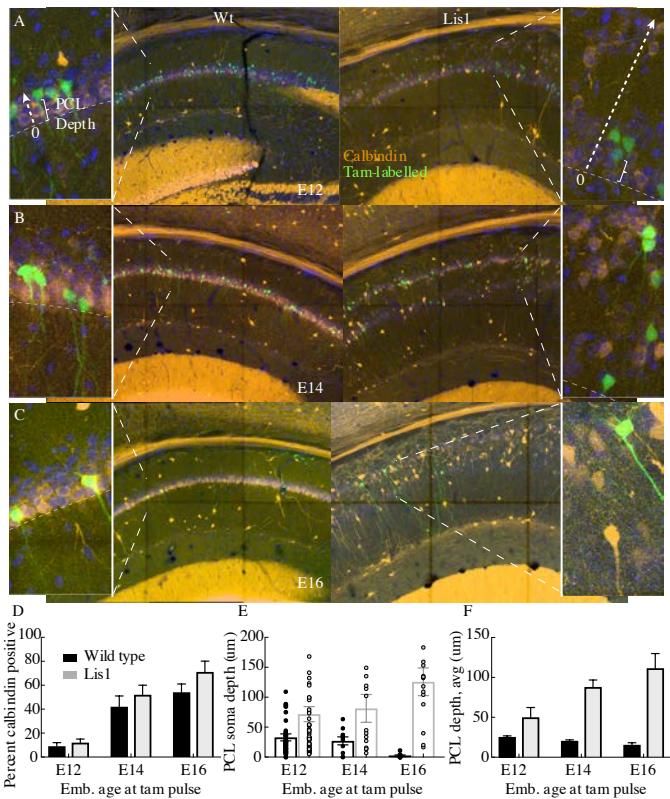

844

845 45. Lee SH, Földy C, Soltesz I. Distinct endocannabinoid control of GABA release at
846 perisomatic and dendritic synapses in the hippocampus. *J Neurosci.* 2010; 30(23):7993-
847 8000. doi: 10.1523/JNEUROSCI.6238-09.2010.

848

849 46. Neu A, Földy C, Soltesz I. Postsynaptic origin of CB1-dependent tonic inhibition of
850 GABA release at cholecystokinin-positive basket cell to pyramidal cell synapses in the

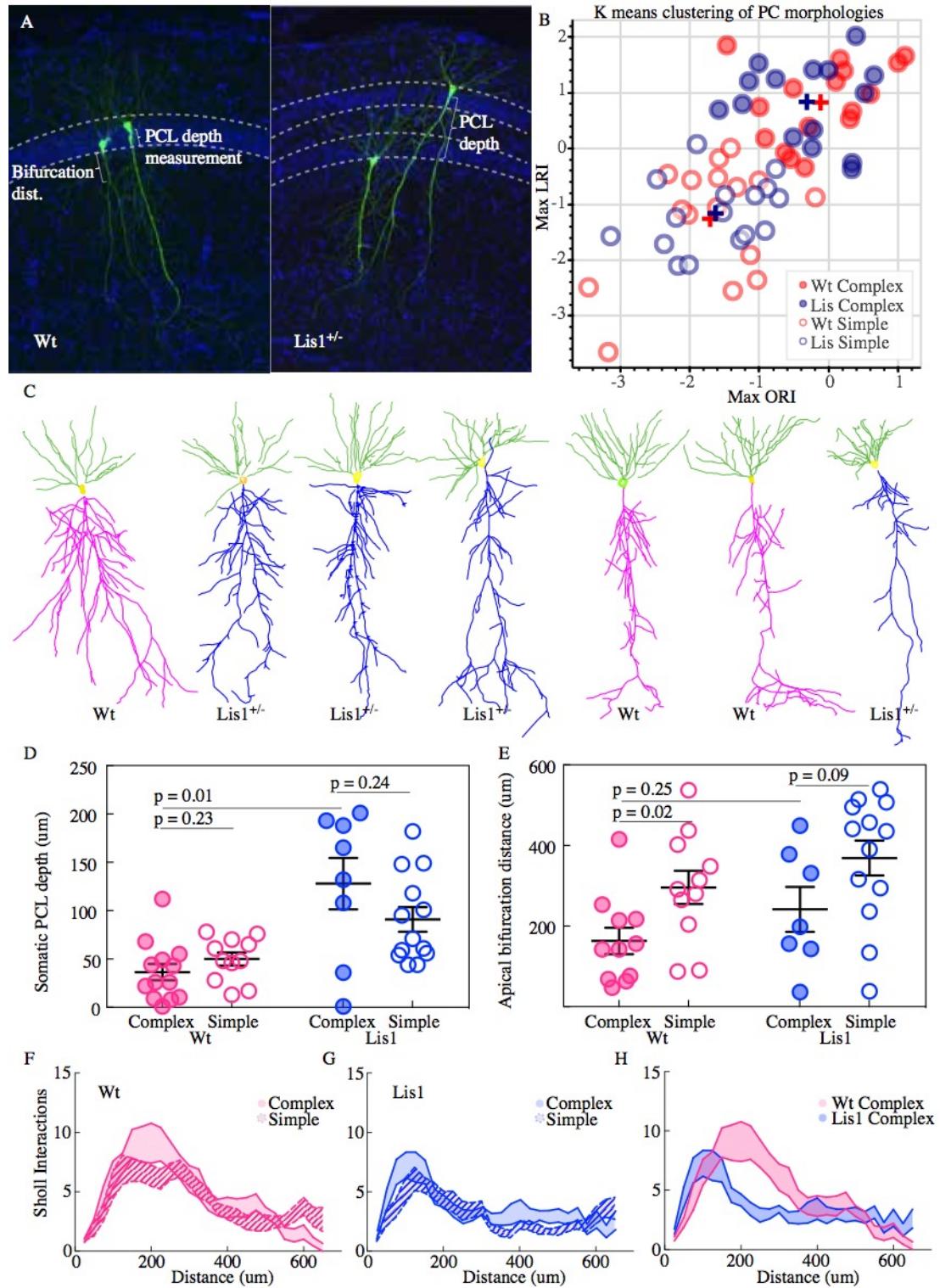
851 CA1 region of the rat hippocampus. *J Physiol.* 2007; 578(Pt 1):233-47. doi:
852 10.1113/jphysiol.2006.115691.
853
854 47. Guy J, Sachkova A, Möck M, Witte M, Wagener RJ, Staiger JF. Intracortical Network
855 Effects Preserve Thalamocortical Input Efficacy in a Cortex Without Layers. *Cerebral*
856 *Cortex.* 2017; 27(10): 4851–4866, <https://doi.org/10.1093/cercor/bhw281>.
857
858 48. Hájos N, Katona I, Naiem SS, Mackie K, Ledent C, Mody I, Freund TF. Cannabinoids
859 inhibit hippocampal GABAergic transmission and network oscillations. *European Journal*
860 *of Neuroscience.* 2000; 12; 3239-3249. doi:[10.1046/j.1460-9568.2000.00217.x](https://doi.org/10.1046/j.1460-9568.2000.00217.x).
861
862 49. Soltész I, Deschenes M. Low- and high-frequency membrane potential oscillations during
863 theta activity in CA1 and CA3 pyramidal neurons of the rat hippocampus under
864 ketamine-xylazine anesthesia. *J Neurophysiol.* 1993; 70: 97–116.
865
866 50. Blakemore C, Molnár Z. Factors involved in the establishment of specific
867 interconnections between thalamus and cerebral cortex. *Cold Spring Harb. Symp. Quant.*
868 *Biol.* 1990; 55: 491–504.
869
870 51. Molnár Z, Garel S, López-Bendito G, Maness P, Price DJ. Mechanisms controlling the
871 guidance of thalamocortical axons through the embryonic forebrain. *Eur J Neurosci.*
872 2012; 35(10): 1573-85. doi: 10.1111/j.1460-9568.2012.08119.x.
873
874 52. Che A, Babij R, Iannone AF, Fethcho RN et al. Layer I interneurons sharpens sensory
875 maps during neonatal development. *Neuron.* 2018; 99: 98-116. doi:
876 10.1016/j.neuron.2018.06.002.
877
878 53. Butt SJB, Fuccillo M, Nery S, Noctor S, Kriegstein A, Corbin JG, Fishell G. The
879 temporal and spatial origins of cortical interneurons predict their physiological subtype.
880 *Neuron.* 2005; 48(4): 591-604. doi: 10.1016/j.neuron.2005.09.034.
881
882 54. Fishell GJ. Perspectives on the developmental origins of cortical interneuron diversity.
883 Novartis Foundation symposium 288 (2007): 21-35; discussion 35-44, 96-8.
884
885 55. Tricoire L, Pelkey KA, Erkkila BE, Jeffries BW, Yuan X, McBain CJ. A blueprint for the
886 spatiotemporal origins of mouse hippocampal interneuron diversity. *J Neurosci.* 2011;
887 31(30):10948-70. doi: 10.1523/JNEUROSCI.0323-11.2011.
888
889 56. Morozov YM, Freund TF. Post-natal development of type 1 cannabinoid receptor
890 immunoreactivity in the rat hippocampus. *European Journal of Neuroscience.* 2003; 18:
891 1213-1222. doi:[10.1046/j.1460-9568.2003.02852.x](https://doi.org/10.1046/j.1460-9568.2003.02852.x).
892
893 57. Armstrong C, Soltesz I. Basket cell dichotomy in microcircuit function. *J Physiol.* 2012;
894 590(4): 683-94. doi: 10.1113/jphysiol.2011.223669.
895



896

897 **Fig 1. Lis1^{+/−} mice display heterotopic banding and ectopic positioning of calbindin-
898 expressing principal cells.**

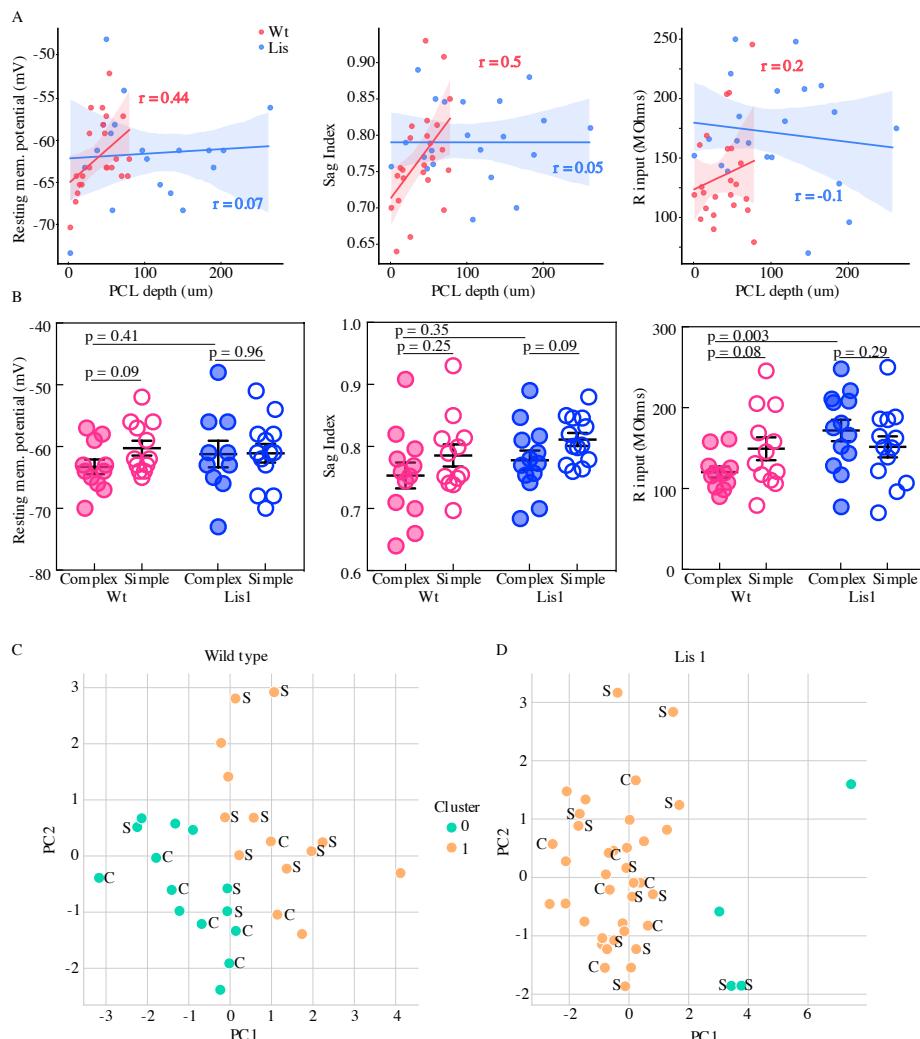
899 (A) *Left*, two coronal NeuN stained images from differing levels of dorsal CA1 hippocampus in a
900 non-mutant littermate. *Right*, approximately matched coronal sections from a Lis1 mutant
901 displaying heterotopic banding of the PCL. (B) *Left*, non-mutant and mutant (*right*), staining of
902 CA1 highlighting the position of the PCL, calbindin-positive neurons, and overlay. Note the deep
903 layer preference of calbindin-expressing neurons, particularly in distal CA1 in mutant. (C) Higher
904 magnification view of the overlay images in (B), for non-mutant (*left*) and mutant (*right*). (D) Normalized histogram showing the positioning of calbindin-expressing cells in mutants with PCL
905 banding compared to non-mutant mice. (E) Percentage of cells in deep and superficial layers
906 expressing calbindin in distal CA1 (for normal mice, the single PCL is divided in half radially).
907 Counts represent number of identified calbindin soma divided by number of DAPI identified cells,
908 Wt: deep $8.9 \pm 2.8\%$, superficial $25.1 \pm 1.3\%$; Lis1^{+/−}: deep $18.0 \pm 2.8\%$, superficial $4.4 \pm 1.0\%$.
909


910 (F) Same as (E) for proximal CA1, Wt: deep $16.3 \pm 2.3\%$, superficial $30.0 \pm 2.0\%$; $\text{Lis}1^{+/-}$: deep
911 $12.1 \pm 2.3\%$, superficial $19.0 \pm 2.4\%$; $n = 12$ Wt and 12 $\text{Lis}1^{+/-}$ slices for distal and 12 and 11 for
912 proximal, from 6 animals.
913

915 **Fig 2. Cellular birth-dating indicates ectopic $\text{Lis}1^{+/-}$ calbindin cells are the same late-derived**
916 **embryologic population.**

917 (A) Non-mutant (*left*) and mutant (*right*) example birth-dating images for a litter tamoxifen dosed
918 between E12-E13. Note the cutout, displaying how cellular somatic positioning was measured
919 from the front of the PCL (as opposed to normalized structural position). Green corresponds to
920 cells born during tamoxifen administration; orange is calbindin immunohistochemistry staining
921 carried out when litters are P30. (B) Same as in (A) but for litters dosed at E14-E15. (C) Same as
922 (A) but for litters dosed at E16-E17. (D) Quantification of the fraction tamoxifen-marked neurons

923 co-staining for calbindin antibody from each timepoint. E12: Wt: $9 \pm 3\%$; Lis1^{+/−}: $12 \pm 3\%$, E14:
924 Wt: $42 \pm 9\%$; Lis1^{+/−}: $52 \pm 8\%$, E16: Wt: $54 \pm 7\%$; Lis1^{+/−}: $71 \pm 9\%$. (E) Example counts from
925 single images at each timepoint for PCL depth measurements. Later born cells position more
926 superficially (front of the PCL) in non-mutants, but deeper in Lis1^{+/−} littermates. (F) Group
927 averages for the measurements shown in (E). E12- Wt: $25.4 \pm 1.4 \mu\text{m}$; Lis1^{+/−}: $50 \pm 12.3 \mu\text{m}$, E14-
928 Wt: $20.5 \pm 1.3 \mu\text{m}$; Lis1^{+/−}: $88 \pm 8.7 \mu\text{m}$, E16- Wt: $15.6 \pm 2.6 \mu\text{m}$; Lis1^{+/−}: $111.6 \pm 18.3 \mu\text{m}$.

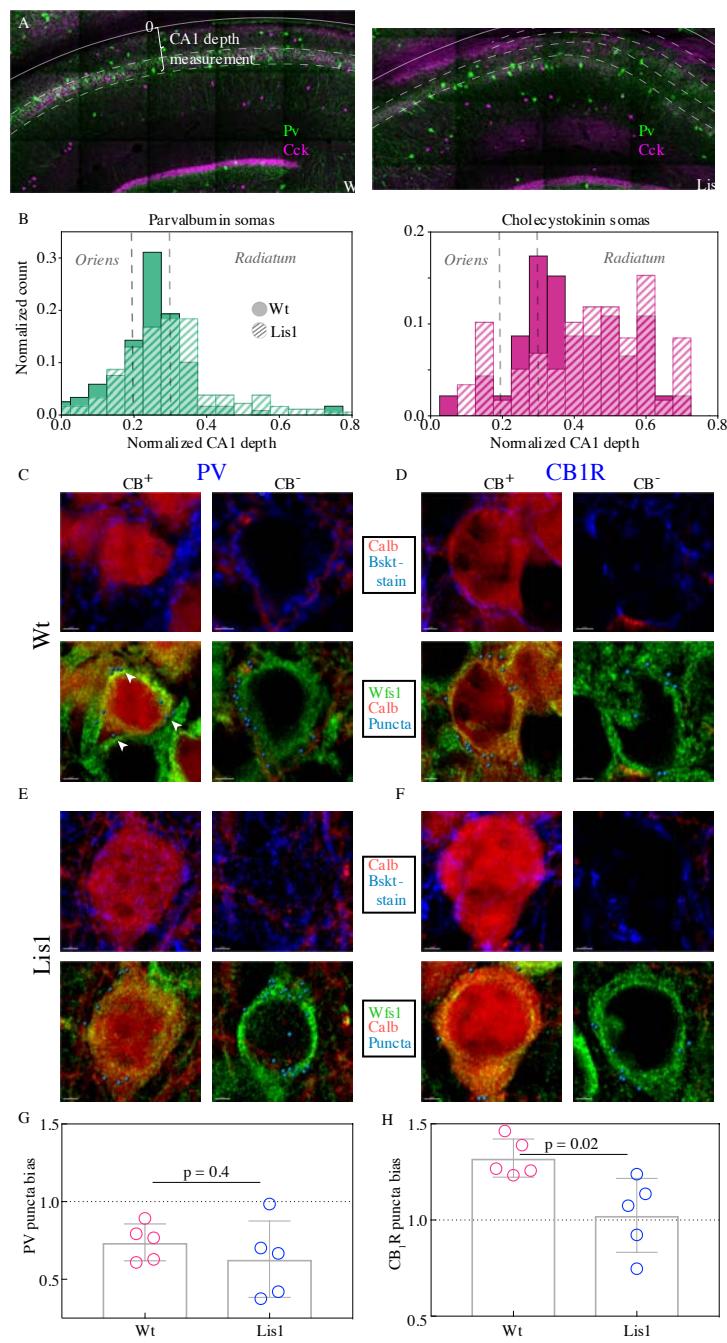


929

930 Fig 3. *Lis1^{+/−}* calbindin-expressing PCs retain relatively complex morphologies.

931 (A) Recovered cells from non-mutant and mutant experiments, highlighting different apical
932 dendritic morphologies, complex and simple. Complex morphologies have been previously shown
933 to be highly predictive of calbindin expression (Yiding et al., 2017). (B) Supervised K-means plots
934 (63 best recovered cells, cluster num. = 2) carried out separately for mutant and non-mutant data
935 (blue and red respectively). Filled circles correspond to complex morphologies and open circles
936 are simple. (C) Example morphological reconstructions, ranging from most complex (*left*) to
937 simple (*right*). (D) Positional properties for predicted calbindin (complex, filled circles) and non-
938 calbindin expressing (simple, open circles) principal cells. Note predicted calbindin expressing
939 cells were superficial to non-calbindin predicted, and this trend was inverted for $Lis1^{+/-}$ mutants.
940 Wt: complex $36.42 \pm 8.5 \mu\text{m}$, simple $50 \pm 6.9 \mu\text{m}$; $Lis1^{+/-}$: complex $128 \pm 26.6 \mu\text{m}$, simple $90.9 \pm$
941 $12.7 \mu\text{m}$, $n = 13, 11, 8, 13$, respectively. Depth is measured as it was for Fig 2 from the
942 front/superficial side of the PCL. (E) Group sorted measurements for distance along primary apical
943 dendrite until first prominent bifurcation occurs. Wt: complex $163 \pm 32.8 \mu\text{m}$, simple 295.9 ± 41.4
944 μm ; $Lis1^{+/-}$: complex $241.6 \pm 55.8 \mu\text{m}$, simple $368.9 \pm 43.4 \mu\text{m}$. Note complex cells tend to
945 bifurcate sooner in both mutant and non-mutants, though some $Lis1^{+/-}$ complex cells begin to show
946 longer bifurcation measurements. (F) Sholl interactions from Wt apical dendrites alone, of
947 complex and simple sorted cells. (G) Likewise, for $Lis1$ mutants. (H) Overlay of the complex
948 morphology sholl data from non-mutant and mutant experiments. Despite retaining a relatively
949 complex population, complex $Lis1^{+/-}$ principal cells have decreased apical dendritic branching that
950 peaks closer to the soma.

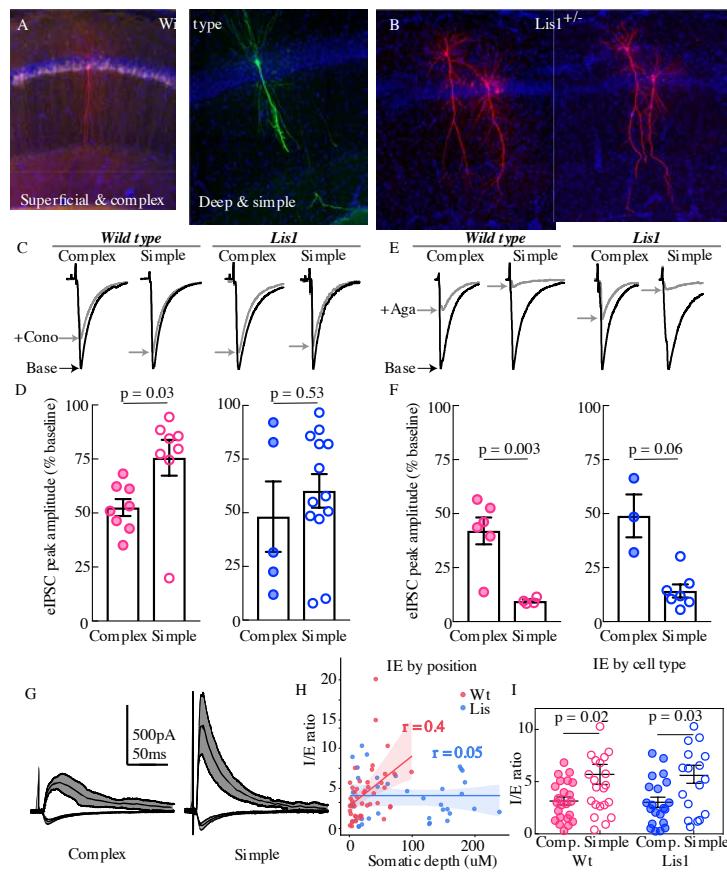
951


952

953 **Fig 4. Physiological properties of calbindin positive and negative morphological clusters.**

954 (A) *Left*, somatic PCL depth correlations with cellular resting membrane potential for non-mutant
 955 (red) and mutant (blue) recordings. *Middle*, likewise, for sag index, where values closer to 1
 956 correspond to less sag exhibited. *Right*, same for input resistance. (B) Same data as in (A), grouped
 957 by predicted calbindin expression. (C) Supervised K-means ($n = 2$) sorting wild types. A handful
 958 of electrophysiological properties alone are capable of reasonably accurate morphological subtype
 959 prediction (and therefore calbindin expression). C's and S's correspond to the data points
 960 associated morphological group, note that even mis-categorized points are near the midline. Of 8
 961 morphologically complex cells, 6 are found in in physiological cluster 0, of 11 simple cells, 8 are

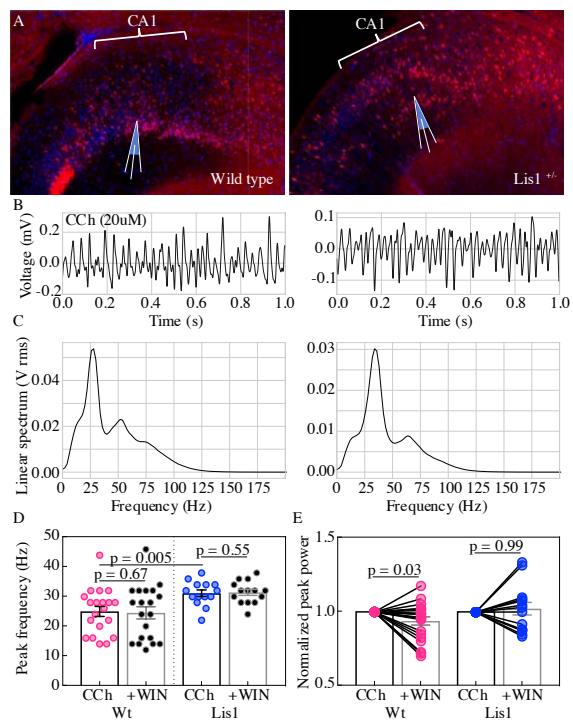
962 found in physiological cluster 1. (D) Same as in (C) for Lis1 mutant recordings. Physiological
963 properties are less capable of predicting morphological cluster in Lis1 mutants.


964

965

966 **Fig 5. CCK-expressing basket cells have decreased innervation preference with ectopic**
967 **calbindin positive principal cells.**

968 (A) Low magnification images showing the locations of parvalbumin and cholecystokinin-
969 expressing interneurons in the CA1 hippocampus. Note the CA1 depth measurement from the back
970 of the oriens – this measure is more appropriate for assessing somatic position within the larger
971 CA1 structure, as opposed to PCL depth used elsewhere in the study. (B) Normalized histograms
972 of basket cell soma depth measurements along the radial axis of CA1, both PV- (*left*) and CCK-
973 containing (*right*) inhibitory interneuron somas show modest superficial shifts in $Lis1^{+/-}$ mice. (C)
974 High magnification images of a staining experiment for the quantification of PV-containing
975 inhibitory puncta from control littermate samples. *Left*, an example CB-expressing principal cell.
976 *Right*, an example non-CB-expressing principal cell. The top row shows calbindin and
977 parvalbumin staining, the bottom row shows the same cells with calbindin, Wfs1 staining which
978 was used to draw the cell border, and the puncta derived from the parvalbumin staining shown
979 above (arrows point to a few in the first panel) – these puncta are filtered for proximity to a
980 postsynaptic gephyrin puncta (channel not shown). (D) Same as in (C), except the interneuron
981 staining is for the cannabinoid receptor 1, highly expressed in the terminals of CCK-expressing
982 interneurons. (E & F) Same as the corresponding above panels, but for samples from $Lis1$ mutant
983 littermates. (G) PV puncta bias summary. PV puncta had a modest preference for non-calbindin
984 expressing principal cells in both non-mutant and mutant slices. PV-calbindin preference: $0.74 \pm$
985 0.05 and 0.63 ± 0.11 innervation biases for normal type and mutants respectively, $p = 0.55$, each
986 point represents 12 cells from a slice, $n = 3$ pairs of littermates from 3 litters. (H) Same as in (E),
987 but for experiments where the PV antibody was replaced by the CB1-R antibody. Non-mutant
988 CCK baskets displayed a preference for calbindin-expressing principal cells that was lost in $Lis1^{+/-}$
989 mice. CB1-R-calbindin preference: 1.32 ± 0.04 , 1.02 ± 0.09 for normal type and mutant
990 respectively, $p = 0.02$. Scale bars for C-F are $2 \mu\text{m}$.

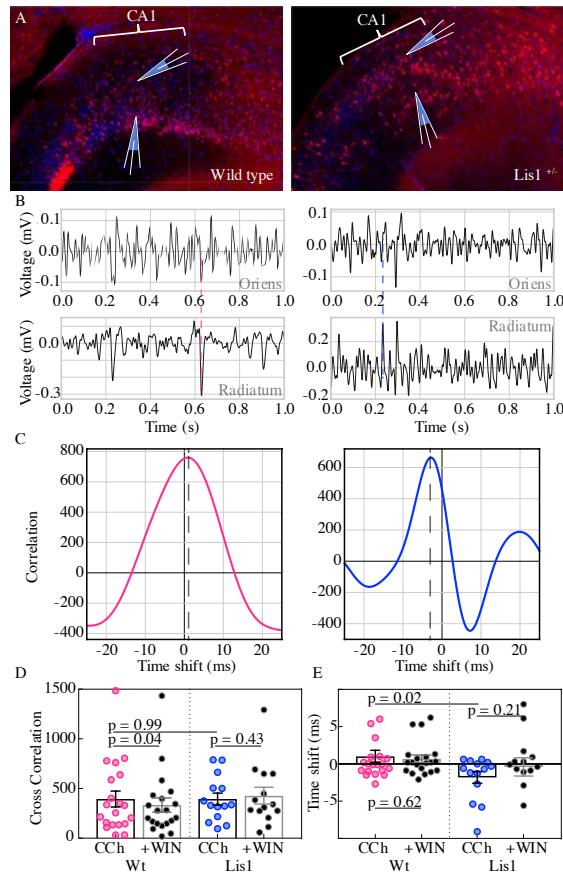

991

992 **Fig 6. Physiological assays of network function within CA1.**

993 (A & B) Cell recoveries from normal type and *Lis1* mutant experiments. (C) Normalized example
 994 traces from pre- and post-wash in (dashed) of omega-conotoxin (1 μ M), *from left to right*, a
 995 normal-type complex and simple recordings, followed by *Lis1*^{+/−} complex and simple examples.
 996 Stimulation for monosynaptic experiments was delivered locally in the CA1 PCL. (D)
 997 Quantification of the percent reduction in the evoked IPSC 10-12 mins after drug application. Wt:
 998 complex $52.5 \pm 3.9\%$, simple $75.6 \pm 8.3\%$; *Lis1*^{+/−}: complex $48.2 \pm 16.4\%$; simple $60.2 \pm 7.8\%$,
 999 n = 8, 8, 13, 5, respectively. (E) Example traces as in (C) but for omega-agatoxin experiments (250
 1000 nM). (F) As in (D) but for agatoxin. Wt: complex $42.0 \pm 6.2\%$, simple $9.5 \pm 0.7\%$; *Lis1*^{+/−}:
 1001 complex $48.9 \pm 9.9\%$; simple $14.2 \pm 3.0\%$, n = 4, 6, 7, 3, respectively. (G) Example traces for
 1002 monosynaptic EPSCs (excitatory, inward current), and disynaptic feedforward IPSCs (inhibitory,

1003 outward current) evoked by stimulation of Schaffer collaterals, from a simple and complex
1004 recovered cell morphology in normal type. (H) IPSC amplitude / EPSC amplitude plotted by
1005 somatic PCL depth. (I) Same data as in (H) sorted by cell sub-type. Wt: complex 3.15 ± 0.39 ,
1006 simple 5.70 ± 0.95 ; Lis1^{+/−}: complex 3.02 ± 0.49 %; simple 5.03 ± 0.76 , n = 23, 23, 21, 17,
1007 respectively.

1008



1009

1010 **Fig 7. Lis1^{+/−} mice display robust carbachol induced oscillations.**

1011 (A) Normal type (*left*) and mutant (*right*) images from ventral hippocampus in Calbindin-cre:Ai14
1012 mice. Note the second layer of deeply positioned calbindin expressing principal cells in the Lis1
1013 mutant. (B) One second of data during carbachol induced activity from radiatum side electrodes
1014 in normal type and mutant recordings, respectively. (C) Power spectra computed for each of the
1015 above example recordings. (D) Summary peak frequency data for non-mutant and mutant
1016 experiments, in carbochol alone, and with addition of WIN-55 (Cb1-R agonist, 2 um). Wt CCh

1017 24.88 ± 1.7 Hz, +WIN 24.4 ± 2 Hz, Lis1^{+/−} CCh 31 ± 1.1 Hz, +WIN 31.3 ± 1 Hz. (E) Summary
1018 data as in (D) but for normalized Vrms power at the peak frequency. Wt +WIN 0.93 ± 0.03 vs CCh
1019 alone $p = 0.03$, Lis1^{+/−} +WIN 1.02 ± 0.04 vs CCh alone $p = 0.69$; $n = 20$ and 14 non-mutant and
1020 mutant respectively. Pre-vs-post wash p values represent paired t tests.
1021

1022
1023 **Fig 8. Carbachol oscillations in Lis1 mutants are less synchronous across CA1 heterotopias.**
1024 (A) Normal type (*left*) and mutant (*right*) images from ventral hippocampus showing the
1025 positioning of dual electrode recordings, one from the s. radiatum and a second s. oriens side
1026 electrode in the same radial plane. (B) One second of simultaneous recordings from the deep (top)
1027 and superficial (bottom) electrodes, for non-mutant (*left*) and mutant (*right*) example experiments.
1028 Dashed lines highlight peak alignment between electrodes – note the blue line intersecting near a

1029 trough in the top trace, and a peak in the bottom. (C) Cross correlation plots for the example
1030 experiments shown in (B). Correlation values are arbitrary units. (D) Summary data for non-mutant
1031 and Lis1^{+/−} experiments in carbachol and after WIN-55 wash-in. Wt CCh 394.6 ± 80 , +WIN 333.9
1032 ± 72 , Lis1^{+/−} CCh 394.2 ± 60.8 , +WIN 427.2 ± 84.1 . (E) Summary for the millisecond timing of
1033 peak correlation shifts shown in (D). Wt CCh 1 ± 0.8 ms, +WIN 0.68 ± 0.5 ms, Lis1^{+/−} CCh $-1.8 \pm$
1034 0.8 ms, +WIN -0.4 ± 1.23 ms; $n = 20$ and 14 non-mutant and mutant respectively. Pre-vs-post
1035 wash p values represent paired t tests.

1036